ارزیابی کارآیی مدل های فرکتالی در برآورد پارامترهای هیدرولیکی خاک و رابطه بین بُعد فرکتالی منحنی رطوبتی با این پارامترها
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریشیوا محمدیان خراسانی 1 , مهدی همایی 2 * , ابراهیم پذیرا 3
1 - دانشجوی دکترا/ گروه خاکشناسی/ دانشکده کشاورزی و منابع طبیعی/ دانشگاه آزاد اسلامی/ واحد علوم و تحقیقات/ تهران
2 - استاد دانشگاه تربیت مدرس
3 - استاد دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
کلید واژه: بُعد فرکتالی, ویژگیهای هیدرولیکی خاک, بافت خاک, منحنی نگهداشت, هندسه فرکتالی,
چکیده مقاله :
روابط آب و خاک به قدری پیچیده هستند که پیشرفتهترین مدلهای ریاضی نیز به سختی قادر به شبیهسازی دقیق آنها میباشند. منحنی رطوبتی و هدایتهیدرولیکی غیراشباع، از جمله عوامل مهم در بررسی حرکت آب در خاک هستند. بهعلت تغییرپذیری بالا و پیچیدگی خاک، بدست آوردن ویژگیهای هیدرولیکی خاکبهطور مستقیم دشوار، وقتگیر و هزینهبر بوده و بنابراین لازم است با استفاده از روشهای غیرمستقیم تخمین زده شوند. هدف از این پژوهش، تعیین بُعد فرکتالیمنحنی رطوبتی خاک با استفاده از مدلهای فرکتالی و بررسی رابطه بین بُعد فرکتالی منحنی رطوبتی با پارامترهای هیدرولیکی، درصد رس، سیلت و شن خاک در یکپهنه گسترده بود. بدین منظور، 40 نمونه خاک با بافتهای مختلف از چهار منطقه کرج، قزوین، ایوانکی و کرمانشاه گردآوری و توزیع اندازه ذرات، جرم ویژه ظاهری،کربن آلی، شوری، pH و رطوبت آن ها در مکشهای مختلف اندازهگیری گردید. سپس پارامترهای مدل نگهداشت van Genuchten و مدلهای فرکتالی Tyler-Wheatcraft و Rieu-Sposito برای توزیع اندازه ذرات خاک محاسبه شد. نتایج نشان داد که مدل نگهداشت van Genuchten رفتاری فرکتالی داشته و با استفاده ازمدلهای فرکتالی میتوان پارامترهای آن را بهصورتی کمّی بیان کرد. همچنین نتایج نشان داد که هر چه مقدار شن در خاک افزایش یابد، بُعد فرکتالی کاهش مییابد،لیکن درصد رس با بُعد فرکتالی مدل Tyler-Wheatcraft رابطهای مستقیم و خطی دارد. نتایج همچنین نشان داد که با افزایش مقدار رس در خاکهای مورد مطالعه،مقدار بُعد فرکتالی مدل Tyler-Wheatcraft ( Dm ( افزایش و با افزایش مقدار شن، بُعد فرکتالی مدل Tyler-Wheatcraft ( Dm ( کاهش مییابد.
Soil and water relations are so complex that the most advanced mathematical models can hardly be able to simulate them accurately. Retention curve and unsaturated hydraulic conductivity are among the most important factors in the study of water flow in the soil. Because the high variability and soil complexity, obtaining soil hydraulic properties directly is difficult, time consuming and costly and therefore it is necessary to estimate indirect methods. The purpose of this study was to determine the fractal dimension of soil moisture curve using fractal models and to investigate the relationship between the moisture curvature fractal dimension with hydraulic parameters, clay, silt and sandy percent in a wide area. For this purpose, some soil samples collected from different tissues from the regions of the country were collected and the variables of particle size, bulk density, organic carbon, salinity, pH and moisture content were measured in different suction. Finally, the parameters of the van Genuchten model as well as models Tyler-Wheatcraft and Rieu-Sposito fractals were calculated for soil particle size distribution. The results showed that van Genuchten model parameters have fractal behavior and can be quantified by using fractal models. The results also showed that the higher the amount of sand in the soil, the fractal decreases, but the clay content has a direct linear relationship with the Tyler-Wheatcraft fractal dimension. This means that by increasing the amount of clay in the studied soils, the fractional dimension of the Tyler-Wheatcraft (Dm) model also increases and with the increase in the amount of sand, the fractal dimension of the Tyler-Wheatcraft (Dm) model decreases.
محمدیان خراسانی، ش.، همایی،م. و پذیرا، ا. 1394 . ارزیابی پایداری خاکدانهها با استفاده از مدلهای فرکتالی و روشهای کلاسیک. نشریه حفاظت منابع آب و خاک، 4 ( 3 :) 39 - 51 .
Arya, M.L. and Paris, J.F. 1981. A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Science Society of America Journal, 45: 1023-1030.
Assouline, S., Tavares-Filho, J. and Tessier, D. 1997. Effect of compaction on soil physical and hydraulic properties: Experimental results and modeling. Soil Science Society of America Journal, 61: 390-398.
Bartoli, F., Genevois-Gomendy, V., Royer, J.J., Niquet, S., Viver, H. and Grayson, R. 2005. A multiscale study of silty soil structure. European Journal of Soil Science, 56: 207-223.
Brooks, R.H. and Corey, A.T. 1964. Hydraulic properties of porous media. Hydrology. Paper No, 3, Colorado State Univ. Fort Collins, Co.
Brooks, R.H. and Corey, A.T. 1966. Properties of porous media affecting fluid flow. Journal of Irrigation and Drainage Engineering, 92: 61-68.
Burdine, N.T. 1953. Relative permeability calculations from pore-size distribution data. Transactions of the American Institute of Mining and Metallurgical Engineers, 198: 7-71.
Campbell, G.S. 1974. A simple method for determining unsaturated hydraulic conductivity from moisture retention data. Soil Science. 177: 311-314.
Crawford, J.W. 1994. The retention between structure and hydraulic conductivity of soil. European Journal of Soil Science, 45: 493-502.
Dirksen, C. 1991. Unsaturated hydraulic conductivity. In: Smith KA, Mullins C.E., editors, Soil analysis physical methods. New York: Dekker; p. 69-209.
Eghball, B., Mielke, L.N., Calvo, G.A. and Wilhelm, W.W. 1993. Fractal description of soil fragmentation for various tillage methods. Soil Science Society of America Journal, 57: 1337-1341.
Ghanbarian-Alavijeh, B., Liaghat, A., Guan-Hua, H. and van Genuchten, M.Th. 2010. Estimation of the van Genuchten soil water retention properties from soil textural data. Pedosphere, 20 (4): 456-465.
Giménez, D., Perfect, E., Rawls, W.J. and Pachepsky, Y.A. 1997. Fractal models for predicting soil hydraulic properties: A review. Engineering Geology, 48: 161-183.
Hillel, D. 1998. Environmental soil physics. Academic Press, San Diego. 771pp.
Kosugi, K. and Hopmans, J.W. 1998. Scaling water retention curves for soils with longnormal pore-size distribution. Soil Science Society of America Journal, 62: 1496-1504.
Lal, R. and Pierce, F.J. 1991. The vanishing resource. pp. 1-5. In Lal, R. and Pierce, F.J.
Lee, C.K. 2002. Multifractal characteristics in air pollutant concentration time series. Water, Air and Soil Pollution, 135: 389-409.
Lee, T.K. and Ro, H.M. 2014. Estimating soil water retention function from its particle-size distribution. Geosciences Journal, 18(2): 219-230.
Lin, D.C. 2008. Factorization of joint multifractality. Physica: 3461-3470.
Millan, H., Gonz.lez-Posada, M., Aguilar, M., Dom.nguez, J. and Céspedes, L. 2003. On the fractal scaling of soil data, particle-size distributions. Geoderma, 117: 117-128.
Miller, E.E. and Miller, R.D. 1956. Physical theory for capillary flow phenomena. Journal of Applied Physics, 27: 324-332.
Perfect, E. and Kay, B.D. 1991. Fractal theory applied to soil aggregation. Soil Science Society of America Journal, 55: 1552-1558.
Perfect, E., Rasiah, V. and Kay, B.D. 1992. Fractal dimension of soil aggregate-size distribution calculated by number and mass. Soil Science Society of America Journal, 56: 1407-1409.
Perrier, E., Sposito, G. and De Marsily, G. 1996. A computer model of the water retention curve for soils with a fractal pore size distribution. Water Resources Research, 32: 3025-3031.
Rasiah, V., Kay, B.D. and Perfect, E. 1992. Evaluation of selected factors influencing aggregate fragmentation using fractal theory. Canadian Journal of Soil Science, 72: 97-106.
Rasiah, V., Kay, B.D. and Perfect, E. 1993. New mass-based model for estimating fractal dimension of soil aggregates. Soil Science Society of America Journal, 57: 891-895.
Rieu, M. and Sposito, G. 1991. Fractal fragmentation, soil porosity and soil water properties: II. Applications. Soil Science Society of America Journal, 55(5): 1239-1244.
Seuront, L., Schmitt, F., Lagodeuc, Y., Schertzer, D. and Lovejoy, S. 1999. Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: Example of phytoplankton distribution in turbulent coastal waters. Journal of Plankton Research 21: 877-922.
Tuli, A., Kosugi, K. and Hopmans, J.W. 2001. Similtaneous scaling of soil water retention and unsaturated hydraulic conductivity functions assuming longnormal pore-size distribution. Advances in Water Resources, 24: 677-688.
Turcotte, D.L. 1986. Fractals and fragmentation. Journal of Geophysical Research, 91: 1921-1926.
Tyler, S.W. and Wheatcraft, S.W. 1990. Fractal processes in soil water retention. Water Resources Research, 26(5): 1047-1054.
Tyler, S.W. and Wheatcraft, S.W. 1992. Fractal scaling of soil particle-size distributions: Analysis and limitations. Soil Science Society of America Journal, 56(2): 362-369.
van Damme, H. 1995. Scale invariance and hydric behavior of soils and clays. CR Academic Science Paris, 320: 665-681.
van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-898.
Veltri, M., Severino, G., De Bartolo, S., Fallico, C. and Santini, A. 2013. Scaling analysis of water retention curves: a multi-fractal approach. Procedia Environmental Sciences, 19: 618-622.
Warrick, A.W., Mullen, G.J. and Nielsen, D.R. 1977. Scaling of field measured hydraulic properties using a similar media concept. Water Resources Research, 13(2): 355-362.
Wu, Q., Borkovec, M. and Sticher, H. 1993. On particle-size distributions in soils. Soil Science Society of America Journal, 57(4): 883-890.
Young, I.M., Crawford, J.W. and Rappoldt, C. 2001. New method and models for characterizing structural heterogeneity of soil. Soil and Tillage Research, 61: 33-45.
Zhang, Sh., Grip, H. and L.vdahl, L. 2006. Effect of soil compaction on hydraulic properties of two loess soils in China. Soil and Tillage Research, 90: 117-125.
Alfaro Soto, M.A., Chang, H.K. and van Genuchten, M.Th. 2017. Fractal-based models for the unsaturated soil hydraulic functions. Geoderma, 306: 144–151.
Wang, J., Qin, Q., Guo, L. and Feng, Y. 2018. Multi-fractal characteristics of three-dimensional distribution of reconstructed soil pores at opencast coal-mine dump based on highprecision CT scanning. Soil and Tillage Research. 182. 144–152.