کاربرد مدلهای شوریزدایی بهمنظور تدوین برنامه تناوب زراعی خاکهای شور و سدیمی (مطالعه موردی منطقه رامهرمز )
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریصفورا اسدی کپورچال 1 * , مهدی همایی 2
1 - استادیار دانشکده علوم کشاورزی- دانشگاه گیلان
2 - استاد گروه آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه تربیت مدرس
کلید واژه: آبشویی, تناوب زراعی, بهسازی خاک, خاکهای شور و سدیمی,
چکیده مقاله :
شوری خاک یکی از چالشهای مهم کشاورزی پایدار در مناطق خشک و نیمهخشک است. تجمع نمکها در ناحیه رشد ریشه بر ویژگیهای فیزیکی و شیمیایی خاک از جمله فشار اسمزی، نفوذپذیری و هدایت هیدرولیکی تأثیر گذاشته و در نتیجه آن رشد و نمو بیشتر گیاهان زراعی و باغی یا مختل میشود و یا بهطور کامل متوقف میگردد. هدف از پژوهش حاضر بررسی کاربرد مدلهای شوریزدایی بهمنظور ارائه برنامه تناوب زراعی اصلاح و بهسازی خاکهای شور و سدیمی است. بدین منظور آزمایشی با دو تیمار و سه تکرار در اراضی به مساحت ٤٥٠٠٠ هکتار واقع در استان خوزستان که کلاس شوری و سدیمی بودن آن در کلاس S4A3 قرار داشت انجام شد. در تیمار نخست از هیچگونه ماده اصلاح کننده استفاده نگردید و فقط با کاربرد یک متر عمق آب آبشویی در چهار تناوب 25/0 متری اجرا شد. لیکن در تیمار دوم، گچ با درجه خلوص 78% به اندازه ده تن در هکتار استفاده و سپس عملیات آبشویی به روش غرقاب متناوب و یک متر عمق آب آبشویی انجام گردید. نمونههای خاک پیش، حین و پس از کاربرد هر تناوب آبیاری از اعماق25-0، 50-25، 75-50، 100-75، 125-100، 150-125 سانتیمتری برداشت و تجزیههای فیزیکی و شیمیایی مورد نظر بر روی آنها اعمال شد. نتایج نشان داد که از میان مدلهای مورد بررسی، مدل لگاریتمی از کارآیی بهتری برای تخمین مقدار آب مورد نیاز برای اصلاح خاکهای شور و سدیمی برخوردار است. بر اساس مدل بهدست آمده، مقدار خالص آب لازم برای کاهش مقدار شوری اولیه خاک محاسبه و در نهایت برای بهسازی خاکهای شور و سدیمی، برنامه تناوب زراعی اصلاحی اراضی در دو گزینه ارائه گردید. گزینه نخست با آبشویی مقدماتی و کشت جو در استمرار آبشویی در اولویت بود و گزینه دوم با آبشویی مقدماتی و کشت یونجه در استمرار آبشویی در اولویت بعدی قرار گرفت. نتایج این پژوهش نشان میدهد که گنجاندن یک برنامهی تناوب زراعی به همراه آب آبشویی، ضمن آبشویی مؤثر نمکهای محلول از نیمرخ خاک، موجب صرفهجویی قابلتوجه در میزان آب مصرفی میگردد.
Soil salinity is one of the important challenges for sustainable agriculture in arid and semi-arid regions. Accumulation of soluble salts within the soil profile adversely affects some physical and chemical properties of soils including osmotic pressure, permeability and hydraulic conductivity. As a consequence, growth and development of plant is seriously reduced or fully ceased. The objective of this study was to assess using desalinization models for scheduling crop rotation of reclamation saline-sodic soils. Consequently, a large area of 45,000 ha with S4A3 (extreme salinity and sodicity) salinity/sodicity class was selected to obtain the required data ,in Khuzestan, Iran. This experiment was conducted with two treatments each with three replicates. In the first treatment, the experiment was conducted by applying just 100 cm water depth in four-25 cm intervals. In the second treatment, 10 Ton gypsum (78% purity rate) was applied prior to salt leaching together with leaching water. Soil samples were taken from 0-25, 25-50, 50-75, 75-100, 100-125 and 125-150 cm soil depths before, during and after each leaching water application interval. The required physical and chemical soil analyses were performed for the collected data. The results indicated that the logarithmic model can estimate the capital leaching requirement much better than other models. Based on the obtained model, the amount of net water needed to reduce initial soil salinity was calculated and finally crop rotation in two options was presented for reclamation of saline-sodic soils. The first option with preliminary leaching and cultivation of barley in continues leaching was assigned as the first priority. The second option with preliminary leaching and alfalfa cultivation and continues leaching was assigned as the next priority. The obtained results further indicated that the inclusion of scheduling crop rotation to the leaching practice, in addition to enhance effective leaching of soluble salts from the soil profile, causes considerable water saving.
اسدی کپورچال، ص.، همایی، م. و پذیرا، ا. 1391. مدلسازی آب آبشویی مورد نیاز برای بهسازی خاکهای شور. نشریه حفاظت منابع آب و خاک، ٢(٢): ٦٥-٨٣.
بنایی، م. ح. ١٣٨٠. نقشه خاک ایران، منابع اراضی و پتانسیلها (١:١٠٠٠٠٠٠)، موسسه تحقیقات خاک و آب کشور، تهران، ایران.
بینام، 1381. دستورالعمل آزمایشهای آبشویی خاکهای شور و سدیمی در ایران، نشریه شماره 255، سازمان مدیریت و برنامهریزی کشور، تهران، ایران.
بینام، 1387. پروژه ملی اطلس سیمای حوزههای آبخیز کشور، مرکز تحقیقات حفاظت خاک و آبخیزداری، تهران، ایران.
جلالی، و.ر.، همایی، م. و میرنیا، س.خ. ١٣٨٦. تأثیر سطوح مختلف شوری محیط رشد بر جوانهرنی و رشد گیاهچه کلزا، مجله علوم خاک و آب، ٢١(٢): ٢٠٩-٢١٧.
جلالی، و.ر. و همایی، م. ١٣٨٩. مدلسازی اثر زمان اعمال تنش شوری محیط ریشه بر عملکرد گیاه کلزا. مجله بهزراعی کشاورزی، ١٢(١): ٢٩-٤٠.
حسینی، ی.، همایی، م.، کریمیان، ن.ع. و سعادت، س. ١٣٨٧. اثرات فسفر و شوری بر رشد، غلظت عناصر غذایی و کارایی مصرف آب در کلزا (Brassicanapus L.). پژوهش کشاورزی، ٨(٤): ١-١٨.
سعادت، س.، همایی، م. و لیافت، ع.م. ١٣٨٤. اثر شوری محلول خاک بر جوانهزنی و رشد گیاهچه سورگوم علوفهای. مجله علوم خاک و آب. ١٩(٢): ٢٤٣-٢٥٤.
کیانی، ع.ر.، میرلطیفی، م.، همایی، م. و چراغی، ع.م. ١٣٨٤. کارآیی مصرف آب گندم تحت شرایط شوری و کمآبی. مجله تحقیقات مهندسی کشاورزی، ٦(٢٤): ٤٧-٦٤.
کیانی، ع.ر.، همایی، م. و میرلطیفی، م. ١٣٨٥. ارزیابی توابع کاهش عملکرد گندم در شرایط توأم شوری و کمآبی. مجله علوم خاک و آب، ٢٠(١): ٧٣-٨٣.
محمدزاده، م.، همایی، م. و پذیرا، ا. 1392. مدلی کاربردی برای بهسازی خاکهای شور و سدیمی. نشریه حفاظت منابع آب و خاک، 3(1): 43-59.
همایی، م 1381. واکنش گیاهان به شوری. انتشارات کمیته ملی آبیاری و زهکشی ایران. شماره 58، 97 صفحه.
Ben-Gal, A., Ityel, E., Dudley, L., Cohen, Sh., Yermiyahu, U., Presnov, E., Zigmond, L. and Shani, U. 2008. Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers. Agricultural water Management, 95: 587-597.
Chen, W., Hou, Zh., Wu, L., Liang, Y. and Wei, Ch. 2010. Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agricultural water management, 97 (12): 2001-2008.
Corwin, D.L., Rhoades, J.D. and Simunek, J. 2007. Leaching requirement for soil salinity control: steady-state versus transient models. Agriculture Water Management, 90: 165-180.
Cote, C.M., Bristow, K.L. and Ross, P.J. 2000. Increasing the efficiency of solute leaching: impacts of flow interruption with drainage of the ‘‘preferential flow paths’’. Journal of Contaminant Hydrology, 43:191–209.
Dieleman, P.J. 1963. Reclamation of salt –affected soils in Iraq. Veenman, Wageningen, 175 pp.
Dirksen, C. Kool, J.B. Koorevaar, P. and van Genucheten, M.Th.1993. HYSWASOR- Simulation model of hysteretic water and solute transport in the root zone. p. 99-122. In D. Russo, and G. Dagan, (ed), Water Flow and Solute Transport in Soils. Springer Verlage, New York.
Epstein, E., Norlyn, JD., Rush, DW., Kingsbury, RW., Kelly DB., Cunningham, GA. And Wrona, AF. 1980. Saline culture of crops: A genetic approach. Science, 210:399-404.
Esmaili, E., Asadi Kapourchal, S., Malakouti, M.J. and Homaee, M. 2008. Interactive Effect of Salinity and Two Nitrogen Fertilizers on Growth and Composition of Sorghum. Plant Soil and Environment, 56(12): 537-546.
FAO. 2010. Extent and causes of salt-affected soils in participating countries. Available on URL: http://www.fao.org/ag/AGL/agll/spuch/topic4.htm.
Ghassemi, F., Jankeman, A.J. and Nix, H.A. 1995. Salinisation of land and water resources: Human causes, extent, management and case studies. The Australian national university, Australia.
Hendrikus Barnard.J, van Rensburg, L.D. and Peter Bennie, A.T. 2010. Leaching irrigated saline sandy to sandy loam apedal soils with water of a constant salinity. Irrigation Science, 28: 191–201.
Hoffman, G.J. 1980. Guidelines for reclamation of salt-affected soils. In: Proceedings of International American Salinity and Water Management, Technical Conference. Juar. Mecxico, pp: 49-64.
Homaee, M., Feddes, R.A. and Dirksen, C. 2002a. A macroscopic water extraction mode for nonuniform transient salinity and water stress. Soil Science Society of America Journal, 66(6): 1764-1772.
Homaee, M., Dirksen, C. and Feddes, R.A. 2002b. Simulation of root water uptake: I. Nonuniform transient salinity using different macroscopic reduction functions. Agricultural Water Management, 57(2): 89-109.
Homaee, M., Feddes, R.A. and Dirksen, C. 2002c. Simulation of root water uptake. II. Nonuniform transient water stress using different reduction functions. Agricultural Water Management, 57(2): 111-126.
Homaee, M., Feddes, R.A. and Dirksen, C. 2002d.Simulation of root water uptake. III. Nonuniform transient combined salinity and water stress. Agricultural Water Management, 57(2): 127-144.
Homaee, M. and Feddes, R.A. 1999.Water uptake under non-uniform transient salinity and water stress. p. 416-427. In J. Feyen and K. Wiyo (ed.), Modeling of transport processes in soils at various scales in time and space.
Homaee, M. and Feddes, R.A. 2001.Quantification of water extraction under salinity and drought. p. 376-377, In W.J. Horst et al., (ed.), Plant nutrition-Food security sustainability of agro-ecosystems. Kluwer Academic Publishers.The Netherlands.
Homaee, M. and Feddes, R.A. 2002.Modeling the sink term under variable soil water osmotic heads. p.17-24. In Hassanizadeh et al., (ed.), developments in water resources 47 (1); Computational methods in water resources. Elsevier Science B.V., The Netherlands.
Homaee, M. and Schmidhalter, U. 2008. Water integration by plants root under non-uniform soil salinity. Irrigation Science, 27: 83-95.
Jalali, V.R., Asadi Kapourchal, S. and Homaee, M. 2017. Evaluating performance of macroscopic water uptake models at productive growth stages of durum wheat under saline conditions. Agricultural Water Management, 180: 13-21.
Jurinak, J.J. 1981. Salt-affected soils, Utah state university. Logan, Utah. Chapter V. p. 1-13.
Leffelaar, P.A. and Sharma, P. 1977. Leaching of a highly saline- sodic soil. Journal of Hydrology, 32: 203-218.
Maas, E.V. and Hoffman, G.J. 1977. Crop salt tolerance -current assessment. Journal of Irrigation and Drainage Engineering-ASCE, 103: 115-134.
Nielsen, D.R. and Biggar, J.W. 1961. Miscible displacement in soils. Soil Science Society of America Journal, 25: 1-5.
Pazira, E. and Kawachi, T. 1981. Studies on appropriate depth of leaching water, Iran.A case study. Journal of Integrated Agriculture Water Use and Freshening Reservoirs, Kyoto University Japan, 6: 39-49.
Pazira, E. and Keshavarz, A. 1998. Studies on appropriate depth of leaching water, International Workshop on the Use of Saline and Brackish-Water for Irrigation, Indonesia, pp: 328-338.
Pazira, E. and Homaee, M. 2010. Salt leaching efficiency of subsurface drainage systems at presence of diffusing saline water table boundary: a case study in Khuzestan plains, Iran. Proceedings of International of the XVПth World Congress of the International Commission of Agricultural Engineering (CIGR), Quebec City, Canada, pp: 1-15.
Reeve, R.C. 1957. The relation of salinity to irrigation and drainage requirements. Third Congress of International Commission on Irrigation and Drainage, Transactions, 5: 10.175- 10.187.
Saadat, S., and Homaee, M. 2015.Modeling sorghum response to irrigation water salinity at early growth stage. Agricultural Water Management, 152:119-124.
Sharma, B.R. and Minhas, P.S. 2005.Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia. Agricultural Water Management, 78 (1-2): 136-151.
Szabolcs, I.1994. Soils and salinization. p. 3-11. In M. Pessarakli (ed.) HB of plant and crop stress. Marcel Dekker, New York.
van der Molen, W.H. 1956. Desalinization of saline soils as a column process. Soil Science, 81: 19-27.
van Genuchten, M.Th. and Hoffman, G.J. 1984. Analysis of crop salt tolerance data. p. 258-271. In I. Shainberg, and J. shalhevet. (ed.), Soil salinity under irrigation process and management. Ecological Studies, 51. Springer-Verlag, New York.
Verma, S.K. and Gupta, R.K. 1989. Leaching of saline clay soil under two modes of water application. Journal of the Indian Society of Soil Science, 37: 803-808.
Zarei, Gh., Homaee, M., Liaghat, A.M. and Hoorfar. A.H. 2010.A model for soil surface evaporation based on Campbell’s retention curve. Journal of Hydrology, 380: 356–361.