ارزیابی سطوح مختلف ورودی نرم افزار Rosetta در برآورد برخی ویژگیهای هیدرولیکی خاک
محورهای موضوعی : کاربرد کامپیوتر در مسائل آب و خاکپریسا مشایخی 1 , محسن دهقانی 2
1 - استاديار بخش تحقيقات خاک و آب، مرکز تحقيقات و آموزش کشاورزي و منابع طبيعي اصفهان، سازمان تحقيقات، آموزش و ترويج کشاورزي، اصفهان ايران.
2 - استاديار بخش تحقيقات خاک و آب، مرکز تحقيقات و آموزش کشاورزي و منابع طبيعي اصفهان، سازمان تحقيقات، آموزش و ترويج کشاورزي، اصفهان ايران.
کلید واژه: ظرفيت زراعي, مدلسازي, نقطه پژمردگي دائم, ROSETTA,
چکیده مقاله :
مقدمه و هدف پژوهش: ظرفيت مزرعه (FC) و نقطه پژمردگي دائم گياه (PWP) از جمله مهمترين نقاط در منحني مشخصه رطوبتي خاک هستند. اين پارامترها از اهميت زيادي در مديريت، برنامه ريزي و طراحي سيستم هاي مختلف آبياري و مديريت کشاورزي برخوردار مي باشند. روش هاي مستقيم اندازه گيري اين پارامترها بسيار دشوار و زمان بر است. توابع انتقال پدو (PTF) به طور گسترده اي براي پيش بيني پارامترهاي هيدروليکي خاک به نفع اندازه گيري هاي آزمايشگاهي يا ميداني گران قيمت استفاده شده اند.Rosetta يکي از انواع توابع انتقالي بر اساس شبکه هاي عصبي مصنوعي (ANN) است که امکان تخمين پارامترهاي هيدروليکي معادله ون گن اختن و عدم قطعيت آنها را فراهم مي کند. از آنجا که اين نرم افزار در بسياري از نرم افزارهاي متداول بررسي ويژگي هاي هيدروليکي خاک از جمله هايدروس، ديسک و ... براي برآورد اوليه مورد استفاده قرار مي گيرد، اين تحقيق با هدف بررسي ميزان دقت سطوح مختلف ورودي نرم افزار ROSETTA در تخمينFC و PWP انجام شد. روش پژوهش: براي انجام پژوهش حاضر از داده هاي مربوط به ويژگي هاي فيزيکي حدود 280 نمونه خاک از مناطق مختلف استان اصفهان استفاده شد. خاک هاي مورد مطالعه در 9 کلاس بافتي شامل لوم رسي، لوم رسي سيلتي، رس سيلتي، لوم شني، لوم، رسي، لوم سيلتي، لوم شني و لوم رسي شني طبقه بندي شدند. به منظور تخمين پارامترهاي معادله ون گنوختن سه سطح از ورودي نرم افزار Rosetta شامل 1) استفاده از کلاس بافتي(TC)، 2) درصد ذرات شن، رس و سيلت (SSC) و 3) درصد شن و رس و سيلت به علاوه چگالي ظاهري خاک (SSC+BD) استفاده شد. مقاديرFC و PWP با استفاده از پارامترهاي هيدروليکي تخمين زده شده توسط ROSETTA، از طريق معادله ون گنوختن محاسبه و با مقادير اندازه گيري شده در آزمايشگاه به کمک دستگاه صفحات فشاري، مقايسه شدند. براي ارزيابي آماري ميزان دقت پارامترهاي برآورد شده ازشاخصهاي آماري متفاوتي مانند جذر ميانگين مربعات خطا (RMSE)، جذر ميانگين مربعات خطاي نرمال شده (NRMSE)خطاي باياس ميانگين(MBE)، ضريب کارآيي اصلاح شده('E) و شاخص مطابقت اصلاح شده ('d) استفاده شد. يافتهها: نتايج نشان داد که در خاکهاي با بافت ريز مانند رس (C)، رس سيلتي (SiC) و لوم رسي سيلتي (SiCL)، سطح اول ورودي ها (TC) دقيقتر از دو سناريو ديگر بود و مقاديرFC با خطاي کمتري برآورد شد. به نظر مي رسد وجود مقادير بالاي درصد رس در اين بافت خاک سبب ايجاد خطا در اندازه گيري درصد ذرات رس، سيلت و شن مي شود؛ به گونه اي که در اين بافت ها استفاده از کلاس بافتي از دقت بالاتري نسبت به استفاده از درصد ذرات تشکيل دهنده بافت خاک (سناريو دوم) در برآورد ويژگي هاي هيدروليکي خاک برخوردار بوده است. از سوي ديگر، در بافت هاي درشت شن لومي (LS) و لوم شني (SL)، سطح سوم (SSC+BD) بيشترين دقت را در تخمين پارامترهاي مدل ون گنوختن داشت. در مورد بقيه بافتهاي خاک، سطح دوم (SSC) بيشترين دقت را در برآورد FC داشت. از نظر مقادير ضرايب همبستگي بين مقاديرFC اندازه گيري شده و برآورد شده، به ترتيب، سناريو دوم(SSC) (R2=0.4927)، سناريو اول(TC) (R2=0.3992) و سناريو سوم(SSC+BD) R2=(0.3715) قرار گرفتند. بر خلاف (vv-1)FC، مقادير (vv-1) PWP برآورد شده توسط نرم افزار در سناريوهاي مختلف مورد مطالعه در بافت هاي مختلف از روند مشخصي تبعيت نکرد، اما در اکثر بافت هاي خاک مورد مطالعه، بيشترين ضريب همبستگي بين مقاديرPWP اندازهگيري شده و برآورد شده توسط نرمافزار ROSETTA در سناريو دوم(SSC) مشاهده شد (R2=0.4758) و به دنبال آن سناريو سوم(SSC+BD) (R2=0.4458) و سطح اول(TC) (R2=0.4382) قرار گرفتند. نتايج: به طور کلي در اکثر خاک هاي مورد مطالعه استفاده از سناريو دوم يعني درصد ذرات ماسه، رس و سيلت (SSC) به عنوان وروديROSETTA کمترين ميزان خطا را در تخمين پارامترهاي معادله ون گنوختن داشت. بنابراين، (vv-1)FC و (vv-1) PWP برآورد شده با استفاده از سناريو دوم (SSC) در مقايسه با مقادير اندازهگيريشدهشان از دقت قابل قبولي برخوردار بودند.
Background and Aim: Field capacity (FC) and permanent wilting point of the plant (PWP) are the most important points in the moisture characteristic curve. These parameters are very important for managing, planning and designing different irrigation systems and different agricultural management. The traditional methods to determine these properties are difficult and time-consuming. Pedotransfer functions (PTFs) have been widely used to predict soil hydraulic parameters in favor of expensive laboratory or field measurements. Rosetta is one of many PTFs and is based on artificial neural network (ANN) analysis which allows the estimation of van Genuchten water retention parametersand their uncertainties. This research was conducted with the aim of investigating the effect of different input levels of ROSETTA software in estimating FC and PWP. Method: To conduct the present research, the data related to the physical characteristics of about 280 soil samples from different parts of Isfahan province were used. The studied soils classified into 8 textural classes including clay loam, silty clay loam, sandy loam, loam, clay, silty loam, sandy loam and sandy clay loam. In order to estimate the parameters of the van Genuchten equation three levels of the ROSETTA's inputs including 1) the use of textural class (TC), 2) the percentage of sand, clay and silt particles (SSC) and 3) the percentage of sand and clay particles and silt plus balk density (SSC+BD) were used. They were calculated by ROSETTA, through the van Gnochten equation and compared with the values measured in the laboratory using pressure plates. Accuracy and reliability of the estimated parameters were evaluated by, modified efficiency coefficient (E'), modified agreement index (d'), the mean and the standard deviation of the root of mean squared differences (RMSD), Normalized root of mean squared differences (NRMSD)and mean bias error (MBE). Results: The results showed that in heavy textural soils such as clay (C), silty clay (SiC) and silty clay loam (SiCL), the first scenario (TC) is more accurate than the other two scenarios and FC values estimated with less error. On the other hand, in the loamy sand (LS) and sandy loam (SL) textures, the third scenario (SSC+BD) had the most accuracy in estimating the parameters of the van Genuchten model. Regarding the rest of the soil textures, the second scenario (SSC) had the highest accuracy in FC estimation. In terms of the correlation coefficient values between the measured and estimated FC values, respectively, the second scenario (SSC) (R2=0.5282), the first scenario (TC) (R2=0.3992) and the third scenario (SSC+BD) (R2= 0.4116) were placed. Unlike FC, the PWP values estimated in different scenarios did not show a clear dependence on the texture, but the highest correlation coefficient between the measured and estimated PWP values by ROSETTA software was observed in the second scenario (SSC), (R2=0.5185), followed by the third scenario (SSC+BD) (R2=0.4930) and the first scenario (TC) (R2=0.476). Conclusion: In general, in the most of the studied soils, using the percentage of sand, clay and silt particles (SSC), as ROSETTA's input, had the lowest amount of error in the estimation of the parameters of the van Genuchten equation. Therefore, the estimated FC and PWP using second scenario (SSC) had acceptable accuracy compared to their measured values.
Abd Rashid, N.S., Askari, M., Tanaka, T., Simunek, J.& van Genuchten, M.Th. (2015). Inverse estimation of soil hydraulic properties under oil palm trees. Geoderma, 241–242, 306–312.
Alletto, L., Pot, V., Giuliano, S., Costes, M., Perdrieux, F.& Justes, E. (2015) Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil. Geoderma, 243(244), 18–28.
Asgarzadeh, H., Mosaddeghi, M.R., Dexter, A.R., Mahboubi, A.A.& Neyshabouri, M.R. (2014). Determination of soil available water for plants: consistency between laboratory and field measurements. Geoderma, 226–227, 8–20.
Babaeian, E., Homaee, M.& Noroozi, A.A. (2013). Assessing spectrotransfer functions and pedotransfer functions in predicting soil water retentions. Conservation of soil and water resources, 3(2), 25-43. (In Persian with English abstract).
Blake, G.R.& Hartge, K.H. (1986) Bulk density. In: Klute A, Ed, Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph 9, American Society of Agronomy—Soil Science Society of America, Madison, 363-382.
Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464-465.
Beretta, A.N., Silbermann, A.V., Paladino, L., Torres, D., Bassahun, D., Musselli, R.& García-Lamohte, A. (2014). Análisis de textura del suelo con hidrómetro: modificaciones al método de Bouyoucus. Ciencia e Investigación Agraria, 41(2), 263-271.
Charles, W.& Oluwapelumi, O. (2021). Predictive modelling of soils’ hydraulic conductivity using artificial neural network and multiple linear regression. Applied Sciences.3. https://doi.org/10.1007/s42452-020-03974.
Dobarco, M.R., Isabelle, C.I., Bas, C.L.& Martin, M.P. (2019). Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma, 336, 81–95. https://doi.org/10.1016/j.geoderma.2018.08.022.
Ebrahimi, F. & Raoof, M. (2015). Effect of different Rosetta Predictive Model on Soil Hydraulic Properties. Estimation Using HYDRUS-2D and Effect of Land use changing on their. Iranian Journal of Irrigation and Drainage, 2(9), 303-313. (In Persian with English abstract).
Fathi, M. & Tehrani, M. (2017). Zinc Availability in Relation to Selected Soil Properties and landscape Position in Calcareous Soils of Esfahan Province. 15th Iran Soil Science Congress, Isfahan University of Technology
Garg, N.K. & Gupta, M. (2015).Assessment of improved soil hydraulic parameters for soil water content simulation and irrigation scheduling. Irrigation Science, 33(4), 247–264.
Gee, G.W. & Or, D. (2002). 2.4 Particle-size analysis. Methods of Soil Analysis, 4(598), 255-293.
Gunarathna MH, Sakaic K, Nakandakaric T, Momiid K, Kumaria MKN, & Amarasekaraa MGTS. (2019). Pedotransfer functions to estimate hydraulic properties of tropical Sri Lankan soils. Soil & Tillage Research, 190, 109–119. https://doi.org/10.1016/j.still.2019.02.009.
Klute, A. (1986). Methods of Soil Analysis. Part 1- Physical and Mineralogical Methods. 2nd ed., Agronomy No. 9. ASA/SSSA Inc., Madison, Wisconsin, USA.
Mashayekhi, P., Ghorbani Dashtaki, S., Mosaddeghi, M.R, Shirani, H.& Mohammadi Nodoushan, A.R. (2016). Different scenarios for inverse estimation of soil hydraulic parameters from double ring infiltrometer data using HYDRUS 2D/3D. International Agrophysics, 30(2), 203-210.
Nakhaei, M.& Šimůnek, J. (2014). Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. Journal of Hydrology and Hydromechanics, 62(1), 7–15.
Rastgou, M., Bayatb, H., Mansoorizadehc, M.& Gregoryd, A.S. (2020). Estimating of soil water retention curve: Comparison of multiple nonlinear regression approach and random forest data mining technique. Computers and Electronics in Agriculture, 174. https://doi.org/10.1016/j.compag.2020.105502.
Salahou, M.Kh., Chen, Y., Jiao, X.& Lu, H. (2023). Inverse Modelling to Estimate Soil Hydraulic Properties at the Field Scale. Mathematical Problems in Engineering 2022, Article ID 4544446, 11 pages. https://doi.org/10.1155/2022/4544446.
Salazar, O., Wesstrom, I.& Joel, A. (2008). Evaluation of drainmod using saturated hydraulic conductivity estimated by a pedotransfer function model. Agricultural Water Management, 95, 1135 – 1143.
Šimůnek, J., van Genuchten, M.Th.& Šejna, M. (2012). HYDRUS: model use, calibration, and validation. American Society of Agricultural and Biological Engineers, 55(4), 1261–1274.
Schaap, M.G., Leij, F.J.& van Genuchten, M.Th. (2001). ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251, 163–176. http://dx.doi.org/10.1016/S0022-1694 (01)00466-8.
Schaap, M.G., Nemes, A.& van Genuchten, M.Th. (2004). Comparison of models for indirect estimation of water retention and available water in surface soils. Vadose Zone Journal, 3, 1455–1463. http://dx.doi.org/10.2136/vzj2004.1455.
Schelle, H., Iden, S.C., Schlüter, S., Vogel, H.J.& Durner, W. (2012). Identification of effective flow processes and properties from virtual soils using inverse modeling. Geophysical Research Abstracts, 14.
Trejo-Alonso, J., Carlos Fuentes, C., Chávez, C., Quevedo, A., Gutierrez-Lopez, A., & Brandon González-Correa, B. (2021). Saturated Hydraulic Conductivity Estimation Using Artificial Neural Networks. Water, 13(705). https://doi.org/10.3390/w13050705.
Van Genuchten, M. Th. (1980). A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G.&Van Genuchten, M. Th. (2010). Using pedotransfer functions to estimate the Van Genuchten- Mualem soil hydraulic properties: a review. Vadose Zone Journal, 9(795). http://dx.doi. org/10.2136/vzj2010.0045.
Yavari, M., Mohammadi, M.H.& Shahbazi, K. (2020). Comparison of Some Methods for Measuring Primary Soil Particle Size Distribution and Introducing Appropriate Times for the Four-Reading Method for Determining Soil Texture. Iran Journal of Soil Water Research, 51(12), 2999-3015. (In Persian with English abstract). DOI: 10.22059/ijswr.2020.310061.668738.
Zhang, Y., Schaap, M.G, Guadagnini, A.& Neuman, S.P. (2016). Inverse modeling of unsaturated flow using clusters of soil texture and pedotransfer functions. Water Resource Research, 52, 1–14. http://d x.doi.org/10.1002/2016WR019016.
Zhang, Y.& Schaap, M.G. (2017). Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). Journal of Hydrology, 547, 39–53.