ویژگیهای هیدرولیکی خاکهایی با درجات متفاوت آبگریزی
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیارینسرین کریمیان 1 * , شجاع قربانی 2 , حسن طباطبائی 3
1 - دانش آموخته کارشناسی ارشد مهندسی علوم خاک – فیزیک و حفاظت خاک، دانشگاه شهرکرد، شهرکرد، ایران
2 - دانشیار گروه مهندسی علوم خاک– فیزیک و حفاظت خاک، دانشگاه شهرکرد، شهرکرد، ایران
3 - دانشیار گروه مهندسی آب، دانشگاه شهرکرد، شهرکرد، ایران
کلید واژه: آبگریزی خاک, منحنی رطوبتی, مدل ون گنوختن, هدایت هیدرولیکی اشباع,
چکیده مقاله :
آبگریزی خاک باعث افزایش مقاومت آن به مرطوب شدن می گردد. بسیاری از خصوصیات خاک از جمله ویژگی های فیزیکی و هیدرولیکی آن خاک تحت تأثیر آبگریزی قرار دارند. هدف از این پژوهش، مقایسه برخی ویژگی های هیدرولیکی خاک هایی با آبگریزی متفاوت بوده. بدین منظور یک نمونه خاک آهکی با بافت لوم سیلتی رسی از اراضی دانشگاه شهرکرد تهیه و بهوسیله افزودن لجن فاضلاب شهری با نسبت های 0/100، 50/50 و80/20(گرم لجن فاضلاب به گرم خاک) تیمار ها به ترتیب با سه درجه بدون آبگریزی (S0)، آبگریزی کم (S50) و آبگریزی زیاد (S80) انتخاب و تهیه شدند. آبگریزی خاک به روش مدت زمان نفوذ قطره آب به خاک اندازه گیری گردید. رطوبت وزنی تیمارهای آبگریز شده در مکش های ماتریک 0، 5، 10، 50، 100، 300، 500،، 1000، 1500، 3000، 10000 و 15000 سانتی متر با دستگاه صفحات فشاری و جعبه شنی تعیین شد. پارامترهای مدل ون گنوختن شامل درصد رطوبت اشباع (θs)، درصد رطوبت باقیمانده (θr)، عکس نقطه ورود هوا (α) و پارامترهای شکل (n و m) با استفاده از نرم افزار RETC و حل معکوس تعیین گردید. نتایج نشان داد با افزایش نسبت لجن فاضلاب، آبگریزی خاک در تیمارهای S50 و S80 به ترتیب 61 و 25 برابر گردید. همچنین با آبگریز شدن خاک روند تغییر رطوبت در برابر مکش خاک متفاوت گردید بهصورتی که منحنی رطوبتی خاک با آبگریزی زیاد به منحنی رطوبتی دوکوهانه (Biomodal) تغییر یافت. مطابق نتایج پارامترهای رابطه ون گنوختن تحت تأثیر آبگریزی خاک قرار گرفتند و با افزایش درجه آبگریزی پارامترهای m و αکاهش و پارامترهای θs و n افزایش یافتند. همچنین، هدایت هیدرولیکی اشباع تحت تأثیر تیمارها کاهش (%46/20-33/80) یافت و مقدار آن از 2/19 سانتی متر بر ساعت در تیمار S0 به 1/18 سانتی متر بر ساعت در تیمار S80 رسید.
Water repellency increases soil infiltration opportunity time. Also soil hydraulic properties affects by soil water repellency. The main objective of this study was to compare the hydraulic properties of soils under different water repellency levels. Therefore, Three levels of water repellency (zero, weak and strong) were artificially created in a silty clay loam soil by adding urban sewage sludge (S0=0:100; S50=50:50 and S80=80:20 sludge weight: soil ratio). Soil water retention curve and water repellency were determined using sand box and pressure plate apparatus and water drop penetration time (WDPT) method, respectively. Van Genuchtens parameters (n, α, m, θs, θr) were determined using RETC software. The results showed that an addition of urban sewage sludge to soils led to an increased WDPT (61 and 25 times) in the water repellency Soils (S80 and S50) .water content corresponds to matric potentials has changed with increasing soil water repellency, also soil water retention curve has changed to biomodal curve in the repellent soils. It shows that the Van Genuchtens parameters affected by water repellency. Also, adding of urban sewage sludge on the soil hydraulic conductivity was significant (P ≤0.0001) and resulted in a decreased 33.80-46.20% in in soil hydrophobicity.
ذوالفقاری، ع.ا. و حاج عباسی، م. 1387. تاثیر کاربری اراضی بر خصوصیات فیزیکی و آبگریزی خاک در مراتع فریدون شهر و جنگلهای لردگان. مجله آب و خاک علوم و صنایع کشاورزی، 22: 251 - 262.
رحیم خانی، ی. 1391. کارایی منحنی رطوبتی اندازه گیری شده با دستگاه صفحات فشاری برای شبیه سازی حرکت آب در خاک آبگریز. پایان نامه کارشناسی ارشد. دانشکده کشاورزی. دانشگاه شهرکرد. ایران.
علیزاده ا. 1380. رابطه آب خاک و گیاه. انتشارات دانشگاه قدس رضوی. مشهد-ایران. 472 صفحه.
نورمهناد، ن.، طباطبایی، س.ح.، نوری امامزاده ای، م.ح. و قربانی دشتکی، ش. 1392. تعیین منحنی رطوبتی و پارامترهای معادله ون گنوختن در خاک های آبدوست و آبگریز شده در اثر حرارت. مجله پژوهش های (علوم خاک و آب)، 27( 4): 573 - 582.
Abu-Zreig, M., Rudra, P.P., and Dickinson, W.T. 2003. Effect or surfactants on hydraulic properties of soils. Journal of Biosystems Engineering, 84: 363-372.
Arye, G., Tarchitzky, J., and Chen, Y. 2011. Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins. Journal of Hydrology, 397: 136-145.
Bagarello, V., and Sgroi, A. 2007. Using the simplified falling head technique to detect temporal changes in field-saturated hydraulic conductivity at the surface of a sandy loam soil. Journal of Soil and Tillage Research, 94: 283-294.
Bauters, T.W.J., Steenhuis, T.S., Dicarlo, D.A., Nieber, J.L., Dekker, L.W., Ritsema, C.J., and Parlange, J.Y. 2000. Physics of water repellent soils. Journal of Hydrology, 231-243.
Blake, G.R., and Hartge, K.H. 1986. Bulk density. In: Klute, A (ed.), Methods of Soil Analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI: PP. 363-375.
Buczko, U., Bens, O., and Durner, W. 2006. Spatial and temporal variability of water repellency in a sandy soil contaminated with tar oil and heavy metal. Journal of Contaminant Hydrology, 88: 249-268.
Burch, G.J. Moor, J.D. and Burns, J. 1987. Soil hydrophobic effects on infiltration and catchment runoff. Journal of Hydrological Processes, 3:211-222.
DeBano, L.F. 1971. The effect of hydrophobic substances on water movement in soil during infiltration. Journal of Proceedings of the Soil Science Society of America, 35: 340-343.
DeBano, L.F. 1981. Water repellent soils: a state-of-the-art. General Technical Report PSW- 46. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, 21 p.
De Jong, R. 1983. Soil water desorption curves estimated from limited data.can. Journal of Soil Science Society of America , 63: 697-703.
Dekker, L.W., and Ritsema, C.G. 1994. How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Journal of Water Resourses Research, 30:2507-2517.
Epstein, E. 1975. Effect of sewage sludge on some soil physics properties. Journal of Environmental Quality. 41: 139-142.
Hillel, D. 1980. Fundamentales of soil physics. Academic Press, Sun Dieyo, CA.
Imenson, A.C. Vertraten, J.M. Van Mullingen, E.J. and Sevink, J. 1992. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forests. Journal of Catena, 19: 345-361.
Jong, L.W. Jacobsen, O.H. and Moldrup, P. 1999. Soil water repellency: effects of water content, temperature and particle size. Journal of Soil Science Society of America , 63:437-442.
Kayode, S. Are, G.A. Oluwatosino. Adeyolanu A. and Oke, O. 2009. Dlash and burn effect on soil quality of an Alfisol: soil physical properties. Journal of Soil and Tillage Research, 103: 4-10.
Kirkham, M.B. 2005. Principles of Soil and Plant Water Relation. Publisher: Pana Preibelbis, Elsevior Academic Press.
Letey, J.M.L.K., Carrillo and X.P. Pang. 2000. Approaches to characterize the degree of water repellency. Journal of Hydrology , 231-232: 61-65.
Nelson, D.W., and Kladivko, E.J. 1979. Changes in soil properties from application of anaerobic sludge. Journal of Water Poll controfed , 51: 325-332.
Nieber, J.L., Bauters, T.W.J., Steenhuis T.S., and Parlange, J.Y. 2000. Numerical simulation of experimental gravity- driven unstable flow in water repllent sand. Journal of Hydrology , 231-232, 295-307.
Ojeda, G.S., Mattana Alcaniz, J.M., Marando, G., Bonmati, M., Woche, S.K., and Bachmam, J. 2010. Wetting process and soil water retention of a minesoil amended with composted and thermally dried sludges. Journal of Geoderma, 156: 399-409.
Ojeda, G.S., Perfect, F., Alcaniz, J.M., and Ortiz, O. 2006. Fractal analysis of soil water hysteresis as influenced by sewage sludge application. Journal of Geoderma, 134: 386-401.
Rasiah, V., Voroney R.P., Groenvelet and Kachanoski P.H. 1990. Modifications in soil water retention and hydraulic conductivity by an oily waste. Cremlingen, 3: 367-372.
Rawls, W.J. Pachepsky, Y.A. Ritchie, J.C. Sobecki, T.M. Bloodworth, H. 2003. Effect of soil organic carbon on soil water retention. Journal of Geoderma,116: 61-76.
Rillig, M.C. 2005. A connection between fungal hydrophobins and soil water repellency? Pedobiologia, 49: 395-399.
Travis, M.J., Weeisbrod N., and Gross A. 2008. Accumulation of oil and greas in soils irrigated with greywater and their potential role in soil water repellency. Science of the Total Environment, 394: 68-94.
Wallis, M.G. Horne, D.J. and McAuliffe, K.W. 1990. A study of water repellency and its amelioration in yellow-brown sand. 1. Severity of water repellency and the effects of wetting and abrasion. Journal of Agricultural Research , 33: 139-144.