جذب بيولوژيکي فرميک اسيد توسط تفالههاي هويج: مطالعه تجربي و مدلسازي آماري با استفاده از روش رويه پاسخ
محورهای موضوعی : بهرهبرداری از منابع آب غیر متعارف
1 - دانشيار، گروه شيمي، دانشکده علوم، دانشگاه گلستان، گرگان، ايران.
کلید واژه: جذب سطحي, فرميک اسيد, تفاله هاي هويج, رويه پاسخ,
چکیده مقاله :
زمينه و هدف: اسيدهاي چرب نقش اساسي در طبيعت، بيوشيمي و صنعت دارند اما در عين حال از مهمترين آلايندههاي محيطي هستند. حضور آنها در آب، زندگي حيوانات، گياهان و انسان ها را به خطر مي اندازد. فرميک اسيد (FA) ساده ترين کربوکسيليک اسيد، عمدتاً در صنايع نساجي، پارچه و چرم استفاده مي شود. عمده ترين اثرات سوء ناشي از FA تشکيل سنگ کليه، استفراغ و ضعف عمومي بدن است. در سالهاي اخير جذب بيولوژيکي آلايندهها توسط مواد بيولوژيکي مختلف بهويژه براي تصفيه آب و فاضلاب مورد توجه زيادي قرار گرفته است. هدف اصلي اين تحقيق، ارزيابي پتانسيل تفاله هاي هويج به عنوان يک بيو جاذب کمهزينه براي جذب FA از محلولهاي آبي و بررسي اثر پارامتر هاي مؤثر بر جذب بوده است.
روش پژوهش: بقاياي هويج پس از جمع آوري با آب مقطر شسته و خشک شد. سپس با آسياب برقي خرد و به ذرات ريز تبديل شد. جهت اصلاح و از بين بردن رنگدانه ها، تانن ها، مواد محلول در آب و قندها ابتدا بيو جاذب با کلريدريک اسيد 5/0 مولار و سپس با آب مقطر تا رسيدن به pH حدود 7-6 شسته شده و در انتها در آون خشک شد. بيو جاذب با استفاده از طيفسنجي مادون قرمز (IR) و ميکروسکوپ الکتروني روبشي نشر ميداني(FE-SEM) بررسي شد. آزمايش ها با مخلوط کردن مقدار مشخصي از بيو جاذب (3-5/0 گرم) با 50 ميلي ليتر محلول فرميک اسيد با غلظت اوليه 01/0 مولار در گستره دمايي (K 15/15-328/298) و زمان هاي مختلف (min 10-120) انجام شدند. پس از برقراري تعادل، بيو جاذب از محلول جدا شده و غلظت فرميک اسيد باقي مانده توسط تيتراسيون با محلولNaOH با غلظت 1/0 مولار تعيين شد. براي ارزيابي اثر متغيرهاي انتخاب شده بر جذب FA توسط بيو جاذب، از يک طرح 3 سطحي، 3 متغيري باکس-بنکنBox-Behnken (BBD) همراه با روش رويه پاسخ (RSM) استفاده شد.
يافتهها: تجزيه و تحليل طيف FT-IR حضور چندين گروه عاملي را بر روي سطح بيو جاذب نشان داده است که پيوند شيميايي با FA را تسهيل ميکنند. تصوير FE-SEM سطح ناهموار، نامنظم و متخلخل را نشان داده است که شرايط ايده آلي را براي جذب فراهم مي کند. در بهينهسازي فرآيند، حداکثر درصد جذب FA و ظرفيت جذب به ترتيب 15/82% و 17/7 ميليگرم بر گرم در دماي 60/303 درجه کلوين با زمان تماس 50/115 دقيقه و جرم بيو جاذب 50/2 گرم حاصل شد. نتايج حاصل از آناليز واريانس نشان داد که جرم بيو جاذب بيشترين تأثير را بر جذب دارد. مدل چند جمله اي درجه دوم به خوبي با داده هاي تجربي مطابقت نشان داده است. نمودارهاي سه بعدي براي نشان دادن تعاملات بين متغيرها ترسيم شد. بر اساس اين نمودارها، جذب با کاهش دما و افزايش جرم بيو جاذب افزايش يافته است. با اين حال کاهش بيشتر دما باعث افزايش جذب نشده است. کيفيت مدل با مقايسه مقادير تجربي جذبFA با مقادير پيشبينيشده توسط مدل ارزيابي شد. علاوه بر اين، مطالعه سينتيکي فرايند جذب نشان داده است که جذب FA بر روي تفاله هاي هويج از مدل سينتيکي شبه مرتبه دوم پيروي مي کند.
نتيجه گيري: نتايج اين تحقيق نشان داده شده است که تفاله هاي هويج يک جاذب سبز مقرون به صرفه، در دسترس و کاربردي براي جذب بيولوژيکي FA هستند. از آنجايي که مقدار زيادي از تفاله هاي هويج خصوصا پس از پروسه آب گيري در محيط وجود دارند، گزينه اي مقرون به صرفه براي حذف آلاينده ها از محيط زيست بوده و مي توان از آن ها به عنوان يک بيو جاذب ارزان و در دسترس در حذف ساير آلودگي ها نيز استفاده کرد. مقادير بهينه براي پارامترهاي موثر بر جذب با استفاده از روش RSM و طرح BBD تعيين شدند. طراحي آزمايشها تعداد و ترتيب آزمايشها را با ترکيبهاي مختلف متغيرهاي مستقل کاهش داده است.
Background and Aim: Fatty acids play a fundamental role in nature, biochemistry, and industry, but they are also among the most significant environmental pollutants. Their presence in water endangers the lives of animals, plants, and humans. Formic acid (FA), the simplest carboxylic acid, is primarily used in the textile, fabric, and leather industries. The major ill effects caused by FA are the formation of kidney stones, vomiting, and general body weakness. Recently, the biosorption of pollutants by biological materials has gained attention, particularly for water and wastewater treatment. The primary goal of this study was to evaluate the potential of carrot residues as a low-cost biosorbent for FA biosorption from aqueous solutions and to investigate the effects of effective parameters on biosorption.
Method: Carrot residues were collected, washed with distilled water, dried, and ground into fine particles using an electric mill. After sieving, pigments, tannins, water-soluble substances, and sugars were removed by washing the residues first with 0.5 M hydrochloric acid, followed by distilled water until a constant pH (6.0-7.0) was achieved. Finally, it was dried in the oven. The biosorbent was characterized using infrared spectroscopy (IR) and field emission scanning electron microscopy (FE-SEM). Adsorption experiments were conducted by mixing specified amounts of biosorbent (0.5-3.0 g) with 50 mL of 0.01 M formic acid solution in a 100 mL conical flask at a range of temperatures (298-328 K) and for different periods (10-120 min). After equilibrium was reached, the biosorbent was separated, and the remaining FA concentration was determined by titration with 0.1 M NaOH. A 3-level, 3-variable Box-Behnken Design (BBD) combined with response surface methodology (RSM) was used to evaluate the effect of the selected variables on FA adsorption by biosorbent.
Results: FT-IR analysis revealed the presence of several functional groups on the adsorbent surface that facilitate chemical bonding with FA. FE-SEM images showed an uneven, irregular, and porous surface, providing ideal conditions for biosorption. In process optimization, the maximum FA biosorption efficiency and adsorption capacity, 82.15% and 7.17 mg/g, were achieved at 303.60 K, with a contact time of 115.50 minutes and a biosorbent mass of 2.50 g. Analysis of variance indicated that biosorbent mass had the most significant influence on biosorption. The quadratic model fit the experimental data well, and three-dimensional response surface plots were generated to depict the interactions between variables. According to these plots, biosorption increased as temperature decreased and biosorbent mass increased. However, further decreases in temperature did not continue to enhance biosorption. The quality of the model was assessed by comparing the experimental values of FA biosorption to those predicted by the model. Furthermore, kinetic studies showed that the adsorption of FA onto carrot residues followed the pseudo-second-order kinetic model.
Conclusion: The results of this study represent that carrot residues proved to be an economical, readily available, and practical green adsorbent for FA biosorption. Given the large quantity of carrot residues produced, particularly as a by-product of carrot juice production, they offer a cost-effective and sustainable option for removing other environmental pollutants. Optimal values for the effective parameters on biosorption were determined using RSM and the BBD. The design of experiments reduced the number and arrangement of the experiments with various combinations of independent variables.
Abd Elkader, R. S., Mohamed, Mo. K., Hasanien, Y. A., & Kandeel, E. M. (2023). Experimental and Modeling Optimization of Strontium Adsorption on Microbial Nanocellulose, Eco-Friendly Approach, Journal of Cluster Science, 34, 3147–3163. https://doi.org/10.1007/s10876-023-02454-3.
Adekola, F. A., & Oba, I. A. (2017). Biosorption of Formic and Acetic Acids from Aqueous Solution Using Activated Carbon From Shea Butter Seed Shells, Applied Water Science, 7, 2727–2736. https://doi.org/10.1007/s13201-016-0491-3.
Avhad, M. R., & Marchetti, J. M. (2015). A Review on Recent Advancement in Catalytic Materials for Biodiesel Production, Renewable and Sustainable Energy Reviews, 50, 696–718. https://doi.org/10.1016/j.rser.2015.05.038.
Bechthold, P., Orazi, V., Juan, A., & Marchetti, J. M. (2022). A First-Principles Study of Formic Acid Adsorption on CaO (001), Applied Surface Science, 583, 152296. https://doi.org/10.1016/j.apsusc.2021.152296.
Benkaddour, S., El Ouahabi, I., Essoufy, M., Hiyane, H., Lazar, N., Saufi, H., Slimani, R., Shalaby, N. F., Riadi, Y., & Abdel-Gawad S. A. (2024). Biosorption of Basic Yellow 28 Dye onto Watermelon Seeds. Part II: Modeling and Optimization by Response Surface Methodology, Green Chemistry Letters and Reviews, 17 (1), 2408253. 10.1080/17518253.2024.2408253.
Biriukov, D., Kroutil, O., Kabelać, M., Ridley, M. K., Machesky, M. L., & Predota, M. (2019). Oxalic Acid Adsorption on Rutile: Molecular Dynamics and Ab Initio Calculations, Langmuir, 35 (24), 7617-7630. 10.1021/acs.langmuir.8b03984.
Celebican, O., Inci, I., & Baylan, N. (2020). Modeling and Optimization of Formic Acid Adsorption by Multiwall Carbon Nanotube using Response Surface Methodology, Journal of Molecular Structure, 1203, 127312. 10.1016/j.molstruc.2019.127312.
Cepoi, L., & Zinicovscaia, I. (2020). Spirulina Platensis as a Model Object for the Environment Bioremediation Studies, in: Handbook of Algal Science. Technology and Medicine, Amsterdam, The Netherlands: Academic Press.
Dagnelie, R. V. H., Rasamimanana, S., Thory, E., & Lefèvre, G. (2017). Competitive Adsorption of Organic Molecules on Clay Rock, Procedia Earth and Planetary Science, 17, 144-147. https://doi.org/10.1016/j.proeps.2016.12.033.
Deshmukh, V. V., Chandraker, N., Thakur, R. S., & Chandrakar, A. K. (2015). Biosorption of Formic Acid, International Journal of Advanced Research in Chemical Science, 2 (6), 22-27.
Ebrahimi, M., Samadani Langeroodi, N., & Hooshmand, Sh. (2019). Biosorption of Fe (III) Ions Using Carrot: Equilibrium, Kinetics, and Statistical Analysis, Protection of Metals and Physical Chemistry of Surfaces, 55 (2), 259–265. 10.1134/S2070205119020163.
Fazal, M., Haseeb, A., & Masjuki, H. (2011). Biodiesel Feasibility Study: An Evaluation of Material Compatibility; Performance; Emission and Engine Durability, Renewable and Sustainable Energy Reviews, 15 (2), 1314–1324. https://doi.org/10.1016/j.rser.2010.10.004.
Ghadami, F., Valian, M., Atoof, F., Dawi, E. A., Miranzadeh, M. B., Mahdi, M. A., & Salavati-Niasari, M. (2024). Response Surface Methodology for Optimization of Operational Parameters to Remove Tetracycline from Contaminated Water by New Magnetic Ho2MoO6/Fe2O3 Nano Adsorbent, Results in Engineering, 21, 101746. 10.1016/j.rineng.2023.101746.
Guzel, F., Yakut, H., & Topal, G. (2008). Determination of Kinetic and Equilibrium Parameters of the Batch Adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from Aqueous Solution by Black Carrot (Daucus Carota L.) Residues, Journal of Hazardous Materials, 153, 1275–1287. https://doi.org/10.1016/j.jhazmat.2007.09.087.
Ho, Y. S., & McKay, G. (2000). The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Peat, Water Research, 34 (3), 735-742. https://doi.org/10.1016/S0043-1354(99)00232-8.
Hosseini, S. A., Samadani Langeroodi, N., Bahlakeh, Gh., Khalafi, M., & Ramezanzadeh, B. (2024). A detailed electronic-scale DFT simulation and a response surface methodology for the removal of Fe (III) ions from aqueous solutions, Journal of Dispersion Science and Technology, 45 (2), 342–354. 10.1080/01932691.2022.2151457.
Jacob, M. M., Ponnuchamy, M., Kapoor, A., & Sivaraman, P. (2024). Adsorptive membrane separation for eco-friendly decontamination of chlorpyrifos via biochar-impregnated cellulose acetate mixed matrix membrane, Environmental Science and Pollution Research, 31, 56314–56331. 10.1007/s11356-024-34912-4.
Jahani, Z., Samadani Langeroodi, N., Khalafi, M., & Mokhtari, A. (2025). Optimization of adsorption parameters for tetracycline removal from aqueous solutions by ZnCl2-activated carbon derived from walnut shell, Iranian Journal of Chemistry and Chemical Engineering, 44 (10), 2490-2502.
Khoshkholghsima, N. Z., Loni, F., & Ghaffari, M. R. (2024). Novel Bioremediation Strategies: Enhancing Polluted Soil and Protecting the Environment through Omics Technologies and Microbial Approaches, Journal of Water and Soil Conservation, 31 (2), 33-55. [In Persian]
Khoshniyat, S., & Abedini, S. (2025). An updated comprehensive review on the adsorptive removal of heavy metals from industrial effluents, International Journal of New Chemistry, 12 (1), 74-86. https://www.magiran.com/p2764379.
Lagergren, S. K. (1898). About the Theory of So-Called Adsorption of Soluble Substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1-39.
Li, Q., Li, T., & Wang, Q. (2020). Photoelectrocatalytic Removal of Bisphenol A Using [Ru(bpy)2(tatp)]2+ Modified TiO2 Electrode, International Journal of Electrochemical Science, 15, 6759−6768. 10.20964/2020.07.32.
Marsha Putra, S. E., Muttaqien, F., Hamamoto, Y., Inagaki, K., Hamada, I., & Morikawa, Y. (2019). Van der Waals density functional study of formic acid adsorption and decomposition on Cu (111), The Journal of Chemical Physics, 150, 154707. https://doi.org/10.1063/1.5087420.
Montgomery, D. C. (2001). Design and Analysis of Experiments, New York: John Wiley & Sons Inc.
Nakazawa, Y., Abe, T., Matsui, Y., Shinno, K., Kobayashi, S., Shirasaki, N., & Matsushita, T. (2021). Differences in Removal Rates of Virgin/decayed Microplastics, Viruses, Activated Carbon, and Kaolin/Montmorillonite Clay Particles by Coagulation, Flocculation, Sedimentation, and Rapid Sand Filtration During Water Treatment, Water Research, 203, 117550. https://doi.org/10.1016/j.watres.2021.117550.
Neves, T. F., Lopes, C. B., Mastelaro, V. R., Dantas, R. F., Silva, C. M., & Predige, P. (2024). Toxic Metals Removal by New Membranes Based on Graphene Oxide and a Cationic Polymer: Influence of Chemical and Morphological Aspects, Chemical Engineering Journal, 498, 155496. https://doi.org/10.1016/j.cej.2024.155496.
Osada, W., Tanaka, Sh., Mukai, K., Choi, Y. H., & Yoshinobu, J. (2022). Adsorption, Desorption, and Decomposition of Formic Acid on Cu (977): The Importance of Facet of the Step, The Journal of Physical Chemistry C, 126 (19), 8354-8363. 10.1021/acs.jpcc.2c01948.
Pivokonsky, M., Kopecka, I., Cermakova, L., Fialova, K., Novotna, K., Cajthaml, T., Henderson, R. K., & Pivokonska, L. (2021). Current Knowledge in the Field of Algal Organic Matter Adsorption onto Activated Carbon in Drinking Water Treatment, Science of The Total Environment, 799, 149455. https://doi.org/10.1016/j.scitotenv.2021.149455.
Scaranto, J., & Mavrikakis, M. (2016). HCOOH Decomposition on Pt (111): A DFT Study, Surface Science, 648, 201–211. https://doi.org/10.1016/j.susc.2015.09.023.
Shadigoo, R., Salimi, F., & Azimi, N. (2024). Wet-Oxidation Study of Dye Removal Using MOF-235 Under Room Conditions and Optimization Process by Experimental Design, Iranian Journal of Chemistry and Chemical Engineering, 43 (1), 181-192. 10.30492/ijcce.2023.1999450.5950.
Shaikhiev, I.G., Kraysman, N.V., & Sverguzova, S.V. (2022). Onion (Allium Cepa) Processing Waste as a Sorption Material for Removing Pollutants from Aqueous Media, Biointerface Research in Applied Chemistry, 12 (3), 3173–3185. 10.33263/BRIAC123.31733185.
Sims, J. J., Ould Hamou, C. A., Réocreux, R., Michel, C., & Giorgi, J. B. (2018). Adsorption and Decomposition of Formic Acid on Cobalt (0001), Journal of Physical Chemistry C, 122, 20279–20288. 10.1021/acs.jpcc.8b04751.
Soleimani Fard, M., Samedani Langeroodi, N., Javan, M., Dehno Khalaji, A. (2025). Removal of Methylene Blue from Aqueous Solutions by CuFe2O4/PVP Adsorbent: Experimental and Theoretical Study, Iranian Journal of Soil and Water Research, 55 (11), 2109-2124. [In Persian]
Uslu, H. (2009). Thermodynamics, Chemical Engineering Journal, 155, 320–325. https://doi.org/10.1016/j.cej.2009.06.040.
Wang, P., Steinmann, S. N., Fu, G., Michel, C., & Sautet, P. (2017). Key Role of Anionic Doping for H2 Production from Formic Acid on Pd (111), ACS Catalysis Journal, 7, 1955–1959. 10.1021/acscatal 6b03544.
Young, A. G., & Mcquillan, A. (2009). Adsorption/Desorption Kinetics from ATR-IR Spectroscopy. Aqueous Oxalic Acid on Anatase TiO2, Langmuir, 25 (6), 3538-3548. https://doi.org/10.1021/la803116n.
Zandsalimi, S., Abdi, Ch., & Bahmani, O. (2024). Study of Arsenic in Water and Soil Sources of a Contaminated region and Its Absorption and Accumulation Rate in the Local Pasture Plants of the Area (Case Study: Bijar City), Journal of Water and Soil Conservation, 31 (1), 73-92. [In Persian]
Zeng, S., Tan, J., Xu, X., Huang, X., & Zhou, L. (2020). Facile Synthesis of Amphiphilic Peach Gum Polysaccharide as a Robust Host for Efficient Encapsulation of Methylene Blue and Methyl Orange Dyes from Water, International Journal of Biological Macromolecules, 154, 974−980. https://doi.org/10.1016/j.ijbiomac.2020.03.151.