شبیه سازی بارهیدرولیکی با استفاده از الگوریتم بهینه سازی تجمع ذرات و الگوریتم ژنتیک (مطالعه موردی: مزارع کشت و صنعت نیشکر دعبل خزاعی)
محورهای موضوعی : برگرفته از پایان نامهعاطفه صیادی شهرکی 1 * , عبدعلی ناصری 2 , امیر سلطانی محمدی 3
1 - دانشجوی دکترای دانشگاه شهید چمران اهواز
2 - استاد دانشکده علوم آب دانشگاه شهید چمران اهواز
3 - استادیار دانشکده علوم آب دانشگاه شهید چمران اهواز
کلید واژه: پیشبینی, الگوریتم ژنتیک, الگوریتم تجمع ذرات, بار هیدرولیکی, دبی زهکش,
چکیده مقاله :
آزمایشهای مزرعهای به منظور شناخت شرایط موجود سامانههای زهکشی مفید هستند، اما محدودیتهای قابل توجهی نیز دارند. از جمله اینکه، این آزمایشها را نمیتوان برای پیشبینی استفاده کرد. کاربرد مدلهای شبیهسازی این محدودیتها را تا حدود زیادی برطرف میکند. اما قبل از کاربرد چنین مدلهایی، درستی نتایج بدست آمده از آنها باید با نتایج آزمایشهای مزرعهای مقایسه گردد. در این پژوهش از الگوریتم بهینهسازی تجمع ذرات و الگوریتم ژنتیک برای پیشبینی بارهیدرولیکی استفاده شده است. بدین منظور مزرعه 11-9R از مزارع نیشکر دعبل خزاعی انتخاب و تعدادی پیزومتر در فواصل مختلف از جمع کننده زهاب و در اعماق 2/2، 3، 4و 5 متری از سطح زمین نصب شد. تغییرات بار هیدرولیکی پیزومترها، و همچنین پارامترهای ورودی مدل شامل حجم آب آبیاری و دبی زهکشها از مهر 1392 تا آذر 1393 بصورت روزانه برداشت شد. نتایج نشان داد که بالاترین دقت در پیشبینی بارهیدرولیکی مربوط به الگوریتم بهینهسازی تجمع ذرات میباشد. به طوریکه مقدارمیانگین RMSE اعماق مختلف بین مقادیر اندازهگیری شده و شبیهسازی شده با الگوریتمهای بهینهسازی تجمع ذرات و ژنتیک به ترتیب برابر 098/0و 114/0 و مقدار میانگین ضریب R^2 در اعماق مختلف برای الگوریتمهای بهینهسازی تجمع ذرات و ژنتیک به ترتیب برابر 991/0و 94/0 بدست آمد. همچنین نتایج آزمون آماری مقایسه میانگینها بین دادههای اندازهگیری و شبیهسازی شده نشان میدهد، بین هیچکدام از مقادیر پیشبینی شده توسط مدلها با دادههای اندازهگیری شده اختلاف معنیداری وجود ندارد.
Farm experiments are useful in knowing the drainage systems but they have considerable limitations including the inability to use them as prediction tools. Application of simulation models can cover these deficiencies but it is necessary to use the field data to evaluate the accuracy of the model. In this study, Particle Swarm Optimization Algorithm and Genetic Algorithm is used to predict hydraulic head. For this purpose, field R9-11 of the Debal Khazaei sugarcane plantation is selected and number piezometers were installed in different depth (2/2,3,4 and 5 meters from the ground) and distance from collector.Piezometers. hydraulic load changes, the volume of irrigation water and drainage flow were measured from September 2013 to November 2014 on a daily basis. The results showed that the Particle Swarm Optimization Algorithm has a highest accuracy in predicting hydraulic head. So that the average RMSE in different depths between measured and predicted with Particle Swarm Optimization Algorithm and Genetic Algorithm obtained 0.098 and 0.114 , respectively and the average coefficient R^2 in different depths for Particle Swarm Optimization Algorithm and Genetic Algorithm models obtained 0.991 and 0.94 respectively. The test results of the comparison between measured and simulated data show that, between any of the values predicted by the models, measured data were not significantly different.
1) Ahmadi, Z., Zekri,M., beyjami, A. 2015. Predict the depth of the groundwater table using particle swarm optimization. In: Proceedings of 10th International Congress of Civil Engineering, 5-7 May, Tabriz, Abstract. (in Persian).
2) Emarati, M. R. 2014. Study of load and price forecasting methods in restructured electricity markets and offering new intelligence methods with more capabilities. MSc. Dissertation, University of Advanced Technology Faculty of Energy Department of Energy Management, Kerman. (in Persian).
3) Goldberg, D.E. 1989. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley.
4) Hamed,Y., Elkili,M. 2015. Prediction of future groundwater level using artificial Neural Network, southernriyadh, ksa(CASE STUDY). International Water Technology Journal,. 5:149-162.
5) Hsu, Sh., Hsieh, JJ.P.A., Chih, T.Ch. & Hsu, K.Ch. 2009. A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression. Expert Systems with Applications, 36(4): 7947-7951.
6) Mokhtaran, R. 2015. Dynamic study of freshwater and saltwater interface in irrigated lands of sugarcane. Ph. D. dissertation, University of Chamran, Ahvaz. (in Persian).
7) Rahmani, Gh. R. 2012. Simulation of groundwater resources in Aghili’s plain using artificial neural networks method and comparison with finite differences mathematical model results. MSc. dissertation, University of Chamran, Ahvaz. (in Persian).
8) Shiri, J., and Kisi, O. 2011. Comparison of genetic programming with neurofuzzy systems for predicting short-term water table depth fluctuations. Comput. Geosci. 37: 1692-1701.
9) Traore, S., and Guven, A. 2012. Regional-specific numerical models of evapotranspiration using gene-expression programming interface in Sahel. Water Resour. Manag. 26: 4367-4380.
10) Zamaniahmadmahmoodi, R., Akhondali, A. M. and Radmanesh, F. 2014. Estimation of the groundwate level by using a combined optimized method with Genetic Algorithms in Ramhormoz plain. Journal of Irrigation and Water Engineering, 4 (15):38-26. (in Persian).
_||_