ارزیابی کیفیت منابع آب زیرزمینی با استفاده از آنالیزهای چند متغیره (مطالعه موردی: دشت بهبهان)
محورهای موضوعی : برگرفته از پایان نامهبهزاد عادلی 1 * , احسان کمالی مسکونی 2 , محسن آرمین 3
1 - دانشجوی دکتری آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان
2 - عضو باشگاه پژوهشگران جوان و نخبگان. دانشگاه آزاد، واحد جیرفت، ایران
3 - استادیار دانشکده کشاورزی و منابع طبیعی، دانشگاه یاسوج
کلید واژه: کیفیت آب, مؤلفه های اصلی, دشت بهبهان, آزمون KMO, روش PCA,
چکیده مقاله :
منابع آب زیرزمینی نقش مهمی در توسعه و پایداری یک سرزمین ایفا میکنند. بنابراین در مناطقی که دسترسی به منابع آب سطحی، محدود و بارشها کم و نامنظم میباشد، مدیریت کمی و کیفی منابع آب زیرزمینی جزء لاینفک اصول توسعهی پایدار میباشد. در این بین یکی از ارکان اصلی مدیریت منابع آبی، ارزیابی خصوصیات کیفی این منابع میباشد. در این تحقیق از روش آنالیز مؤلفههای اصلی (PCA) جهت تحلیل کیفیت آب زیرزمین دشت بهبهان. استفاده شده است. بدین منظور ۱۲ متغیر کیفی برای تجزیه و تحلیل خصوصیات کیفیت آب دشت بهبهان انتخاب شد. آزمون KMO و بارتلت نشان داد که امکان استفاده از روش PCA برای تجزیه و تحلیل خصوصیات کیفی آب زیرزمینی دشت با استفاده از پایگاه داده ساخته شده براساس متغیرهای انتخاب شده وجود دارد. بنابراین با استفاده از PCA دو محور (مؤلفه) اصلی که ۳۰۷/۸۵ درصد از واریانس کل دادههای مشاهداتی را پوشش میداد، استخراج گردید. مؤلفه اول ۶۸/۷۶ درصد واریانس دادهها را در بر گرفته و عمدتا تحت تاثیر 10 متغیر (TH، SAR، K، Na، Mg، Ca، Cl، SO4، TDS و EC ) و محور دوم با توضیح ۶۲۲/۸ درصد واریانس کل، دارای همبستگی مثبت بالا با HCO3 و همبستگی منفی با pH میباشد. در این تحقیق همچنین الگوی تغییرات مکانی هر متغیر و ارتباط آن با کاربری اراضی مورد بررسی قرار گرفت.
Groundwater resources play a vital role in the development and sustainability of a territory. Therefore, in areas with low and irregular precipitation and limited access to surface water resources, the management of groundwater resources, in terms of quantity and quality, is the inseparable part of sustainable development. In the present study, principal components analysis (PCA) was used to assess the quality of groundwater resources of Behbahan Plain, Khuzestan province, Iran. In order to perform a groundwater quality analysis, 12 hydro-chemical variables were selected in order. Results of the KMO index and the Bartlett's test illustrate that this is reasonable to use the PCA on the dataset, which is constructed based on the selected variables, for characterization and analysis of groundwater quality in the study area. According to outcomes of the PCA, the first two axes (PC1 and PC2) captured 85.31% of the total variance in the dataset. The first PCA axis (PC1) explained 76.68% of the variation in the hydro-chemical data that was mainly affected by 10 variables (TH, SAR, K, Na, Mg, Ca, Cl, SO, TDS and EC). The second component (PC2) contributes 8.622% of the total variance in the dataset that indicated strong positive correlation with HCO3 and negative correlation with pH. Also, in this study, the relationship between spatial variation of each selected variable and land use were investigated.
منابع:
1) Alberto, W. D., del-Pilar, D. M., Valeria, A. M., Fabiana, P. S., Cecilia, H. A. and de-los-Ángeles, B. M. 2001. Pattern Recognition Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality. A Case Study: Suquı́a River Basin (Córdoba–Argentina). Water research, 35(12): 2881-2894.
2) Belkhiri, L., Mouni, L. and Tiri, A. 2012. Water–rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environmental Geochemistry and Health. 34(1): 1-13.
3) Elhatip, H., Afşin, M., Dirik, K., Kurmaç, Y. and Kavurmacı, M. 2003. Influences of Human Activities and Agriculture on Groundwater Quality of Kayseri-Incesu-Dokuzpınar Springs, Central Anatolian Part of Turkey. Environmental Geology. 44(4): 490-494.
4) Fan, X., Cui, B., Zhao, H., Zhang, Z. and Zhang, H. 2010. Assessment of River Water Quality in Pearl River Delta Using Multivariate Statistical Techniques. Procedia Environmental Sciences. 2: 1220-1234.
5) Faryadi, S., Shahedi, K. and Nabatpoor, M. 2012. Investigation of Water Quality Parameters in Tadjan River using Multivariate Statistical Techniques. Journal of Watershed Management Research. 3(6): 75-92(In Persian).
6) Fujita, M., Suzuki, J., Sato, D., Kuwahara, Y., Yokoki, H. and Kayanne, H., 2013. Anthropogenic impacts on water quality of the lagoonal coast of Fongafale Islet, Funafuti Atoll, Tuvalu. Sustainability science, 8(3), pp.381-390.
7) Garduño, H., Saleem, R., Sengupta, B. 2011. India Groundwater Governance Case StudyWater Papers: 9-10, see http://www.worldbank.org/water.
8) Hassanzadeh, R., Abbasnejad, A. and Hamzeh, M. A. 2011. Assessment of Groundwater Pollution in Kerman Urban Areas. Journal of Environmental Studies. 36(56):101-110(In persian).
9) Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M. and Fernandez, L. 2000. Temporal Evolution of Groundwater Composition in An Alluvial Aquifer (Pisuerga River, Spain) By Principal Component Analysis. Water Research. 34(3). pp.807-816.
10) Hou, W., Sun, S., Wang, M., Li, X., Zhang, N., Xin, X., Sun, L., Li, W. and Jia, R. 2016. Assessing Water Quality of Five Typical Reservoirs in Lower Reaches of Yellow River, China: Using a Water Quality Index Method. Ecological Indicators. 61: 309-316.
11) Jeong, C. H. 2001. Effect of Land Use and Urbanization on Hydrochemistry and Contamination of Groundwater from Taejon Area, Korea. Journal of Hydrology. 253(1): 194-210.
12) Jung, K. Y., Lee, K. L., Im, T. H., Lee, I. J., Kim, S., Han, K. Y. and Ahn, J. M. 2016. Evaluation of Water Quality for the Nakdong River Watershed Using Multivariate Analysis. Environmental Technology and Innovation. 5, pp.67-82.
13) Kalantari, N. and Majedi, H. R. 2008. Application of Verification in Groundwater Flow Simulation Using PMWIN and MODFLOW Computer Codes (A Case Study of Behbehan Plain Aquifer Modeling). Applied Geology. 4(1): 56-64(In Persian).
14) Kamali-Maskooni, E., Kompanizare, M. and Afzali, S. F. 2017. Chemical Assessment of Dam Water Irrigation Effects on Groundwater Qualities in Bigherd Plain, Fars Province, Iran. Environmental Earth Sciences. 76:238.
15) Karami, R., lashkaripour, G. R., Ghafari, M. and Hafazi-Moghadas, N. 2012. Investigating the Causes of Increasing Water Table in the Baghlan Area (Case study: Dewatering the Marl Mine of Behbahan Cement Factory). Advanced Applied Geology. 2(6): 74-79 (In Persian).
16) Li, X. D., Liu, C. Q., Harue, M., Li, S. L. and Liu, X. L. 2010. The Use of Environmental Isotopic (C, Sr, S) and Hydrochemical Tracers to Characterize Anthropogenic Effects on Karst Groundwater Quality: a Case Study of the Shuicheng Basin, SW China. Applied Geochemistry. 25(12): 1924-1936.
17) Liu, C. W., Lin, K. H. and Kuo, Y. M. 2003. Application of Factor Analysis in the Assessment of Groundwater Quality in a Blackfoot Disease Area in Taiwan. Science of the Total Environment. 313(1): 77-89.
18) Malakoonian, M. and Karami, A. 2004. Chemical Quality Change of the Underground Water Resources of Bam and Baravat Plain between 1997-2003. Hormozgan Medical Journal. 8(2):109-116(In Persain).
19) Mehmandosti, E. A. and Adabi, M. H. 2013. Application of Geochemical Data as Evidence of Water-rock Interaction in the Sarvak Formation, Izeh Zone, Zagros, Iran. Procedia Earth and Planetary Science. 7: 31-35.
20) Mirzayi, M., Riyahi-Bakhtiyari, A., Salman-Mahini, A. R. Gholamalifard, M. 2014. Analysis of the Physical and Chemical Quality of Mazandaran Province (Iran) Rivers Using Multivariate Statistical Methods. Jornal of Mazandaran University Medical Sciences. 23(108):41-52(In Persian).
21) Monjerezi, M., Vogt, R. D., Aagaard, P. and Saka, J. D. 2011. Hydro-geochemical Processes in an Area with Saline Groundwater in Lower Shire River valley, Malawi: an Integrated Application of Hierarchical Cluster and Principal Component Analyses. Applied Geochemistry. 26(8): 1399-1413.
22) Nazari, R. Joodavi, A. 2014. Applied Flow and Contaminant Transport Modeling in Aquifers. Pp: 230(In Persian).
23) Noori, N., Kerachian, R., Khodadadi-Darban, A. and Shakibaienia A. 2007. Assessment of Importance of Water Quality Monitoring Stations Using Principal Components Analysis and Factor Analysis: A Case Study of the Karoon River. Journal of Water and Wastewater. 18(3): 60-69(In Persian).
24) Ouyang, Y. 2005. Evaluation of River Water Quality Monitoring Stations by Principal Component Analysis. Water Research. 39(12): 2621-2635.
25) Parinet, B., Lhote, A. and Legube, B. 2004. Principal Component Analysis: an Appropriate Tool for Water Quality Evaluation and Management—Application to a Tropical Lake System. Ecological Modelling. 178(3): 295-311.
26) Primpas, I., Tsirtsis, G., Karydis, M. and Kokkoris, G. D. 2010. Principal Component Analysis: Development of a Multivariate Index for Assessing Eutrophication According to the European Water Framework Directive. Ecological Indicators. 10(2): 178-183.
27) Rasi-Nezami, R., Nazariha, M., Baghvand, A. and Moridi, Ali. 2013. Karkheh River Water Quality Using Multivariate Statistical Analysis and Qualitative Data Variations. Journal of Health System Research. 8(7): 1280-1292 (In Persian).
28) Rezaee, R., zaree, H., Kalantari, N. and Aliyari, Z. 2016. Water Quality Assessment of Maroon Dam Reservoirs Using Multivariate Statistical Analysis Method Based on Correlation and Variation of Water Quality Data, Bebhan. Journal of Advanced Applied Geology. 7(19): 82-88(In Persian).
29) Shahsavari, A. and Khodaee, K. 2006. Preparation of the Groundwater Flow Model of the Bakhbon Plain Aquifer Using GIS. Ninth congress of Iran geology. Trabiat Modares University. 61-70(In Persian).
30) Sharifinia, M., Mahmoudifard, A., Gholami, K., Namin, J. I. and Ramezanpour, Z. 2016. Benthic diatom and Macroinvertebrate Assemblages, a Key for Evaluation of River Health and Pollution in the Shahrood River, Iran. Limnology. 17(1): 95-109.
31) Sheikholeslami, N., Ghahraman, B., Mosaedi, A., Davary, K. and Mohejerpour, M. 2014. Estimating Reference Evapotranspiration by Using Principal Component Analysis (PCA) and The Development of a Regression Model (MLR-PCA) (Case Study: Mashhad Station). Journal of Water and Soil. 28(2): 420-429(In Persian)
32) Shirani, Z., Abbaspour, M., Javid, A. H. and Taghavi, L. 2013. Assessment of Groundwater Pollution Sources in the Urban Environment (Case Study: Tehran Municipality of District 14). Journal of Human and Environment. 11(1): 1-16(In Persian).
33) Sojka, M., Siepak, M., Zioła, A., Frankowski, M., Murat-Błażejewska, S. and Siepak, J. 2008. Application of Multivariate Statistical Techniques to Evaluation of Water Quality in the Mała Wełna River (Western Poland). Environmental Monitoring and Assessment, 147(1-3):159-170.
34) Statistical Central of Iran. 2010. Estimated City Population of the Country.
35) Thomas NV.1996. Global water quality standards. Ground Water.
36) Tran, V. X. 2003. Groundwater Pollution in Hochiminh City and it’s Prevention-case Study, Annual Report of FY 2001, The Core University Program between Japan society for the Promotion of Science (JSPS) and National Centre for Natural Science and Technology (NCST) ,Volume .P.1-P.7,pp.4-5.
37) Vega, M., Pardo, R., Barrado, E., Debán L. 1998. Assessment of Seasonal and Polluting Effects on the Quality of River Water by Exploratory Data Analysis. Water research. 32(12): 3581-3592.
38) Vijay, R., Khobragade, P., Mohapatra PK. 2011. Assessment of Groundwater Quality in Puri City, India: an Impact of Anthropo-genic Activities. Environmental Monitoring Assessment. 177(1–4):409–418.
39) Wallis, J. R. 1968. Factor Analysis in Hydrology: An Agnostic View. Journal of Water Resources Research. 4(3): 521-527.
40) Zhang, B., Song, X., Zhang, Y., Han, D., Tang, C., Yu, Y., Ma, Y. 2012. Hydro Chemical Characteristics and Water Quality Assessment of Surface Water and Groundwater in Songnen plain, Northeast China. Water Research. 46(8): 2737-2748.
_||_