بررسی لیشمانیوز احشایی سگ و ارتباط آن با فاکتورهای التهابی و آنتیاکسیدان در سگهای خانگی، گله و ولگرد
محورهای موضوعی :
انگل شناسی
فاطمه آیرم
1
,
سهراب رسولی
2
,
بهار شمشادی
3
1 - دانشجوی دکترا، گروه پاتوبیولوژی، دانشکده دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشیار، گروه انگل شناسی دانشکده دامپزشکی دانشگاه آزاد اسلامی واحد ارومیه
3 - دانشیار گروه انگل شناسی دانشکده دامپزشکی - دانشگاه آزاد اسلامی واحد علوم تحقیقات
تاریخ دریافت : 1400/07/20
تاریخ پذیرش : 1400/11/25
تاریخ انتشار : 1400/12/01
کلید واژه:
پاسخهای آنتیاکسیدانی,
سگ,
فاکتورهای التهابی,
لیشمانیوز,
چکیده مقاله :
لیشمانیوز احشایی سگ بیماری مشترک بین انسان و حیوانات است که ممکن است غلظت فاکتورهای آنتیاکسیدانی و التهابی را در سگها تغییر دهد. مطالعه حاضر بهمنظور بررسی لیشمانیوز احشایی سگ و ارتباط آن با فاکتورهای التهابی و آنتیاکسیدانی در سگهای خانگی، گله و ولگرد انجام شد. در این مطالعه، 30 قلاده سگ خانگی، 29 قلاده سگ گله و 59 قلاده سگ ولگرد مورد مطالعه قرار گرفتند. نمونههای خون از سگها جمعآوری شد و با استفاده از روش الایزا و واکنش زنجیرهی پلیمراز (PCR) بررسی شدند. نمونه-هایی از پوست نیز جمعآوری شد، گسترشها تهیه شد و با استفاده از روش رنگآمیزی گیسما و میکروسکوپ بررسی شدند. وضعیت کل آنتیاکسیدانی، غلظتهای مالون دیآلدئید، اینترلوکین-1 بتا، فاکتور نکروز تومور-آلفا و اینترفرون-گاما بررسی شدند. بر اساس نتایج الایزا، 13 نمونه (10/11 درصد)، 2 نمونه (69/1 درصد) و 4 نمونه (38/3 درصد) به ترتیب برای سگهای ولگرد، خانگی و گله مثبت بودند. در روش واکنش زنجیره پلیمراز، 19 نمونه (10/16 درصد)، 3 نمونه (54/2 درصد)، و 5 نمونه (23/4 درصد) به ترتیب برای سگهای ولگرد، خانگی و گله مثبت بودند. غلظتهای سرمی فاکتورهای آنتیاکسیدان و التهابی به ترتیب در سگهای ولگرد آلوده در مقایسه با دیگر سگها، پایینتر و بزرگتر بودند (05/0p<). ارتباط مثبت و معنیداری بین غلظت فاکتورهای التهابی و مالون دیآلدئید با لیشمانیوز وجود داشت. درمجموع، لیشمانیوز احشایی ارتباط نزدیکی با فاکتورهای آنتیاکسیدان و التهابی در سگهای ولگرد نشان داد.
منابع و مأخذ:
Albuquerque, A., Campino, L., Cardoso, L., Cortes, S. (2017). Evaluation of four molecular methods to detect Leishmania infection in dogs. Parasite Vectors, 13:47-57
Alexandre, J., Sadlova, J., Lestinova, T., Vojtkova, B., Jancarova, M., Podesvova, L., Yurchenko, V., Dantas-Torres, F., Brandão-Filho, S.P., Volf, P. (2020). Experimental infections and co-infections with Leishmania braziliensis and Leishmania infantum in two sand fly species, Lutzomyia migonei and Lutzomyia longipalpis. Scientific Reports, 10: 35-66.
Almeida, B.F.M., Narciso, L.G., Melo, L.M., Preve, P.P., Bosco, A.M., Lima, V.M.F., Ciarlini, P.C. (2013). Leishmaniasis causes oxidative stress and alteration of oxidative metabolism and viability of neutrophils in dogs. The Veterinary Journal, 198: 23-30.
Badirzadeh, A., Heidari-Kharaji, M., Fallah-Omrani, V., Dabiri, H., Araghi, A., Chirani, A. (2020). Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis. PLoS Negl Tropical Disease, 14:
Bildik, A., Kargin, F., Seyrek, K., Pasa, S., Ozensoy, S. (2004). Oxidative stress and nonenzymatic antioxidative status in dogs with visceral Leishmaniasis. Research in Veterinary Science, 77: 63–66.
Boon Ong, H., Clare, S., Jonathan Roberts, A., Elizabeth Wilson, M., James Wright, G. (2020). Establishment, optimisation and quantitation of a bioluminescent murine infection model of visceral leishmaniasis for systematic vaccine screening. Scientific Reports, 10:
de Almeida, M.E., Spann, D.R., Bradbury, R.S. (2020). Leishmania infantum in US-Born dog. Emerging Infectious Diseases, 26: 1882-1884.
De Carvalho, F., Riboldi, E., Bello, G., Ramos, R., Barcellos, R., Gehlen, M., Rossetti, M. (2018). Canine visceral leishmaniasis diagnosis: A comparative performance of serological and molecular tests in symptomatic and asymptomatic dogs. Epidemiology and Infection, 146: 571-576.
Di Pietro, S., Crinò, C., Falcone, A., Crupi, R., Francaviglia, F., Vitale, F., Giudice, E. (2020). Parasitemia and its daily variation in canine leishmaniasis. Parasitology Research, 119: 3541–3548.
Erel O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37: 277–285.
Haddadzade, H.R., Fattahi, R., Mohebali, M., Akhoundi, B., Ebrahimzade, E. (2013). Seroepidemiologcal investigation of visceral leishmaniasis in stray and owned dogs in Alborz province, central Iran using direct agglutination test. Iranian Journal of Parasitology, 8:152-157.
Heidarpour, M., Soltani, S., Mohri, M., Khoshnegah, J. (2012). Canine visceral leishmaniasis: Relationships between oxidative stress, liver and kidney variables, trace elements, and clinical status. Parasitology Research, 111: 1491–1496.
Ikejima, T., Okusawa, S., Ghezzi, P., Van der Meer, J.W., Dinarello, C.A. (1990). Interleukin-1 induces tumor necrosis factor (TNF) in human peripheral blood mononuclear cells in vitro and a circulating TNF like activity in rabbits. Journal of Infected Disease, 162:215–23.
Ivonise, F., Cibele, A., Olívia, B., Clarissa, BA., Lucas, P.C. and Roque, P.A. (2009). Epidemiologic and immunologic findings for the subclinical form of Leishmania braziliensis Clinical Infection Disease, 34:e54–e8.
Kanyina, E.W. (2020). Characterization of visceral leishmaniasis outbreak, Marsabit County, Kenya, 2014. Kanyina BMC Public Health, 2: 4446-4454.
Liew, F.Y., Wei, X.Q. (1997). Proudfoot L. Cytokines and nitric oxide as effector molecules against parasitic infections. Biological Science, 352:1311–15.
Martin-Sanchez, J., Morales-Yuste, M., Acedo-Sanchez, C., Baron, S., Diaz, V., Morillas-Marquez, F. (2009). Canine leishmaniasis in southeastern Spain. Emerging Infectious Diseases, 15:795–798.
Maurelli, M.P., Bosco, A., Manzillo, V.F., Vitale, F. (2020). Clinical, molecular and serological diagnosis of canine leishmaniosis: An integrated approach. Veterinary Science, 7:43-53.
Maia, C., Cristóvão, J., Pereira, A. (2020). Monitoring Leishmania infection and exposure to Phlebotomus perniciosus using minimal and non-invasive canine samples. Parasites Vectors, 13:119-125.
Monteiro, F.M., Machado, A.S., Rocha-Silva, F., Assunção, C.B., Graciele-Melo, C., Costa, L.E., Portela, A.S., Ferraz Coelho, E.A., Maria de Figueiredo, S., Caligiorne, R.B. (2019). Canine visceral leishmaniasis: Detection of Leishmania spp. genome in peripheral blood of seropositive dogs by real-time polymerase chain reaction (rt-PCR). Microbiology Pathogens, 126:263-268.
Montoya, A., Glvez, R., Checa, R., Sarquis, J., Plaza, A., Barrera, J.P., Marino, V., Mir, G. (2020). Latest trends in infantum infection in dogs in Spain, Part II: current clinical management and control according to a national survey of veterinary practitioners. Parasites Vectors, 13: 205-215.
Paltrinieri, S., Ravicini, S., Rossi, G., Roura, X. (2010). Serum concentrations of the derivatives of reactive oxygen metabolites (d-ROMs) in dogs with leishmaniosis. The Veterinary Journal, 186: 393–395.
Pape, K.A., Khoruts, A., Mondino, A., Jenkins, M.K. (1997). Inflammatory cytokines enhance the in vivo clonal expansion and differentiation of antigen-activated CD4+ T cells. Journal of Immunology, 159: 591–598.
Passarella Teixeira, A.I., Silva, D.M., Santana de Freitas, L.R., Sierra Romero, G.A. (2020). A cross-sectional approach including dog owner characteristics as predictors of visceral leishmaniasis infection in dogs. Mem Inst Oswaldo Cruz, Rio de Janeiro, 115:
Ramírez, L., de Moura, L.D., Fontoura Mateus, N.L., de Moraes, M.H. (2020). Improving the serodiagnosis of canine Leishmania infantum infection in geographical areas of Brazil with different disease prevalence. Parasite Epidemiology and Control, 8:
Rassi, Y., Kaverizadeh, F., Javadian, E. (2004). First report on natural promastigote infection of Phlebotomus caucasicus in a new focus of visceral leishmaniasis in North West of Iran. Iranian Journal of Public Health 33:70-72.
Rezaei, Z., Azarang, E., Shahabi, S., Omidian, M., Pourabbas, B., Sarkari, B. (2020). Leishmania ITS1 Is genetically divergent in asymptomatic and symptomatic visceral leishmaniasis: results of a study in southern Iran. Journal of Tropical Medicine 4:
Sacks, D., Noben-Trauth, N. (2002). The immunology of susceptibility and resistance to Leishmania major in mice. Natural Review Immunology, 2: 845–858.
Schoenborn, J.R., Wilson, C.B. (2007). Regulation of interferon-gamma during innate and adaptive immune responses. Advanced Immunology, 96:41–101.
Solano-Gallego, L., Cardoso, L., Pennisi, M.G., Petersen, C., Bourdeau, P., Oliva, G., Miro, G., Ferrer, L., Baneth, G. (2017). Diagnostic challenges in the era of canine Leishmania infantum Trends in Parasitology, 33: 706–717.
Sosa, N., Pascale, J.M., Jime´nez, A.I., Norwood, J.A., Kreishman-Detrick, M., Weina, P.J. (2019). Topical paromomycin for New World cutaneous leishmaniasis. PLOS Negl Tropical, Disease, 13:
Strauss-Ayali, D., Baneth, G., & Jaffe, C. L. (2007). Splenic immune responses during canine visceral leishmaniasis. Veterinary Research, 38: 547-564.
Taslimian, R., Shemshadi, B., Spotin, A., Fotouhi Ardakani, R., Parvizi, P. (2020). Molecular characterization of visceral leishmaniasis in asymptomatic dogs in North Khorasan, Northeastern Iran. Jundishapur Journal of Microbiology, 12:
Thakur, S., Joshi, J., Kaur, S. (2020). Leishmaniasis diagnosis: an update on the use of parasitological, immunological and molecular methods. Journal of Parasite Disease, 44: 253-272.
Travi, B.L., Cordeiro-da-Silva, A., Dantas-Torres, F., Miro, G., (2018). Canine visceral leishmaniasis: diagnosis and management of the reservoir living among us. PLoS Negl Tropical Disease, 12:
Wanasen, N., Soong, L. (2008). L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunological Research, 41: 15–25.
Wang, J., Ha, Y., Gao, C., Wang, Y., Yang, Y., Chen, H. (2011). The prevalence of canine Leishmania infantum infection in western China detected by PCR and serological tests. Parasites & Vectors, 4:69-78.