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& Maire, and R. officinalis L., but only R. officinalis L. and 
R. eryocalix Jord. & Fourr. are widely known medicinal 
and culinary plants in the Mediterranean, Asia, and Latin 
America regions (Hernández et al., 2016; Pieracci et al., 
2021; WFO-2023 http://www.worldfloraonline.org/). R. 
eriocalyx Jord. & Fourr. is a well-known medicinal plant 
in Algeria and Morocco and is found as a potential 
source of antioxidant compounds (Boudiar et al., 2019). 
R. officinalis L. is native to the Mediterranean region, 
also grown in Europe, USA, Algeria, China, Romania, the 
Middle East, Morocco, Russia, Serbia, Tunisia, Turkey, 
and some regions of India. Rosemary is a perennial 
shrub that grows about 1-2 m in height. Their leaves are 
dark green in color, shiny, linear, like curved needles, 
and about 1 cm long. Rosemary plant has also been 
used for several medicinal purposes (Aziz et al., 2022). 
Like other reported medicinal plants i.e., Urtica dioica 
L., Bellis perennis L., Allium sativum L., Morus nigra L., 
Juniperus oxycedrus L., Allium cepa L., Vitis vinifera 

1. Introduction 

Rosmarinus officinalis L., commonly called rosemary 
and belonging to the Lamiaceae family, is a plant 
used worldwide as a culinary herb. The Lamiaceae 

family is the sixth largest among angiosperms with 
a reported 236 genera having over 7,000 species 
(Halmschlag et al., 2022) with a diverse morphology 
among species which may be herbs, shrubs, and trees 
(Harley, 2012). These species are bisexual, have flowers 
with apparent sepals and petals, inflorescence, show 
bilateral symmetry, their corolla tube has a characteristic 
“lip shape” where it is divided into two distinct parts, and 
their fruits are of schizocarp type (Ramos da Silva et al., 
2021). The species which show aromatic properties are 
basil, thyme, oregano, sage, lemon balm, and rosemary 
(Bekut et al., 2018). A total of 4 species of the genus 
Rosmarinus have been identified as R. lavandulaceus 
Noë, R. eryocalix Jord. & Fourr., R. tomentosus Hub.-Mor. 

Rosmarinus officinalis L. is a perennial herb, known for culinary as well as medicinal properties. 
It has been shown that bioactive compounds like rosmarinic acid, carnosic acid, and carnosol 
are responsible for the medicinal properties of this plant species. Carnosic acid is a phenolic 
diterpene synthesized in young leaves of rosemary, whereas carnosol is produced after 
the oxidation of carnosic acid. Several studies have confirmed their antiangiogenic, anti-
inflammatory, antimicrobial, antidiabetic, antioxidant, antitumor, neuroprotective, and 
gastroprotective properties. Ethanol, a mixture of ethanol-acetone, and hexane have been 
recommended as the best solvents for the extraction of carnosic acid, but advanced extraction 
techniques such as microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), 
pressurized liquid extraction (PLE), supercritical fluid extraction (SFE), etc. have been used to 
extract these phenolic antioxidant compounds in higher yield. This report is a kind of first study 
that emphasizes the recent research on the pharmacological potentials of carnosic acid and 
carnosol and summarizes the studies on modern extraction procedures. 
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cheap, and easy to scale up (Oliveira Gde et al., 2016). 
The correct operational conditions are much needed for 
higher recovery of compounds, which additionally give 
the concentrated extract using minimum energy, time, 
raw material, and solvent. The antioxidant extraction 
procedure requires optimization of all such parameters, 
even for different plants or the same plant if it has 
undergone different pretreatments (Dorta et al., 2013; 
Oliveira Gde et al., 2016). In comparison to conventional 
Soxhlet extraction (CSE), the eco-footprint of modern 
extraction procedures, like pressurized liquid extraction 
(PLE) was detected by considering the consumption 
of raw material, solvent, energy, and time where PLE 
was found as a rapid, and environmentally friendly 
technique for the detection of active contents in the 
plant (Hirondart et al., 2020). The other modern methods 
optimized for more robust and environmentally 
friendly antioxidant extraction from R. officinalis L. are 
ultrasound-assisted extraction (Paniwnyk et al., 2009), 
pressurized green solvent extraction (Herrero et al., 
2010), accelerated solvent extraction (Hossain et al., 
2011), and CO2 supercritical fluid extraction (Visentín 
et al., 2011). Dielectric heating has also been proposed 
to dry rosemary leaves to minimize the reduction in 
quality by effective heat distribution throughout the 
plant material (Sui et al., 2012).
The main objective of this review is to describe an 
overview of the therapeutic effects of primary medicinal 
constituents obtained from R. officinalis L. herb, carnosic 
acid and carnosol, considering the previously published 
reports in the literature. In this connection, our focus is 
on the recent studies representing the pharmacological 
properties of carnosic acid, and modern extraction 
procedures to maximize the yield of these phenolic 
diterpenes. Furthermore, the modern biotechnological 
applications have also been discussed to increase the 
yield of carnosic acid. 

2. Results and Discussion 

2.1. Biologically active compounds obtained from R. 
officinalis L.

R. officinalis L. has been widely used as a medicinal plant 
to prevent and cure colds, rheumatoid arthritis, along 
with muscle and joint pain (Calvo et al., 2011; Zhang et 
al., 2014). It is one of the popularly known sources of 
bioactive natural compounds representing antibacterial, 
antidiabetic, anti-inflammatory, antitumor, antioxidant, 
effectiveness against multidrug-resistant bacteria, 
amoebicidal, acaricidal, and other activities (Bozin et al., 
2007; Cheung and Tai, 2007; Bakirel et al., 2008; Takaki 
et al., 2008; Pérez-Fons et al., 2010; Yesil-Celiktas et 
al., 2010; Tai et al., 2012; Yu et al., 2013; Zhang et al., 
2014; Santomauro et al., 2018; Anacarso et al., 2019; 
Iseppi et al., 2019; Guellouma et al., 2023; Lopes et al., 
2023). Recently, R. officinalis L. extract was found to 
be the protective agent against the risk factors caused 
by some neurodegenerative disorders (Zappalà et al., 
2021). It has been well documented that R. officinalis L. 
contains 2 types of potentially active compounds: i) one 
involves small molecular weight aromatic compounds, 
which evaporate rapidly and produce the characteristic

L., and Ajuga chamaepitys (L.) Schreb., R. officinalis L. 
is also used to treat hemorrhoids and other diseases 
(Çakılcıoğlu and Türkoğlu, 2007; Medini et al., 2013; 
Tudu et al., 2022; Tarasevičienė et al., 2023). 
Rosemary contains a broad spectrum of essential oil 
constituent components, e.g., 1,8-cineole, α-pinene, 
and camphor, phenolic diterpenes, e.g., carnosic acid, 
carnosol, and rosmanols as well as phenolic esters, 
e.g., rosmarinic acid (Choi et al., 2019; Oualdi et al., 
2023). Seasonal variations in phenolic, flavonoid, and 
antioxidant compounds of rosemary have also been 
reported (Afshar et al., 2022a; Afshar et al., 2022b). 
Carnosic acid (C20H28O4) is a benzenediol abietane 
diterpenoid that is abieta-8,11,13-triene substituted by 
hydroxy groups at positions 11 and 12 and a carboxy 
group at position 20 (Fig. 1-a), obtained from rosemary 
(R. officinalis L.), common sage (Salvia officinalis L.) 
and other species of the Lamiaceae plant family (Birtić 
et al., 2015; Loussouarn et al., 2017). Carnosic acid 
biosynthesis occurs in young leaves at the branch 
apices and the consumption of diterpene molecule 
partially takes place during leaf development and 
aging (Brückner et al., 2014; Božić et al., 2015). Besides 
carnosic acid, another phenolic diterpene measured in 
rosemary leaves is carnosol (C20H26O4) (Fig. 1-b) which 
is a major product after the oxidation of carnosic 
acid (Loussouarn et al., 2017). Carnosic acid and 
carnosol are terpenoids (isoprenoids or terpenes), the 
largest class of plant secondary metabolites (Hill and 
Connolly, 2013). Carnosic acid is often classified among 
polyphenols because it contains a phenolic group but 
its cellular distribution, biosynthetic pathway, solubility 
properties, and other properties differ from the majority 
of polyphenolic compounds. Therefore, it resembles 
terpenoids such as tocopherols and carotenoids (Birtić 
et al., 2015). 
Carnosic acid is a lipid-soluble compound known 
for its high antioxidative capacities having an IC50 
over the range of 24-96 µM and possessing several 
industrial applications in food and beverage disciplines, 
personal care, nutrition, and for health (Barni et al., 
2012; Birtić et al., 2015). Carnosic acid shows several 
pharmacological properties such as antiadipogenic, 
antiatherosclerosis, antiangiogenic, anti-inflammatory, 
antimicrobial, antidiabetic, antioxidant, antiplatelet, 
hypolipidemic, antitumor, and neuroprotective 
characteristics, while carnosol has antiangiogenic, anti-
inflammatory, antimicrobial, antioxidant, antitumor, 
and gastroprotective properties (González-Vallinas 
et al., 2015; Chan et al., 2022). The presence of 
catechol moiety is presumably responsible for the 
remarkable antioxidant effect of carnosic acid and 
carnosol (Richheimer et al., 1996). Carnosol has also 
been reported to display promising anti-inflammatory 
properties (Poeckel et al., 2008). The antibacterial 
activity of carnosic acid and carnosol was also reported 
in several studies (Del Campo et al., 2000; Cushnie and 
Lamb, 2005; Moreno et al., 2006). 
In the conventional extraction procedures, several 
parameters such as extraction time, liquid-to-solid ratio, 
and the kind of extracting solvent play an important 
role. The conventional solid-liquid extraction procedure 
is popular for antioxidant extraction because it is safe, 



Singh et al. / Trends in Phytochemical Research 7(3) 2023 156-169158

Fig. 1. Structures of (a) Carnosic acid and, (b) Carnosol.

smell and taste of rosemary, commonly known as 
essential oils and ii) the other type includes polyphenolic 
compounds such as rosmarinic acid, carnosic acid and 
carnosol, which have been known to exert indirect 
antioxidant actions, anticancer and other activities 
(de Oliveira, 2016; Loussouarn et al., 2017; Andrade et 
al., 2018; Jesus et al., 2023). Carnosic acid is the most 
investigated bioactive compound in R. officinalis L. 
followed by carnosol, rosmarinic acid, and ursolic acid 
(Andrade et al., 2018). Other reported compounds are 
betulinic acid, oleanolic and micromeric acid, rosmanol, 
epirosmanol, luteolin, etc. 

2.2. Pharmacological activities of carnosic acid 

Traditionally, rosemary oil has been known to cure 
several diseases such as inflammatory diseases and 
diabetes mellitus (Bakirel et al., 2008; Arranz et al., 
2015). The bioactivities of rosemary extracts include 
anti-inflammatory, anti-diabetic, hepatoprotective, and 
antimicrobial activity (Fig. 2) and these bioactivities 
are most probably due to the presence of phenolic 
compounds such as carnosic acid (Andrade et al., 2018).

2.2.1. Antitumor activity

R. officinalis L. polyphenols can modulate cell growth 
and differentiation; thus interfering with cancer 
progression and development (Kar et al., 2012). 
Several studies have reported the antitumor activity 
of R. officinalis L. which is rich in phenolic compounds 
(Huang et al., 1994; Dörrie et al., 2001; Tsai et al., 2011; 
Barni et al., 2012). Carnosic acid and carnosol represent 
~5% of R. officinalis L. dried leaves’ weight, and these 
compounds have greater antitumor potential (Andrade 
et al., 2018). Several studies confirm the cytotoxicity of 
carnosol and carnosic acid on human, breast, and colon 
cancer cells (Dörrie et al., 2001; Bai et al., 2010; Barni 
et al., 2012). A study also reported a decrease in cell 
viability in resistant tumor cells using carnosic acid in 
a dose-dependent manner (González-Vallinas et al., 
2013). The use of carnosic acid and its ester derivatives 
in an in vivo experiment was reported as a compound 

to prevent gastric lesions in HCl/EtOH-induced gastric 
lesions model in mice serving as a chemopreventative 
in 7,12-dimethylbenz anthracene (DMBA)-induced 
mammary tumorigenesis in rats (Singletary et al., 1996; 
Theoduloz et al., 2011; Birtić et al., 2015). 

2.2.2. Antioxidant activity

The antioxidant activity of several compounds from 
rosemary such as carnosol, carnosic acid, rosmanol, 
rosmarinic acid, oleanolic acid, and ursolic acid were 
reported in previous studies. Carnosol was found as a 
suppressor of inducible nitric oxide synthase by down-
regulating nuclear factor-kappaB (NFkB) in mouse 
macrophages (Lo et al., 2002). In an in vitro study, 
carnosic acid reduced acrylamide-induced neurotoxicity 
in rat and PC12 cells through inhibition of oxidative 
stress and apoptosis (Ghasemzadeh Rahbardar et al., 
2022) and was also found as a protective agent against 
acrylamide-induced liver damage (Donmez et al., 2020). 
Carnosic acid offers a neuroprotective effect against 
organophosphate pesticide chlorpyrifos-induced 
oxidative stress as well as inflammation of mice brain 
and eye tissues (AlKahtane et al., 2020). A study on the 
protective mechanism of carnosic acid revealed that 
it protected neuronal cells under ischemia/hypoxia by 
reducing reactive oxygen species (ROS) and nitric oxide 
(NO), inhibiting COX-2 and MAPK pathways confirming 
its anti-inflammatory and antioxidative properties 
(Hou et al., 2012). Carnosic acid has also been found 
as a protective agent against 6-hydroxydopamine 
(6-OHDA)-induced neurotoxicity through increasing the 
antioxidant enzymes expression such as c-glutamate-
cysteine ligase catalytic (GCLC) subunit, c-glutamate-
cysteine ligase modifier (GCLM) subunit, superoxide 
dismutase (SOD), and glutathione reductase (Wu et al., 
2015). It is also noteworthy that carnosic acid protects 
the mitochondria of human neuroblastoma SH-SY5Y 
cells from the pro-oxidant effects of chlorpyrifos 
through the activation of the PI3K/Akt/Nrf2 axis, which 
is responsible for the upregulation of the mitochondrial 
glutathione content and antioxidant effects (de Oliveira 
et al., 2016). In a recent study, carnosic acid was 
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2.2.2. Antioxidant activity

The antioxidant activity of several compounds from 
rosemary such as carnosol, carnosic acid, rosmanol, 
rosmarinic acid, oleanolic acid, and ursolic acid were 
reported in previous studies. Carnosol was found as a 
suppressor of inducible nitric oxide synthase by down-
regulating nuclear factor-kappaB (NFkB) in mouse 
macrophages (Lo et al., 2002). In an in vitro study, 
carnosic acid reduced acrylamide-induced neurotoxicity 
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stress and apoptosis (Ghasemzadeh Rahbardar et al., 
2022) and was also found as a protective agent against 
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reducing reactive oxygen species (ROS) and nitric oxide 
(NO), inhibiting COX-2 and MAPK pathways confirming 
its anti-inflammatory and antioxidative properties 
(Hou et al., 2012). Carnosic acid has also been found 
as a protective agent against 6-hydroxydopamine 
(6-OHDA)-induced neurotoxicity through increasing the 
antioxidant enzymes expression such as c-glutamate-
cysteine ligase catalytic (GCLC) subunit, c-glutamate-
cysteine ligase modifier (GCLM) subunit, superoxide 
dismutase (SOD), and glutathione reductase (Wu et al., 
2015). It is also noteworthy that carnosic acid protects 
the mitochondria of human neuroblastoma SH-SY5Y 
cells from the pro-oxidant effects of chlorpyrifos 
through the activation of the PI3K/Akt/Nrf2 axis, which 

Fig. 2. Some of the most important known bioactivities of carnosic acid.

found effective against ROS-dependent neutrophil 
extracellular trap formation which is a hallmark of acute 
respiratory distress syndrome (ARDS), and significantly 
improved pulmonary neutrophil infiltration, oxidative 
damage, and alveolar damage (Tsai et al., 2023). The 
activation of Nrf2-ARE (Fig. 3) and PI3K/Akt signaling 
pathways are the most significant and widely studied 
mechanisms of carnosic acid antioxidant activity (Mirza 
et al., 2023).  

2.2.1. Antitumor activity

R. officinalis L. polyphenols can modulate cell growth 
and differentiation; thus interfering with cancer 
progression and development (Kar et al., 2012). 
Several studies have reported the antitumor activity 
of R. officinalis L. which is rich in phenolic compounds 
(Huang et al., 1994; Dörrie et al., 2001; Tsai et al., 2011; 
Barni et al., 2012). Carnosic acid and carnosol represent 
~5% of R. officinalis L. dried leaves’ weight, and these 
compounds have greater antitumor potential (Andrade 
et al., 2018). Several studies confirm the cytotoxicity of 
carnosol and carnosic acid on human, breast, and colon 
cancer cells (Dörrie et al., 2001; Bai et al., 2010; Barni 
et al., 2012). A study also reported a decrease in cell 
viability in resistant tumor cells using carnosic acid in 
a dose-dependent manner (González-Vallinas et al., 
2013). The use of carnosic acid and its ester derivatives 
in an in vivo experiment was reported as a compound 
to prevent gastric lesions in HCl/EtOH-induced gastric 
lesions model in mice serving as a chemopreventative 
in 7,12-dimethylbenz anthracene (DMBA)-induced 
mammary tumorigenesis in rats (Singletary et al., 1996; 
Theoduloz et al., 2011; Birtić et al., 2015). 
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is responsible for the upregulation of the mitochondrial 
glutathione content and antioxidant effects (de Oliveira 
et al., 2016). In a recent study, carnosic acid was 
found effective against ROS-dependent neutrophil 
extracellular trap formation which is a hallmark of acute 
respiratory distress syndrome (ARDS), and significantly 

improved pulmonary neutrophil infiltration, oxidative 
damage, and alveolar damage (Tsai et al., 2023). The 
activation of Nrf2-ARE (Fig. 3) and PI3K/Akt signaling 
pathways are the most significant and widely studied 
mechanisms of carnosic acid antioxidant activity (Mirza 
et al., 2023).   

Fig. 3. Carnosic acid-based regulation of Nrf2-ARE pathway: (a) Under normal conditions, Nrf2 remains sequestered in the 
cytoplasm by a regulatory protein Keap1 which targets Nrf2 for ubiquitination but during cellular stress (Injury, toxicity, 
or cellular stress) Keap1 ends the inhibition of Nrf2 and translocate it into the nucleus, where it binds over the AREs and 
induces the transcription of antioxidant genes. In the case of neurodegenerative disorders/injury-induced changes in ROS/
RNS, nuclear translocation of Nrf2 is impaired and it causes ubiquitination of Nrf2, same as normal conditions, even during 
oxidative stress and (b) Carnosic acid dissociates the Nrf2 from Keap1 and blocks the ubiquitination of Nrf2, followed by 
their translocation into the nucleus and binding over the AREs to facilitate the transcription of antioxidant genes (ROS: 
Reactive oxygen species; RNS: Reactive nitrogen species; Keap1: Kelch-like ECH-associating protein 1; Nrf2: Nuclear factor 
erythroid 2-related factor 2; Ub: Ubiquitination; sMafs: Small musculoaponeurotic fibrosarcoma oncogene family and ARE: 
Antioxidant response element). 

2.2.3. Anti-infectious activity

Carnosic acid, carnosol and rosmarinic acid compounds 
obtained from R. officinalis L. have been reported as 
an inhibiter to the agr quorum sensing pathway of 
Staphylococcus aureus involved in atopic dermatitis 
(Nakagawa et al., 2020). Carnosic acid was found as a 
potential prebiotic to alleviate inflammation in human 
inflammatory bowel disease (IBD) by modulating 
the composition and metabolic function of the gut 
microbiota (Du et al., 2023). More recently, it has 
been shown that carnosic acid and carnosol have the 
potential to be used against prion diseases and could 
be developed as therapeutic agents against prion 
and other neurodegenerative diseases (Karagianni 

et al., 2022). Argüelles et al. (2021) reported that the 
combination of propolis with carnosic acid induced 
a stronger fungicidal and cytotoxic impact against 
Cryptococcus neoformans. In another study dealing 
with the combination of carnosic acid with gentamicin 
antibiotic, the final product was found as a potential 
alternative against the infections caused by methicillin-
resistant S. aureus (MRSA) (Vázquez et al., 2016).
 
2.2.4. Anti-inflammatory activity

Several studies have reported the anti-inflammatory 
and analgesic activities of carnosic acid (Fig. 4), carnosol, 
ursolic acid and betulinic acid, rosmarinic acid, rosmanol 
and oleanolic acid (Benincá et al., 2011).
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Fig. 4. Anti-inflammatory mechanisms shown by carnosic acid (MAPK: Mitogen-activated protein kinase; NF-κB: Nuclear 
factor kappa B; FoxO3a: Forkhead box O3a; IL-6: Interleukin-6; TNF-a: Tumour Necrosis factor-alpha; Mcp-1: Monocyte 
chemoattractant protein-1; NLRP3: Nucleotide-binding domain, leucine-rich containing family, pyrin domain containing-3; 
IL-1β: Interleukin-1β; IL-18: Interleukin-18; JNK: c-Jun N-terminal kinases; STAT3: Signal transducer and activator of 
transcription 3; CXCL-10: C-X-C motif chemokine ligand 10; CCL-2: Chemokine ligand 2; CCL-20: Chemokine ligand 20; syk: 
spleen tyrosine kinase; TNF: Tumour Necrosis Factor; IL-13: Interleukin-13; CCL-1: Chemokine ligand 1; CCL-3: Chemokine 
ligand 3 and CCL-9: Chemokine ligand 9).

Wang et al. (2018) have shown that carnosic acid 
inhibits the NO and TNFα level, downregulated 
COX2 protein expression, and the expression level of 
inflammatory genes like Nos2, Tnfα, Cox2, and Mcp1 
in LPS-stimulated RAW264.7 cell lines and a murine 
model. In a related study, carnosic acid reduced 
NLRP3 expression by blocking NF-κB activation, and 
also inhibited the activation of NLRP3 inflammasome 
assembly by inhibiting mitochondrial ROS production 
and interrupting NLRP3-NEK7 interaction (Lin et al., 
2023). de Oliveira et al. (2018) studied the effects of 
carnosic acid in paraquat (PQ)-induced inflammation-
related alterations in human neuroblastoma SH-SY5Y 
cells and found that it exerted an anti-inflammatory 
action through an Nrf2/HO-1 axis-dependent manner 
associated with downregulation of NF-κB. The outputs 
of another report suggested that carnosic acid has anti-
inflammatory effects in human periodontal ligament cells 
by inhibiting the Jun-N-terminal kinase (JNK) pathway, 
nuclear factor (NF)-κB pathway, signal transducer and 

also serving as the activator of transcription (STAT)3 
pathway activation in IL-1β or TNF-α-stimulated human 
periodontal ligament cells (Hosokawa et al., 2020). An 
interesting study on bone marrow-derived mast cells 
sensitization with anti-tri nitrophenyl IgE, followed by 
activation with TNP-BSA allergen under stem cell factor 
potentiation revealed that carnosic acid treatment 
reduced the release of all cytokines, modulated the 
mast cell activation, and subsequently inhibited the 
secretion of allergic inflammatory mediators (Crozier et 
al., 2023).

2.2.5. Metabolic disorders-related activities 

Olanzapine is an atypical antipsychotic medication, that 
has shown side effects like weight gain and metabolic 
toxicity in long-term usage. Carnosic acid is reported 
against olanzapine-induced metabolic toxicity by 
activating the AMPK, which increases fat consumption 
and regulates glucose hemostasis in the liver (Razavi 
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et al., 2020). Recently, it has been implied that carnosic 
acid and carnosol attenuate both cAMP-induced 
gluconeogenic and lipogenic gene expressions. In 
addition, carnosic acid and carnosol induced the 
expressions of PGC1α and CPT1a genes via AMPK 
activation to promote fatty acid oxidation in HepG2 
cells and showed protective effects against diabetes and 
fatty liver disease (Hasei et al., 2021). A recent finding 
suggested that carnosic acid exerts protective effects 
in diabetic nephropathy (DN) conditions, which is one 
of the most serious complications in diabetes patients 
causing diabetes-induced kidney complications (Xie et 
al., 2018). Wang et al. (2019) found that inhibiting the 
activity of glycosidase from carnosic acid is an effective 
method for the prevention of diabetes. The binding of 
carnosic acid to the amino acid residues of glycosidase 
leads to the change in the molecular conformation of 
glycosidase and reduces the activity of glycosidase 
which could reduce postprandial blood glucose in 
mice. A parallel study indicated that carnosic acid can 
be used as a potential therapeutic agent in case of 
high-fat diet-induced non-alcoholic fatty liver disease 
(NAFLD)-related metabolic diseases, which comprises 
liver damage, abnormal hepatic fat accumulation, and 
inflammatory response (Song et al., 2018). 

2.3. Methods implicated in the extraction of carnosic 
acid and carnosol 

Various extraction techniques have been implicated 
to obtain the antioxidant extracts from R. officinalis L. 
but, sometimes the extraction process can be costly. 
The main objectives of the separation technique are 
to give high yield, purity, and reproducibility (Azmir 
et al., 2013; Pizani et al., 2022). Modern features like 
less environmental impact using green solvents or 
reducing energy consumption are needed to develop 
extraction procedures (Chemat et al., 2019). The 
extraction parameters like temperature, solvent type, 
and pressure influence the recovery of compounds 
with antioxidative properties such as carnosic acid, 
carnosol, and rosmarinic acid (Ali et al., 2019). Since 
the carnosic acid and carnosol content determine 
the quality of R. officinalis L. extract (Ali et al., 2019), 
the selection of appropriate solvent with appropriate 
polarity is crucial regardless of the applied technique. 
The European Union (EU) recommended either ethanol 
or the mixture of ethanol and acetone as acceptable 
solvents for the extraction of carnosic acid and carnosol 
from R. officinalis L. because these compounds are of 
medium polarity (Younes et al., 2018; Oreopoulou et al., 
2021). Solid-liquid extraction, also called maceration, 
is a conventional method of extraction. The major 
disadvantages of conventional extraction methods are 
the decomposition of natural compounds, and long 
processing time (Rasul, 2018). So, several promising 
non-conventional and technically advanced green 
extraction techniques such as microwave-assisted 
extraction (MAE), ultrasound-assisted extraction (UAE), 
pressurized liquid extraction (PLE) /accelerated solvent 
extraction (ASE), and supercritical fluid extraction (SFE), 
pulse electric field (PEF) extraction, enzyme-assisted 
extraction and molecular distillation (MD) have been 

used to extract phenolic extracts (Selvamuthukumaran 
and Shi, 2017; Lefebvre et al., 2021). 
The most common conventional processes include 
steam distillation (SD) and hydrodistillation (HD) 
(Azwanida, 2015). SD was proven to be superior over 
HD for the isolation of essential oils from R. officinalis 
L. as hydrolysis reactions at high temperatures 
resulted in reduced volatile fraction and degraded 
bioactive compounds (Boutekedjiret et al., 2003; 
Conde-Hernández et al., 2017). Microwave technology 
integrated with distillation methods gives rise to a 
method termed microwave-assisted hydrodistillation 
(MAHD) (Fig. 5). MAHD combines the mechanism of 
HD and MAE for extracting essential oils from aromatic 
plants (Hashemi-Moghaddam et al., 2014; Hashemi-
Moghaddam et al., 2015; Mohammadhosseini, M., 
2017; Hashemi-Moghaddam et al., 2018). Lo Presti 
et al. (2005) have evaluated the physical action of 
microwave beams on R. officinalis L. and shown a series 
of advantages for their proposed technique involving 
cost-effectiveness, need to water in sample pre-
treatment, reduced isolation time, and high quality of 
the obtained essential oil distillate. A similar study on R. 
officinalis L. used MAHD and obtained similar yields at a 
reduced extraction duration of 15.5 min in comparison 
to UAE, HD, and SFE, which took 15 min, 30 min, and 1 
hour, respectively (Moradi et al., 2018). 
A literature survey displays that maceration and 
Soxhlet extraction are the most common conventional 
extraction processes to obtain non-volatile compounds 
(Azwanida, 2015). The use of maceration and Soxhlet 
extraction has been reduced in the industrial setting 
due to several disadvantages viz., long extraction time, 
thermal degradation of thermolabile compounds, 
high energy and solvent consumption, extract 
contamination, and loss of solutes (Azwanida, 2015). 
Several new extraction techniques, MAE, UAE, PLE, 
and SFE, are currently being investigated to obtain 
bioactive extracts from R. officinalis L. These techniques 
minimize the use of organic solvents and remarkably 
prevent the decomposition of natural substances 
(Lešnik et al., 2021) (Fig. 5). UAE and MAE are among 
the most popular modern techniques that boosted 
the extraction processes (Ali et al., 2019). A study on 
the extraction of R. officinalis L. leaves using MAE 
probably favors the selective extraction of phenolic 
compounds, and the relevant extract with the higher 
total phenolic compound showed the best antioxidant 
activity (Pontillo et al., 2021). A selective recovery of 
carnosic acid and rosmarinic acid from R. officinalis L. 
using MAE and UAE in ethanol and acetone increased 
phenol yield up to three times in comparison to more 
traditional solid-liquid extraction. UAE in n-hexane 
gave up ~13% of the dried extract as the carnosic acid 
content (Bellumori et al., 2016). Bellumori et al. (2016) 
subjected the leaves of R. officinalis L. To the extraction 
using MAE and UAE and different solvents and found 
that hexane was more selective for carnosic acid and 
other terpenoids. In another study, water to acetone 
was used with maceration and exhibited that acetone 
favored carnosic acid extraction from R. officinalis L. 
(Oliveira Gde et al., 2016). Zhu et al. (2023) worked on 
the green MAE technique using the biodegradable, 



Singh et al. / Trends in Phytochemical Research 7(3) 2023 156-169 163

Fig. 5. The overview of the processing to collect bioactive compounds from R. officinalis L.

less-toxic, and non-flammable solvent polyethylene 
glycol (PEGs) for the extraction of carnosic acid and 
rosmarinic acid from R. officinalis L. leaves and concluded 
that PEG concentration and microwave irradiation time 
has significantly affected the extraction of carnosic acid. 
In a very recent work, chemometrics-enhanced high-
performance liquid chromatography with photodiode-
array detector (HPLC-DAD) method was used for 
the simultaneous determination of rosmarinic acid, 
carnosol, and carnosic acid post-UAE of R. officinalis 
L. (Xie et al., 2023). Paloukopoulou and Karioti (2022) 
also developed an extraction protocol based on UAE 
and acetone which ensures the chemical stability of the 
target diterpenoids and is found as a suitable analytical 
tool for the determination of carnosic acid in a large 
number of plant tissues of both R. officinalis L. and S. 
officinalis L. 
PLE is the commonly used method for the extraction 
of bioactive phenolic compounds from R. officinalis 
L. Herrero et al. (2010) have shown that PLE, at high 
temperatures (200 ºC) using water and ethanol, is 
capable of efficiently extracting antioxidants of diverse 
polarities, such as carnosic and rosmarinic acid from R. 
officinalis L. with high yield and antioxidative activity 
after 20 min. The same study also denoted that PLE 
using ethanol is more effective for less polar carnosic 
acid, and carnosol, while PLE with water is more suitable 
for high-to-medium polar compounds including 
rosmarinic acid, chlorogenic acid, and caffeic acid. 
Using PLE, the initial composition of rosmarinic acid, 
carnosic acid, and carnosol have been determined in 

rosemary leaves. In accordance with this study, PLE 
gave rise to better results compared to conventional 
Soxhlet extraction (CSE) and no significant difference 
between the two procedures in terms of extraction was 
found, but PLE proved as a green and environmentally 
friendly technique (Hirondart et al., 2020). Vázquez et 
al. (2013) reported that the yields of carnosic acid and 
carnosol in PLE extracts using hexane were doubled 
when compared to SFE extracts using pure supercritical 
CO2. In the extraction of R. officinalis L. essential oil 
by hydrodistillation, the most abundant compounds 
were camphor and 1,8-cineole, while in the SFE-based 
extract carnosic acid was found in nine times higher 
concentration as compared to the EO (Lešnik et al., 
2021). In other endeavors for the development of a 
two-step sequential SFE process to obtain R. officinalis 
L. extracts mainly consisting of carnosic acid and 
carnosol, it has also been reported that SFE with CO2 
and ethanol as the modifier is effective for extracting 
these moderately polar compounds but not for highly 
polar compounds such as rosmarinic, chlorogenic, and 
caffeic acid (Herrero et al., 2010; Sánchez-Camargo et 
al., 2014). Vieira et al. (2022), have successfully utilized 
deep natural eutectic systems (NADESs) as solvent for 
extracting bioactive compounds such as rosmarinic 
acid, carnosol, carnosic acid, and caffeic acid from R. 
officinalis L. Accordingly, the extraction procedure using 
UAE with heat and stirring (HS) concluded that NADESs 
stabilize bioactive compounds for long periods; the 
antioxidant activity of carnosic acid decreased only 25% 
after 3 months, while the carnosic acid extracted in the 
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methanol was degraded in 15 days. 

2.4. Biotechnological enhancement in carnosic acid 
production 

Several studies have reported the biosynthesis pathway 
of carnosic acid but, studies on the biotechnological/
nanotechnological-based strategies for high-level 
production of carnosic acid are still very few. Wei 
et al. (2022) established a biosynthetic pathway in 
Saccharomyces cerevisiae to produce carnosic acid 
efficiently. Since the traditional plant extraction 
results in low yields of carnosic acid as diterpenoids 
are often present in low quantities, a specific carnosic 
acid-producing strain was developed by integrating 
the cytochrome P450 enzymes and cytochrome P450 
reductase encoding genes. The co-expression of 
CYP76AH1 and SmCPR t28SpCytb5 fusion proteins, 
along with the overexpression of various catalases to 
detoxify hydrogen peroxide gives a higher concentration 
of carnosic acid. Hadi Soltanabad et al. (2020) have 
assessed the effects of silver nanoparticle (AgNP) 
treatment on the secondary metabolism and carnosic 
acid production of R. officinalis L. species. According to 
the findings of this report, AgNPs increased carnosic acid 
production for 12 days by more than 11%, as compared 
to the control plants. This report also suggested that 
a nanotechnological approach like using AgNP acted 
as an elicitor and enhanced carnosic acid accumulation, 
effectively. Nanotechnology can develop novel 
nanosized particles that have antimicrobial abilities 
i.e., gold, silver, etc. nanoparticles, which can also be 
used as carriers for targeted drug delivery (Fatima et 
al., 2021). A study on Rauwolfia serpentina L. aqueous 
leaf extract encapsulated with gold nanoparticles found 
that nanoformulation enhanced the antibacterial, 
antioxidant, and anti-cancer activity of R. serpentina 
extracts (Alshahrani et al., 2021), and such kind of 
nanoformulation of R. officinalis L. extracts can be used 
as a potent source for the synthesis of antioxidant 
drugs.

3. Concluding remarks and future perspective

The current review provides an overview of carnosic 
acid and carnosol obtained from R. officinalis L. as 
well as their observed biological effects ranging from 
antioxidative, anti-inflammatory, anticarcinogenic, 
antimicrobial effects, etc. Moreover, modern extraction 
and distillation techniques for the efficient isolation 
and characterization of carnosic acid from R. officinalis 
L. extracts are discussed. The previous studies also 
notified that the quantity and composition of secondary 
metabolites in R. officinalis L. are highly affected by 
several internal and external factors. Pharmacologically 
active compounds like carnosic acid, carnosol, and 
rosmarinic acid are found in the non-volatile extracts, 
whereas the volatile essential oil mainly contains 
1,8-cineole, α-pinene, and camphor. The SFE can give 
a higher yield of moderately polar carnosic acid and 
carnosol with organic modifiers such as ethanol. 
This review article also summarizes the recent findings 
concerning the successful applications of biologically 

active compounds such as carnosic acid and carnosol 
obtained from R. officinalis L. in the pharmaceutical 
industries, as well as the implications of modern 
methods to achieve the highest yield of these bioactive 
compounds which can be proposed as natural drugs 
and further be investigated for preclinical and clinical 
studies against a large number of persistent diseases 
and pathological conditions. R. officinalis L. can also 
be widely used for developing herbal drugs for the 
treatment and prevention of cancers, infectious 
diseases, depression, Alzheimer’s, and Parkinson’s 
diseases. This study, along with other future studies, can 
give new insights into the future investigation on this 
valuable medicinal plant.
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