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Professor John N. Mordeson

Tofigh Allahviranloo

Professor John N. Mordeson is a distinguished mathematician and educator who has made significant con-
tributions to the field of fuzzy logic and its applications. He is currently a Professor Emeritus of Mathematics
at Creighton University. Dr. Mordeson earned his B.S., M.S., and Ph.D. degrees from Iowa State University.
Throughout his career, he has authored twenty books and more than two hundred journal articles on fuzzy
science, making remarkable advancements in the field. He also serves on the editorial boards of numerous
academic journals, continuing to make valuable contributions to fuzzy science. John N. Mordeson was born

in the United States on April 22, 1934. His early fascination with mathematics and science was evident
during his school years, where he consistently excelled. His intellectual curiosity led him to pursue higher
education, embarking on a journey that would ultimately establish him as a prominent figure in mathematics
and computer science. He received his B.S., M.S., and Ph.D. in mathematics from Iowa State University,
Ames, TA, USA, in 1959, 1961, and 1963, respectively. Following the completion of his doctorate, Mordeson
began his academic career as a professor of mathematics. His teaching style was renowned for its clarity and
rigor, making complex mathematical concepts accessible to his students. Mordeson’s research interests have
been broad, but he is best known for his work in algebra and fuzzy mathematics, particularly in address-
ing global challenges such as climate change, the coronavirus pandemic, human trafficking, and biodiversity.
Additionally, he has developed an extensive set of tools for applying fuzzy mathematics and graph theory to
social issues, including human trafficking and illegal immigration.

Dr. Mordeson has made significant contributions to the field of fuzzy mathematics through his numerous
books. Each work reflects his unique approach of merging theoretical advancements with practical applica-
tions. Among his most notable books are:
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"Fuzzy Automata and Languages: Theory and Applications” This book introduces fuzzy automata and
languages, expanding classical automata theory by incorporating fuzziness into state transitions. It covers
fundamental theory and applications in areas like pattern recognition and linguistics.

"Fuzzy Graphs and Fuzzy Hypergraphs” This work explores fuzzy extensions of graph theory, widely
used in network analysis, computer science, and decision-making. It includes applications of fuzzy graphs in
social networks, transportation networks, and communication systems.

"Fuzzy Mathematics in Medicine” This book discusses the role of fuzzy mathematics in medical contexts,
particularly in diagnosis, prognosis, and decision-making under uncertainty. It demonstrates how fuzzy set
theory can model medical scenarios with imprecise or incomplete information.

"Fuzzy Group Theory” Extending classical group theory with fuzzy set concepts, this book is aimed at
researchers in algebra and offers insights into applying fuzzy sets to abstract algebraic structures like groups.
”Fuzzy Decision Making in Modeling and Control” This book addresses decision-making processes in complex
systems where uncertainty and ambiguity are present. It presents methods for using fuzzy logic to improve
modeling and control in fields such as engineering and artificial intelligence.

"Fuzzy Set Theory and Fuzzy Controller Design” Mordeson explores fuzzy controllers, essential in in-
dustrial automation, and explains how fuzzy set theory principles can enhance controller design, particularly
for systems challenging to model precisely.

"Fuzzy Mathematics: Approximation Theory” Focusing on approximation theory in fuzzy mathematics,
this book explores how fuzzy set theory improves accuracy in mathematical function approximations, with
applications in engineering, economics, and beyond.

"Interval-Valued Fuzzy Set Theory” Introducing interval-valued fuzzy sets, this book provides a more
flexible representation of uncertainty, suitable for complex decision-making environments where each element
has an interval of possible membership values.

” Applications of Fuzzy Sets and Fuzzy Logic” This text covers the practical uses of fuzzy sets and fuzzy
logic across disciplines, from engineering and computer science to economics and social sciences, showcasing
fuzzy logic’s versatility in handling vagueness and imprecision. ”Fuzzy Semigroups” A focus on semigroups
in abstract algebra, this book extends classical semigroup theory into the fuzzy domain, modeling systems
with partial or uncertain information, useful in algebra and computer science research.

Mordeson has authored and co-authored numerous research papers and books on fuzzy mathematics, mak-
ing significant contributions to its development and dissemination. His work often bridged the gap between
abstract mathematical theory and practical applications, making his research valuable to both academics
and industry professionals. In addition to his research and teaching, Professor Mordeson has undertaken
various leadership roles throughout his career. He has served as a department chair and participated in
numerous academic committees, playing a key role in shaping the direction of research and education within
his department. His influence extends beyond his institution through his active involvement in professional
organizations, conferences, and the editorial boards of academic journals. He is a respected figure in the
global mathematical community, known for his collaborations with other researchers and his mentorship of
young mathematicians.

Throughout his career, Professor John N. Mordeson has received numerous awards and honors for his
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contributions to mathematics and education. His work has been widely cited, and his ideas have inspired
generations of researchers. Mordesons lasting impact is evident not only in the mathematical theorems and
concepts that bear his influence but also in the countless students and colleagues he has inspired over the
years. His dedication to the pursuit of knowledge and his passion for teaching have left an indelible mark
on the academic community. His passion for mathematics and education endures, and he often reflects on
the importance of fostering curiosity and critical thinking in students. His work remains significant, and his
influence is still evident in the fields of fuzzy mathematics and beyond.
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Some Orders in Groupoids and its Applications to Fuzzy Groupoids

Akbar Rezaei , Choonkil Park | Hee Sik Kim*

(This paper is dedicated to Professor ”John N. Mordeson” on the occasion of his 91st birthday.)

Abstract. In this paper, we continue the investigation started in [1]. We obtain new results derived from novel
concepts developed in analogy with others already established, e.g., the fact that leftoids (X, %) for ¢ are super-
transitive if and only if p(¢(x)) = ¢(z) for all z € X. In addition we apply fuzzy subsets in this context and we
derive a number of results as consequences.

AMS Subject Classification 2020: 20N02; 03E72
Keywords and Phrases: Below, Above, Transitive, Fuzzy, Contractive, Contained, (a—, 8—,va—,y3—)order-
preserving (reversing).

1 Introduction

In developing a general theory of groupoids one seeks to define concepts and obtain information that applies
to as general a class of groupoids as possible. Thus, e.g., the observation that (Bin(X),O) is a semigroup
with identity is one such of this type. Another one is the description of the notions of order for all groupoids
(X, *). Here one does not expect there to be a “precise” answer of this type one often expects. Here we use
the relations 8 (below: xxy = y) and « (above: z*y = z) which are then combined with < (z <y : z8y, yax)
which compares with other definitions of < made for certain classes of groupoids (e.g., BC K-algebras (]2, 3]),
pogroupoids ([4, 5, 6]). The work done in [!] was convincing enough to suggest that a follow up paper might
be in order, and that in this paper it might also be proper to open the door to introduce ideas that are
both related to the material in [1] and to the general subject of “fuzzification” of crisp algebraic theories.
Hopefully this effort has been successful.

Zadeh [7] introduced the notion of a fuzzy subset as a function from a set into unit interval, and Rosenfeld
[%] applied this concept to the theory of groupoids and groups. Mordeson and Malik [9] published a book, Fuzzy
commutative algebra, which are fuzzifications of several classical algebras, and Ahsan et al. [10] publisehed a
book, Fuzzy semirings with applications to automata theory. Kim and Neggers [5] applied it to pogroupoids
which are algebraic representations of partially ordered sets, and obtained an equivalent condition for some
relation to be transitive for any fuzzy subset. Han et al. [11] discussed on linear fuzzifications of groupoids
with special emphasis on BCK-algebras. Liu et al. [12] studied the notion of hyperfuzzy groupoids as a
natural extension of the basic concepts of fuzzy groupoids.

+Corresponding Author: Hee Sik Kim, Email: heekim@hanyang.ac.kr, ORCID: 0000-0001-5321-5919
Received: 13 May 2024; Revised: 23 July 2024; Accepted: 25 July 2024; Available Online: 7 August 2024; Published
Online: 7 May 2025.
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We recall that the notion of the semigroup (Bin(X), O) was introduced by Kim and Neggers [13]. Shin
et al. [14] introduced the notion of abelian fuzzy subsets on a groupoid, and discussed diagonal symmetric
relations, convex sets, and fuzzy center on Bin(X). Ahn et al. [1] studied fuzzy upper bounds in Bin(X).

Allen et al. [15] studied several types of groupoids related to semigroups, i.e., twisted semigroups. Allen
et al. [16] developed a theory of companion d-algebras, and they showed that if (X, *,0) is a d-algebra, then
(Bin(X), ®,¢0) is also a d-algebra. Kim et al. [17] introduced the notions of generalized commutative laws
in algebras, and investigated their relations by using Smarandache disjointness. Moreover, they showed that
every pre-commutative BC K-algebra is bounded. Hwang et al. [18] generalized the notion of implicativity
which was discussed in BC'K-algebras, and applied it to several groupoids, BCK/BCI-algebras and their
generalizations.

2 Preliminaries

Wy

Let (X, %) be a groupoid, i.e., a non-empty set X and a binary operation “x” on X, and let z,y,z € X. x is
said to be below y, denoted by xSy, if x * y = y; = is said to be above y, denoted by zay, if x xy = . An
element z € X is said to be 3-between x and y, denoted by z € < z,y >g, if 282, 2fy; an element z is said
to be a-between x and y, denoted by z € < x,y >, if zaz and zay.

We refer to [19] for basic concepts of the graph theory.

Example 2.1. [20] Let D = (V, E) be a digraph and let (V, %) be its associated groupoid, i.e., * is a binary
operation on V defined by

- x 1fx—>‘y¢E,
y otherwise.

Let D = (V, E) be a digraph with the following graph:

(AN

Then its associated groupoid (V) *) has the following table:

* |1 2 3 4
171 1 3 1
212 2 2 4
313 2 3 3
414 4 4 4

It is easy to see that there are no elements x,y € V such that both xay and xSy hold simultaneously. Note
that the relations a and 8 need not be transitive. In fact, 1 —+ 3,3 — 2 in E, but not 1 — 2 in F imply that
183,352, but not 152. Similarly, 1a4, 4«3, but not 1a3.

Remark 2.2. In Example 2.1, z € < x,y >3 means that Bz, 2By, i.e., x — 2z — y in E. Similarly,
z €< x,y >q means that xaz, zay, i.e., there is no arrow from x to z, and no arrow from z toy in E.

Example 2.3. [20] Let R be the set of all real numbers and let x,y € R. If we define a binary operation
“” on R by z xy := y2, then (R, *) is not a semigroup. In fact, (z * y) * z = 22, while x * (y * 2) = z%. If
zfBy and yBz, then z = y * z = 2% and hence z = 0 or z = 1, which implies that x * z = z, i.e., £z, proving

that  is transitive.
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Let (X, *) be a groupoid and let z,y € X. Define a binary relation “<” on X by x <y <= z0y, yax.
Then it is easy to see that < is anti-symmetric.

Note that the order “x < y” defined by = x y = 0 in BC K-algebras is a partial order.

Let (X, *) be a groupoid and let z,y € X. We define an interval as follows:

[z,y] ={q € X[z <q <y}

Proposition 2.4. [20] Let (X, ) be a groupoid and let x,y € X. Then z € [z,y] if and only if z € < z,y >p
and z €< Y, T >q.

Given a set X and a function ¢ : X — X, we consider a groupoid (X, *,¢) where the multiplication is
given by the formula

zxy = ().

We call such a groupoid (X, *, ) a leftoid for p. In particular, if p(z) = idx(x) = x, then (X, *,idx) has a
multiplication
TEY =21

and the groupoid (X, %) is referred to as a left zero semigroup. Similarly, we define a rightoid and right zero
semigroup, i.e., z xy := p(y) for all z,y € X.

Given a non-empty set X, we let Bin(X) denote the collection of all groupoids (X, *). Given groupoids
(X,*) and (X,e), we define a binary operation “0” on Bin(X) by

(X,0):=(X,%)0(X,e)

where
xOy=(zxy)e(y*z)
for any z,y € X. Using that notion, Kim and Neggers proved the following theorem.

Theorem 2.5. [13] (Bin(X), O) is a semigroup, i.e., the operation “07 is associative. Furthermore, the
left-zero semigroup is the identity for this operation.

3 Below and above in groupoids

Proposition 3.1. Let (X, %) be a leftoid for ¢ and let x,y1,y2 € X. If zBy1 and xPya2, then y1 = ya.

Proof. If z8y; (i = 1,2), then ¢(z) = zxy; = y1 and p(x) = x * y2 = Y. Since ¢ is a mapping, we obtain
y1=y2. U
In case of the rightoid (X, x*) for ¢, if By, then ¢(y) = y, i.e., there is no element x € X such that =Sy

and ¢ (y) # y.
Proposition 3.2. If (X, ) is a leftoid for ¢ and xay, then x is a fixed point of .
Proof. If zay, then © = x x y = ¢(x), i.e., x is a fixed point of ¢. O

Proposition 3.3. If (X, *) is a leftoid (rightoid) for ¢ and x <y, then x € p~(y) and y is a fized point of
©.

Proof. The proof is straightforward. O

Proposition 3.4. Let (X, ) be a leftoid for ¢, and let B be transitive. If xfBz, zBy, then y = z.
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Proof. Since § is transitive, if x(z, 20y, then 28y and x * z = z. Since (X, %) is a leftoid for ¢, we obtain
z=@(x) and hence y =z xy =p(x) =2. O
The following property can be easily proved.

Proposition 3.5. Let (X, *) be a leftoid for p. If B is transitive, then either < x,y >z= 0 or < z,y >p= {y}
for all x,y € X.

Given a mapping ¢ : X — X, we define a set by

Fix(p) :={r e X |p(z) =z }.
Theorem 3.6. Let (X, ) be a rightoid for ¢ and let y € Fix(p). If v € X, then < x,y >g= Fix(p).

Proof. If z €< z,y >p, then zfz, zBy. Since (X, *) is a rightoid, we have z = x * z = ¢(z), and hence
z € Fix(y). If z € Fix(p), then z = ¢(z). For any x € X, since (X, %) is a rightoid, we have x xz = ¢(z) = z,
i.e., xfBz. Moreover, zxy = p(y) =y, since y € Fix(y), i.e., z8y. This shows that z e< z,y >4 for all z € X.
U

Theorem 3.6 shows that if (X, *) is a rightoid for ¢, then < z,y >g=< 2,y >3 = Fix(yp) forall z,2’ € X
and y,y’ € Fix(p).

Note that if zaz, zay, where (X, *) is a rightoid for ¢, then x = x % 2 = p(2) and z = z xy = p(y). This
shows that z is uniquely determined by y under ¢,

Theorem 3.7. Let (X, *) be a leftoid for ¢ and let v,y € X. Then
() ool < 1,
(ii) if z € [z, y], then y, z € Fix(y),
(iii) if z € [z,y], then x = y € Fix(y).

Proof. (i) Assume that there exist z;, 22 € [x,y]. Then z5z; and xfBz2. This shows that z; = x * z; = p(z)
where 7 = 1,2. Since @ is a mapping, we obtain z; = zs.

(ii) If z € [z, y], then yaz, zaxr and hence y = y * z = p(y) and z = z x x = p(z), proving that y, z € Fix(p).
(iii) If € [z,y], then = € Fix(p) by (ii). We claim that * = y. Assume = # y. Since x < y, we have
xBy, yax. It follows that y = x x y = ¢(z). Since ¢(z) = x, we have x = y, a contradiction. O

Proposition 3.8. If (X, *) is a rightoid for ¢ and z,y € X, then [z,y] C Fix(p), and [x,y] = {y} when
[z, 9] # 0.

Proof. If z € [z,y], then zax and hence z = x % z = ¢(z), proving that z € Fix(¢). Now, yaz implies
y=yx*z=p(2) =z since z € Fix(p). O

4 Transitivity in groupoids

Given a groupoid (X, x), the relation § (below) is given by zfy iff x x y = y ([20]). Now, if 3 is transitive,
then (xfy) * (yBz) = xPz, ie, (x*xy)*x(y*x2) = xx2z when x xy = y,y*x 2z = z,x *xz = z. Thus, if
(zxy)* (y*z) = x*z, then this identity reflects a transitivity-like property which in any case is more general
than a transitivity in the S-relation. Of course, we can argue the same way for the a-relation (above) given
by zay iff z x y = x. Thus the condition (x * y) * (y * 2) = = * z also generalizes the a-relation in the same
manner. Since « and § are definitely not the same, we shall consider the following.
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A groupoid (X, *) is said to be super-transitive if for all x,y,z € X,
(xxy)*(y*x2)=2xx* 2.

Every left-zero semigroup as well as every right-zero semigroup is therefore super-transitive as well. More-
over, every Boolean group (X, *) (i.e., 2 = ey for all z € X) is super-transitive, since (z * y) * (y * 2) =
xx(yxy)xz=uxxzforal z,y,z € X.

Theorem 4.1. Let (X, *) be a leftoid for p. Then (X, *) is super-transitive if and only ¢(p(x)) = p(x) for
allz e X.

Proof. If (X, x) is super-transitive, then (x *y) * (y * z) = x * z for all z,y,z € X. Since (X, %) is a leftoid,
we have (zxy) * (y*2) = o(z) *o(y) = p(p(x)) and x x z = p(z). Assume p(p(x)) = x for all x € X. Then
(x*y)*(y*2z) =) *e(y) =e(p(r)) = p(r) =z * z, proving that (X, *) is super-transitive. O

Corollary 4.2. Let (X,x*) be a rightoid for ¢. Then (X, *) is super-transitive if and only p(p(z)) = x for
allx € X.

Proof. The proof is similar to the proof of Theorem 4.1. O

Note that super-transitive groupoids with homomorphisms form a category, since super-transitivity is
expressed in identity form.

A groupoid (X, ) is said to be a-transitive if zay, yaz implies xaz, and a groupoid (X, %) is said to be
B-transitive if xBy, yBz implies zBz. A groupoid (X, *) is transitive if it is both a-transitive and S-transitive.

Example 4.3. Let X := {z,y, 2} be a set with the following table.

Then (X, x) is trivially S-transitive, since f = {(u,v)ju*xv = v} = 0. But a = {(z,2), (y,2), (z,2)}. This
shows that xaz, zax, but not zax, proving that (X, x) is not a-transitive.

Proposition 4.4. Fvery super-transitive groupoid is transitive.

Proof. Let (X, ) be a super-transitive groupoid. Assume that zay,yaz. Then z xy = z,y x z = y, and
hence z %z = (x xy) * (y*x 2) = x *y = x, i.e., xaz, proving that (X, %) is a-transitive.

Assume that xfy,yBz. Then z xy = y,y *x z = z. Since (X, *) is super-transitive, we obtain x x z =
(rxy)*(yxz) =y=*z=z ie., xfz, proving that (X, *) is S-transitive. O
Corollary 4.5. Let (X,*) be a transitive groupoid. If x < y,y < z, then z < z.

Proof. The proof is straightforward. ([
The converse of Proposition 4.4 need not be true in general.

Example 4.6. Let X := {0,1,2,3} be a set with the following table.

«|0 1 2 3
0j0 1 2 1
111 21
212 2 2 1
3/1 2 1 3

Then it is easy to see that (X, ) is transitive, but it is not super-transitive, since (2x1)*(1%3) = 2 # 1 = 2x%3.
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5 Applications to fuzzy subgroupoids

In this section, we apply the concept of fuzzy subsets to groupoid theory mentioned in the above sections.
Let (X, %) € Bin(X). A mapping p: X — [0, 1] is said to be a fuzzy subgroupoid of X if, for all z,y € X,

p(z *y) = min{p(z), p(y)}-

A mapping p: X — [0,1] is said to be a contractive fuzzy subgroupoid of X if, for all z,y € X,

p(x +y) < minfpu(x), p(y)}-
Proposition 5.1. Let (X, %) be a left-zero semigroup.
(i) every fuzzy subset u: X — [0,1] is a fuzzy subgroupoid of X,
(i) of p: X — [0,1] is contractive, then it is a constant mapping.

Proof. (i) Given z,y € X, since (X, %) is a left-zero semigroup, we have u(x xy) = p(xz) > min{u(x), u(y)},

proving that u is a fuzzy subgroupoid of X.

(ii) Assume that p is contractive. Then u(x*y)

semigroup, we obtain that p(z) < min{u(z),

x,y € X, i.e., puis a constant function. O
Let (X, %) € Bin(X). A mapping p : X — [0, 1] is said to be a contained fuzzy subgroupoid of X if, for all

z,y € X,

< min{u(x), u(y)} for all ,y € X. Since (X, ) is a left-zero
(y)} for all x,y € X. This shows that pu(x) < p(y) for all

w(z +y) < max{u(z), u(y)}.

Proposition 5.2. Let (X, *) be a left-zero semigroup. Then every mapping p : X — [0,1] is a contained
fuzzy subgroupoid of X .

Proof. The proof is straightforward. (I
Let (X,*) € Bin(X) and let p : X — [0,1] be a mapping. A mapping p¢ : X — [0, 1] is said to be a
complement of p if, for all z € X, p(x) := 1 — p(z).

Proposition 5.3. Let (X, *) be a groupoid. If u: X — [0,1] is a contained fuzzy subgroupoid of X, then u¢
s a fuzzy subgroupoid of X.

Proof. It follows from that 1 — max{u(x), u(y)} = min{l — u(z),1 — p(y)} forall z,y € X. O
Let (X, %) € Bin(X). A mapping p : X — [0, 1] is said to be a expansive fuzzy subgroupoid of X if, for all
z,y € X,
p(x *y) = max{p(z), p(y)}-

Note that every expansive fuzzy subgroupoid of X is also a fuzzy subgroupoid of X. Moreover, a fuzzy
subset p is an expansive fuzzy subgroupoid of X if and only if u¢ is a contractive fuzzy subgroupoid of X.

Example 5.4. Let X := [0,00). Define a binary operation z * y := x + y for all z,y € X where “4” is the
usual addition of real numbers. Then every order-preserving mapping p is expansive, since u(x +y) > p(z)
and pu(x +y) > p(y) for all z,y € X.

Theorem 5.5. Let (X, x),(X,e) € Bin(X) and let (X,0) := (X, *)0(X,e). Then the following are hold:

(i) if p is contractive fuzzy subgroupoid on (X,*) and (X,e), then it is also contractive fuzzy subgroupoid
on (X,0),
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(i) if p is contained fuzzy subgroupoid on (X, *) and (X,e), then it is also contained fuzzy subgroupoid on
(X,0),

(iii) if p is expansive fuzzy subgroupoid on (X, *) and (X,e), then it is also expansive fuzzy subgroupoid on
(X, 0).

Proof. (i) Given z,y € X, we have

p(a0y) = p((zxy)e (y*z))
< min{u(z *y), u(y *x)}
< min{u(z), u(y)},

proving that p is a contractive fuzzy subgroupoid on (X, O0). Others are similar to (i) and we omit the proofs.
O

Proposition 5.6. Let (X,*) € Bin(X). If u: (X,*) — [0,1] is both a contractive fuzzy subgroupoid of X
and a fuzzy subgroupoid of X, then p(zx xy) = min{pu(x), u(y)} for all x,y € X.

Proof. It follows from that min{u(z), u(y)} < p(r *y) < min{u(z), pu(y)} forall z,y € X. O

Let (X, %) € Bin(X). A mapping 1 : X — [0, 1] is said to be S-order-preserving if 28y implies p(z) < u(y),
and a mapping p : X — [0,1] is said to be [S-order-reversing if xfy implies u(z) > p(y). A mapping
w: X —[0,1] is said to be expanding if u(x) < p(x xy) for all z,y € X, and a mapping u : X — [0, 1] is said
to be contracting if u(x) > p(x *y) for all z,y € X.

Proposition 5.7. Let (X, *) € Bin(X). Then every expanding (resp., contractive) fuzzy subset p: X — [0, 1]
is B-order-preserving (resp., reversing).

Proof. Assume that xf8y. Then x * y = y. Since p is expanding, we obtain u(z) < p(z *y) = p(y), proving
that u is S-order-preserving. The other part is similar, and we omit it. U

Theorem 5.8. Let (X,*) € Bin(X) and let a,b,a +b € [0,1]. Then the following conditions hold:

(i) if u and v are B-order-preserving, then au + bv is also [-order-preserving,

i)

(i) of p, v are expanding, then ap + b is also expanding,
(iii) if p is B-order-preserving, then uc is B-order-reversing,
(iv) if p is exzpanding, then u is contracting.

Proof. Let p,v : X — [0, 1] be fuzzy subsets of X. Given z € X, we have (ap + bv)(x) = ap(x) + bv(z) <
(a+ b)max{pu(z),v(z)} <a+b< 1.

We consider (i). If x4 and v are S-order-preserving and xfy, then u(x) < u(y),v(z) < v(y). It follows
that (ap + bv)(x) = ap(z) + bv(x) < ap(y) + bu(y) = (ap + br)(y). Other proofs can be shown easily, and
we omit the proofs. O

Let (X,%) € Bin(X). A map p : X — [0,1] is said to be ~yg-order-preserving if xfz, 2By implies

u(r) < p(z) < p(y).
Note that every [-order-preserving mapping p of a groupoid (X, *) is vg-order-preserving.

Proposition 5.9. Let (X, *) be a groupoid with the following property (P):
Bz = dy € X such that z8y. (P)

If p is a vyg-order-preserving mapping on (X, *), then it is a B-order-preserving mapping on (X, ).
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Proof. Let z(3z. Since (X, *) has the property (P), there exists y € X such that zf8y. Since p is a yg-order-
preserving mapping, we obtain u(x) < u(z) < p(y), which shows that u is a S-order-preserving mapping.
[l

Example 5.10. Let X :=[0,00). Define a binary operation * on X by z * y := max{x,y} for all z,y € X.
Assume zf8y. Then y = z x y = max{z,y} and hence z < y. f we put z:=y+1,then yxz=yx*x (y+1) =
max{y,y + 1} =y + 1 = z. Hence (X, %) has the property (P).

Example 5.11. Let X := [0,00). Define a binary operation x on X by xxy := x +y for all z,y € X, where
“+” is the usual addition of real numbers. Assume x31. Then 1 = x *x1 = x + 1, and hence =z = 0, i.e.,
051. If we assume that there is y € X such that 18y, then y = 1 xy = 1 + y, which shows that 1 = 0, a
contradiction. Hence (X, *) does not have the property (P).

Let (X, %) € Bin(X). A mapping i : X — [0, 1] is said to be a-order-preserving if zoy implies p(z) > p(y).
A map p: X — [0,1] is said to be y4-order-preserving if zaz, zay implies p(z) > p(z) > p(y).

Proposition 5.12. Let (X, *) be a groupoid with the following property (Q):
raz = Jy € X such that zay. (Q)
If i is a yo-order-preserving mapping on (X, %), then it is a a-order-preserving mapping on (X, *).

Proof. The proof is similar to the proof of Proposition 5.9. U

Let (R, *) be a leftoid for ¢, where p(x) := 22 for all x € R. Then 1% 2 = ¢(1) = 1 and hence aa?2.
If we assume (R, *) satisfies the condition (@), then there exists y € R such that 2ay. It follows that
2 =2x%y = ¢(2) =4, a contradiction. Hence such a groupoid (R, *) does not satisfy the condition (Q).

Given a groupoid (X, *), a map p : X — [0,1] is said to be a super-symmetric fuzzy subset of (X, x) if
w((xxy)x (y*z)) > p(x*z) for all z,y,z € X.

Thus, if (X, %) is a left-zero semigroup, then every mapping p : (X, *) — [0, 1] is a super-symmetric fuzzy
subset of (X, ), since u((xxy) * (y*2)) = p(x) > p(x) = p(x x z) for all z,y,z € X. Similarly, for any right
zero semigroup, every mapping p : (X, *) — [0,1] is also a super-symmetric fuzzy subset of (X ).

Proposition 5.13. Let (X, %) be a leftoid for ¢. If u: X — [0,1] is a map with u(p(z)) > p(z) for all
x € X, then p is a super-symmetric fuzzy subset of (X, x*).

Proof. Given z,y,z € X, since (X, ) is a leftoid for ¢, we have pu((z *y) * (y x 2)) = p(e(z) * p(y)) =
w(p(e(x)) > u(p(z)) = p(x x z), proving the proposition. O

It is a question of some interest to determine a super-symmetric fuzzy subset of a groupoid (X, %) to be a
fuzzy subgroupoid of (X, *), i.e., u(xxy) > min{u(x), u(y)} for all z,y € X. Clearly, every map p : X — [0, 1]
of a left-zero semigroup (X, *) is also a fuzzy subgroupoid of (X, ).

Proposition 5.14. Let (X,x*) be a leftoid for ¢. If p: X — [0,1] is a map with u(p(z)) > p(x) for all
x € X, then p is a fuzzy subgroupoid of (X, *).

Proof. If ju(¢(x)) > u(x) for all @ € X, then u(p(p(x)) > u(p(x)) > u(z) and hence u(x +y) = p(p(x)) >
p(x) > min{u(x), u(y)} for all z,y € X, proving that u is a fuzzy subgroupoid of (X,*). O

Clearly, there is much more information waiting to be obtained here as well.
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6 Conclusion

In this paper, we have continued the investigation started in [20] of what we may discover in the theory of
groupoids (binary systems) by separating the concepts of below (zfy) and above (xay) in general groupoids,
and then recombining them to obtain what looks to be a candidate for the best relation < available in general.
After doing so, we introduce the idea of super-transitivity in groupoids as a generalization of the notions
and « in identity form, (z *y) * (y * 2) = x * z which allows us to make claims about the class of groupoids
for which this identity holds, i.e., that this yields a variety. Having done so we may then concern ourselves
with introducing fuzzy subsets p on groupoids (X, *) which have certain properties of interest, e.g., being
contracting on expanding which defined in the natural way provides new but not unexpected information. A
bit stickier is the class of pu((x*y)* (y*z)) > p(x * z) for super-symmetric fuzzy subsets of (X, %) introduced
with a standard looking inequality and the problem being the determination of fuzzy subsets of this type
which are also fuzzy subgroups and conversely. Certain problems look innocent enough but may yet prove
not to be trivial as they are solved.
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the credibility measure by defining the parametric measure my (A is a real parameter in the interval [0, 1] and for
A =1/2 we obtain as a particular case the notion of credibility measure).

By using the mx- measure, we studied in this paper a risk neutral multi-item inventory problem. Our con-
struction generalizes the credibilistic inventory model developed by Y. Li and Y. Liu in 2019. In our model, the
components of demand vector are fuzzy variables and the maximization problem is formulated by using the notion
of my—expected value.

We shall prove a general formula for the solution of optimization problem, from which we obtained effective
formulas for computing the optimal solutions in the particular cases where the demands are trapezoidal and trian-
gular fuzzy numbers. For A = 1/2 we obtain as a particular case the computation formulas of the optimal solutions
of the credibilistic inventory problem of Li and Liu. These computation formulas are applied for some m - models
obtained from numerical data.
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1 Introduction

Let us consider a company that produces several types of goods (items). It will be assumed that buyers can
order in advance. An inventory problem is a mathematical model that describes the management of this
company.

There are mathematical models in which the management activity of the company is carried out in a
single period and models with several periods. The inventory models can also be classified according to the
attitude towards risk of a decision-maker: there are models in which the decision maker has a risk-averse
attitude and models in which his attitude is neutral.

The mathematical formulation of the inventory model starts from the following initial data (model pa-
rameters) : ci,...,c, are unit fixed costs per inventoried item, di,...,d, are unit revenues per inventoried
item and hy,...,h, are unit holding costs per inventoried item.
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The demands are mathematically modeled by the variables D1, -, D,; the order quantities will be the
variables x1,--- ,x,. The total profit from the sale of the n types of goods will have the following expression::
n

1.2

L hi
(%, D) = Z;(dzxz —c — QZDZ) (see [1], [2]).
1=
In a neutral inventory problem, one will determine those values of x1,--- ,x, for which the total profit
n

7(Z,D) = Z(dlscl G DZ' ) is maximal. When making the decision the risk is taken into account, the
i=1 !

values of x1, -+ ,x, will be determined so that at the same time the maximum profit is achieved, and the
risk (represented by various mathematical concepts) to be minimal.

The formulation of an inventory problem depends on how the demands Dy, --- , D, are modeled, as well
as on how profit maximization and risk minimization are evaluated. The classical treatment of inventory
problems is a probabilistic one: the demands D1, --- , D, are random variables and, for risk - neutral models,
the objective function of the maximization problem is the expected value of the total profit. In the case of a
risk - averse attitude of the decision maker, several ways to describe the risk were proposed: in [3], [1] by means
of mean-variance models and in [5] by using the value-at-risk (VaR) as a risk measure. In [0], the coherent
risk measures [7] have been used in defining the objective function of an inventory problem. Using the multi-
item inventory system introduced by Luciano et al. [5] (called, shortly, LCP-model), [3] developed several
inventory problems, with decision-makers having various positions towards risk: from a neutral attitude to
risk-averse attitude, corresponding to variance, mean-absolute deviation (MAD) and conditional value-at-risk
(CVaR) as risk measures.

The credibility theory, specially developed by Liu in [9], is another way to model the fuzzy uncertainty.
Its fundamental concept is the credibilistic measure [10] and its main indicators are the credibilistic expected
value and the credibilistic variance (cf. [9], [10]). From the literature dedicated to the credibilistic treatment
of inventory problems we mention the papers: [I1], [12], [1], [13]. In this paper we will have as the starting
point the papers [14], [15], [16] of Li and Liu: the first one concerns a multi - item inventory problem in which
the decision - maker is neutral and the second one is a risk - averse inventory model. In both papers, the
demands and the total profits are fuzzy variables and the expected profit is the credibilistic expected value
of total profit. In [15] appears a risk evaluated by the notion of absolute semi - deviation.

In [17], Yang and Iwamura introduced a new measure m) as a convex linear combination of a possibility
measure Pos and its associated necessity measure Nec (A is a parameter in the interval [0, 1]). By using the
measure my, in [18] the notions of the expected value E)(£) and the variance Vary () of a fuzzy variable £ are
defined. These two indicators retain some algebraic properties of the possibilistic indicators corresponding
to [9]. In this way, the credibility theory is enlarged to a new theory that models the fuzzy uncertainty (this
will be named my) - theory). An issue that arises naturally is an my—theory leading to the development of
different economic and financial themes. Papers [19], [20], [21], [22] introduce new credibilistic real options
models, which are based on the optimism-pessimism measure and interval-valued fuzzy numbers. The model
outcomes are compared to the original credibilistic real options model through a numerical case example in a
merger and acquisition context. Paper [1&] applies my—theory in the study of optimal portfolios when assets
returns are described by triangular or trapezoidal fuzzy variables.

In this paper we shall study a multi - item risk neutral inventory problem in the framework of an m - the-

ory. We shall assume that the demands D1, --- , D,, are fuzzy variables and the criterion used in determination
n
hix? 1
of the order quantities x1, - , T, is the maximization of the m) - expected value Z[dlml —ci— 22 ! E/\(H)]
i

i=1
of the total profit. We shall prove a general formula for computing the solution of optimization problem,

of which we will then get formulas for effective computation of inventory problem solution whenever the

demands are trapezoidal or triangular fuzzy numbers. For A\ = % we shall obtain as a particular case the

credibilistic inventory problem of [11], as well as the form of its solution.
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The paper is structured as follows. Section 2 contains introductory material on possibility and necessity
measures, credibility measure and m) - measure, as well as on their relationship. In Section 3 we present the
definition of the m) - expected value and some of its basic properties. Section 4 deals with the construction of
a risk neutral inventory model whose objective function is defined by using the notion of m) - expected value.
By using the linearity of my—expected operator E(.), a general formula for the solution of the maximization
problem is obtained. In Section 5 we proved some explicit formulas for this solution in the particular cases
when the demands are trapezoidal and triangular fuzzy numbers. The proofs of these formulas are based
on the form of my—expected value Ey(A) of a trapezoidal fuzzy number A (see Proposition 3.4). Section 6
highlights how by applying the percentile method of Vercher et al. [23] we can build an inventory problem
starting from a dataset. In this inventory problem, the components of a demand vector are trapezoidal fuzzy
numbers, such that one can apply the formulas from Section 4 to compute the solution of the optimization
problem.

2 Preliminaries

Let X be a universe whose elements can be individuals, objects, states, alternatives, etc. An events A is a
subset of X: the set of events will be the family P(X) of subsets of X. The complement of the event A will
be denoted by A°€.

In this paper we shall assume that the elements of the universe X are real numbers (X C R). A fuzzy
variable will be an arbitrary function £ : X — R.

The notions of possibility measure and necessity measure can be introduced both axiomatically and
through a possibility distribution (cf. [24], [25], [20]).

A possibility measure on X is a function Pos : P(X) — [0, 1] such that

(Posl) Pos(D) = 0; Pos(X) = 1;

(Pos2) Pos(|U;c; Ai) = supicrPos(A;), for any family (A;);cr of events.

A necessity measure on X is a function Nec: P(X) — [0, 1] such that

(Necl) Nec(0) = 0; Nee(X) = 1;

(Nec2) Nec((V;ep Ai) = inficrNec(A;), for any family (A;)icr of events.

The notions of possibility measure and necessity measure are dual: to each possibility measure Pos one
can assign a necessity measure Nec(A) = 1 — Pos(A°) and, vice-versa, to each necessity measure Nec one
can assign a possibility measure Pos(A) =1 — Nec(A°).

Given a possibility measure Pos on the universe X, for any parameter A € [0, 1] consider the function
my : P(X) — [0,1] defined by

mx(A) = APos(A) 4+ (1 — A\)Nec(A), (1)

for any event A;

(Nec is here the necessity measure associated with Pos).

This new measure was introduced by Yang and Iwamura in [17] as a convex linear combination of Pos
and Nec by means of the weight A\. If A = % then one obtains the notion of credibility measure in the sense
of Liu’s monograph []:

Cred(A) %(POS(A) + Nec(A)), (2)

for any event A.
A possibilistic distribution on X is a function p : X — [0, 1] such that supyex = 1; u is normalized if
u(x) =1 for some x € X.
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Let us fix a possibility distribution g : X — [0,1]. Then one can associate with p a possibility measure
Pos and a necessity measure Nec by taking

Pos(A) = supzeap(z) (3)
for any event A;
Nec(A) = infreap(z) (4)

for any event A.
Then for each parameter A € [0, 1], the measure m) defined by (1) will have the following form:

m/\(A) = ASUpreA/'L(x) + (1 - A)infreA:u(l')? (5)

for any event A.
According to [9], we say that the normalized possibility distribution p is the membership function asso-
ciated with a fuzzy variable £ if for any event A we have

Pos(§ € A) = supgeap(x). (6)

Then the following equalities hold:
Nec(§ € A) = infreap(z); (7)
A€ € A) = Asupaea(z) + (1 — Nin focap(a) 3)

3 The Expected Value Associated with the Measure m)

We fix a parameter A € [0, 1] and assume that & is a fuzzy variable, p is its membership function and my) is
the measure defined in (5).

Following [13], the expected value of £ w.r.t. the measure m) is defined by
0 o0
Br© = [ b€z )~ tdr+ [T male = ryar (9
—o0 0
If A= % then one obtains the credibilistic expected value of & w.r.t. the credibility measure Cr defined
in (2):
[e'e) 0
Ec(¢) = / Cr(§ > r)dr —/ Cr(& < r)dr. (10)
0 —0o0

The previous notion of credibilistic expected value was introduced by Liu and Liu in [10].
The following result shows that the expected operator E)(-) is linear.

Proposition 3.1. [18] Let &1, &2 be two fuzzy variables such that Ex(§1) < 00, Ex(&2) < 0o and «, B are two
non - negative real numbers. Then the following hold:

Ex(&1 + &) = Ex(&1) + Ex(&2); (11)

E)\(a&1) = aB\(&). (12)
Lemma 3.2. If £ > 0 then E\(€) = [;° m(€ > r)dr and Ex(§) > 0.
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According to [9], p.73, a trapezoidal fuzzy variable ( = trapezoidal fuzzy number) £ = (r1, 79,73, 7r4), With
ry < ro <rg <1y, is defined by the following membership function:

r—T
P r < x < 1o,
1 ro <z <13,
) = B == 13
Mf( ) x_rg ry <z <1y, ( )
T4—T3
0 otherwise.

If r9 = r3 then one obtains the triangular fuzzy number £ = (71,79, 74).

Lemma 3.3. [18] For any trapezoidal fuzzy variable § = (r1,r2,73,74) Wwe have:
1 ry < x,
A(ra—z)+a—
% r3g < T < Ty,
my(<z)=< A ro <x <rs, (14)
Az—r1)
ﬁ ry < x <1,
0 z <.

Proposition 3.4. [18] For any trapezoidal fuzzy variable & = (r1,72,73,74) the expected value EX(§) has the
form

r1+ 12 r3+ 14

B = (- )T (15)
Corollary 3.5. For any triangular fuzzy variable § = (r1,r2,74) the expected value Ex\(§) has the form
Er©) = (- N2 4230 (16)

2 2 2

4 An Inventory Problem with Fuzzy Variables as Demands

This section concerns a risk - neutral multi - item inventory problem characterized by the following two
hypotheses:

(I) the components of the demand vector are fuzzy variables;

(IT) the objective function of the inventory model is defined by using the expected value operator Ej(+)
introduced in the previous section.

The inventory problem with n items has the following initial data:

® Cq,...,C, : unit fixed costs per inventoried item;

e di,...,d, : unit revenues per inventoried item;

® hi,...,hy, : unit holding costs per inventoried item:;

e D= (D1,...,Dy) : fuzzy demand vector in the inventory problem;
e ¥ = (x1,...,x,) : order quantity vector in the inventory problem.

The components Dy, ..., D, of D are fuzzy variables. We shall assume that ¢; > 0, d; > 0 and D; > 0,
foralli=1,...,n.

Remark 4.1. The initial data of the possibilistic inventory problem are similar to the probabilistic inven-
tory problems from [5], [3], the credibilistic inventory problems from [11],[15] and the possibilistic inventory
problems from [27].
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We will further observe that the essential difference between the three types of models lies in the way

of choosing the objective function of the optimization problem: the models in [5], [3] use the probabilistic
expected value, those in [14], [15] use Liu credibilistic expected value [9] and those in [27] use the possibilistic
expected value from [28].

Starting from above input data we will formulate a risk-neutral problem. Similar with [11], p. 132, the

2
quantity d;z; is the total revenue of the ¥ item and the fuzzy variables hl; Lo s the holding cost of the "

item.

We fix a parameter \ € [0, 1], so We can use the expected value operator Ey(-) defined in (9). According
to Lemma 3.2, we remark that Ef( -) >0, foralli=1,.
The profit function of item ¢ has the following form:

hix? 1
mi(xs, D) = dix; — ¢ 12 ! D, (17)
The total profit function of the possibilistic inventory problem has the following form:
n
- s hx2 1
(&, D) Zm 23, Dj) E:(dzacz —ci— 22 ! E) (18)

i=1
Then the optimization problem assoc1ated with the previous inventory model has the following form:
max E) (7(Z, D))
z (19)
>0

Remark 4.2. The objective function in the optimization problem (19) is the expected value E\ (7 (&, ﬁ)) of
the fuzzy variable w(Z, D) (w.r.t. the measure my).

Remark 4.3. For A = % we obtain as a particular case the credibilistic inventory problem studied in [1/]:

max Ey(m f,ﬁ
ox B (n(7, D)) )
>0
By applying Proposition 3.1 to (18), the expected value E)(m(Z, 5)) can be written
n
— h;x? 1
BA(r(7 ) = Y s i~ "B ) (1)
hence the optimization problem (19) becomes
max Z [dix; — ¢ Ti E,\(i)]
LlyeesTn i1 2 Dl (22)
z; > 0,0 =1,....n
The decision - maker aims to find the non - negative values z1,...,z, that maximize the expected total
profit E\(w(Z, D)).
In particular, setting A = % in (22) one obtains the credibilistic inventory problem from [11].
max Zdw,—z— ZEC(l)]
N 2 D; (23)

z; >0,2=1,...,n
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Proposition 4.4. The optimization problem (22) has the following solution:

« d;

T, = ——7,
hiBx(3;)

(24)

fori=1,....n

Proof. In order to find the solution of the optimization problem (22) we write the first - order condition

0 " hiwz 1
diz; —c; — —+F\(—=)) =0
0, ;( ity — G 5 /\(Di)) )
fori=1,...,n,
therefore by a simple computation we obtain the equations
1
di — th)\(E).%'Z = 0, (25)
fori=1,...,n.
We remind that Ey(3-) > 0 for i = 1,...,n. Thus the solution of the optimization problem (13) will
have the following form
" d;
xr., = —_—,
Y hiBy()
fori=1,...,n.
O

5 Solution Form when the Demands are Trapezoidal Fuzzy Variables

According to Proposition 4.4, in order to compute the values (z7, ..., z}) of the solution of inventory problem
(22) we need to compute the expected values E A(D%), . E,\(Din). The computation of these expected values
depends on the form of the fuzzy variables D1, -+, D, and in most cases this operation seems to be very
difficult. In this section we solve this problem whenever the demands D1, - - - , D, are trapezoidal or triangular
fuzzy numbers. The formulas obtained for the computation of the optimal solutions z7,...,x; have simple
algebraic forms which makes them very suitable from a computational point of view.

We will fix the parameter A € [0,1]. The following proposition is a key result of this section: the

application of the formula (26) will lead us to find the form of optimal solutions z7, ..., z}.

Proposition 5.1. Let D be a trapezoidal fuzzy number D = (r1,ra,73,74) such that 0 <1 < rg < rz <ry
then the expected value E)\(%) has the following form
1 A 9 1—X . ry

E\(=) = In— In— 2
)‘(D) Ty —T1 nrl + T4— T3 nrg (26)

Proof. Firstly we observe that the condition 0 < r; means D > 0, hence one obtains % > 0. By using

Lemma 3.3 we get the following equalities:

1
1 T4 S P
Mra—i)y+1_
Az )ty ors rg <2 <y,
1 1 7473 T
m,\(BZr):m,\(D<;): A ro < o <13,
A(%—'f’l 1
p— ?;1 < 2 <rg,
L 0 P S r1.
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which can be written as follows:

1 r< o
. o [(1= N3+ Ay — 73] %grgé,
Al i I
ro— 7"1[7_r1] Egrgﬁ’
0 1<o.
According to Lemma 3.2 we obtain
/ myx(=>r)dr=05L+ L+ I3+ 14 (28)
where I1, I, I3, Iy have the following expressions:
" 1
Il / ! dr = —
0 T4
1
1 T3 1 1 1 T4 1 1
I, = Ary— =)+ — —r3ldr = 1—=XN)In— 4+ (Ary — — - —
2= [P D = (- N (=) - )
4
=3 11
L=X[ "dr=X\N=-—)
1 (] T3
3
A [l A 11
r T
I, = / ' [— —r]dr = [ln—2 —r(— — —)]
T — 1T 1 T ro — 1 (& ™ T9
2
Substituting in (28) these values of Iy, I, I3, I4 we get the formula (26).
O
Corollary 5.2. [11] Let D be a tmpezoidal fuzzy number D = (r1,ra,73,74) such that 0 <1y <rg <rsz<ry
then the credibilistic expected value Ec( ) has the following form
1 1 T2 1 T4
Fo(=)=————In—+ ——In— 29
C(D) 2(7‘2 — 7“1) n?“1 * 2(7’4 — 7"3) nT’g ( )

Proof. If we take A = 1 in (26) then we obtain the formula (29). O

Remark 5.3. If in formula (26) one takes ro = r3 then D is the triangular fuzzy number D = (r1,719,74)
and the expected value EA( ) has the following form

1 A 9 1—X ry
E\(=) = In— In—
)‘(D) Ty —T1 nrl + T4— T3 nrg (30)

If in (30), we set A =  then we get the formula of the credibilistic expected value E(7;) from Theorem

2 of [11]:

Eo(=)=7——In—4+ ———In— (31)
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Figure 1: Trapezoidal fuzzy number

Remark 5.4. Often in literature a trapezoidal fuzzy number D is given under the form D = (a—a, a, b, b+ 3),
with a,b € R and a, B > 0 (Figure 1). Thus its membership pup has the form:

1—% a—a<z<a,
1 a<z<b,

M@ =N e pca<hig,
0 otherwise.

Assuming that 0 < a — « we have D > 0 and the formula (26) becomes

1 A a 1-X b+ 0

Remark 5.5. Assume that a triangular fuzzy number D is written under the form D = (a — a,a,a + ),
with a € R and a, 8 > 0. If 0 < a — « the formula (30) becomes
1 A a 1-X a+p

E\(=)=-1 l
)‘(D) ana—a+ I} " a

(33)

The previous formulas (26), (30), (32) and (33) provide very computable expressions for the expected
value EA(%) for the particular cases when D is a trapezoidal or a triangular fuzzy number.

By using these formulas we are now able to compute the solution z7,--- ,z} of the optimization problem
(22) whenever the components Dy,...,D, of demand vector are trapezoidal fuzzy numbers, respectively
triangular fuzzy numbers.

Theorem 5.6. Assume that the components Ay, ..., A, of demand vector A are trapezoidal fuzzy numbers
D; = (a; — aj,ai,b;,b; + B;), i =1,...,n, where 0 < a; —a; < a; < b; < b;+ By, fori=1,...,n. Then the
solution of the optimization problem (13) has the following form

d;

x; = , 34
b hi[Ringt + AR (34

foralli=1,... n.
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Proof. By (32), for each i = 1,...,n we have

IR IS

o — o Bi b;

i
If we substitute these values of E)\(D%), e ,E,\(D%L) in (24) then we get the desired formula (34).
U

Corollary 5.7. If Dy,..., D, are the triangular fuzzy numbers D; = (a; — a;, a5, a; + B;), i = 1,...,n, where
0<a;—a; <a; <b+pi, fori=1,...,n then the solution of optimization problem (19) has the form

d;
] = : 35
o[ 2 4 %lni‘liﬁi] (35)

(677 a; —Qy

foralli=1,...,n.

Proof. If in (34) one sets b = a, then the formula (35) follows immediately. O
Now we shall write the formula (34) for the following particular values of A:
(a) A = 1/3 (the pessimistic case)

\ 3d;
hilZing % + Zinbfl)

i O

foralli=1,...,n.
(b) A =1/2 (the credibilistic case [11])

2d;
r; = - gt (37)
foralli=1,...,n.
(¢) A =2/3 (the optimistic case)
3d;
z = (38)

foralli=1,...,n.

6 A Numerical Example

In order to solve the optimization problems associated with some inventory models we should know the form
of the variables Dq,---, D, and of the (probabilistic, credibilistic, possibilistic, etc.) indicators that appear
in models. In the examples of credibilistic inventory problems from [14], [15] the expressions of Dy,---, D,
are assumed to be trapezoidal fuzzy numbers.

In general, the mathematical expressions of Dy, -, D, are not known, but through measurements can
be found different values of them. In the numerical example of possibilistic inventory problem from [27] it
started from a data table, then the method of Vercher et al. [23] was applied to determine the concrete form
of fuzzy numbers D1, --- , D,.

In this section we will present the solution of an mjy-inventory problem in which the initial information
on the variables Dy, --- , D, (which in our case are trapezoidal numbers) is given in the form of a numerical
table. In order to obtain the trapezoidal numbers that describe the demands D1, -, D, we will apply the
sample percentile method of Vercher et al. [23].
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Table 1: Data on demand vector

H Iteml TItem2 Item3 Item4 Itemb Item6 Item7 Item8 Item9 Iteml0 H

35 20 30 25 28 33 18 18 31 20
30 30 50 25 32 37 27 28 33 27
15 35 28 36 25 20 33 17 25 31
25 35 40 35 35 40 35 20 30 37
25 28 25 32 50 37 28 19 35 35
28 25 42 27 45 28 28 37 35 37
31 27 36 35 43 35 35 27 22 35
30 24 39 28 27 35 24 37 27 25
44 33 44 28 32 22 39 30 29 25
37 34 37 44 44 32 47 36 28 37
23 17 22 33 32 29 31 31 45 19

Table 2: Trapezoidal fuzzy numbers

H Ay Ao Az Ay Ag H
(28,30,0,10.5) (27,30,8.5,5) (36,39,12.5, 5) (28,32,3.4) (32,35,6,10)
H Asg A7 Ag Ag A1 H

(32,35,11,2) (28,33,7.6) (27,30,9.5,7) (29,31,5.54) (27,35,7.5,2)

We continue with the presentation of the values of basic parameters d;, ¢;, d;, so the inventory problem
is entirely defined. Finally, we apply the formulas (36)- (38) in order to obtain the optimal solutions of the
model.

Our inventory problem has a demand vector of size 10. Table 1 contains the data we have on demand
vector.

In column 7 of Table 1 are placed the known values of item ¢. In a probabilistic inventory model, the
above columns will contain values of random variables. In this case the maximization problem of the model
will be obtained by usual statistical methods.

Under the hypothesis that the 10 items are modeled by trapezoidal fuzzy numbers, one has to convert the
data from the above table in 10 such fuzzy numbers (each column is assigned to a trapezoidal fuzzy number).

Let’s present shortly the percentile method of Vercher et al. [23], by which to a data set of real numbers
Z1,...,Zm, one assigns a trapezoidal fuzzy number A = (a,b, a, ).

Let us denote by P, the k-the percentile of the sample x1,...,x,,. Then the trapezoidal fuzzy number
A = (a,b,a, 8) will be determined by the formulas:

a = Py,b= Pso,o0 = Py — P5, 8= Pos — Peo (39)

By applying Vercher et al.’s method [23] to each of the columns of Table 1 obtains the trapezoidal fuzzy
numbers in Table 2.

The trapezoidal fuzzy numbers A1, ..., Ajg obtained from Table 1 will be the components of the demand
vector of a risk neutral multi-item inventory problem. This inventory problem will be defined by the data in
the first five columns of Table 3:

Columns two, three and four of Table 3 contain the unit fixed costs, unit revenues and holding costs of the
model. The trapezoidal fuzzy numbers from the fifth column make up the demand vector in the my—inventory
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Table 3: The elements of the inventory problem

H Item d; ¢ h; A;= (ai,bi,ai,ﬁi) l’;k()\: 1/3) x;"(/\: 1/2) xj(AzQ/S) H
T 12 2 05  (2830,9,105) 718 21 663.76 627.44
2 11 1 0.6 (27,30,8.5,5) 518.19 486.88 459.14
3 14 3 0.5 (36,39,12.5, 5) 1019.75 961.42 909.4
4 10 4 0.8 (28,32,3,4) 387.92 371.9 357.14
5) 11 5 09 (32,35,6,10) 432.03 409.19 388.64
6 10 3 09 (32,35,11,2) 355.13 336.3 319.37
7 12 2 0.5 (28,33,7,6) 743.93 696.25 654.32
8 15 1 0.6 (27,30,9.5,7) 710.45 661.32 618.54
9 13 3 07 (29,31,5.5,4) 563.24 541.63 521.61
10 13 4 0.9 (27,35,7.5,2) 437.88 405.88 378.24

problem. In fact, for distinct parameters A € [0, 1] we obtain distinct inventory problems. We consider the
three inventory models (a)-(c) corresponding to the parameters 1/3, 1/2 and 2/3. By applying the formulas
(36)-(38) we obtain the solutions of the three optimization problems. These solutions are placed in the last
three columns of Table 3.

Remark 6.1. Regarding the last three columns of Table 3, it is noticed that with the increase of the
parameter \ ( % < % < %) the solution values of the optimization problem decrease. The theoretical argument

of this fact is given by Proposition 8.2 in the Appendix.

7 Conclusion

In the work we studied a new inventory model whose construction is based on the parametric measure m)
(introduced by Yang and Iwamura in [17]) and on the notion of my—expected value (introduced by Dzouche et
al. in [18]). More precisely, in this inventory model, the demands and the total profit are fuzzy variables and
the objective function of the optimization problem is the my—expected value of total profit. It was found the
general form of the solution of the optimization problem and when the demands are trapezoidal or triangular
fuzzy variables computationally efficient forms of the solution have been found.

An open problem is finding the calculation formulas for the optimal solutions also when the demands are
represented by other types of fuzzy variables: discrete repartitions, Erlang fuzzy variables, etc.

The inventory model in the paper is risk-neutral. Another open problem is the study of risk—averse
inventory models in the framework of my—theory. It would also be interesting to treat some mean—value
inventory model, in which besides maximizing the my—expected value of the total profit to be required to
minimize the my—variance of the total profit (the notion of my—variance has been defined in [1%]). Defining
a notion of mean—absolute deviation in the context of an my)—theory would lead to an inventory model in
which the risk is eventually represented by this indicator.

Continuing the research line from [14], [15], in paper [16] is investigated an inventory problem in which
the components of the demand vector are type-2 fuzzy variables. This model is studied with the techniques
of Liu’s credibility theory [9]. It arises naturally a question of extending this model to my—theory, so that
giving the parameter A the value % to obtain as a particular case some results of [16].

The newsvendor problem is a core concept in inventory management dealing with stochastic demand.
Traditionally, it centers on a single goal: either minimizing expected costs or maximizing expected profits.

A mean—variance model for the newsvendor problem is presented in paper [29]. A newsvendor problem



26 Georgescu 1. Trans. Fuzzy Sets Syst. 2025; 4(1)

is studied in which the maximization of expected profit and the minimization of risk, expressed by the
profit variance, are required. It would be interesting to formulate and study a newsvendor problem in which
the expected profit is expressed by my—expected value and the risk of profit by my—variance (according to
Definition 2 of [15]).

8 Appendix

One asks the question of how the solutions of the optimization problem (20) vary depending on the parameter
A. We will give a solution to this problem in case when the demands Dy, ..., D,, are trapezoidal fuzzy numbers.

Lemma 8.1. Assume that € is a trapezoidal fuzzy variable. If \y < Ay then Ey,(§) < Ej,(£).

Proof. See Proposition 1 of [18]. O

Let A1, A2 be two parameters in the interval [0,1]. We consider the two inventory problems with the
same input data, but with different objective functions of the optimization problems, defined by the expected
operators F), (£) and E), (&), respectively.

We denote by z7,...,z} the solution of the optimization problem corresponding to Ey,(§) and with
Yy, ...,y the solution of the optimization problem corresponding to Ej,(&).

Proposition 8.2. Assume that the demands D1, ..., D, are trapezoidal fuzzy variables. If A1 < Ao then
x; >yl foranyi=1,...,n.

Proof. Assume that A\; < \g. By Proposition 4.4, the solutions z7,...,x} and yj,...,y; are written in the
following form:

d;
= (40)
" hiBy(p)
fori=1,...,n.
d;
=t (41)
' hiEAz(%i)
fori=1,...,n.
Applying Lemma 8.1 for any ¢ = 1,...,n the following implications hold:
1 1 1
A< )Xo = E) (*) < E) (*) = < (42)
' Di ’ Di EAQ(DLZ-) EAl(%i)
By (40)-(42) for any ¢ = 1,...,n we will have:
. . d; 1 1
o=y = (o —) >0

We conclude that =7 >y forany ¢ =1,...,n. O
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Fuzzy filters are formed using filters. The concepts of positive set, €;-set, (extended) g:-set are defined and the
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1 Introduction

The concept of a residuated relational system introduced by Bonzio et al. [I] is a mathematical structure
used in the study of ordered algebraic systems, particularly in the fields of logic, lattice theory, and category
theory. These systems generalize certain aspects of algebraic structures like lattices and posets, with a focus
on the relationship between operations and their adjoints, often in the context of residuation. They developed
the concept of a pre-ordered residuated system, which is nothing but a residuated relational system whose
relation is pre-order, i.e., reflexive and transitive. Their work like this is based on generalizing the concept of
residuated poset, by replacing the usual partial order to a pre-order. Romano [2, 3, 4, 5] called the pre-ordered
residuated system a quasi-ordered residuated system. He introduced and analyzed the notion of filters in
pre-ordered residuated systems. The purpose of this paper is to study the filter of a pre-ordered residuated
system using the fuzzy set theory. For this, we will use the concept of fuzzy points. We introduce the concept
of fuzzy filters in a pre-ordered residuated system, and investigate their relevant properties. We consider
characterizations of fuzzy filter. We construct €;-set, (extended) g;-set, positive set, etc., and explore the
conditions under which these can be filters.

2 Preliminaries

Definition 2.1 ([1]). Let (X, ®,—,1) be an algebra of type (2,2,0) and let R be a binary operation on X.
A structure X := (X, ®, —, 1, R) is called a residuated relational system if the following three conditions are
valid.
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(i) (X,®,1) is a commutative monoid,
(ii) (Vae X) ((a,1) € R),
(iii) (Va,b,ce X) ((a®b,c) € R) < (a,b =) € R).

Let X := (X, ®, —, 1, R) be a residuated relational system. For every element y of X, consider the
following two mappings:

fy: X=X, z—=c0yandgy: X = X, z—y — .

Proposition 2.2 ([1]). Every residuated relational system X := (X, ®, —, 1, R) satisfies:

Vo, y € X)(g:(y) =1 = (2,9) € R). (1)
(Vo € X)((z,91(1)) € R). (2)
(Vz € X)((1,9:(1))) € R). (3)
(Vo,y,2 € X)(92(y) =1 = (fa(2),9) € R). (4)
(Vo,y € X)((z,9y4(1)) € R). (5)
Moreover, if R is reflexive, then
(Vo € X)((1,92(2)) € R). (6)
(Vz,y € X)(f2((92(y)), y) € R). (7)
(Vo,y € X)((z,9y(fy(2))) € R). (8)
(Vo,y € X)((z, 91(x)) € R, (91(2),z) € R) (9)
(Va,y € X)(2,90,(5)(v) € R). (10)
Also, if R is antisymmetric, then
(Va,y € X)((z,y) € R & ga(y) = 1). (11)
If R is also reflexive, then (fy(x),z) € R and (fy(x),y) € R. (12)

Recall that a binary relation “R” on a set X is said to be pre-order if it is reflexive and transitive. Note
that the pre-order relation is sometimes called the quasi-order relation.

Definition 2.3 ([1, 2]). A residuated relational system X := (X, ®, —, 1, R) is called a pre-ordered residuated
system if R is a pre-order relation on X.

The pre-ordered residuated system X := (X, ®, —, 1, R) will be denoted by X := (X, ®, —, 1, <).

Definition 2.4 ([2]). Let X := (X, ®, —, 1, <) be a pre-ordered residuated system. A subset F' of X is
called a filter of X if it satisfies:

(r,ye X)(zxeF,xe Sy = yeF), (13)
(r,ye X)(x €F, g.(y) €EF = yeF). (14)

A fuzzy set 0 in a set X of the form

[ te(0,1] if b=a,
5@)—{0 if b+ a,

is said to be a fuzzy point with support a and value ¢ and is denoted by (a;).
For a fuzzy set 0 in a set X, we say that a fuzzy point (a;) is
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(i) contained in 0, denoted by (a;) € 0, (see [0]) if O(a) > t.
(i) quasi-coincident with 9, denoted by (a;) ¢ 9, (see [0]) if O(a) +¢ > 1.

If a fuzzy point (a;) is contained in 9 or is quasi-coincident with 0, we denote it (a;) € Vg . If a fuzzy point
(ay) is contained in 0 and is quasi-coincident with 0, we denote it (a;) € Aq0. If (a;) @0 is not established for
a € {€,q,€Vq, €Ng}, it is denoted by (a;) @ .

Given t € (0,1] and a fuzzy set 0 in a set X, consider the following sets

(0,t)c :={ae X | (a;) € 0} and (0,t)y :={a € X | (o) ¢ O}
which are called an €;-set and a ¢;-set of 0, respectively, in X. Also, we consider the set
(0,t)evg :={a € X | (as) €Vvq 0}

which is called the t(€Vq)-set of 0.
It is clear that (0,t)evq = (0,t)e U (0,1)4.

3 Fuzzy Filters

In what follows, let X := (X, ®, —, 1, <) denote a pre-ordered residuated system, and it will be simply
written by X only.
First, we introduce a central concept that will be used throughout the paper.

Definition 3.1. A fuzzy set 0 in X is called a fuzzy filter of X if its nonempty €;-set (3,¢)c is a filter of X
for all ¢t € (0,1].

Example 3.2. Let X := (—o0,1] C R (the set of real numbers). If we define two binary operations “®” and
“—” on X as follows:

1 if <y,

r ®y = min{z,y} andx—)y:{ y ifr>y

for all z,y € X, then X := (X, ®, —, 1, <) is a pre-ordered residuated system (see [5]). Let 0 be a fuzzy set
in X given by

0.78 if x € (0,1],
0: X = 10,1, z+— 0.62 if x € (—3,0],
0.37 otherwise.

Then 0 is a fuzzy filter of X := (X, ®, —, 1, <).

Example 3.3. Let X = {b1,b2,b3,bs} be a set and two binary operations “®” and “—” on X are given as
follows:

© ‘ b1 b2 b3 b4 — b1 bg b3 b4
by | b1 by b3 by by | b1 by b3 by
by [ ba by ba by by | b1 b1 b1 by
by [ b3 b2 ba by b3 | b1 b2 by by

by | by by by by by | b1 by b3 by
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We give a binary relation “<” as follows:

Si= {(b1,b1), (ba, b2), (b3, b3), (ba, ba), (ba, b1), (b3, b1), (b2, b1), (ba, b3), (b2, ba)}.

Then X := (X, ®, —, b1, S) is a pre-ordered residuated system (see [7]). Let O be a fuzzy set in X given by

% if x = by,
Mo
0: X = [0,1], z—>< 4 %fx b2,
7 if x = b3,
3In if$:b4,

where n is a natural number. Then 0 is a fuzzy filter of X := (X, ©, —, by, <).
We discuss the characterization of fuzzy filters.
Theorem 3.4. A fuzzy set 0 in X is a fuzzy filter of X if and only if it satisfies:
(va,y € X)(@ Sy = O(z) <3(y)), (15)
(Vz,y € X)(0(y) = min{d(x), 8(g(y))})- (16)

Proof. Assume that 0 is a fuzzy filter of X. Then its nonempty €;-set (0,¢)c is a filter of X for all ¢ € (0, 1].
If (15) is not valid, then there exists a,b € X such that a < b and d(a) > 0(b). Then a € (0,0(a))e, but
b ¢ (0,0(a))e which is a contradiction. Hence d(z) < 9(y) for all z,y € X with 2 < y. Suppose that
(16) is false. Then 0(b) < min{d(a),d(ga(b))} for some a,b € X. If we take ¢ := min{d(a),0(ga(b))}, then
a€ (0,t)e, ga(b) € (0,t)c and b ¢ (0,t)c. This is a contradiction, and thus 9(y) > min{d(z),d(g.(y))} for
all x,y € X.

Conversely, let 0 be a fuzzy set in X that satisfies (15) and (16). Let z,y € X. If x € (0,t)c and = < v,
then t < 9(x) <9(y) by (15), i.e., (y;) € 0. Thus y € (0,t)ec. If z € (3,t)ec and g,(y) € (0,1)e, then

d(y) > min{0(x),0(g.(y))} >t

by (16) and so y € (0,t)ec. Hence (0,t)c is a filter of X for all ¢ € (0,1], and therefore 9 is a fuzzy filter of X.
]

Theorem 3.5. In X, a fuzzy set 0 in X satisfies (15) if and only if the following assertion is valid.
(vmayvz € X)(Vt € (Oa 1])(fy($) € (67t)€7 T S gy(z) = zc (57t)€) (17)

Proof. Assume that 0 satisfies (15) and let z,y,2 € X be such that z < g,(2) and fy(z) € (0,t)e for all
€ (0,1]. Then f,(z) < z by Definition 2.1(iii), and so 9(z) > 0(fy(x)) >t by (15). Hence z € (9,1)c.
Conversely, let 0 be a fuzzy set in X that satisfies (17). In the proof of Theorem 3.4, we can observe that
0 satisfies (15) if and only if 0 satisfies:

(Va,y € X)(Vt € (0,1])(z € (0,t)e, x Sy = y € (0,t)e).

Let z,y € X be such that x <y and x € (0,t)c for all t € (0,1]. Then fi(z) =z € (0,t)c and = < g1(y). It
follows from (17) that y € (0,t)c. Therefore 0 satisfies (15). O

Proposition 3.6. In X, if a fuzzy set 0 in X satisfies (15), then
(Vz e X)(Vt € (0,1))(z € (0,t)e & g1(x) € (0,t)e), (18)
or equivalently,

(Vz € X)(Vt € (0,1])(B(z) >t & d(gi(z)) > t). (19)
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Proof. Let 0 be a fuzzy set in X that satisfies (15). Then by the proof process of Theorem 3.4, we know the
following:

HAES (6,t>€,l‘§y = y€ (6at)€

for all z,y € X and ¢t € (0,1]. Using (9) leads to < g1(z) and g1(x) < x. It follows that if x € (0,¢)c (resp.
g1(x) € (0,t)¢), then gi(x) € (0,t)c (resp., x € (0,t)c). Hence (18) is valid. O

Corollary 3.7. Every fuzzy filter 0 of X satisfies the condition (18).
Lemma 3.8 ([1]). Every pre-ordered residuated system X := (X, ®, —, 1, <) satisfies:

(Vo,y € X)(fy(x) Sz, fy(z) Sy). (20)
Proposition 3.9. In X, if a fuzzy set 0 in X satisfies (15), then

(Vt € (0,1))((0,t)e #0 = 1€ (D,t)e). (21)
(Vo,y € X)(vt € (0,1])(fy(z) € @, t)e = z € (B,t)e, y € (,t)e). (22)
(Vz,y € X)(vt € (0,1])(z,y € @), 2 Sy = g2(y) € (0, 1)e)- (23)
(Vz,y € X)(vt € (0,1)(1 € (@, )e, Sy = 92(y) € (B,1)e)- (24)

Proof. Assume that (0,¢)e # 0 for all ¢t € (0,1], and let x € (8,¢)e. Since z < 1 by Definition 2.1(ii),
it follows from (15) that d(1) > d(x) > ¢t. Hence 1 € (0,t)c. Let z,y € X and ¢t € (0,1] be such that
fy(x) € (0,t)e. Then 9(fy(x)) > t. Since fy(x) S x and fy(xz) S y by (20), it follows from (15) that
d(x) > 9(fy(x)) >t and d(y) > 9(fy(x)) > ¢, that is, (z;) € 0 and (y;) € 0. Hence x € (0,t)c and y € (0,1)¢,
and so (22) is valid. Let z,y € X and ¢t € (0,1] be such that z,y € (3,t)c and < y. Since fy(z) S @
by (20), we have f,(x) < y by the transitivity of <. Thus = < g,(y) by Definition 2.1(iii), which implies
from (15) that 9(gz(y)) > 0(x) > t. Hence g,(y) € (0,t)e. Suppose that 1 € (9,t)c for all t € (0,1] and let
x,y € X be such that x < y. Then f,(1) =z <y, and so 1 < g,(y) by Definition 2.1(iii). Using (15) leads
to 0(g2(y)) > 0(1) > ¢, and so g,(y) € (0,t)e. O

Corollary 3.10. Every fuzzy filter 0 of X satisfies the four conditions (21), (22), (23) and (24).
Theorem 3.11. For every nonempty subset F' of X, consider a fuzzy set Op in X which is defined by

{51 ifx € F,

op: X —[0,1], z — Sso otherwise

where s1 > sy in [0,1]. Then OF is a fuzzy filter of X if and only if F is a filter of X.

Proof. Assume that 0p is a fuzzy filter of X. Let z,y € X. If x € F and « < y, then 0p(y) > 0p(x) = s1 by
(15), and so 0p(y) = s1. Thusy € F. If x € F and g,(y) € F, then 0p(z) = s; and 0p(gz(y)) = s1. Using
(16) leads to 0p(y) > min{0r(z),0r(92(y))} = s1, and so Op(y) = s1. Thus y € F. Therefore F is a filter
of X.

Conversely, suppose that F' is a filter of X. For every z,y € X with x <y, if z € F, then y € F and so
Op(y) =s1 =0p(z). f x ¢ F, then 0p(z) = s2 < Op(y). Let x,y € X. If x € F and ¢,(y) € F, then y € F
and thus 0p(y) = s1 = min{0p(x),9-(y)}. f ¢ F or g.(y) ¢ F, then 0p(x) = s3 or 0p(g,(y)) = s2. Hence
0r(y) > s2 = min{0p(x),0r(92(y))}. Therefore OF is a fuzzy filter of X by Theorem 3.4 [

Let 0 be a non-constant fuzzy set in X and we construct the next set called positive set.

Xo:={x € X |0(x) # 0}. (25)

It is clear that X # (). We explore conditions for the positive set of d to be a filter.



Fuzzy Filters of Pre-ordered Residuated Systems. Trans. Fuzzy Sets Syst. 2025; 4(1) 35

Theorem 3.12. If 0 is a non-constant fuzzy filter of X, then its positive set is a filter of X.

Proof. Let 0 be a non-constant fuzzy filter of X. Let z,y € X. If z € X and x < y, then d(y) > 0d(z) # 0
by (15), and so y € Xo. If x € Xy and ¢,(y) € Xo, then 0(y) > min{d(z),0(g.(y))} # 0 by (16). Hence
y € Xp, and therefore Xy is a filter of X. O

In the following example, we can see that the converse of Theorem 3.12 is not true in general.

Example 3.13. Consider the pre-ordered residuated system X := (X, ®, —, b1, <) in Example 3.3. Let 0
be a fuzzy set in X given by

% if z = by,

O .
) r iz =0,
0: X — 10,1, z+— bs ity — by,
% if © = by,

where k is a natural number. Then Xo = {b1, b3, by} is filter of X. If we take ¢ := %, then (0,t)e = {bs, bs}.
We can observe that by < by and by ¢ (0,t)c. Hence 0 is not a fuzzy filter of X.

Theorem 3.14. If a non-constant fuzzy set 0 in X satisfies the following conditions:

(Vz,y € X)(Vt € (0,1])(z € (0,t)e, z Sy = y € (0,t)q), (26)
(Vz,y € X)(Vt € (0,1])(z € (0,%)e, 92(y) € (0,t)e = y € (0,t)q), (27)

then the positive set of 0 is a filter of X.

Proof. Let z,y € X be such that + € Xy and = < y. Since z € (3,0(x))¢, it follows from (26) that

€ (0,0(z))q. If y ¢ Xo, then (y) = 0 and so (yg(y)) G0, ie., y ¢ (5 0(x))q. This is a contradiction,
and thus y € Xo. Let z € Xp and g,(y) € Xo. If we take t := mln{?i( ),0(92(y))}, then = € (0,t)e and
92(y) € (0,t)e. Using (27) leads to y € (0,t)4. Hence 0(y) +t > 1, and so d(y) # 0, i.e., y € Xy. Therefore
Xy is a filter of X. O

Theorem 3.15. If a non-constant fuzzy set 0 in X satisfies the following conditions:

(Vz,y € X)(Vt € (0,1])(z € (0,t)g, z Sy = y € (0,t)e), (28)
(Vz,y € X)(Vt € (0,1])(z € (0,t)q, 92(y) € (0,t)g = y € (0,t)e), (29)

then the positive set of 0 is a filter of X.

Proof. Let z,y € X be such that x € Xy and < y. Then d(x) # 0, and so 9(z) +1 > 1, i.e, z € (7,1),.
Thus y € (0,1)c by (28), which shows that y € Xy. Let x € X and g¢,(y) € Xo. Then 0(z) # 0 # 0(g.(y)),
and hence d(z) +1 > 1 and 9(g,(y)) + 1 > 1, that is, z € (9,1); and g(y) € (3,1),. It follows from (29)
that y € (0,1)c. Thus y € X and therefore X is a filter of X. O

Theorem 3.16. If a non-constant fuzzy set 0 in X satisfies the following conditions:

(Vz,y € X)(Vt € (0,1])(z € (0,t)g, . Sy = y € (0,t)q), (30)
(Va,y € X)(Vt € (0,1])(z € (0,t)q, 92(y) € (0,t)g = y € (0,1)q), (31)

then the positive set of 0 is a filter of X.
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Proof. Let z,y € X be such that z € Xy and < y. Then d(x) # 0, and so d(z) +1 > 1, ie., z € (3,1),.
Thus y € (0,1) by (30), which implies d(y) +1 > 1. Hence d(y) # 0, and so y € Xy. Let z € X( and
92(y) € Xo. Then 0(x) # 0 # 9(g2(y)), and hence d(xz) +1 > 1 and 9(g,(y)) +1 > 1, that is, z € (9,1),
and g,(y) € (0,1)q. Using (31) induces y € (9,1),. If y ¢ Xo, then d(y) = 0 and thus y ¢ (9,1), which is a
contradiction. Hence y € Xy and therefore X is a filter of X. O

We establish conditions for the g;-set (9,t), to be a filter of X.

Theorem 3.17. If 0 is a fuzzy filter of X, then its nonempty q;-set is a filter of X for all t € (0,1].

Proof. Assume that (9,t), # 0 for all ¢t € (0,1]. Let 2,y € X be such that « € (9,t); and © < y. Then
O(x)+t > 1 and so d(y) > d(z) > 1 —t by (15). Hence y € (0,t),. Let x € (9,t); and g,(y) € (3,1)q.
Then 0(z) + ¢t > 1 and 9(g,(y)) +t > 1. It follows from (16) that d(y) > min{d(x),0(g.(y))} > 1 —t. Thus
y € (0,1t)q, and therefore (9,t), is a filter of X for all t € (0,1]. O

Proposition 3.18. Given a fuzzy set 0 in X, if its q:-set is a filter of X for all t < 0.5, then the following
conditions are established.

(Vz,y € X)(Vt € (0,0.5])(x € (0,t)g, z Sy = y € (0,t)e), (32)
(¥2,y € X)(Vtr, bs € (0,0.5]) < ve (2’2%%” ﬂlg{){ ES}Z)Q > . (33)

Proof. Let ¢t € (0,0.5] and suppose that (3,t), is a filter of X. Let z,y € X be such that = € (9,t), and
z Sy. Then y € (0,t), by (13), and so 0(y) > 1 —¢ >t. Hence y € (0,t)c. Let z,y € X and t1,t2 € (0,0.5]
be such that = € (9,t1) and g,(y) € (9,t2)g. Then = € (0, max{t1,t2})q and g,(y) € (0, max{t1,t2})q. It
follows from (14) that y € (0, max{t1,t2}),. Hence

5(y) >1—- max{tl, tg} > max{tl, tQ},
and so y € (0, max{t1,t2})e. O

Proposition 3.19. Given a fuzzy set 0 in X, if its qi-set is a filter of X for all t > 0.5, then the following
conditions are established.

(va,y € X)(¥t € (05,1))(w € B, 1), s Sy = y € (B,1)y), (34
(Vz,y € X)(Vt1,t2 € (0.5,1]) ( x:i (?/7?)(%7, rgrfzggti t(?}ifj)e ) . o

Proof. Let ¢t € (0.5,1] and suppose that (9,t), is a filter of X. Let z,y € X. If x € (3,t)c and = < y,
then 0(x) >t > 1—1t, ie, z € (0,t);. Hence y € (0,t), by (13). If x € (0,t1)c and g,(y) € (0,t2)e, then
O(x) > t; >1—t; > 1—max{ts,t2} and 0(g,(y)) > to > 1 —to > 1 —max{ty,t2}, that is, z € (0, max{ti,t2}),
and g(y) € (0, max{ty,t2}),. It follows from (14) that y € (0, max{t1,t2}),. O

Corollary 3.20. Every fuzzy filter 0 of X satisfies (32), (33), (34) and (35).

Theorem 3.21. If a fuzzy set 0 in X satisfies the following conditions:

(Vz,y € X)(Vt € (0.5,1])(x € (0,t)g, 2 Sy = y € (0,t)evq), (36)
(Va,y € X)(Vt € (0.5,1])(z € (0,t)q, 92(y) € (0,t)g = y € (0,t)evq), (37)

then the nonempty q;-set is a filter of X for all t € (0.5, 1].



Fuzzy Filters of Pre-ordered Residuated Systems. Trans. Fuzzy Sets Syst. 2025; 4(1) 37

Proof. Let z,y € X and t € (0.5,1], and assume that (0,t), is nonempty. If x € (9,t), and z < y, then
y € (0,t)evq by (36). It follows that y € (9,t)c or y € (0,t),. If y € (9,t)c, then d(y) > ¢t > 1—1t and so
y € (0,t)q. Let x € (0,t), and g5(y) € (0,t)q. Then y € (9,t)evq by (37), and thus y € (9,t)c or y € (0,t),.
If y € (0,t)c, then 0(y) >t >1—t and so y € (0,t),. Consequently, (3,t), is a filter of X. O

Proposition 3.22. Given a filter F' of X, if we define a fuzzy set Op in X as follows:

sp ifxeF,

or: X = 10,1, z — { s9 otherwise

where s1 > 0.5 > so = 0, then the following assertions hold.

(Vz,y € X)(Vt € (0,1])(z € (O, t)g, x Sy = y € (Or,t)evq)- (38)
(o e Xt € 01)) (£ 00 2l0) < (B t2)a ), (39)

Proof. Let z,y € X and t € (0,1] be such that 2 € (0p,t); and x S y. Then Op(z) +t > 1. If ¢ F,
then Op(z) = so = 0 and so t > 1 a contradiction. Thus z € F and hence y € F since F is a filter of
X. Hence dr(y) = s1 > 0.5. If t < 0.5, then 9p(y) > 0.5 > ¢t and so y € (Op,t)e. If t > 0.5, then
Or(y) +t > 0.5+ 0,5 =1 which means y € (Op,t),. Thus y € (Op,t)asq. Let z,y € X and t;,t2 € (0,1]
be such that = € (9p,t1)q and g,(y) € (OF,t2)q, that is, Op(x) +t1 > 1 and Op(g.(y)) +t2 > 1. If 2 ¢ F
or g(y) ¢ F, then Op(x) = s2 = 0 or dp(g4(y)) = s2 = 0. Hence ¢t; > 1 or to > 1 which is a contradiction.
Hence x € F and g,(y) € F. Since F is a filter of X, we have y € X and thus 0p(y) =s1 > 0.5. If t; < 0.5
or ty < 0.5, then 0p(y) > 0.5 > min{t;,t2}. Thus y € (Op, min{ti,t2})e. If 1 > 0.5 and t3 > 0.5, then
Or(y) + min{t1,t2} > 0.5+ 0.5 =1, i.e., y € (Op, min{ty,t2}),. Therefore, y € (Op, min{t;, t2})evg. O

Theorem 3.23. If Op is the fuzzy set in X which is described in Proposition 3.22, then its q;-set (Op,t)q is
a filter of X for all t € (0.5,1]

Proof. Let x,y € X and ¢t € (0.5,1]. If x € (Op,t)y and = S y, then Op(x) +¢ > 1, and so & € F because
if not, then Jp(z) = s2 = 0 and thus ¢ > 1 a contradiction. Since F is a filter of X, we get y € F. So
Or(y) = s1 > 0.5. Since t € (0.5,1], it follows that Op(y) +t = s1 +¢t > 0.5+ 0.5 = 1, i.e., y € (OF,1)q.
Suppose that z € (0p,t), and g,(y) € (OF,t)g. Then Op(z) +t > 1 and Or(g.(y)) +t > 1. If 2 ¢ F or
92(y) ¢ F, then Op(z) = s2 = 0 or Op(gz(y)) = s2 = 0. Hence t = Op(x) +t > 1ort =0r(g:(y)) +t > 1, a
contradiction. Thus z € F' and g,(y) € F, which induces y € F. So dr(y) = s1 > 0.5. Since t € (0.5, 1], it
follows that Op(y) +t =51+t >0.54+0.5=1, i.e., y € (OF,t)q. Therefore (Op,t), is a filter of X. O

Definition 3.24. A fuzzy set 0 in X is called a (0.5, 1]-fuzzy filter of X if its nonempty €;-set (0,t)c is a
filter of X for all ¢ € (0.5, 1].

Example 3.25. Consider the pre-ordered residuated system X := (X, ®, —, b1, <) in Example 3.3. Let 0
be a fuzzy set in X given by

0.9 ifl':bla

‘ 0.4 if x = by,
0: X = [0,1], 2= - if 2 = bs,
0.3 ifz=by.

Then 9 is a (0.5, 1]-fuzzy filter of X.

It is clear that every fuzzy filter is a (0.5, 1]-fuzzy filter. But the converse may not be true. In fact, the
(0.5, 1]-fuzzy filter @ in Example 3.25 is not a fuzzy filter of X since by < by and 9(b2) = 0.4 £ 0.3 = 9(by).
We now discuss the characterization of (0.5, 1]-fuzzy filters.
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Theorem 3.26. A fuzzy set 0 in X is a (0.5, 1]-fuzzy filter of X if and only if it satisfies:

(Vz,y € X)(z Sy = 0(z) <max{0d(y),0.5}), (40)
(Vo,y € X)(max{d(y), 0.5} > min{d(z),0(gz(y))})- (41)

Proof. Assume that 0 in X is a (0.5, 1]-fuzzy filter of X. Then the nonempty €;-set (0,t)c is a filter
of X for all ¢ € (0.5,1]. If the condition (40) is not valid, then there exists a,b € X such that a < b
and 0(a) > max{0d(b),0.5}. Hence t := 0(a) € (0.5,1] and a € (0,t)c. But b ¢ (0,t)c, a contradiction.
Hence 0(z) < max{d(y),0.5} for all x,y € X with x < y. Suppose that the condition (41) is not establish.
Then max{d(b),0.5} < min{d(a),d(ga(b))} for some a,b € X. If we take s := min{d(a),d(gs(b))}, then
s € (0.5,1], a € (0,s)c and gq(b) € (0,8)c. But max{d(b),0.5} < s leads to b ¢ (0,s)e, which is a
contradiction. Therefore max{9(y),0.5} > min{d(x),d(g.(y))} for all x,y € X.

Conversely, let 0 be a fuzzy set in X that satisfies two conditions (40) and (41). Let ¢ € (0.5, 1] be such
that (0,t)e # 0. If x € (0,t)c and = < y, then max{9(y),0.5} > 0(z) >t > 0.5 by (40). Thus d(y) > ¢,
ie,y € (0,t)e. If z € (0,t)e and g,(y) € (0,t)e, then d(z) > t and (g, (y)) > t. It follows from (41) that
max{09(y),0.5} > min{d(x),d(g.(y))} > t. Since t > 0.5, we get (y) >t and so y € (9,¢)c. Therefore 0 is a
(0.5, 1]-fuzzy filter of X. O

Corollary 3.27. FEvery fuzzy filter 0 of X satisfies the two conditions (40) and (41).
Theorem 3.28. If 0 is a (0.5, 1]-fuzzy filter of X, then its nonempty q-set is a filter of X for all t € (0,0.5).

Proof. Assume that 9 is a (0.5, 1]-fuzzy filter of X. Let ¢ € (0,0.5) be such that (9,t), # 0. If z € (3,t),
and z < y, then

max{0(y),0.5} > 9d(x) >1—t>0.5

by (40), and so d(y) > 1 —t. Hence y € (0,t),. Let x,y € X be such that z € (9,t), and g(y) € (9,t),.
Then 0(x) > 1 —t and 9(g,(y)) > 1 —t. It follows from (41) that

max{0(y),0.5} > min{d(z),0(g.(y))} >1—t > 0.5.

Hence 0(y) > 1 — ¢ and thus y € (0,t),. Therefore (9,t), is a filter of X. O

Now let’s think about a more generalized form of Definition 3.1 and Definition 3.24.

Let 0 be a fuzzy set in X. Then the €;-set (3, 1)c is a filter of X for some ¢ € (0, 1], but can not be a filter
of X for other ¢ € (0,1]. Let

Jx :={t € (0,1] | (0,t)e is a filter of X}.

If Jx = (0,1}, then 0 is a fuzzy filter of X. If Jx = (0.5,1], then 0 is a (0.5, 1]-fuzzy filter of X. However,
in general, the question arises as to what the form of the fuzzy filter is if Jx is a non-empty subset of (0, 1],
for example Jx = (0,0.5] or Jx = (4,¢] for d,e € (0,1] with § < . Based on this question, we consider the
following definition.

Definition 3.29. Let 6 < e in [0,1]. A fuzzy set 0 in X is called a fuzzy filter with thresholds 6 and e (briefly,
(0, €]-fuzzy filter) of X if its nonempty €;-set (3,t)c is a filter of X for all t € (4, ¢].

It is clear that if a fuzzy set 0 in X satisfies 9(x) < § < ¢ for all x € X, then 0 is a (6, ¢]-fuzzy filter of X,
and every fuzzy filter is a (0, g]-fuzzy filter for every d,e € (0,1] with 0 < e.
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Example 3.30. Consider the pre-ordered residuated system X := (X, ®, —, by, <) in Example 3.3. Let 0
be a fuzzy set in X given by

0.6 if =10y,

. 0.3 if.%':bg,
0: X — 10,1, z+— 0.8 if = b,
0.5 if z = by.

Then 0 is a (0.27,0.58]-fuzzy filter of X since

{bl, bg} if05<t< 0.58,
(5,t)€ = {bl, bs, b4} if 0.3 <t<0.5,
X if 0.27 <t <0.3,

is a filter of X for all ¢ € (0.27,0.58]. But it is not a (0.27,0.65]-fuzzy filter of X because if we take
t:=0.63 € (0.27,0.65], then (0,t)e = {b3} is not a filter of X.

It is obvious that if (d,e1] C (0, 2], then every (0, eo]-fuzzy filter is a (9, e1]-fuzzy filter, but the converse

may not be true as shown in Example 3.30.

Theorem 3.31. A fuzzy set 0 in X is a (0,¢|-fuzzy filter of X if and only if the following conditions hold.

(Vz,y € X)(z Sy = min{d(z),e} < max{0(y),0}), (42)
(Va,y € X)(max{d(y), 0} > min{d(z),0(g:(y)),})- (43)
Proof. Suppose that 9 is a (9, ]-fuzzy filter of X. Let z < y in X. If min{0(x),e} > max{0(y),d}, then

there exists ¢ € (0, 1] such that
min{d(z),e} > ¢t > max{0(y),d}.

Then d(y) < t and 0(z) > ¢, that is, y ¢ (0,¢)c and x € (0,t)¢, and ¢ € (4,¢]. This is a contradiction, and so
min{0d(z),e} < max{0(y),0}. If (43) is not established, then
max{0(b),0} < t < min{d(a),0(gq(b)),c}

for some a,b € X and t € (0,1]. It follows that ¢ € (d,¢], b ¢ (0,)e, a € (0,t)ec and gq(b) € (0,t)c. This is a
contradiction, and thus 0 satisfies the condition (43).
Conversely, we assume that O satisfies the two conditions (42) and (43). Let z,y € X and t € (d,¢]. If
x <yand z € (0,t)c, then
max{9(y),0} > min{d(x),e} >t >

by (42). Hence 9(y) > t, i.e., y € (0,t)c. If x € (0,t)c and ¢,(y) € (0,t)e, then
max{9(y), 0} > min{d(z),0(g(y)), e} 2t >0

by (43), and so d(y) > t, i.e., y € (0,t)c. Consequently, (3,t)c is a filter of X for all ¢ € (§,¢]. Therefore 9 is
a (0,¢e]-fuzzy filter of X. [
Given a fuzzy set 0 in X, we say the set

(0,t); =={r € X [0(x) +t > 1}

is an extended q:-set of 0.
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Theorem 3.32. If 0 is a (0,¢]-fuzzy filter of X and § < 0.5, then its nonempty extended q-set is a filter of
X for allt € (0,0]N[1—eg,1].

Proof. Assume that 0 is a (0, €]-fuzzy filter of X and § < 0.5. Let ¢ € (0,6]N[1—¢,1] be such that (3,t); # (.
If v € (0,t); and x Sy, then

max{0(y),0} > min{d(z),e} >min{l —t,e} =1—-t>1-0>¢

by (42). Hence 0(y) > 1 — ¢, that is, y € (0,t);. Let z,y € X be such that z € (9,1); and g.(y) € (0,1);.
Then 0(z) +t > 1 and 0(g,(y)) +t > 1. Tt follows from (43) that

max{0(y),0} > min{d(x),0(g.(y)),e} > min{l —t,e} =1—-t>1—-6 > 0.

Thus d(y) > 1 —t, that is, y € (0,t);. Consequently, (7,%); is a filter of X. [

4 Conclusion

As a mathematical structure, a residuated relational system has been introduced by S. Bonzio and I. Chajda
in 2018, and it combines elements of algebra, order theory, and relational calculus. They also extended
the residuated relational system by introducing pre-ordered residuated systems using pre-order relation, and
further studied the various properties involved. D. A. Romano [2, 3, 4, 5] introduced and analyzed the
concept of (weak implicative, shipt, implicative, comparative) filters in pre-ordered residuated systems. With
the purpose of this paper in the study of filters in pre-ordered residuated systems using the concept of fuzzy
points, we introduced fuzzy filter and identified various properties. Based on the ideas of this paper and
the results obtained, we will study various fuzzy versions for different types of filters, for example, (weak
implicative, shipt, implicative, comparative) filters, in the future.
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Abstract. Atanassov’s intuitionistic fuzzy set is more adept at representing and managing uncertainty. Within
intuitionistic fuzzy set theory, intuitionistic fuzzy measure is a significant field of study. In order to address decision
making, we present a novel similarity metric between intuitionistic fuzzy sets in this study. First, based on the
minimum and maximum levels of similarity, we suggest a new similarity metric between intuitionistic fuzzy values.
It is capable of overcoming the limitations of current approaches to gauging the degree of resemblance between fuzzy
intuitionistic sets. It is also possible to show some aspects of the suggested similarity measure between intuitionistic
fuzzy sets by taking into account the modal operators and their different extensions. Finally, we apply the proposed
similarity measure between intuitionistic fuzzy sets to deal with a real life problem. The suggested action can
provide a precise outcome. The application section examines a real-world issue of choosing the best course of action
among n options based on m criteria. A fictitious case study is created along with the method’s algorithm.
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1 Introduction

In 1965, L.A. Zadeh [1] created and introduced the idea of a fuzzy set. Eighteen years later, in 1983, Atanassov
[2] introduced the concept of intuitionistic fuzzy sets as an extension of fuzzy sets. The fundamental dis-
tinction between these two ideas is that, in intuitionistic fuzzy set theory, hesitation margin is taken into
account in addition to both membership function and non-membership function. In fuzzy set theory, only
the membership function is taken into account. Scholars and researchers [3, 4, 5, 6, 7, 8] are exerting great
effort to advance and refine this field.

The notion of modal operators were first introduced by Atanassov [9] in 1986. Modal operators (O, {) de-
fined over the set of all intuitionistic fuzzy sets that convert every intuitionistic fuzzy set into a fuzzy set.
Atanassov [9] also introduced the operators (H,X) in intuitionistic fuzzy set. More relations and properties
on these operators are regorously studied in [10, 11, 12, 3, 4, 5]. The second extension of the operators H
and X are introduced by K. Dencheva [13].

There are circumstances in which fuzzy set theory is not the best fit and should be replaced with intuitionistic
fuzzy set theory. intuitionistic fuzzy set theory has been researched as a helpful resource for decision-making
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issues, logic programming, etc. In this work, we establish a similarity measure between two intuitionistic
fuzzy sets A and B of a set E and apply it to a problem involving decision-making. The issue under consider-
ation is choosing the best course of action from n options based on m criteria in cases when the information
at hand is intuitionistic fuzzy.

Recently, there has been a lot of focus on measures of similarity between Intuitionistic Fuzzy Sets as a cru-
cial tool for image processing, machine learning, pattern detection, and decision making [14, 15]. Numerous
measurements of similarity have been put forth. Some of them are derived from the widely used distance
measures.

The first study was carried out by Szmidt and Kacprzyk [16] extending the well-known distances measures,
such as the Hamming distance and the Fuclidian distance, to IFS environment and comparing them with the
approaches used for ordinary fuzzy sets. Therefore, several new distance measures were proposed and applied
to pattern recognition. Grzegorzewski [17] also extended the Hamming distance, the Euclidean distance, and
their normalized counterparts to IFS environment. Hung and Yang [18] extended the Hausdorff distance to
Intuitionistic Fuzzy Sets and proposed three similarity measures.

On the other hand, instead of extending the well-known measures, some studies defined new similarity mea-
sures for Intuitionistic Fuzzy Sets. Dengfeng and Chuntian [19] suggested a new similarity measure for IFSs
based on the membership degree and the nonmembership degree. Ye [15] conducted a similar comparative
study of the existing similarity measures between Intuitionistic Fuzzy Sets and proposed a cosine similarity
measure and a weighted cosine similarity measure. Xu and Chen [20] introduced a series of distance and
similarity measures, which are various combinations and generalizations of the weighted Hamming distance,
the weighted Euclidean distance, and the weighted Hausdorff distance. Xu and Yager [21] developed a simi-
larity measure between Intuitionistic Fuzzy Sets and applied the developed similarity measure for consensus
analysis in group decision making based on intuitionistic fuzzy preference relations.

Zeng and Guo [22] investigated the relationship among the normalized distance, the similarity measure, the
inclusion measure, and the entropy of interval-valued fuzzy sets. It was also showed that the similarity mea-
sure, the inclusion measure, and the entropy of interval-valued fuzzy sets could be induced by the normalized
distance of interval-valued fuzzy sets based on their axiomatic definitions. Moreover, Zhang and Yu [23] pre-
sented a new distance (or similarity) measure based on interval comparison, where the Intuitionistic Fuzzy
Sets were, respectively, transformed into the symmetric triangular fuzzy numbers. Comparison with the
widely used methods indicated that the proposed method contained more information, with much less loss of
information. Li et al. [24] introduced an axiomatic definition of the similarity measure of Intuitionistic Fuzzy
Sets. The relationship between the entropy and the similarity measure of IFS was investigated in detail. It
was proved that the similarity measure and the entropy of IFS can be transformed into each other based on
their axiomatic definitions.

Several writers have recently discussed the use of various similarity measures in image processing, pattern
recognition, medical diagnosis, and decision making. Song et al.[25] presented some applications to pattern
recognition and presented a new similarity metric for intuitionistic fuzzy sets. Ejegwa et al.[20] represented
Thao et al.’s correlation coefficient of Intuitionistic fuzzy sets for medical diagnostic analysis on some selected
patients. Based on Spearman’s correlation coefficient, Ejegwa et al. [27] identified medical emergencies in 2024
using novel intuitionistic fuzzy correlation measurements. Recently tendency coefficient based on weighted
distance measure for intuitionistic fuzzy sets was discussed by Anum et al. [28]. Additionally, Ejegwa et al.
[29] presented a novel approach to calculating the distance between intuitionistic fuzzy sets and discussed
about how to use it in the admissions process. Zhou et al.[30] provided a detailed discussion of the generalised
similarity operator for intuitionistic fuzzy sets and how to apply it using the multiple criteria decision mak-
ing technique and the recognition principle. In a paper pertaining to the intuitionistic fuzzy sets approach,
Nwokoro et al.[31] also made predictions regarding maternal outcomes.

Therefore, we propose a novel method for decision-making based on intuitionistic fuzzy set theory. The
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proposed similarity measure depends on membership degree, and hesitation margin. This paper proves that
the proposed measures satisfy the properties of the axiomatic definition for similarity measures. In addition,
several numerical examples are provided to establish some relations. The final section presents the suggested
similarity measure’s use for decision-making.

2 Preliminary Concepts

Throughout this study, intuitionistic fuzzy set and fuzzy set are denoted by IFS and FS respectively.

Definition 2.1. [9] Let X be a nonempty set. An intuitionistic fuzzy set A in X is an object having the
form A={(z, pa(z),va(z)) : x € X}, where the functions pa,va : x — [0,1]define respectively, the degree of
membership and degree of non-membership of the element v € X to the set A, which is a subset of X, and
for every element x € X, 0 < pa(z) +va(x) < 1.

Furthermore, we have wa(x)= 1-pa(x)-va(x) called the intuitionistic fuzzy set index or hesitation margin of
x in A. wa(zx) is the degree of indeterminacy of x € X to the IFS A and wa(x) € [0, 1] that is ma : © — [0, 1]
and 0 < ma(x) <1 for every x € X.

waA(z) expresses the lack of knowledge of whether x belongs to IFS A or not.

Definition 2.2. [9] Let X be a nonempty set. If A is an IF'S drawn from X, then the modal operators which
are also termed as necessity and possibility operators can be defined as

1. OA= {{z,pa(z),1 — pa(z)) :z € X}
2. OA={(z,1 —va(z),va(z)) 2 € X}

For a proper IFS, JA C A C QA and JA # A # QA.
Definition 2.3. [9] Let X be a nonempty set. If A is an IFS drawn from X, then,

1. BA= {(z, t48), 1l . 4 ¢ X}

2. KA= {(z, %, VAQ(I)> rx e X}

For a proper IFS, HA C A C XA and BA # A # KA.

Definition 2.4. [32] Let o € [0,1] and let A be an IFS. Then the first extension of the operators B and X
can be defined as

1. BoA= {{z,apa(z),avs(x) + 1 — ) sz € X}

2. KoA= {{z,aps(z) + 1 —a,avys(z)) :x € X}
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Definition 2.5. [13] Let a,, B, e+ 3 € [0,1] and let A be an IFS. Then the second extension of the operators
B and X can be defined as

1. Bo A= {{z,opa(x),ava(z) + B) 1 x € X}
2. Mo gA= {(z,apa(z) + B,ava(z)) : x € X}.

Definition 2.6. [33] Let us consider two IFSs A and B of a fized set E. The similarity measure between A
and B denoted by s(A, B) is defind by an interval [eap, €], where

eap = maxmin{p(z), pp(x)}
el

o = maxmin{jua(z) + 7a(2), u(a) + (o)}

Here esp indicates the minimum amount of similarity and e;lB indicates the maximum amount of similarity
between A and B.
It can be noted that

1. s(A,B) € 0,1].
2. s(A,B) = s(B,A).

3. If ma(x) =0 and mp(x) = 0,V € E, then eap = 6:43.

Moreover it may be mentioned that eap # 6243 for A = B.

Proposition 2.7. [33] Let A and B be two IFSs and s(A, B) = [ean, e 5], then
1. s(HA,0B) = eap,
2. s(0A,OB) =€,

3 Measure of Similarity between Intuitionistic Fuzzy Sets

This section provides an example-based explanation of Definition 2.6, leading to some intriguing findings.

Example 3.1. Consider two IFSs A and B of E = {x1,z9, 23,24} given by the following table:

(z [pa |va [ps [ve |
z1 | 0.65 | 0.26 | 0.72 | 0.18
x2 | 0.32 | 0.46 | 0.56 | 0.38
z3 | 0.80 | 0.12 | 0.48 | 0.42
x4 | 070 | 0.25 | 0.83 | 0.12
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Using Definition 2.6, we have e4p = 0.70 , e;lB = 0.75 and hence similarity measure between A and B is
[0.70, 0.75].

Theorem 3.2. Let A and B be two IFSs and s(A, B) = [eap, ¢ ,p], then
1. s(HA,BB) = /%GAB, %6:43 /,

2 s(RA,KB) = fleap + L, Ly + 1)

Proof. 1. L.H.S = maxminweE{“AT(‘r), ”BT@)},max minweE{“AQ(r) + WA2(Z), “32(2) + ”32(36)}
— maxmingen }{ua(e), 45 (2)}, max minges 3 {na@) + ma(e). 55(2) + 15(2)}
= Imaxmingep{pa(z), pp(z)}, s maxmingep{pa(z) + 7a(x), pp(x) + TH(2)}

= [eaB; ey p)]
Similarly the other statement can be proved.

O
Theorem 3.3. Let a € [0,1] and let A & B be two IFSs. If s(A, B) = [eap, €], then
1. s(BoA,BaB) = Jaean, ae,p],
2. 5(KaA,K,B) = Jaeap + 1-a, aeypy + 1-a ]

Proof. 1. L.H.S = maxmingcg{apa(z), app(z)}, max mingec p{apa(r) + ara(z), aup(x) + arp(z)}
= amaxmingep{pa(r), pp(2)}, a maxminge p{pa(e) + (@), pp(e) + ()}

= [aeAB’ aeAB]

Similarly the other statement can be proved.

O

Theorem 3.4. Let A & B be two IFSs with o, 5 € [0,1] and o+ =1. If s(A,B) = [eAB,e;lB], then
1. s(Ba3A,BapB) = Jaeap, ac,p),
2. s(M, 34,8y 8B) = [aeap + B, aelAB + 3]

Proof. Similar to the Theorem 3.3 [

The above theorem is not true for «, 5 € [0,1] and o + 5 < 1.

If we consider the example 3.1 with o = 0.7 and 8 = 0.1 then it is found that s(H, gA, B, 3B) = [0.49, 0.725]
# [aean, ae;‘B] and s(X, gA, K, gB) = [0.59, 0.825] # [aweap + 5, ae;‘B + 6.

Example 3.5. Consider the IFSs A and B of E as in example 3.1. To find s(CJA,0B) and s(0A,OB) we
have to construct the new tables as

[z [pa [1—palps [1—psp]
21 ] 0.65 | 0.35 | 0.72]0.28
75 | 032 | 0.68 | 0.56 | 0.44
z3 | 0.80 | 0.20 | 0.48 | 0.52
24| 0.70 [ 030 | 0.83 | 0.17

Hence s(0A,0B) = 0.70 = eap.
And



A Novel Method of Decision-Making Based on
Intuitionistic Fuzzy Set Theory. Trans. Fuzzy Sets Syst. 2025; 4(1) 47

’l"l—I/A‘VA ‘1—VB‘VB ‘
1 | 0.74 0.26 | 0.82 0.18
g | 0.54 0.46 | 0.62 0.38
x3 | 0.88 0.12 | 0.58 0.42
x4 | 0.75 0.25 | 0.88 0.12

Hence s(0A,0B) = 0.75 = 6143.

Example 3.6. Consider the IFSs A and B of E as in example 3.1. To find s(HA,HB) and s(XA,KB) we
have to construct the new tables as

[o [ ol [T [y it

1 | 0.325 | 0.63 0.36 | 0.59
z2 | 0.16 | 0.73 0.28 | 0.69
x3 | 0.40 | 0.56 0.24 | 0.71
x4 | 0.35 | 0.625 0.415 | 0.56

Hence s(BA,BB) = [0.35, 0.375] = [“4E, e;ﬁB}'
And

’a: ‘ MA(;U)-H ‘ VA2(:E) ‘ HB(g)"‘l ‘ VBQ(SB) ‘

z1 | 0.825 0.13 | 0.86 0.09
x2 | 0.66 0.23 | 0.78 0.19
3 | 0.90 0.06 | 0.74 0.21
x4 | 0.85 0.125 | 0.915 0.06

Hence s(XA,KB) = [0.85, 0.875] = [44E + &, 45 4 1],

Example 3.7. Consider the IFSs A and B of E as in example 3.1. To find s(B,A,H,B) we construct the
table with a = 0.7.

|z [ apa(@) [ava@)+1—a | app(@) [ avp(@) +1— o |

x1 | 0.455 0.482 0.504 0.426
x| 0.224 0.622 0.392 0.566
x3 | 0.56 0.384 0.336 0.594
x4 | 0.49 0.475 0.581 0.384

Hence s(H,A,B,B) = [0.49, 0.525] = [aeap, ae ).
In a similar manner, we create the table that follows to locate s(X, A, X,B).

’ x ‘ aps(z)+1—a ‘ avy(x) ‘ app(r)+1—« ‘ avp(x) ‘

x1 | 0.755 0.182 0.804 0.126
zo | 0.524 0.322 0.692 0.266
x3 | 0.86 0.084 0.636 0.294
x4 | 0.79 0.175 0.881 0.084

Hence s(K,A,K,B) = [0.79, 0.825] = [aeap + 1 —a,ae, 5 + 1 —al.
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Example 3.8. Consider the IFSs A and B of E as in example 3.1. To find s(H, gA, By gB) we construct
the table taking & = 0.7 and = 0.3 with o, 5 € [0,1] and o + 8 = 1.

2 | apa(@) | ava(z) + 8 | app(z) | avp(z) + 8 |

z1 | 0.455 0.482 0.504 0.426
o | 0.224 0.622 0.392 0.566
x3 | 0.56 0.384 0.336 0.594
x4 | 0.49 0.475 0.581 0.384

Hence s(H, 54, B, 5B) = [0.49, 0.525] = [aeap, ae,p].
In a similar manner, we create the table that follows to locate s(X, gA, X, 3B).

|z | apa(@)+ B | ava(w) | app(z) + B | avp(z) |

1 | 0.755 0.182 0.804 0.126
o | 0.524 0.322 0.692 0.266
3 | 0.86 0.084 0.636 0.294
x4 | 0.79 0.175 0.881 0.084

Hence s(X, 34, X, 3B) = [0.79, 0.825] = [aeap + B, e, 5 + A].
The measure of similarity has been thoroughly explored and defined in intuitionistic fuzzy set theory by
numerous authors [33, 34, 35].

Chen [30] defined a similarity measure between two fuzzy sets A and B of X using the vector approach as
follows:
AB
A"V B
Where, A is the vector {(ua(x1), pa(z2),...), B is the vector (up(z1), up(2),...) and X = {z1, 29,23, ...}, the
symbol ”.” stands for scalar product of two vectors.
De et al.[33] also provide an analogous definition for the similarity measurement between two IFSs A and B
of E.
A,.B
s(A,B) = Zsep Av-Bo (2)

Y oern@)V Y ep(Bl)

Where A, is the vector [pua(z), m4(z)] and B, is the vector [ug(z),7p(z)]Vz € E.
Clearly,

1. s(A,B) € 0,1].
2. s(A,B) =s(B,A).

3. eap = €4p if A= B.

4. If mg(x) = 0 and wp(x) = 0,Vx € E, then s(A, B) becomes equal to the measure of similarity defined
by Chen [1].

In this section, a new kind of similarity measure between two intuitionistic fuzzy sets are defined.
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Definition 3.9. Let us consider two IFSs A and B of a fixed set E. Similarity measure s(A, B) between A
and B is defined by

_eaB max mingep{pa(z), up(x)}
) = T e minep{naCe) + 7ale), i (e) + 7)) @)

The larger the value of s(A, B), the more the similarity between the intuitionistic fuzzy sets.
Now let’s look at example 3.1. It may be demonstrated that, for equation (2), the value of similarity measure
s(A, B) = 0.9254, while, by Definition 3.9, similarity measure s(A, B) = 0.9333. Therefore, Definition 3.9 is
more suited to offer the optimal solution.

Theorem 3.10. For any two IFSs A and B of a fixed set E, the following statements are true:
1. 0< s(A,B) < 1.
2. s(A,B) = s(B,A).

3. If ta(x) =0 and wp(x) = 0,Vx € E, then s(A, B) becomes equal to 1.

Proof. Obvious. O
In the above theorem, ep # e;‘B if A= B.

4 Application for Decision Making

This section describes a procedure for determining, given n possibilities, the most efficient course of action
based on m criteria. Suppose that there are n actions A, B, C,...where each action depends upon all of the
m criteria x1, x2, T3,... .

A criterion-value (4, v4) consists of the membership value and the non-membership value of the alternative
A. The indeterministic or hesitation part is the remaining amount 74 = 1 — ug4 — v4. Here (ua,v4) are the
IF'Ss of the set A under all criteria.

For two IFSs A and B of E, A is said to dominate B if s(S, A) > s(S, B). It is clear that the super IFS S
dominates all.

4.1 Algorithm

The steps of algorithm of this method are as follows:

First step: Construct the criteria-matrix using the standard and available alternatives.

Second step: Calculate s(5, X) = Z,S—X

Third step: Find all the similarity rfleasures like s(S, X), where X = A, B,C, D and E.

Fourth step: If s(.5, X') has more than one value, choose that one corresponding to which the indeterministic
part is greatest.

Fifth step: Choose the optimal action.
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4.2 A Case-Study

Here, we look at how a student might be selected for a desirable engineering branch based on a few different
factors. Let S be the standard alternative and A, B, C, D, and FE, are the available alternatives or the

desirable engineering branches as Computer Science, Electronics, Biotechnology, Chemical and Mechanical
Engineering. Moreover, the criteria are

1. Cut-off marks in entrance test (x1),
2. Students’ choice (x2),
3. Availability of subjects or branches (z3),

4. Availability of seats (z4).

Here, we create a case study using hypothetical information. The criteria-matrix is displayed as follows.

T D
<u vs) <u va) <uB, vB) <u ve) (1D, VD) <u VE)
21 | (0.9,0.05) | (0.7,0.2) | (0.76,0.2) | (0.86,0.1) | (0.9,0.02) | (0.75,0.2)
22 | (0.8,0.1) | (0.75,0.22) | (0.83,0.14) | (0.78,0.18) | (0.79,0.15) | (0.79,0.15)
23 | (0.85,0.05) | (0.81,0.12) | (0.8,0.1) | (0.7,0.2) | (0.81,0.14) | (0.83,0.13)
24 | (0.88,0.05) | (0.65,0.25) | (0.61,0.24) | (0.68,0.3) | (0.57,0.28) | (0.67,0.28)
Hence we get, ( ,
 ega _ max{0.70,0.75,0.81,0.65} __ 0.81
s(S,A) = ﬁ = max{0.80,0.78,0.88,0.75} _ 0.88 = 0.92045.
_ eep _ max{0.76,0.80,0.80,0.61} _ 0.80
s(S,B) = e’if =~ max{0.80,0.86,0.90,0.76} _ 0.90 _ = 0.88889.
_ _ max{0.86,0.78,0.70,0.68} __ 0.86
s(5,0) = Zi*g = ax{0.90,0.82,0.80,0.70} _ 0.90 = 0.95556.
e max{0.90,0.79,0.81,0.57 0.90 _
s(5, D) = 6/272 = msz0.95,0.85,0.86,0.72% 005 — 0.94737.
e max{0.75,0.79,0.83,0.67 0.83
s(5,E) = eSE = max}080085087072{ 087 = 0.95402.

SE
This indicates that the best alternative is C i.e., Biotechnology is the optimal solution.

5 Conclusion

In order to determine the similarity measure between intuitionistic fuzzy sets, we describe a model or method
for intuitionistic fuzzy sets in this study. The primary characteristic of this model is that the hesitation margin
has also been taken into account and computed.We looked at a multi-criteria decision-making problem where
the data were intuitionistic fuzzy rather than crisp. We accomplish this by comparing each of the criterion
value sets with the super intuitionistic fuzzy set S. The best effective course of action is determined to be
the criteria value set that most closely resembles S. The similarity measuring method is the name of the
procedure. In addition to determining the best course of action, the method assists in creating a panel that
reveals the second, third, and so on ideal actions. The proposed similarity measure shows great capacity for
determining intuitionistic fuzzy sets. It has been illustrated that the proposed similarity measure performs

as well as or better than previous measures. Further research will be focused on its applications in other
practical fields.
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Abstract. In [1], states are ranked with respect to the best states to work. In [2], states are ranked with respect
to the peace and security for women. We determine the fuzzy similarity measure of these to rankings. We find the
similarity to be high for one of the measures and very high for the other. We then break the United States into
regions and determine the fuzzy similarity measure of these two rankings for each region. The fuzzy similarity here
is medium for one measure and high for the other. Similarity plays a role in many fields. There exists many special
definitions of similarity which have been used in different areas. We choose to use fuzzy similarity measures which
seem appropriate in rankings. In fact, we develop some new measures.
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1 Introduction

It is stated in [3] that states have had to step up for workers and their families in the past few decades,
as Congress has stalled on taking action. For example, while the federal minimum wage has been stuck at
$7.25 an hour for 14 years, most states have mandated higher wages. In [3], The Best States to Work Index
provides how the states rank overall and by policy area.

In [1], it is stated that since women make up the majority of the workforce-and-many are supporting
families-this dimension considers how far the tipped minimum wage goes to cover the cost of living for a
family of three (one wage earner and two children). In [I], The Best States for Working Women Index
provides how the states rank overall and by policy area.

The U. S. Women, Peace and Security Index (WPSI) is a measurement of women'’s rights and opportunities
in the United states. It examines how women’s legal protections vary by state, and how their rights and
opportunities vary based on their race. The index incorporates three basic dimensions of women’s well-being;:
inclusion, justice, and security. Inclusion includes economic, social, and political aspects, justice includes
formal laws and informal discrimination, and security includes the family, community, and societal levels.

In [1], states are ranked with respect to the best states to work. In [2], states are ranked with respect
to the peace and security for women. The rankings can be found in Tables 1 - 6. We determine the fuzzy
similarity measure of these two rankings. We find the similarity to be high. We then break the United States
into regions and determine the fuzzy similarity measure of these two rankings for each region. Similarity plays
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a role in many fields. There exists many special definitions of similarity which have been used in different
areas. We choose to use fuzzy similarity measures which seem appropriate in rankings. In particular, we use
the t-norm algebraic product and the ¢t-conorm, algebraic sum.

Let X be a set with n elements. We let FP(X) denote the fuzzy power set of X. We let A denote
minimum and V maximum. For two fuzzy subsets p, v of X, we write p C v if p(z) < v(z) for all zeX. If p
is a fuzzy subset of X, we let u¢ denote the complement of p, i.e., u¢(x) =1 — p(z) for all zeX.

Let A be a one-to-function of X onto {1,2,...,n}. Then A is called a ranking of X. Define the fuzzy
subset g of X by for all zeX, pa(x) = @. Then 4 is called the fuzzy subset associated with A. For
A a ranking of X, we have >~ _ A(z) = w and Y, ¢ pa(z) = 2 since 3o, ¢ A(z) =1+2+ ...+ n.

Throughout the paper, A and B will denote rankings of a set X with n elements.

2 Distance Functions and Fuzzy Similarity Measures

Let 7 be a t-norm and St a t-conorm. Then 7 and Sr are called dual if for all a,be[0,1],7 (a,b) =
1—-87r(1—a,1—10). Clearly, A are V dual.

Definition 2.1. [{] Let 7 and S be a t-norm and ¢ -conorm, respectively. Define the function d : [0, 1] x
[0,1] — [0, 1] by Va, be[0, 1],

tey={ SN TR0

Consider (4) in the following result. Suppose a < b < ¢. We show S(a,c) — T (a,c) < S(a,b) — T (a,b) +
S(b,¢)—=T (b, c). This is equivalent to S(a, c)+7T (a,b)+T (b,c) < S(a,b)+S(b, c)+T (a,c). Now S(a,c) < S(b,c)
and T (a,b) < T(a,c). Also, T(b,c) <bAc<b<aVb<S(a,b).

Theorem 2.2. [/] Let T and S be a t-norm and t -conorm, respectively. Let d be defined as in Definition
2.1. Then d satisfies the following properties: Ya,b, ce[0, 1],
(1) 0 < d(a,b) < 1;
(2) d(a,b) =0 if and only if a = b;
(3) d(a,b) = d(b, a);
(4) d(a,c) < d(a,b) +d(b,c) ifbAc<b<aVb.

Let 7 and S be a given t-norm and t-norm, respectively. Let d be defined as in Definition 2.1. Define
D : FP(X) x FP(X) — [0,1] by all (u,v)eFP(X) x FP(X),D(p,v) =, cx dpu(z),v(z)).

Define S : FP(X) x FP(X) — [0,1] as follows: V(u,v)eFP(X) x FP(X),S(u,v) =1 — D(u,v).Then
S(p,p) =1=D(p,p) 2 1—=D(p,v) = D(v,p) = S(u,v) — D(v, p) = S(v, p) = D(p,v). Thus S(p, p) < S(p, v)
and S(u,p) < S(v,p)if u Cv Cp.

We have that Dy (p,v) = 237 | |u(x;) —v(z;)| = 2 30 ((u(zi) V v(x;) — p(a;) Av(z;)). This motivates
the consideration of the following definition. Let f(x;) = (u(z;) ® v(x;) — p(z;) @ v(x;) if p(x;) # v(x;) and
f(@i) = 0if p(xi) = v(z;).

For all p, veFP(X), define Dg(p,v) = = S | f(z;). Define D (p,v) = 2 S0 () ® v(2;) — pu(s) @
¥(2:))- Then DE (1, v) = Do (1,0) + e ((412) ® 1(z) — plx) @ 1(z)), where X+ = {zeX|(x) = v(2)}.
We note that DJ(u, ) does not satisfy (2) of Theorem 2.2.

Define Sg(p1,v) = 1 — Dg(p,v) and Sg(u,v) =1 — DZ (u,v).
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We first wish to determine the smallest value Sg (A, pp) can be for a given X. The smallest value
Sg&(ua, pp) can be determined from the largest value D (pa, up) can be. Now > (ua(w;) + pp(2;)) is the
fixed value n + 1.Hence the largest value for D (14, i) is determined from the smallest > i 1 pa(z;) s (z;)
since 3 it (1a(@:) @ pp (i) — pal@s) @ pp(@:) = 355 (na(@i) + pa(@s) — pa(zi)ps (i) — pa(z:) ps(:)).

The rankings A : 1,...,4,...,n and B : n,...,n — i+ 1,...1 yield the smallest value for Y ;" | pna(z;)pp(;).
We have

n n

> A(zi)B(xz;) = Y i(n—i+1)
=1 =1

= (n+1)) i—) i’
i=1 1=1

(n+1ln(n+1) nn+1)(2n+1)

2 6
[n2—|—2n—|—1 2n? +3n +1
= n —_
2 6
1, 1 1
Thus
n
1 1 1 1
;MA(J%)HB(%) = ﬁ”[g’ﬁ Tt g]
1 n 1 n 1
- Ip4sa—
6 2 3n
Hence
1 « 1 «
- > (palwi) + pp(x) — 2pa(zi)pp () = . > (palwi) + pa(x;)
i=1 i=1
1 n
—QHZ;MA(%‘)MB(%))
1=
1 1 1 1
S 1-9(= 4=
Rl =2+ g+ 0]
I N O S
N n 3 n  3n?
22
3 3n?
Thus the smallest value S3(pa, up) can be is 1 — (% - 3%) = % + 3%

We have just proved the following result.

Theorem 2.3. Thus the smallest value S&(pua, pp) can be is 1 — (3 — ﬁ) =3+ ﬁ

Wl

Theorem 2.4 ([5], Theorem 3.5). If n is even, the smallest value Sg(pia, pip) can be is 3.
If n is odd, the smallest value Sg(pa, up) can be is % + ﬁ
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Example 2.5. Let n = 3. Consider the rankings A :1,2,3 and B : 3,2,1. Then Sg(,uA,,uB) =1- %(w —

3
238483) = 1 — 1(4 — 2) = L. Using the above result, S3(pa, up) = 5 + 327, we obtain § + o+ = 3.

—

Theorem 2.6. [// Let T and St be a dual t-norm and t -conorm, respectively. Let d be defined as in
Definition 2.1. Then (4) of Theorem 2.2 holds.

Recall that X = {zeX|pa(x) = pp(z)} for given pa, up.

Theorem 2.7. Let s&; be the smallest value Sg,(ja, pp) can be. Then sg = s+ >, x+((pa(z) ®p (z) —
pa(zr) @ pp(x)) is the smallest value Sg(pa, pp) can be, where Sg =1 — Dyg.

Proof. Recall D (i, i) = Da(jia, #5) + Saexs (14(2) © i () — pae) © (). Now S5 = 1 - D3
and Sy = 1 — Dg. Let sg be the smallest value Sg(p4, up) can be. Now Sg(pa, up) =1 — D& (pa, up) =
1= (Da(pa, B)+ > pex+ (na(@) @ up() — pa(@) @up(@) = Se(ta, 1)+ sex+ ((Ra(z) ©pp(z) — pa(z)®
pi(x)). Now st = s+ > x+ ((pa(z) & pp(z) — pa(z) @ pp(x)) for some s determine by Dg. Then s > sg.
Suppose s > sg. Then sf = s+ >, v+ (na(@) ® pp(z) — pa(r) @ pp(x) > se + 3, x+ ((palz) © pp(a) —
pa(z) ® pp(z)), a contradiction. Thus s = sg. Hence sf = sg + Y., y+ ((pa(@) ® pp(z) — pa(z) @ pp(x)).
(]

_1
3n2."

Theorem 2.8. The largest value Sg(pa, jup) can be is % +
Proof. We first find the smallest Dg (14, pp) can be. This value is determined from the rankings A : 1,2, ...,n
and B :1,2,...,n. We have
I~ i 0 i I n2 2 2
il 2292y — = i e
n;(n+n nn) n;n nizan
n

2 Z . 2 i .2
= =) i——=>» 1
n? 4 n3 4
=1 =1

2 n(n+1) 2
= m e T
n+l 1 (n+1)(2n+1)

n n2 3

nin=1)2n+1)
6

Thus the largest value S (pua, up) can be is 1— (3 — 515) = 2 + # O

T 3n?
Consider Theorems 2.4, 2.7, and 2.8. Suppose that s denotes the smallest value for some fuzzy similarity
measure S and [ the largest. Define

~ S(ua, — 5
S(pa, pp) = W}f?

Then S (14, pp) varies between 0 and 1. For values between 0 and 0.2, we say that the fuzzy similarity
is very low, between 0.2 and 0.4 low, between 0.4 and 0.6 medium, between 0.6 and 0.8 high, and between
0.8 and 1 very high. Some related work can be seen in [0].
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3 United States

We determine fuzzy similarity measures for the rankings, best states for women and the peace and security
index for the United States.

Table 1: United States

State Women | WPSI | State Women | WPSI
Oregon 1 18 | Florida 26 30
California 2 15 | Michigan 27 21
New York 3 8 Missouri 28 38
Washington 4 24 | South Dakota 29 29
Connecticut 5 Indiana 30 34
Massachusetts 6 1 Ohio 31 25
New Jersey 7 11 Towa 32 23
Nevada 8 35 Idaho 33 39
Colorado 9 14 | Pennsylvania 34 17
Hawaii 10 10 | Kentucky 35 47
Puerto Rico Oklahoma 36 42
Illinois 11 13 Wisconsin 37 16
District of Columbia 12 3 North Dakota 38 20
Vermont 13 4 Kansas 39 26
Maine 14 9 Arizona 40 31
Rhode Island 15 5 Louisiana 41 51
New Mexico 16 40 Arkansas 42 49
Minnesota 17 12 | West Virginia 43 46
Maryland 18 7 Utah 44 36
Virginia 19 27 | Wyoming 45 43
Delaware 20 22 South Carolina 46 44
Alaska 21 28 Texas 47 41
Nebraska 22 19 Mississippi 48 50
Montana, 23 32 Alabama 49 48
Tennessee 24 45 Georgia 50 37
New Hampshire 25 6 North Carolina 51 33

We consider Dy (pa, up) = 23, x la(z) —pp(x)|. Here n = 51. We find Dy (pa, pp) = 2 28 = ;128 =

n

0.1753. Thus Sg(pa, pp) = 1— Dy (pa, pp) = 0.8247.

By Theorem 2.4, the smallest Sg (14, pp) can be is % + # = % + ﬁ = 0.5002. Thus g;I(MA,,UB) =
0‘812%'_5%‘8302 = 8:2332 = 0.6495. The fuzzy similarity measure is high.

We now consider D (pa, i5) = 2 3 v+ (na(z)®pp(z) —pa(z)@pp(z)). We first see that i (Hawaii) =

n

pup(Hawaii) and pa(South Dakota) = pp(South Dakota). We find

1 2574 41497
Dg(pa,pp) = 5(57 - W)
2574 82994
= 2601 132651 0.9896 — 0.6257 = 0.3639.

Thus Sg(pa, pp) = 1 — 0.3639 = 0.6361.
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By Theorem 2.3, the smallest S (p4, up) can be is % + 3% =3+ ﬁ

the smallest Sg(pa, up) can be is 0,3336 4+ 0.0062 + 0.0202 = 0.3600.

By Theorem 2.8, the largest Sgg(,uA,,uB) can be is % + 3% =3+ Wzoza
the largest Sg(pa, pp) can be is 0,6670 4+ 0.0062 + 0.0202 = 0.6734.

$ _ 06361—0.3600 _ 0.2761 _ o . )
Thus Se = 5673103600 = 03131 — 0-8810. The fuzzy similarity measure is very high.

= 0.3333 4 .00003 = 0.3336. Thus

= (0.6667 4 0.0003 = 0.6670. Hence

4 Regions

)-

Suppose pa(z) = pp(r) = 1 for some zeX. Then pa(z) & pp(r)— pa(r) @ pp(r) = palz) + pp(
Thus

24(z)pp(z) = 0. Thus Sg(fa, uB) = Sa (ta, pp) if this is the only z in X such that pa(z) = pp(z).
we have Sg (pa, uB) = S (pa, up) for the following region.

Table 2: West

State Women | WPSI
Oregon 1 4
California 2 3
Montana 3 7
Washington 4 5
Nevada 5 8
Colorado 6 2
Hawaii 7 1
Alaska 8 6
Idaho 9 10
Utah 10 9
Wyoming 11 11
Here n = 11. Sy (pa,up) =1 — 121 =1-0.2149 = 0.7851. The smallest Sy (pa,pp) can be is 5 L4 # =
0.5 + ﬁ = 0.5041. Thus g;{(uA,,uB) = 0?2).5%5{)41 = 8.4213%8 = 0.5666. The fuzzy similarity measure is
medium.
We first note that ps(Wyoming) = pp(Wyoming). We have that
Do) = (i —220)
110 676
= o1 1331 0.9091 — 0.5079 = 0.4012.

Thus Sg(pa, up) =1 —0.4012 = 0.5988. By Theorem 2.3, the smallest Sg (14, up) can be is % + 32? =
% + % = 0.3333 4 .00055 = 0.3355.

By Theorem 2.8, the largest S(ua,pp) can be is 5 2+

0.5988—0.3355 _ 0.2233
Thus S® 0.6612—0.335 _ 0.3257

32 3-1-363—06667+00055—06814—06612
= 0.6856. The fuzzy similarity measure is high.

Table 3: Southwest

State Women | WPSI
New Mexico 1 2
Oklahoma 2 4
Arizona 3 1
Texas 4 3
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eren=4.Sy=1-35% =1-0. = 0. . The smallest Sy can beis 5 = 0. US/;]:%:
H 4.8y =1-5 =1-0.3750 = 0.6250. The smallest S beis § = 0. Thus Sy = 2:6250-0.500

01250 _ () 2500. The fuzzy similarity measure is low.

0.5000
We have that Dg(pa, up) = i(% — 2%) = % — % = 1.25 — 0.7812 = 0.4688. Hence Sg(ua,un) =
S(;g(,uA,,uB) =1 —10.4688 = 0.5412. By Theorem 2.3, the smallest Sg(MA,MB) can be is % + % = % + 4—28 =

0.3333 + .0147 = 0.3480
By Theorem 2.8, the largest S(ua,up) can be is % + 3% = % + 4% = 0.6667 + 0.0417 = 0.6814.

o _ 0.5412-0.3480 _ 0.1932 _ o . .
Thus Sg(1a, UB) = 5esti—o3i50 = 03331 = 0-9895. The fuzzy similarity measure is medium.

Table 4: Midwest

State Women | WPSI
Illinois 1 2
Minnesota 2 1
Nebraska 3 4
Michigan 4 6
Missouri 5 12
South Dakota 6 10
Indiana 7 11
Ohio 8 8
Towa 9 7
Wisconsin 10 3
North Dakota 11 5
Kansas 12 9

Here n = 12. Sy (pa,pup) =1— 25 =1 —0.2639 = 0.7361. The smallest Sy can be is § = 0.5000. Thus
51\{(/1 As UB) = 0'75%3%5’800 = 8:?386 = 0.4722. The fuzzy similarity measure is medium.

We first note that p4(Ohio) = pp(Ohio). We have that

Dolpapn) = 150y —2110)
140 986
= i 1ms
= 09722 - 5706
= 0.4016.

Thus Sg(pa,ve) = 1 —0.4016 = 0.5984. By Theorem 2.3, the smallest Sg(pa, ) can be is sf +
S pex+ (Ha(@)@pp()—pa(z)®pp () = 3452 +0.00043+0.0371 = 2+.2+0.0371 = £+0.0036+0.0371 =
0.3333 = 0.0046 = 0.371 = 0.3750, where s, is the smallest S (pa, up) can be.

By Theorem 2.8, the largest Sg(pa,pup) can be is IF + Y v ((a(z) & pp(z) — pa(z) @ pp(z)) =
2+ 223 4 0.0370 + 0.0210 = 2 + 25 + 0.0307 = 0.6667 + 0.0046 + 0.0370 = 0.7083, where I} is the largest
S&(pa, up) can be.

Thus %(/J,A, UB) = 8:?823:8:3;?8 = 8:3%33 = 0.6703. The fuzzy similarity measure is high.
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Table 5: Southeast

State Women | WPSI
Puerto Rico

Washington D. C. 1 1
Virginia 2 2
Tennessee 3 7
Florida 4 3
Kentucky 5 9
Louisiana 6 13
Arkansas 7 11
West Virginia 8 8
South Carolina 9 6
Mississippi 10 12
Alabama 11 10
Georgia 12 5
North Carolina 13 4

Here n = 13. Sy (pua,up) =1— 1% =1—10.2485 = 0.7515. The smallest Sy (pa, up) can be is % + ﬁ =

0.5 + g5 = 0.5030. Thus Sp(pa, pp) = 271505030 _ 02485 _ ) 5000 The fuzzy similarity measure is

medium.

We first note that p4(Washington D. C.) = pp(Washington D. C.), pa(Virginia) = pp(Virginia), and
pa(West Virginia) = pp(West Virginia). We have that

1 140 629
Dg(ppa, pB) = ﬁ(ﬂ—2@)
140 1258

196 2744
= 0.7143 — 4585

= 0.2558.

Thus Sg(pa,pup) = 1 — 0.2558 = 0.7442. By Theorem 2.3, the smallest Sg(pa,vp) can be is sf +
S pex+ (na(@)Bpp () —pa(z)®pp () = $+52+0.00043+0.0210 = £ +:2+0.0253 = £+0.0039+0.0252 =
0.3333 + 0.3625, where sg is the smallest Sgg(,uA, up) can be.

By Theorem 2.8, the largest Sg (14, tp) can be is lg(,uA, UB)+ Y e+ ((al
+ 525 +0.0043 + 0.0210 = 2 + 2. 4 0.0253 = 0.6667 + 0.0039 + 0.0253 = 0

& (1A, pB) can be.

2) S pup(r) = pa(r) O pp(r)) =
.6958, where lg is the largest

Tn wi

Thus %(/J,A, UB) = 8;2325:8;2232 = 8:3535 = 0.8392. The fuzzy similarity measure is very high.
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Table 6: Northeast

State Women | WPSI
New York 1 7
Connecticut 2 2
Massachusetts 3 1
New Jersey 4 9
Vermont ) 3
Maine 6 8
Rhode Island 7 4
Maryland 8 6
Delaware 9 11
New Hampshire 10 5
Pennsylvania 11 10
Here n = 11. Sy (pa, up) =1 — 1 =1 —0.2893 = 0.7107. The smallest Sp (14, up) can be is 3 + 51y =
0.5 + 5j5 = 0.5041. Thus E;J(NA”UB) = OTI0T05041 — 02000 — (0.4166. The fuzzy similarity measure is

medium.
We first note that pa(Connecticut) = pp(Connecticut). We have that

1,12 444
8 2

107 2
128 888

121 1331
= 1.0579 —0.6672

= 0.3907.

Thus Sg(pa, up) = 1 — 0.3907 = 0.6093. By Theorem 2.3, the smallest Sg(pa,up) can be is si +

S pex+ (Ha(@)®up(@)—pa()@pup(x)) = 2+ 5%5 +0.0271 = 242 40.0271 = £+0.0055+0.0271 = 0.3659,
where s is the smallest S (14, 1) can be.

By Theorem 2.8, the largest Sg(ua,pn) can be is I5 + >, i ((na(z) ® pp(z) — palz) @ pp(z)) =
% + % +0.0271 = 0.6667 + 0.0033 4 0.0271 = 0.6993, where lg is the largest Ség (14, pp) can be.

Thus 3’?@(,%4, uB) = gzggggjggggg = 8:%333 = 0.7301.The fuzzy similarity measure is high.

Dg(pa,pB) =

5 Conclusion

In this paper, we used two fuzzy similarity measures of the rankings best states for women to work and the
peace and security of women. We accomplished this for the United States in general and for various regions
of the U. S We found the similarity to be medium to high for one fuzzy similarity measures and high to very
high for another. Additional results on the best places for women to work can be found in [5].
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Abstract. Graph structure (GS) is an advancement of the graph concept which effectively represents intricate
situations with various connections, frequently used in computer science and mathematics to illustrate relationships
among objects and extensively researched in fuzzy sets (FS), intuitionistic fuzzy set (IFS), pythagorean fuzzy set
(PFS) and g-rung orthopair fuzzy set (g-ROFS). Meanwhile, a linear Diophantine fuzzy set (LDFS) is a remarkable
extension of the existing notions of a FS, IFS, PFS and q-ROFS by comporting reference parameters that removed
all the limitations related to membership degree (MD) and non-membership degree (NMD). According to the best
of our knowledge, there is a lack of elegantly proposed GS extension for LDFSs in the current literature. As a
result, this research focuses on introducing first linear Diophantine fuzzy graph structure (LDFGS) concept which
extends the existing notions of GS in various contexts of F'Ss. Several key concepts in LDFGSs are presented, such
as p;-edge, p;-path, strength of p;-path, p;-strength of connectedness, p;-degree of a vertex, vertex degree, total
pi-degree of a vertex, and total vertex degree in an LDFGS. In addition, we introduce the p;-size, size, and order
of an LDFGS. Moreover, this article presents the ideas of the maximal product of two LDFGSs, strong LDFGS,
degree and p;-degree of the maximal product, p;-regular and regular LDFGSs, along with examples for clarification.
Certain significant results related to the proposed concepts also demonstrated with explanatory examples such
as the maximal product of two strong LDFGSs is also a strong LDFGS, the maximal product of two connected
LDFGSs is also a connected LDFGS but the maximal product of two regular LDFGS may not be a regular LDGS.
Moreover, many interesting and alternative formulas for calculating p;-degrees of an LDFGS in various situations
are proved with examples. LDFGSs are highly beneficial for solving numerous combinatorial problems involving
multiple relations, and they surpass existing concepts of GSs within the F'S context due to their flexibility in selecting
MD and NMD alongside their reference parameters.

AMS Subject Classification 2020: 03B52; 03E72; 28E10; 18B35
Keywords and Phrases: Linear Diophantine fuzzy sets, Graph structure, Maximal product, Degree of a vertex,
Total degree of a vertex.

1 Introduction

Incorporating uncertainties into real-world applications has become essential for addressing a variety of prac-
tical issues such as data analysis, computational intelligence, and sustainability. In 1965, Zadeh [1] poineered
the concept of FS and fuzzy logic for modelling uncertain situations by assigning the MD to each object
rather than absolute membership and absolute non-membership. Since then, F'S theory have been studied by
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scholars and scientists in a wide range of practical fields including artificial intelligence, medical science, com-

putational sciences and decision analysis [2, 3, 4]. Since MD is not sufficient to describe many real situations,
there is a need for NMD such as educated and uneducated, perfection and imperfection, sick and healthy,
etc. In order to deal with such situations, Attanassov [, 6] proposed the idea of IFS with the addition of

NMD such that the sum of MD and NMD is not greater than one. Due to the large space of MD and NMD,
IF'Ss were studied enormously in various fields of applications [7, 8]. However, there are still many real-life
problems where the condition of IF'S is not satisfied. For instance, a professional is asked to comment on
the viability of a strategy to invest in the real estate industry. Imagine that the expert rates this investment
plan’s degree of feasibility at 0.8 and its degree of impossibility at 0.6. Since 0.8 + 0.6 > 1, the IF'S cannot
be utilized to appropriately express this information. As a result, Yager [9] presented the idea of PFS, which
meets the requirement that the sum of squares of the MD and the NMD is less than equal to 1 for each
element. But if the decision-maker expresses his view as 0.9 for agree and 0.8 for not agree, we can see that
0.92+0.82 > 1. To deal with the situations, Yager [10] investigated ¢-ROFS as a more generic version of IFS
and PFS. In ¢-ROFSs, the total of the g-powers for truthfulness and falsehood grades is kept within a unit
interval. This indicates that q-ROFSs provide additional data storage to characterize ambiguous or unclear
facts. Researchers have given the PFS theory and q-ROF'S theory a lot of attention over the past five years,
and numerous insightful theoretical and practical findings have been made in a variety of fields. For instance,
Yager [1 1] presented a multi-attribute decision making technique for PFS. Khan et al. [12] developed a new
ranking technique for g-ROFSs based on entropy function and hesitancy index with a detailed critical analy-
sis of the previously ranking methods. Liu and Wang [13] proposed some q-ROF aggregation operators and
utilized them to solve multi-attribute decision making problems.

Although MD and NMDs are subject to certain restraints under the theories mentioned earlier of IFS,
PF'S, and g-ROFS. To overcome all these restrictions associated with MD and NMD, Riaz and Hashmi [14]
introduced an augmented generalized form of FS known as LDF'S with the inclusion of reference parameters.
Due to the inclusion of reference or control parameters, LDFSs have a wide space of MD and NMD, in
contrast to the commonly used ongoing conceptions, made this theory more advanced, trustworthy and
easy to model uncertainties. Due to the advancement of LDFSs and its freedom regarding MD and NMD,
various scientists have started to create fresh theories about this emerging and sophisticated concept. For
instance, Almagrabi et al. [15] established the concept of g-linear Diophantine fuzzy set (q-LDFS) and its
application in emergency decision support system for COVID19. Ayub et al. [10] introduced the notion
of linear Diophantine fuzzy relations (LDFRs) and studied their algebraic structures with an application
in decision making. Further Ayub et al. [17, 18] studied the roughness of a crisp set by using the level
sets of an LDFR and by ((s,t), (u,v))-indiscernibility of an LDFR over dual universes, respectively. A
comprehensive details on the study of rough approximations of an LDFS via an LDFR, inituitionistic fuzzy
relation (IFR) and fuzzy relation (FR) together with their applications in the field of decision making,
respectively, have presented in [19, 20, 21]. Giil and Aydogdu [22] proposed linear Diophantine fuzzy TOPSIS
(LDF-TOPSIS) based on some novel distance and entropy definitions for LDFSs. Tampan et al. [23] presented
linear Diophantine fuzzy Einstien aggregation operators for multi-criteria decision-making problems. Inan
et al. [24] established a multiple attribute decision model to compare the firms occupational health and
safety management perspectives. Riaz et al. [25] introduced linear Diophantine fuzzy soft rough sets with a
practical application to select the sustainable material handling equipment. Kamaci [26, 27] studied linear
Diophantine fuzzy algebraic structures and introduced the concept of complex linear Diophantine fuzzy sets
with their applications using cosine similarity measures, respectively. Further Riaz et al. [28] proposed the
concept of spherical linear Diophantine fuzzy sets and presented their applications in modeling uncertainties
in MCDM.

The concept of graph theory (GT) started with finding a walk linking seven bridges in Konigsberg. Sub-
sequently, it has developed enormously in all the domains of sciences and humanities with wide applications
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in the field of operations research, economics and system analysis. A graph is used to represent mathematical
networks that define the association between vertices and edges. A vertex can be used to symbolize a work-
station, while the edges denote the association between stations. However, graphs often do not reflect many
physical processes appropriately due to the obvious complexity of various properties of the structures. Many
real-world phenomena have been emphasized to define the concept of fuzzy graphs (FGs). In 1973, Kauffman
[29] introduced the concept of the fuzzy graph (FG) based on Zadehs fuzzy relations (FR) [30]. Mordeson [/]
have further studied FGs and fuzzy hypergraphs. Fuzzy graph theory (FGT) has many applications in various
areas, including, data mining, networking, image segmentation, clustering, communication, planning, image
capturing, and scheduling. A detailed study on FGs has presented in [, 31]. Karunambigai and Parvathi [32]
utilized IFS to describe an intuitionistic fuzzy graph (IFG). Shannon and Atanassov [33], and Parvathi et al.
[34] utilized IFS to describe intuitionistic fuzzy graphs (IFGs) and their basic operations via intuitionistic
fuzzy relation (IFR) [35]. Verma et al. [30] established the concept of pythagorean fuzzy graph (PFG) by
first coining the idea of pythagorean fuzzy relation (PFR). Akram et al. [37, 38] studied certain PFS-graphs
and -ROF graphs (q-ROFGs) under Hamacher operators. Hanif et al. [39] presented the concept of an LDF
graph (LDFQG) by using the idea of an LDF relation (LDFR) which was introduced by Ayub et al. [16].

Since a graph is a pair of set of vertices ¥ and one relation & on ¥, which is capable of describing
abundant real-life phenomenons. However, in many real life situations that concern more than one type
of relations, GT cannot work efficiently. In order to deal such situations, Sampathkumar [10] generalized
the notion of graphs and introduced the concept of graph structures (GSs). GS has n mutually disjoint,
symmetric and irreflexive relations. Ramakrishnan and Dinesh [11, 12, 13] introduced fuzzy graph structures
(FGSs) and investigated some related properties. Later on, Akram and Sitara [11, 15] and Akram et al.
[10] investigated degree, total degree and few properties of semi-strong min product, maximal product and
residue product of FGSs. Sharma and Bansal [17, 48] introduced the concept of IF-graph structure (IFGS).
Further, Sharma et al. [19] presented the notion of regular IFGSs with a detailed study of their important
consequences and useful examples for illustration. Sitara et al. [50] studied the concept of g-rung picture
fuzzy graph structure (q-RPFGS).

1.1 Research Gaps and Motivations

The following subsection will summarize the main objectives and areas of knowledge lacking in the theories
discussed earlier.

1. GSs are commonly employed in analyzing various structures, such as graphs, signed graphs, semigraphs,
edge-colored graphs, and edge-labled graphs. GSs play a crucial role in researching various areas within
computer science and computational intelligence. FGSs are more beneficial compared to GS due to their
ability to address the uncertainty and ambiguity commonly found in various real-world phenomena.

2. The latest extension of FS theory, called LDFS introduced by Riaz and Hashmi [14], eliminates con-
straints related to MD and NMD found in previous concepts like F'S, IFS, PyFS, and ¢-ROFS by adding
reference parameters. It allows the decision maker greater freedom in their judgment when facing any
decision-making issue. Indeed, reference parameters play a significant role in determining the optimal
solution in decision analysis.

3. Recently, Hanif et al. [39] proposed the concept of LDF-graph (LDFG) with some fundamental oper-
ations and properties. LDFGs are more beneficial than FG, IFG, PFGS, and ¢-ROFG because they
have a broader range of MD and NMD.

4. Since GSs are more valuable than graphs due to their ability to handle multiple relationship issues
effectively. By viewing existing literature, it appears that there is a lack of investigation on LDF graph
structures (LDFGS).
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5. To address this research gap, we explore GS within LDFSs and introduce the concept of LDFGS, which
eliminates specific restrictions on MD and NMD found in current FGSs.

6. Several key concepts of LDFGSs are introduced with demonstrative examples. Certain significant and
fascinating results are proved using different scenarios along with concrete examples. LDFGSs are
certainly better than the current concepts of FGSs, IFGSs, and g-RPFGS because of the expanded
scope of MD and NMD. LDFGSs are a valuable resource in addressing issues involving numerous
connections within the context of LDFSs.

1.2 Aim of the Proposed Study

The main purposes of this research paper are:

e To establish a detailed study on GS in the context of LDFSs and hence introduce the concept of LDFGS.

e To define key notions such as p;-edge, p;-path, strength of p;-path, p;-strength of connectedness, p;-
degree of a vertex, degree of a vertex, total p;-degree of a vertex, and total degree of a vertex in an
LDFGS, p;-size of an LDFGS, size, and the order of an LDFGS.

e To introduce the notion of the maximal product of two LDFGSs, strong LDFGS, degree and p;-degree
of the maximal product.

e To present the concept of p;-regular and regular LDFGS.

e To develop their important consequences with illustrative examples.

1.3 Organization of the Paper

Our remaining part of this paper is organized in the following manners:

Certain basic notions related to FS, IFS, PFS, -ROFS, LDFS, FR, IFR, LDFR, GS, FGS, and IFGS
are presented in Section 2. In Section 3, the concept of LDFGS is introduced with an explanatory example.
Furthermore, some fundamental concepts in LDFGS such as p;-edge, p;-path, strength of p;-path, p;-strength
of connectedness, p;-degree of a vertex, degree of a vertex, total p;-degree of a vertex, and total degree of a
vertex in an LDFGS, p;-size of an LDFGS, size of an LDFGS, and the order of an LDFGS are introduced
with constructive examples. In Section 4, the notion of the maximal product of two LDFGSs, strong LDFGS,
degree and p;-degree of the maximal product are introduced. Some important results related to these concepts
are also proved with illustrative examples. Section 5 presents the concept of p;-regular and regular LDFGS
with some related consequences and examples. Finally, section 6 consists of some concluding remarks of this
research article and some future research directions related to the novel born ideas in this research article.

2 Preliminaries

In this section, some fundamental notions of FS, IFS, PFS, g-ROFS, LDFS, FR, IFR, LDFR, GS, FGS and
IFGS are given which are indispensable to understanding the contributions of this paper. For more details,
we refer the reader to study [16, 41, 12, 10, 14]. Throughout this research manuscript, *', #;, and %, are
denoted as universal sets, unless otherwise stated.

Definition 2.1. [I] A FS on ¥ is defined by .Z = {(x,»%(x)) : x € ¥}, where »% : ¥ — [0,1] is a
membership function (MF) which assigns the MD to each object x € 7.
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Definition 2.2. [5] An IFS .# on ¥ is a set of triplets of the form:

7 = {(x (37 (), %}(x») . x € 7/}, (1)

where '}, 5", : ¥ — [0, 1] specify the MD and NMD, respectively, which satisfy 0 < 2'7(x) + s (x) < 1,
for all x € 7.

Definition 2.3. [9] A PFS & on ¥ is an object of the form:
P = {(x (33 (x), %ﬁ](x») x € "//}, 2)

where »7;, 57, : ¥ — [0, 1] specify for the MD and NMD, respectively, fulfilling 0 < (%g(x))Q—i— (% (x))2 <
1, for all x € 7.

Definition 2.4. [I1, 10] A g-ROFS 2 on ¥ is an object of the form:

2= {(x (33 (x), %g(x») ‘x € 7/}7 (3)

where 5%, 5% : ¥ — [0, 1] are used for the MD and NMD, respectively such that 0 < (35(x)) "+ (57%(x))? <
1, for all x € ¥, where ¢q € [1,0).

Definition 2.5. [I1] An LDFS £ over 7 is an expression of the following form :
¢ = {(x (40(x), #2(x)), <ag(x),,82(x)>) 'x € "f/}, (4)
where ', 24 : 7/ — [0, 1] are MD and NMD, and ag(x), B¢(x) € [0, 1] are corresponding reference param-
eters, respectively, with 0 < ag(x) 4+ Be(z) < 1 and 0 < ag(x) 27" (x) + Be(x)xp(x) < 1, for all x € #. The
)

degree of hesitation of any x € ¥ is denoted and defined as Mg(x) = 1 — (a (x) T(x ) + Be(x)s3(x)), for
all x € 7.

From now onward, we will use LDFS(7") for the set of all LDFSs over #. For simplicity, we will use
£ = ({2 (x), 2 (x)), (ae(x), Be(x))) for an LDFS over 7.

Definition 2.6. [11] Let £; = ((%,’3”1 (x), 7 (x)), (g, (x), Be, (x)>) and £ = ((%,’3”2 (x), ¢, (%)), (e, (x),
Be, (x)>> be two LDFSs on #'. Then, for all x € ¥,

(1) €1 C Lo if and only if ¢ (x) < 3¢ (x), 23 (X) > 25 (%), and ag, (x) < ag,(x), B, (X) > Be, (X);
(2) £1U L2 = (8 (3) V 58 (%), 28, (%) A 52, (%)), (0, (%) V g, (%), B, (%) A B, (%)) )
(8) £101 85 = (4 () A 54 (%), 28, (%) V 328, (%), (e, (%) A e, (%), Be, (%) V B, (%)) ):

(4) 25 = ({48, (0, 28 (00)), (B, (%), 08, (%)) )

A subset & of the cartesian product 7] x ¥, is a binary relation from ¥] to ¥ which is basically the set
of edges from 7] to %5.
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Definition 2.7. [30] A FR p on 7] X 73 is defined as:

p= {<(X1,X2),%21(X1,X2)>, (x1,%X2) € #1 X 7/2}, (5)

where »" : 1 x 75 — [0,1] is a MF which specifies the grade of membership to which the objects x; € 71
and X9 G ¥4 are connected to each other.

Definition 2.8. [35] An IFR p from 7] to %3 is an object of the form:

p= {((Xl,xg <% (x1,%2), (xl,x2)>> 1X1 € M,X9 € ”1/2}, (6)

where sy, ) : Y1 x ¥ —» [0, 1] indicate the MD and NMD from %] to ¥4, respectively with 0 < %gn(xl, x2)+
p(Xl,XQ) S 1, for all (x1,x2) € 1 X %5.

Definition 2.9. [16] An LDFR p from ¥} to #3 is an expression having the form:

p= {((X1,X2), (25" (x1,%2), 6 (x1,%2)), <Oép‘(X]_,X2),/8’b(X]_,X2)>> iX1 € Y, X9 € 7/2}, (7)

where 55", 55« /1 x #5 — [0, 1] denotes the MD and NMD among the entities of 7 and 73, and a3(x1, X2),
Bp(x1,%x2) € [O 1] are the corresponding reference parameters to sc;'(x1,X2) and 3 (x1,X2), respectively.
These MD and NMD obey the constraint 0 < a5(x1, X2) 565" (X1, x2)+ﬁp(x1, X2) 55 (X1, x2) < 1forall (x1,x2) €
7 x Vo with 0 < a(x1,%x2) + B5(x1,%x2) < 1. The degree of hesitation can be calculated as:

Y8 (x1,x2) = 1= (p(x1,%2)5" (x1,%2) + Byt %2) 48 (x1,%2) ) (8)
where v is the corresponding reference parameter of indeterminacy. For simplicity, we shall use
p = <<%g‘(x1,x2),%g(x1,><2)>, <aﬁ(x1,x2),ﬂﬁ(x1,x2)>) for an LDFR from ¥, to #. The collection of all
LDFRs from ¥ to ¥ by LDFS(¥] x 73).
Definition 2.10. [16] Let p; = << S0 (x1,X2), 7% (x1,%2) ), (ap (X1,%2), B (xl,xQ)>) be an LDFR from 7]

to ¥ and gy = (< s (X2, X3), 55, (X2, X3) >,<04va Xg,Xg),ﬁﬁQ(xQ,X3)>> be an LDFR from ¥ to ¥5. Then,
their composition is denoted and deﬁned by :

p1opz = (((%}}f 0 55, ) (x1,%3), (545, © 75,) (x1,%3) ), (g, © gy ) (%1, %3), (B, © 5ﬁ2)(X17X3)>> (9)

where
(5, © 225,) (1, %3) xQ\e/% (%;?(lexz) 5 (X2, X3) ) (10)
(54 0 545, (x1,x3) = /\V (54, (1, 32) V 5, (32, %3) ) (11)
x2€%
(@ 0 ) (%1, %3) \/ (am (x1,X2) A @i (X2, X3) ) (12)
x2€%
(Bs © B, ) (x1,%3) = /\ <5p1(X17X2 V B, (X2, X3 > (13)

for all x; € #1,%x9 € ¥5,X3 € V3.
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Definition 2.11. Let p = <<%/T(x1,x2),%g(x1,x2)>, <aﬁ(x1,x2),ﬁp(x1,x2)>) be an LDFR from 7] to 5.
Then, the set

Supp(p) = {(X]_,XQ) : %gl(XhXQ) > 0, %g(X]_,XQ) > 0), (op(x1,%x2) > 0, B5(x1,%x2) > 0} (14)
is called the support of p.
Definition 2.12. [10] Let ¥" be any non-empty set known as the vertex set and &7, &2, - , & be mutually

disjoint relations (sets of edges) of ¥ such that each &;, 1 < i < k is symmetric and irreflexive. Then,
9 = (“//, &, E, ,éak) is called a graph structure (GS).

Definition 2.13. [11, 12] Let ¥ = (”f/,é?l,gg,'-- ,cg’k) be a GS. Then, ¥ = (ﬁ,pl,pg,--- ,pk) is called
fuzzy graph structure (FGS) of GS ¢, where . is a F'S on ¥ and p; are irreflexive, symmetric and mutually
exclusive FRson 7, forall 1 <i <k, if 0 < %gl?(x,y) < HP(x) N xR (y) forallx,y € ¥/, i=1,2,--- k.

Definition 2.14. [17] Let 4 = (¥, &1, &, ...,&;) be a GS, .# = (%7(x), »;(x)) be an IFS on ¥ and

pi = <%;~YZ_L(X1,X2), 7 (xl,xQ)> be irreflexive, symmetric and mutually disjoint IFRs on ¥, ¢ = 1,2,...,n,
where x,x1,x2 € ¥. Then, ¥ = (f,p'l, 02, ...,p'n) is called intuitionistic fuzzy graph structure (IFGS) of ¢,
if

s (X1, X2) < 3 (X) A sy (x2), and s (X1,X2) > 35 (x1) V 55 (x2),

for all x1,x2 € ¥,i=1,2,....,n.

3 Linear Diophantine Fuzzy Graph Structures (LDFGS)

In this section, we introduce the idea of LDFGS and some basic notions in LDFGSs containing p;-edge,
pi-path, strength of p;-path, p;-strength of connectedness, p;-degree of a vertex, degree of a vertex, total
pi-degree of a vertex, and total degree of a vertex in an LDFGS, p;-size of an LDFGS, size of an LDFGS,
and the order of an LDFGS are introduced with constructive examples. Throughout this section, we will use
simply ¢ for a GS ¢4 = ("I/, &, 8o, ..., (fn) (see Definition 2.12).

Definition 3.1. Let £ = (<%§”(x),%§(x)>,<a£(x),6,3(x)>) be an LDFS over ¥, 4 be a GS and p; €

w5 (x,y) < sg' (%) A g (y),
sy (x,y) = 7g(x) V xg(y), (15)
ap, (X,Y) < OCQ(X) A OZ,Q(y 3
Bﬁz (X7 y) > B‘(X) \ BQ(Y)
Example 3.2. Let ¥ = {x1,x2,X3,%X4}, 61 = {(x1,%2), (x1,%3), (x3,%4) }, and & = {(x1,%4), (x2,%3), (x2,%4) }.

Then, ¥ = (“//, &1, é”g) is the GS. Define an LDFS £ € LDFS(¥7") exhibited in TABLE 1.
Consider two LDFRs p1, po over &1, &3, respectiyely which are shown in TABLES 2 and 3, respectively.
By simple calculations, we can easily see that 4 = (S, P, ﬁg) is an LDFGS of GS ¥ = (”V, &, 5’2) shown
in Figure 1.
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Table 1: Tabular representation of LDFS £

7 (), #2(x), (as(x), Be(x))
X1 ((0.4,0.3), (0.2, 01>
Xo ((0.6,0.2),(0.3,0.2)
((0.4,0.5),(0.4,0.2)
((0.7,0.3),(0.6,0.2)

X3

)
)
)
)

X4

Table 2: p;

1 (< 7 (x,y), Y))s (s, (%), By, (x, Y)>>
(x1,%2) ((0 4,0.4),(0.2,0.3))
(x1,X3) ((0.3,0.6),(0.2,0.3))
(x3,%4) ((0.4,0.5),(0.4,0.2))

Table 3: po

(e y) o (6 ), (06, Y), B (x,9)) )
(x1,%4) (<o 4,0.3),(0.2,0.3))
(x2,%3) ((0.3,0.5),(0.2,0.3))
(x2,X4) ((0.6,0.4),(0.3,0.4))
x1((0.4,0.3),(0.2,0.1)) x4((0.7,0.3), (0.6, 0.2))

p2((0.4,0.3), (0.2,0.3))

o
‘(7
(0-3)

({g'0°z"0) “(¥'0 ‘v°0)) ¢
51((0.4,0.5), (0.4, 0.2))

p2((0.3,0.5), (0.2,0.3))

x2((0.6,0.2), (0.3,0.2)) x3((0.4,0.5), (0.4, 0.2))
Figure 1: ¥ = (2, ,51,52)

Definition 3.3. Let &4 = (2,;31,/32, ...,,bk) be an LDFGS with underlying GS ¢. If (x,y) € Supp(p;), then
(x,y) is called ps-edge of ¥.

Example 3.4. In Example 3.2, (x1,x4), (X2,X3), (X2,X4) are po-edges since Supp(pa) = {(Xl,X4), (x2,x3),
(x2,%4)} and (x1,%2), (x1,X3), (x3,%4) are pr-edges since Supp(p1) = {(x1,%2), (x1,x3), (x3,%4) }.

Definition 3.5. Let ¥ = (2, D1y P2y -n ﬁk) be an LDFGS with underlying GS 4. A p;-path of 9 is a sequence
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of vertices (xo,X1, X2, ...,X;) which are distinct except possibly xg = x;, such that (x;_1,x;) is a p;-edge for
all j=1,2,3,....1.

Example 3.6. In Example 3.2, (x3,x1,X2), and (X2,X1,X3,X4) are pj-paths. And, (x2,x3,X4), (X1, X4, X2),
and (x1,X4,X2,X3) are po-paths.

Definition 3.7. In an LDFGS ¢ = (2, 01, P2, ...,ﬁk) with underlying GS ¢, two vertices x,y of & are said
to be p;-connected, if they are joined by a p;-path.

Example 3.8. In Example 3.2, all vertices X1, X2, X3, X4 are p1- and po-connected according to the Example
3.6 since they are joined by both pi- and ps- paths. Since for all x,y € ¥ they are connected by p; for all
i =1,2, so 9 is connected LDFGS because p1(x1,%x3) > 0, p1(x1,x2) > 0, and p1(x3,%4) > 0 so, X1, X3
are pi-connected, X1, Xo are pj-connected, and xs, x4 are pi-connected, respectively. Similarly, x2, x3 are
pa2-connected, X2, X4 are po-connected, and x;, X4 are pg-connected.

Definition 3.9. Let P = (%0, x1, X2, ..., X;) be a g;-path of an LDFGS G = (2, D15 P2y e ﬁk) with underlying
GS ¢. Then, the strength of the p;-path B3, is denoted and defined as:

St(P) = <<%5n‘:€(‘1§)7 751 (Qseem)s BSt(‘JS)>>a (16)
where
k k
%gst(m) = /\ g (X1, %), %St \/ ,To“L Xj—1,X;)
= w (17)

~.

ap; (Xj-1,%5), Bsip) = \/ By, (xj-1,%;)
1 j=1

Asi(p) =

J
fori=1,2,..., k.

Example 3.10. (Continued from Example 3.6) We have seen that (x3,x1,x2), and (x2,X1,X3,X4) are pi-
paths. And, (x2,x3,X4), (X1,X4,X2), and (x1,X4,X2,X3) are pa-paths. We can calculate their strengths as
follows:

Strength of ﬁl—path ‘,131 = (X3, X1, X2) :

HSy(py) = /\j 950 (Xj-1,Xj) = s (x1,X2) A sy (x1,%3) = 0.4 A 0.3 =0.3
MGy (py) = \/j 9375 (Xj—1,%j) = 33, (X1,X2) V 53 (x1,%x3) = 0.4V 0.6 = 0.6
asip) = /\] 00 (Xj-1,%;) = oy (X1,%X2) Aoz (x1,%x3) =0.2A0.2=0.2
Bstep,) = V= 25,,1 (xj-1,%j) = Bp (x1,%2) V B (x1,%x3) = 0.3V 0.3 =0.3

So, St(P1) = ((0.3,0.6),(0.2,0.3)). Similarly, we can calculate strength of pi-path Pa = (x2,%1,%3,%X4)
which is given by St(B2) = ((0.3,0.6),(0.2,0.3)), strength of po-path P3 = (x2,x3,%x4) is St(P3) =
((0.3,0.5),(0.2,0.4)) and strength of go-path Bz = (x1, x4, X2,x3) is St(P4) = ((0.3,0.5), (0.2,0.4)).

Definition 3.11. Let & = (2,/31, P2, ,ﬁn) be an LDFGS of GS ¢4. Then, pg;-strength of connectedness of
any two vertices x1, X2 is denoted and defined as:

(51)% (x1, %3) = <<(%g;)°°(x1,><2), (%gi)‘”(xl,xQ)} <(a,3i)°°(x1,><2), (ﬁﬁi)“(xl,xz)», (18)



A Theoretical Development of Linear Diophantine Fuzzy Graph Structures. Trans. Fuzzy Sets Syst. 2025; 4(1) 73

where

(542.)” (x1,%2).

I
=38

(%gz)oo(XhXQ) = (%g;)j(X1,X2)7 and (%gi)oo(X17X2)

<

Il
-
<.
Il
—

J

I
=3

()’ (1, x2), and (8) (x1,%2) (ﬁpz) (x1,%2).

(ep) ™ (x1,%2) =

<

1

J

Here, (pz) (Xl,Xg) <<(%g:)j(x1,x2), (%gi)j(xl,x2)>,<(aﬁi)j(x1,xQ) (sz) (xl,x2)>> =

((p“i)ﬂ_ o ﬁi)(xl, x2), and the composition o among any two LDFRs is provided in Definition 2.10.

.
||

Example 3.12. In Example 3.2, we can evaluate the terms as defined in above definition as follows:

(se55) 7 (x1,%2) = \/ {%},”Q(xl, z) A %}Z(z,xz)} = V{55, (x1,X4) A 505, (X4, %2)} = 0.4 N 0.6 = 0.4

z

(505,) (31, %2) = /\{ L (X1,2) V 55, (7, %2) } = A{s, (X1, X4) V 25, (X4,%X2) } = 0.3V 0.4 = 0.4
(ap,)(x1,%x2) = \/{a52 (x1,2) A oy (2, %2) } = V{ap, (%1, %4) A apy(x4,%2)} =0.2A0.3=0.2
(Bs,) (x1,%2) /\{ﬁp2 X1,2) V Bs,(2,%2)} = N{Bp, (x1,%X4) V B, (%4,%2)} = 0.3V 0.4 =04

So, (p2)™ (x1,%2) = ((0.4,0.4),(0.2,0.4)). Similarly, we can find (p2)” (x1,x3) = ((0.3,0.5),(0.2,0.4)) and
(p1) 7 (x2,%3) = ({0.3,0.6), (0.2,0.3)).

Definition 3.13. Let & = (S, P15 P2y e [)n) be an LDFGS of ¢. Then, 4 is called connected LDFGS, if each
of its two vertices x1, X9y are p;-connected, that is, (p“i)oo(x,y) >0 for any x,y € ¥,andi=1,2,...,n

Example 3.14. In Example 3.12, it can be easily observed that (,(“)i)oo(xj,xk) > 0 for all © = 1,2, and
7,k =1,2,3,4. Hence, this LDFGS is connected.

Definition 3.15. Let & = (,Q, D1y P2y -n f)n) be an LDFGS with underlying GS ¢4. Then p;-degree of a vertex
x € ¥ is denoted and defined by

Dy, (x) = ({48, (), 58, (), (am,, (%), B, (%)) ). (20)
where
k k )
iy, () = > 5 (x,Y), 2y, (%) = > 5 (%, y),
7::17X7£Y7(X7Y)egi izlvxiyv(xvy)egi
k k (21)
ap, (x)= > anxy).be, )= Y Buxy).
i:17x7£y7(xvy)€& /L':l’x?éyv(xvy)elﬁi

Definition 3.16. Let ¥ = (E,ﬁl, P2, ...,ﬁn) be an LDFGS with underlying GS 4. Then the degree of the
vertex x € ¥ is denoted and characterized as:

k
x) = 3 D) = (4 (). 550, ((x). () ). (22)
where

k k
A x) =3 (0. oh) = D, (), an(x) = Y ap, (0. 0p(x) = D o, (). (23)
! ] 1=1 1=1
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Example 3.17. If we revisit Example 3.2, then according to Definition 3.15, p;-degrees of vertices can be
calculate as follows:

B, (x1) = > X (x1,y) = 22 (x1,X3) + 3f (x1,%X2) = 0.3+ 0.4 = 0.7
X12Y,(X1,y) €S

o, (x1) = > sk (x1,y) = 2} (x1,X3) + 24 (x1,%2) = 0.6+ 04 =1
x17£y,(X1,y) €61

ap, (x1) = Z ap (x1,y) = o (x1,%3) + o (x1,%2) =024 0.2 =04
Xl#y7(x17y)egl

By, (x1) = > Ba(xi,y) =B (x1,%3) + B (x1,%2) = 0.3+ 0.3 = 0.6

x17Y,(x1,y) €61

So, Dy, (x1) = ((0.7,1),(0.4,0.6)). Similarly, we can evaluate pi- and pa-degrees of all x € ¥ which are
displayed in TABLES 4 and 5, respectively.

Table 4: Dy,
v (G, (0,8, (9), (am,, (9, B, (%))
X1 ((0.7,1),(0.4,0.6))
X2 ((0.4,0.4),(0.2,0.3))
X3 ((0.7,1),(0.6,0.5))
x4 (<0405> (0.4,0.6))
Table 5: Dy,
v (G 30,48, (%), (on,, (%), 85, (x)))
X1 (<09 0.9),(0.5,0.7))
X2 ((0.9,0.9),(0.5,0.7))
X3 ({0.3, o5>, (0.2,0.3))
X4 ((1,0.7),(0.5,0.7))

Now, in the light of Definition 3.16, we calculate the degrees D(x) = Zle s, (x) as follows:

D(x1) = Dy, (x1) + Dy, (x1) = (0.7,1),(0.4,0.6)) + ({0.9,0.9), (0.5,0.7)) = ((1.6,1.9), (0.9, 1.3))
D(x2) = Dy, (x2) + Dy, (x2) = ((0.4,0.4), (0.2,0.3)) + ((0.9,0.9), (0.5,0.7)) = ((1.3,1.3),(0.7,1))

D(x3) = Dy, (x3) + Dp, (x3) = (0.7,1), (0.6,0.5)) + ((0.3,0.5),(0.2,0.3)) = ((1,1.6), (0.8,0.8))
D(x4) = Dy, (x4) + Dy, (x4) = ((0.4,0.5), (0.4,0.6)) + ((1,0.7),(0.5,0.7)) = ((1.4,1.2), (0.9, 0.9))

which can be also be seen in TABLE 6.
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Table 6: D(x)

v (B0, (), (en(x), o)) )
X1 ((1.6,1.9),(0.9,1.3))
X2 ((1.3,1.3),(0.7,1))
X3 ((1,1.6),(0.8,0.8))
X4 ((1.4,1.2),(0.9,0.9))

Definition 3.18. Let ¥ = (2, DLy P2y e ﬁn) be an LDFGS with underlying GS ¢. Then total pg;-degree of a
vertex x € ¥ is denoted and defined as:

Ty, (%) = Dy, (x) + £x) = (el (%), A, (x)), (arm,, (), B, (%)) ). (24)
where

i, (%) = 2, (%) + 558" (x), 2, (%) = 2, (%) + %S(X%} (25)

o, (X) = an, (x) + ag(x), B, (%) = Bp,, (x) + Be(x).

Definition 3.19. Let ¥ = (2, D1y P2y e ﬁn) be an LDFGS with underlying GS ¢. Then the total degree of
the vertex x € ¥ is denoted and defined as:

k
TD(x) = Y TDj, (x) = ({4 (x), 2tin(x)), (arn(x), Brn(x)) ). (26)
=1
where
A (x Z D, (%), 54 (x Z sp,, (%), arp(x Z oy, (%), B (x Z B, ( (27)

Example 3.20. (Continued from Examples 3.2 and 3.17) We can calculate the p;-degrees for each vertex
x € ¥ by using Definition 3.18 as follows:

TDp, (x1) = Dy, (x1) + £(x1) = (0.7,1),(0.4,0.6)) + ({0.4,0.3),(0.2,0.1)) = ((1.1,1.3), (0.6,0.7)),
TDp, (x2) = Dy, (x2) + £(x2) = ((0.4,0.4), (0.2,0.3)) + ((0.6,0.2), (0.3,0.2)) = ((1,0.6), (0.5,0.5)),
TDp, (x3) = Dy, (x3) + £(x3) = ((0.7,1.1),(0.6,0.5)) + ((0.4,0.5), (0.4,0.2)) = ((1.1,1.6), (1,0.7)),
TDp, (x4) = Dy, (x4) + £(x4) = ((0.4,0.5), (0.4,0.2)) + ((0.7,0.3), (0.6,0.2)) = ((1.1,0.8),(1,0.4)),
which is also demonstrated in TABLE 7. Also, pa- degrees for each vertex x € ¥ are calculated in
TABLE 8. Now, according of Definition 3.19, TD(x ZZ L TDp,(x) are calculated as follows:
TD(x1) = TDp, (x1) + TDps, (x1) = ((1.1,1.3), (0.6, 0. 7>) ((1.3,1.2),(0.7,0.8)) = ((2.4,2.5), (1.3, 1.5)),
TD(x2) = TDy, (x2) + TDp, (x2) = ((1,0.6), (0.5,0.5)) + ((1.5,1.1),(0.8,0.9)) = ((2.5,1.7), (1.3, 1.4)),
TD(x3) = TDy, (x3) + TDp, (x3) = ((1.1,1.6), (1,0.7)) + ((0.7,1),(0.6,0.5)) = ((1.8,2.6), (1.6,1.2)),
TD(x4) = TDp, (x4) + TDp, (x4) = ((1.1,1.6), (1,0.7)) + ((1.7,1),(1.1,0.9)) = ((2.8,2.6), (2.1,1.6)),

which is also shown in TABLE 9.
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Table 7: TD;,

v (s, (0,58, (0), (amm,, (%), B, ()
X1 ((1.1,1.3),(0.6,0.7))
X2 ((1,0.6), (0.5,0.5))
X3 ((1.1,1.6), (1,0.7))
X4 ((1.1,0.8), (1,0.4))
Table 8: TDj;,
v (s, ()4, (%), (arm,, (), B, (%))
X1 ((1.3,1.2),(0.7,0.8))
X ((1.5,1.1),(0.8,0.9))
X3 ((0.7,1),(0.6,0.5))
X4 ((1.7,1),(1.1,0.9))
Table 9: TD
v (<%171‘n]n> ), 7t (%)), (arn(X), B X)>)
X1 ((2.4,2.5),(1.3,1.5))
X2 ((2.5,1.7),(1.3,1.4))
X3 ((1.8,2.6),(1.6,1.2))
X4 ((2.8,2.6), (2.1,1.6))

Definition 3.21. Let & =
and described as follows:

9):<<

Example 3.22. If we consider the Example 3.2, then we can find (O)(?? ) as follows:

> )

Z g (x

xXEY

xeYV
> (x) =0.3+0.2+05+03=13,

xeY

)oY ), (D a

(£, D1y P2, +ees ﬁn) be an LDFGS with underlying GS ¢. Then order of ¢ is denoted

(28)

X)? 252(

xXEY xeYV xXEY

=0.4+0.6+0.4+0.7=2,

D ag(x)=02+03+04+0.6=15,

xeY

> Belx)

xeY

=01402+02+0.2=0.7.
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Hence, O(%) = ((2,1.3), (1.5,0.7)).

Definition 3.23. Let ¥ = (2, D1y P2y -n f)n) be an LDFGS with underlying GS ¢4. The p;-size of 4 is denoted
and postulated as:

Sﬁz (g) = <<%§;Z ) %gﬁi >> <aSﬁi s BSﬁi >) s (29)
where
%énﬁi = Z %g:;(xa Y)7 %gﬁi - Z %gl (X7 Y)v O‘S,;l. = Z A, (X y Z ﬁpl X y (30)
(xvy)eébi (X,y)EéDi (x,y)eg ( ?y)eéa

Moreover, the size of ¢ is denoted and characterized as:
)= _Su(). (31)
i=1

Example 3.24. If we revisit Example 3.2, we have

ng = Z sy (x,y) =04+03+04=11,
(x,y)€

g, = > s(xy)=04+06+05=15,
(x,y)ES

as,, = Y. ap(x,y) =02+402+04=08,
(x,y)ES

Bss, = Y. Bu(x,y)=03+03+02=08.
(xvy)egl

Thus, Sp,(4) = (g 58, ). {as,, Bs;,)) = ((L.1,1.5),(0.8,0.8)). Similarly, S5 (9) = ((1.3,1.2),(0.7,1)).

Further, the size of ¢ is calculated as:

S(9) = Sp(9) +S5(9) = ((1.1,1.5),(0.8,0.8)) + ((1.3,1.2),(0.7,1)) = ((2.4,2.7), (1.8, 1.5)).

4 Maximal Product of Two Linear Diophantine Fuzzy Graph Structures

In this section, we introduce the notions of maximal product of two LDFGSs, strong LDFGS, degree and
pi-degree of a vertex in maximal product. Furthermore, certain consequences related to these concepts are
proved with some useful examples.

Definition 4.1. Let 4 = (21,;;’1,/;’2, e ,;;’n) and % = (22 /;”1,;; 9" ,,0 ) be two LDFGSs of the GSs
G = (N, &6, ,6) and % = (15, 8,8, -+ ,&)), respectively. Then, G =G xGy = (L,p1,02, , Pn)
is called maximal LDFGS with underlying crisp GS ¢ = (”f/ &1, - ,éan), where ¥ = ¥ x ¥ and

= {( X1,¥1), (xz,yg)) X1 = X2, (y1,y2) € & or y1 = yo2, (x1,X2) € 5’} LDF vertex set £ and LDFRs
p; in maximal product % * 542 are defined as :



78 Ayub S, Shabir M. Trans. Fuzzy Sets Syst. 2025; 4(1)

2 = ,81 * ,82
= (48 (00), 42, () (0, (%), Bey (3)) ) + (4 (9), 48, (9)): (02 (7). B (9))
= (<(%,Tﬁnl * %g;)(x7Y)’ (%31 * %32)(X,y)>7 <(0421 * aSg)(X7Y)’ (ﬁih * BS2)(X7Y)>>

= (<%£n(x7 ), #g(x, y)>7 <a£(x> y), Be(x, Y)>>v (32)
where
s (X,y) = #g, (%) V 52g, (¥),
g (x,y) = g, (X) A s, (¥),
de(x,y) = e, () V gy (y), (39)
Be(x,y) = Be, (%) A Be, (¥),

for all (x,y) € ¥ = %1 x ¥ and p; = g} = p are defined

pi = pi* by
= <<% (x1,¥1), 75 (x1,¥1) >,<aﬁ;(x1,}’1)7ﬂﬁ;(><1,3’1)>) ((ﬂvn (x2,¥2), “”(X27Y2)> ( ﬁ;’(x2aYQ)75§;’(X27Y2)>>

<<( ) (x1y1,%X2y2), (%’,?; * %g;/)(X1Y1,X2YQ)>, <(Oé,5; * aﬁ;')(X1Y17X2Y2) (5,5’ * “”)(XIY17XQYQ)>)
= << 2 (X1y1,X2y2), % (X1Y1,X2}’2)>,<Oépi(X1Y1,X2}'2),ﬂpi(X1Y1,X2Y2)>>, (34)
where
%m \/ %v// (yl, y2) if X1 = X2, (YL y2> g”
0 ((x1,¥1), (X2, y2)) ’,3; , (35)
%LQ )V &7 (x1,%2), if y1 =y2, (x1,X2) € &
g, (%) A 2 (y1,y2), i X1 = xa, (y1,y2) € &'
p; ((X1,Y1 Xz,Y2 fll / (36)
%£2 ) A %v, (x1,x%2), if y1 = y2,(x1,%2) € &
ag, (x1) V oy (y1,y2), if x1 =x%2, (y1,¥2) € &
g, ((XLY1 X23y2 / (37)
g, (Y1) V ay (x1,%2), if y1 = y2, (x1,%2) € &
X1 v// y1,¥2), if x1 = %2, (y1,¥2) € &
By, (x1,¥1), (x2,y2)) = B, (x1) A By ; 31,%2) , (38)
Be, (y1) A 5;; 1(x1,%2), if y1 = y2, (x1,%2) € &
i=1,2,-- n.

Example 4.2. Consider two LDFGSs ¢ = (L1, 44, Ph, ) and Gy = (£2,47), which is depicted in Figure
2 with underlying GSs 4 = (%1, 6,85, 83) and % = (¥4, 8]"), respectively, where ¥ = {u;,uz,u3} and
Y5 = {v1,Vva} are two sets of vertices and & = {(u1,u3)}, & = {(u1,u2)}, and &; = {(uz, u3)} are the set
of edges on 71, and &' = {(v1,va)} is the edges set on ¥ such that &/ and & are irreflexive and symmetric
binary relations on #; and %5, respectively. The LDFSs £ on #; and £ on % are given in the TABLES
10 and 11, respectively. The LDFRs p}, g, p5 over the &7, &5, &4, and pYf over &/’ given in TABLES 12, 13,
14 and 15 respectively. By using Definition 4.1, we obtain the following LDFS £ = £; % £9 illustrated in
FIGURE 3 and shown in TABLE 16 and LDFRs p; = g} * p for ¢ = 1,2,3 shown in TABLE 17, 18, 19,
respectively.
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Table 10: LDFS £,

N (g (%), 58, (%)), (o, (%), Be, (%))
u; ((0.6,0.5),(0.4,0.3))
uy ((0.4,0.3), (0.5,0.4))
us ((0.8,0.9), (0.6,0.3))
Table 11: LDFS £,
Yo ({38 (%), 5, (%)), (g, (%), Be, (%))
V1 ((0.7,0.4),(0.3,0.2))
Vo ((0.3,0.2),(0.4,0.1))
Table 12: /;’1
51/ ,0 (X Y) %“ (X,y)),<Oé[;,1(X,y),B[;,l(X,y)>)
(ug, u3) (<0.6, 0.9),(0.4,0.5))
Table 13: 5’2
£)2, ,0 (X y) %“ (x,y)),<a’;,2(x,y),/6’l;,2(x,y)>)
(u, u) (<o.4, 0.5),(0.3,0.4))
Table 14: 5’3
& (2 (xy), 7 (xy) (0 (x.¥). By (x.¥))
(uz, u3) (<0.4, 0.9),(0.5,0.4))
Table 15: ;;"1
&Y' (27, (x,3), 5%, (%,3)), (e (%,¥), B (%,¥)))
(v1,V2) ((0.3, 0.5), (0.2, 0.3>)
Definition 4.3. An LDFGS & = (S,ﬁl,ﬁQ, ‘e ,[)n) is called p;-strong, if
g (x,y) = 2" (%) A g (),
a (X y) = 2 (x) V 72 (y),
o (%,y) = ag(x) Aag(y),
By (x,y) = Be(x) V Be(y),

forall x,y € ¥. If ¢ is pi-strong for all ¢ =1,2,---

Theorem 4.4. Mazimal product of two strong LDFGSs is also a strong LDFGS.

,n, then ¢ is called strong LDFGS.
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Table 16: £ = £ x £9

4 (A (%), 22 (x,y)), {ae(x,y), Be(x,¥))

)
(0.7,0.4), (0.4,0.2))
(0.6,0.2),(0.4,0.1))
(0.7,0.3),(0.5,0.2))
(0.4,0.2), (0.5,0.1))
(0.8,0.4),(0.6,0.2))
(0.8,0.2), (0.6,0.1))

(
(
(
(
(
(

Table 17: p;

&1

(5! (x1y1,%2y2), 25, (x1y1, X2y2)), {3, (X1¥1, X2¥2), By, (X1¥1, X2¥2)))

uivi, uiva

( )
( )
(112V1, u2v2)
( )
( )

)

((0.6,0.5),(0.4,0.3))
((0.7,0.4),(0.3,0.2)
((0.4,0.3),(0.5,0.4)
((0.3,0.5),(0.6,0.3)
(0.6,0.2), (0.4,0.1)

’

)
)
)
)

Table 18: po

&

(52 (x1y1,%2y2), 25, (X131, X2¥2)), (s, (X131, X2¥2), B, (X1¥1, X2¥2)))

(112V1, 113V1)

(ugva,usvs)

((0.7,0.4),(0.5,0.2))
((0.4,0.2),(0.5,0.1))

Table 19: p3

&3

(<% (X1¥1, X2¥2), 55, (X1¥1, X2Y2)), (@ (X1¥1, X2Y2), Bg (X1¥1, X2y2)))

(ugvy,uzvy)

(u1va, usvs)

((0.7,0.4), (0.4,0.2))
((0.6,0.2), (0.4,0.2))

Proof. Let 4 = (Sl,ﬁ’l,;;’Q,--- ,pv’n) and % = (Sg,pu”l,pv”Q,-~~ ,
according to the Definition 4.1, we have the following cases:

Case i: When x; = x2 and (y1,y2) € &. Then,

;;”n) be two strong LDFGSs. Then,
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uy ((0.6,0.5), (0.4, 0.3)) v1((0.7,0.4), (0.3,0.2))
[
3
B
ke
e
3
°
0'3((0.4,0.9), (0.5,0.4)) <
([ J
uz((0.4,0.3), (0.5,0.4)) uz((0.8,0.9), (0.6, 0.3)) v2((0.3,0.2),(0.4,0.1))

Figure 2: LDFGSs % = (€1, 84, b, ) and Gy = (L2, 77)

(uz, v2)((0.4,0.2), (0.5,0.1))

((7'0g'0) “(g°0‘F°0)) T

$3((0.6,0.2), (0.4,0.2))

(u1,v2)((0.6,0.2),(0.4,0.1)) (us, v2)((0.8,0.2),(0.6,0.1))
E( B(
g (uz,v1) (0.7, 0.3), (0.5,0.2)) ’g
jl dw
° o
= &
S S
@ &
° o
& «

p3((0.7,0.4), (0.4,0.2))

(u1,v1)((0.7,0.4), (0.4,0.2)) (u3,v1)((0.8,0.4), (0.6,0.2))

Figure 3: Maximal product G = {?1 * gz

%ZZ((xl,yl), (X27Y2)) = s, (x1) V %;'Z/(YL}Q)

)
= 28 (x1) V [38 (y1) A 58 (y2)]
= [ (x1) V 58 (y1)] A [548 (x1) V 28, (y2)]
= [ (x1) V o8 (y1)] A [548 (x2) V 528, (y2)]

= %}jn(xh}q) A %?(XQ,YZ)-

—~~
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Similarly we can show that > ((x1,y1), (x2,¥2)) = »g(x1,¥1) V 2¢(x2,y2), ap ((x1,¥1), (x2,¥2)) =

ag(x1,y1) A ag(x2,y2), and By, (x1,¥1), (x2,y2)) = Be(x1,y1) V Be(x2,y2).
Case ii: When y; = y2 and (x1,x2) € &/. Then,

s (x1,y1), (%2,¥2)) = x4,

= %g; Y1 %5”1 (x1) A %g‘l (Xg)]

= [ (y1) V 5 (x1)] A [ (1) V 548, (x2)]
= [ (y1) V 5 (x1)] A [, (v2) V 548, (x2)]
= 2g' (X1, ¥1) A 28 (X2, y2).-

In the same way, we can prove that s ((x1,¥1), (x2,¥2)) = 28 (x1,y1)Voeg (X2, ¥2), ap ((x1,¥1), (X2, ¥2)) =

ag(x1,y1) A ag(x2,y2), and B ((x1,¥1), (X2,¥2)) = Be(x1,¥1) V Be(xa,y2). Thus, 4 = % % is a strong
LDFGS. O

Theorem 4.5. The mazimal product of two connected LDFGSs is a connected LDFGS.

Proof. Let 4| = (21,,5’1,;;’2, e ,pU’R) and % = (Sg,pv”l,pv”% e ,pv”n) be two connected LDFGSs with un-
derlying GSs % = (1, &/, 65, ,&)) and % = (¥, &, &Y, -+, &), respectively. Let ¥ = {x1,%2, - ,Xp }
and 75 = {y1,y2, -+ ,¥q}- Then, according to the Definition 3.13,

for all x;,x; € 71 and y;,y; € #3. Consider m subgraphs of 4 with the vertex sets {(xi, v1), (Xi,y2), -, (X, yq)}
for i = 1,2,--- ,m. Each of these subgraphs of ¢ is connected since x;’s are the same and % is connected,
each y; is adjacent to at least one of the vertices in ¥#;. Since ¥ is connected, each x; is also adjacent to at
least one of the vertices in #{. Therefore, there exists one edge between any pair of the above m subgraphs.
Thus, we have

(%5 (%4, ¥5), Xk, ¥1)) > 0, (55,)°° (%4, ), (X, y1)) > 0, and
(aﬁi)oo((xi7yj)7 (kayl)) > 07 (6/;/i)oo((xiayj)7 (Xk7y1)) > 07

for all ((xs,¥;), (Xk,¥y1)) € &i. Hence, ¢ is connected LDFGS. [

Definition 4.6. Let & = %5% = (£, p1, 2, -+ , Pn) be the maximal product of LDFGSs 9 = (L1, /1, /s, -+ 1)
and % = (22, [;/’1, pu”Q, e ,pu”n). Then, the degree of a vertex in 9 is postulated as follows:

D(xi,y;5) = <<%]17]7);(Xia}’j)a s, (Xi,¥5)), <04]D)g~(xi7yj):Bng(Xi;yj»)’ (40)
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where
o, (xiyj) = Yo gpxexe) Vo (y)) + > s (¥, ¥1) Vo2 (i)
(%4,Xk)EE] Y=Y (¥ Y1) €8] xi=xx,
%]B@v (i yj) = Z %g; (x5 Xk) A %gz (yj) + Z %g;’ (yj7 yi) A %31 (xi)
(xiaxk)egi/vyj =Y (y] ,YL)E‘%Nyxi:Xk (41)
ap,, (Xi,y;) = > o (xi, X)) V ag, (y;) + > ag(yj,yi) vV ag, (%)
(xi,%xK)EE] Y =Y1 (yiy0) €8] xi=xp
Ao, (%i,y;) = > By (%5, %) A B, (v5) + > B (yi> 1) A Be, (xi)
(xi,Xk)EE] Y j=Y1 (v ¥1)€EE] xi=x

Also, p; — Dy(x;,y;) of a vertex (x;,y;) of maximal product 4 is defined as follows:

where
= (X yj) = > w5 (%, X)) V 225, (v5) + > (Y5, Y1) V o, (i)
(%i,%Xk)ES] Y =Y1 (yj Y1) €8] xi=xy,
%zn - %ﬁg(xian) = Z %%(Xbxk) A %gz(yj) + Z %gg(}’p}’l) A %31(Xi)
(xi,XK)EE] Y j=Y1 (¥, y1)€EE! xi=xy (43)
a; — ap, (Xi, y;5) = > oy (Xi, X)) Vo ag, () + > g (y,y1) V ag, (xi)
(xi, Xk )EE]y =W (¥5,y1) €8] xi=xp
Bi — By, (xi,y5) = > By (xis xk) A By (y;) + > Ber(yisyi) A Be, (i)
(s xk) €61y =Y (y5:y1) €& xi=xk J

Example 4.7. (Continued from Example 4.2) With the same LDFGSs %), % and their maximal product
Y = 4 x Y with underlying GSs ¥4, % and their maximal product ¢ = 4 * %. According to Definition
4.6, the degrees of vertices in & are calculated as follows:

%ﬁg(ul,vl) = %gflb(ul, uz) Vg (vi) + %g,;(ul,u?,) Vg (vi) + %gllll(vl,VQ) V g (ug)
=04Vv074+06V0.7+03V0.6=2

%ﬂg(ul,VQ) = %g{(ul, ug) V %g;(VQ) + %;Z(ul,u;g) Vv %)73”2 (ve) + %[T,l,(vl,VQ) V %E (uy)
=04Vv03+06Vv03+0.3V0.6=1.6

i, (U2, v1) = s (ag, 1) V seg, (Vi) + 25 (g, u3) V 228, (V1) + 5650 (V1, v2) V seg, (ug)
=04Vv074+04Vv0.7+03Vv04=138

%ﬁlg(UQ,VQ) = %%?(uz, uy) VvV %}Z(Vg) + %;Z(ug, u3) V %?2 (ve) + %gfll(vl,VQ) V %’in (u2)
=04v034+04Vv034+03Vv04=1.2

%ﬁié(ug,vl) = %g,;(ug, up) Vg (V1) + %%(ug,ul) Vosg (vi) + %gzl(vl,vz) V g (u3)
=04Vv074+06Vv0.7T+03V0.8=22

%]g;(ug,VQ) = %EZ(U;;, ug) V %g;(VQ) + %g,;(ug,ul) Vv %Eé (ve) + %gllll(vl,VQ) vV %Enl (us)

=04Vv03+06Vv034+03Vv0.8=1.8
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similarly,

%ﬁg(ul,vl) = s (a1, uz) A sxg, (vi) + %gg(ul,ug,) A g, (V1) + %g,l,(vl,vQ) A seg (ur)
=05A044+09A04+05A05=1.3

%ﬁg (ug,vy) = %g/l(U]_, uz) A g, (vo) + %/?g (ur,u3) A sg, (va) + %glll (V1,v2) A seg (uy)
=05N024+09A0.2405A05=0.9

%ﬁg(u%vl) = %grl(UQ, ug) A %QQ(Vl) + %p’?,z(ug,u;g) A %EQ (vi) + %g,l,(vl,VQ) A %gl (u2)
=05A044+09A04+051A03=1.1

7, (02, v2) = s (uz, w) A g, (V2) + 565 (U2, u3) A 22g, (Va) + 50 (Vi v2) A g, (ug)
=05A02409A024+05A0.3=0.7

%ﬁg(u&vl) = %gé(ug, uz) A g, (vi) + %gg(ug, up) A g, (vi) + %g,ll(vl,VQ) A g (u3)
=09AN044+09A044+05A09=1.3

%ﬁg(ug,vQ) = %gé(ug, up) A sg, (Vo) + %gg(ug,m) A g, (va) + %%/(Vl,VQ) A 3¢ (u3)

=09A02409A02+05A09=09

In the similar way, ap,, (x4,y;) and Bp, (x4,y;) are calculated for all x; € ¥] and y; € 72, shown in TABLE

20.
Table 20: ]D)g;
v (G i) o (i), (o, (x0,37), B, (%0, 7))
(uy,vy) ((2,0.9),(1.1,0.7))
(ug, vo) ((1.6,1.1),(1.2,0.5))
(ug,v1) ((1.8,0.7),(1.3,0.7))
(ug, v2) ((1.2,1.3),(1.4,0.5))
(usz, v1) ((2.2,0.9), (1.5,0.7))
(us, va2) ((0.8,1.3),(1.5,0.5))

Now, we calculate p; — Dy/(x;,y;) for all i = 1,2,3 as follows:

wt — oy (g, vy) = %Ufl‘(ul, up) Vg (vi) + %v//(Vl,VQ) Vg (u) =04V 0.74+03Vv0.6 =13
]t — %ﬁ;(ul,VQ) = %f?(ul, uz) Vg (Vo) + %v//(V]_,VQ) Vg (u) =04V03+03v0.6=1
' — %ﬁié(ug,vl) = %f’{(ug, ug) Vg (vi) + %v//(Vl,VQ) Vg (u2) =04V0.7+03Vv04=11
n]t — %E@(UQ,VQ) = %ﬁi(uz, u) Vg (vo) + %ﬁ/ll(V]_,VQ) Vg (u2) =04V 0.34+03Vv04=038
' — %ﬁfg(ug,vl) = %C?(Vl,vg) Vg (ug) = 0.3V 0.8 =0.8

P D, (ug, vo) = %f'/} (v1,v2) V g (u3) = 0.3V 0.8=0.8
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Similarly, s} — %ﬁg (x4,y;) can be calculated as:

n] — ﬁg(ul,vl) = x5 (ur,ug) A seg, (v1) + %g,l,(vl,vQ) A g (u) =05A044+05A0.5=0.9
n] — ﬁg(ul,VQ) = x5 (ur,uz) A s, (va) + %g,l/(vl,VQ) A g (u) =05A02+05A0.5=0.7
n] — ﬁg(ug,vl) =5 (ug,uy) A seg, (v1) + %g,l,(vl,vQ A g (ug) =05A04+05A0.3=0.7
n] — ﬁ)g (ug,vo) = 5 (ug,ur) A sg, (va) + %ﬁ,ll(vl, v2) A xg (u2) =0.5A0.2+0.5A0.3=0.5
nl — ﬁg(ug,vl) :%ﬁlll(vl,vQ)/\%gl(ug) 09N04=04
] — ﬁg(U3,V2) :%@&,(Vl,VQ)/\%gl(ug) 0.9A0.5=05

Moreover, a; — ap,, (xi,y;) and 1 — Bp, (x4,y;) are evaluated by following the same steps, which are given
in TABLE 21.

Table 21: ,51 — Dg“

v (A, iy — (ki y), (o1 — am (5, 5), 61— B, (%)) )
(a1, vy) ((1.3,0.9),(0.7,0.5))
(ug, vo) ((1,0.7),(0.8,0.4))
(ug,vy) ((1.1,0.7),(0.8,0.5))
(uz, va) ((0.8,0.5), (0.9,0.4))
(ug, v1) ((0.8,0.5),(0.6,0.3))
(u3, vo) ((0.8,0.5),(0.6,0.3))

Now, we calculate py — Dy(x;,y;) as

2o —%ﬁ;(ug,vl):XCZ(UQ,Ug)\/%g(Vl) 0.4v0.7=0.7
7y —%ﬂr)f‘g(ug,VQ) :%?Z(ug,ug)\/%g;(VQ) 04Vv03=04
2o —%ﬁ;(ug,vl):%@g(ug,ug)\/%g";(vl) 0.4v0.7=0.7
P2 —%[gl(é(ug,VQ) :%Z;(UQ,ug)\/%g(VQ) 04Vv03=04
%S—%ﬁg(ug,vl) :%%(UQ,Ug)/\%ELQ(Vl) 09AN04=04
ny — %ﬁ(é(ug,w) = %E,Z(ug, u3) A »g,(v2) =0.9A0.2=0.2
y — H")?(ug,vl) :%ﬁé(ug,ug)/\%&(vl) 09AN04=04
ny — ﬁg(u;v,,VQ) :%Z/Z(UQ,U:),)/\%EQ(VQ) 09AN0.2=0.2

In the similar manners, we have calculated as — %ﬁ)g (x4,y;) and By — %ﬁg (x4,y;) for all x; € #1, and

y;j € %2 which presented in TABLE 22. By following the similar methodology as above, p3 — Dy (x;,y;) are
evaluated for all x; € 71, and y; € #2 which are shown in TABLE 23.
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Table 22: gy — Dy

v (G = () sl = (%0y))) (a0 — (%0, 35), B2 — Bo (%0,35)
(u2,v1) ((0.7,0.4),(0.5,0.2))
(a2, v2) ((0.4,0.2),(0.5,0.1))
(us, v1) ((0.7,0.4),(0.5,0.2))
(us, va2) ((0.4,0.2), (0.5,0.1))

Table 23: p3 — Dy

4 (<%§n — s, (%0, ¥5), 545 — sy (%6, ¥;5)), (s — oy, (%4, ¥5), Bs — 5Dg(xz',}’j)>)
(ar,vy) ((0.7,0.4),(0.4,0.2))
(ar, va) ((0.6,0.2),(0.4,0.1))
(us, v1) ((0.7,0.4), (0.4,0.2))
(us, va) ((0.7,0.2), (0.4,0.1))

Theorem 4.8. If%vl = (21,;;’1,,5’2,--- ,ﬁ/k) and 9 = (Sg,pu”l,pu”z,-" ,pv/’k) are two LDFGSs such that
£1Cp", i =1,2,--- k, then the degree of any vertex in mazximal product G =G Gy = (S, D1, P2, ,,ék)
s given by:

D (xi,y;) = <<%$g(xia}’j)a%ﬁg(xian)% <aDié(Xian)v/8Dg(XiaYj)>)a (44)
where
i, (Xi,¥5) = Dy ()8, (y5) + »p, (¥5),)
1, (Xi,¥j) = Day (%) 222, (y5) + b, (), (45)
ap,, (%, yj) = Dg, (xi)ag, (y;) + ap,, (v5),
B, (xi,¥5) = Day (xi) Be, (v5) + oy, (v5)- ]

Proof. Let 4 = (Sl,pv’l,pv’g, e ,/;’k) and % = (Eg,pv”l,pv”Q,--- ,pv”k) be two LDFGSs such that £, C pu”l-,
then p/; C £5,i=1,2,---, k. Thus,

o, (X0, yj) = > w5 (Xi, Xp) V 228, (¥5) + > AN ORESACS)
(xi,%k) €Sy =y1 (v Y1) €] Xi=Xp
= D> B+ Y AW
(xi,%xK)EE]y i =W1 (yiy)€8] xi=xp

= Dy, (xi)7g, (y5) + 5. (¥5);
EP)
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Also,
b, (X, ¥j) = > w (xi, X ) A seg, (y) + > 22 (¥, y1) A 728, (%)
(xi,%k)€EE] Y=y (¥i,y)€E] xi=xp,
= > g, (yj) + > 250 (Y55 ¥1)
(xi,%k)€EE] Y=V (yiy1)€8] xi=xp

= Dy, (x3) 522, (v5) + >, (v5)
By adopting the procedure, we can show that

D, (%i,¥5) = Dg, (xi)ag, (v5) + ap,, (v5) and Do (%, y;) = Dg, (xi)Be, (v5) + By, (v5)-

O

Theorem 4.9. If?!”ul = (21,5’1,,5’2, e ,,z;’k) and Gy = (Sg,pu”l,pv”Q, e ,[;/’k) are LDFGSs such that £1 C /;’/i,
i=1,2,---,k, and £ is constant LDFS of LDF value ((a,b), (c,d)), where a,b,c,d € [0,1] are fized, then
the degree of any vertex in mazimal product G =G Y is given as:

Dg(xi7 y]) = (<%ﬁ; (Xl'v YJ)a %]]Sl)cgv (Xia y])>a <O‘]D)g; (Xi7 y])a 6@@ (Xia yj)>) ) (46)
where .
%]g;; XZ') y] = D(f1 XZ a + %]ﬁ;g2 (y] I
#p,, (X6, ¥;) = Dy, (%i)b + >

(47)

Proof. Let 4 = (21,/;’1,/;’2, e ,ﬁ’k) and % = (Eg,pv”l,pv”Q,--- ,/;”k) be two LDFGSs such that £ C pv”z-,
then pv’i C9,1=1,2,--- ,k and £9 is a constant LDFS. Therefore,

b, (Xi, yj) = > w5 (i, Xp) V 228, (v5) + > s (v, y1) V28, (i)
(xi,%k)ES] Y =y1 (¥5,y1) €8] xi=xp
= > sy (i) + > AN
(xi,%xk)€EE] Y=y (yiy1)€8] xi=xp

=Dy, (x5)a + >, (¥;)-

Also,
o, (X0 yj) = > g (Xi; X ) A seg, (y5) + > s (Y3, y1) A o2, (i)
(xi:Xk)ES] Y j=y1 (viy1)EE] xi=xp
= > g, (yi) + > 25 (¥, 1)
(x:,X1K)EE] Y j=Yy1 (¥ Y1) €S xi=xx,

=Dy, (x:)b + 55, (v5).
Similarly, we can show that

ap,, (%, yj) = Dy, (xi)c + ap,, (v;) and ap, (%i,¥;) = Dy, (xi)Be, (v5) + o, (¥5)-
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Theorem 4.10. Ifgvl = (,21,,5’1,;;’2,--- ,5’k) and G = (Sg,pu”l,pv”Q,--- ,;;”k) are two LDFGSs such that

(49)

L9 C pv’i, 1=1,2,--- ,k, then the degree of any verter in mazximal product G =G Y, is given by:
Dy(xi,y5) = ((”ﬁ;(xz‘ayg%%ﬁg(xzvy]‘)% <04D>g>(xuYj)wé’mg(xz'v}’j»)a (48)
where
%ﬁg Xi,Yj) = %ﬁl% (xi) + Dg, (y;) g, (%i),
b, (%0,55) = 2, (%) + D, (v5) 22, (xi),
(

Proof. Let 4, = (21,5’1,5’2, e ,pv’k) and % = (22,,07’1,/;”2, e ,/;”k) be two LDFGSs such that £9 C /;’Z-,
then p”; C £1,i=1,2,--- , k. So,

b, (Xi, yj) = > w5 (Xi, Xp) V 228, (v5) + > s (v, y1) V28, (%)
(xi,%k)EE] .y =y1 (Y€ xi=Xp,
_ 3 305 (X3, Xk) + > 72 (%)
(xi, X% )EE],y =1 (y5y1)EE] xi=xy

= sy, (%i) + Dy, (y5) 2, (xi)-

Also,
o, (X0 yj) = > e (Xi; X ) A seg, (y5) + > s (Y3, y1) A o2, (i)
(xi,xk)EE] Y=Y (yiy1)EE] xi=xy
= Z %g; (xi,xk) + Z g (%)
(xi,xk)ES] Y i=y1 (¥ Y€} xi=x%p,

= s, (xi) + Dy, (y5) 2, (xi).

Similarly, we can show that ap_ (xi,y;) = apy, (xi) + Dy, (yj)og, (x;) and Bp,(xi,y;) = ﬁD% (%) + Dy, (y;)
Bﬂl (Xl) O

Theorem 4.11. If%ul = (21,5’1,5’2,--~ ,pv’k) and Gy = (22,pv”1,,0v”2,"' ,,ov”k) are two LDFGSs such that

Lo C /;’Z-, 1=1,2,---,k, and £1 is constant LDFS of LDF value ((a, b), {c, d)), where a,b,c,d € [0,1] are

fized, then the degree of any vertex in maximal product G =G x%, is given by:

Dy (xir ;) = (48, (xis ¥), 7, (%0 ¥3))» (m (%0s Y3 Aoy (%6 ¥3)) ) (50)
where
b, (Xi,¥5) = #p,, (%i) + Dy, (y;)a,
., (Xi,¥j) = 7, (xi) + D, (v5)b, -
an, (Xi,¥j) = an, (%) + Dy, (v5)e,
B (xi,¥5) = o, (i) + D, (y;)d. |




A Theoretical Development of Linear Diophantine Fuzzy Graph Structures. Trans. Fuzzy Sets Syst. 2025; 4(1) 89

Proof. Let 4 = (31,5’1,5’2,--- ,,c;’k) and % = (22,,5”1,;;”2,--- ,;;”k) be two LDFGSs such that £ C 5’i,
1=1,2,--- ,k, and £; is constant LDFS of LDF value ((a, by, (c, d>) Therefore,

(X0 yj) = > g (i, Xk) V 228, (¥5) + > s (v, y1) Vg, (i)
(xi:Xk)ES] Y j=Yi (yi Y1) EE] xi=xy
= Z %gg(xi,xk) + Z g (%)
(xi,x,)EE!,y ;=Y (v Y1)EE] xi=xp,

= 4, (%) + Dy (3,

Also,
5, (%i,¥5) = > s (X, Xp) A 28, (y5) + > s (¥, y1) A 728, (%)
(xi,Xk)EE] Y=Y (y5,y1)€E] xi=xX,
_ 3 > (i, X)) + > 3 (%)
(xi,%k)€EE] Y=y (¥j Y1) €] xi=xp

=, (xi) + Dy, (y;)b.
Similarly, it can be shown that ap,, (x4,¥5) = apy, (%) + Dy, (yj)c and B, (x4,y5) = B]Dgl (x;) + Dy, (y;)d.
]

Theorem 4.12. Ifgvl = (Sl,pu’l,pu’%'-- ,pv’k) and 5% = (Eg,pu”l,pv”Q,--- ,pv”k) are two LDFGSs such that
/;”i C £ and pv’i C L ,1=1,2,---,k, then the degree of any vertex in mazximal product G =G « gvg 18
characterized as:

Dy (xirys) = (B, 0 33), 2B, (%00 930 (am, (53, 9), B,y (5 ¥7)) ) (52)
where
#i,, (%0, yj) = Dy (%) 225, (v5) + Dy () 28, (%),
w1, (Xiy ) = Dy (x0) 528, () + Dag, (v5) 48, (x0), (53)
an, (%i,y;5) = Dy, (xi)og, (v;) + D, (y5) e, (%),
Bp, (Xi,¥;) = D, (xi) B2, (v5) + D, (v5) Be, (x:)

p';C & and p/; C Ly, i=1,2,- k. Then,

., (X0 yj) = > s (i, Xk) V 228, (v5) + > AN ORESHES)
(%i,%Xk)ES],Yi=Y1 (v, y1)€E] xi=x

D D107 ) S SO (1 ¢'%

(xi,xK)ES] Y=y (yi:y1)€8] xi=xp

= Dy, (xi) 75, (y5) + D, (y5) 22g, (i)

Also,
5, (%i,¥5) = > o (X, Xp) A 28, (y5) + > s (¥, y1) A 722, (%)
(xi,Xk)EE] Y=Y (yiy1)€E] xi=xy,
PRRAY) J J
= > g, () + > g, (%i)
(xi,%k)€EE] Y=y (¥5 Y1) €S xi=X,

= Dy, (xi)7g, (y;) + De, (y5) g, (xi)-
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Similarly, we can show that ap,, (x;,y;) = Dy, (xi)ag, () +Dg, (v;)as, (xi) and Bp,, (x,y;) = Dy, (xi)Be, (v;)
'HD)%z (Yj)/Bih (Xz) U

Example 4.13. Consider two LDFGSs ¥ = (L1, 7, 5, ) and Gy = (L2, p), which is depicted in Figure
4 with underlying GSs ¢ = (¥1,8],&,,84) and % = (¥4, 8]'), respectively, same as in Example 4.2. The
LDFSs £; on #; and £9 on ¥ are given in the TABLES 24 and 25, respectively. The LDFRs g}, gh, g5 over
the &7, &y, &3, and pf over &/’ given in TABLES 26, 27, 28 and 29 respectively with g, C £ and p C £, for
i = 1,2,3. By using Definition 4.1, the LDFS £ = £; % £9 is shown in TABLE 30 and LDFRs p; = g, * p/
for ¢ = 1,2,3 shown in TABLE 31, 32, 33, respectively. The resulting LDFGS G =G xG = (£, P15 P2, [)3)
is illustrated in FIGURE 5

uy (0.6, 0.5), (0.4,0.3)) v1((0.7,0.4), (0.5,0.2))
[ ]
i
3
&
e
L
S
vl\’)
o
55((0.4,0.9), (0.5,0.4)) 2z
[ J
uz((0.4,0.3), (0.5,0.4)) uz((0.8,0.9), (0.6,0.3)) v2((0.8,0.2), (0.4,0.1))

Figure 4: LDFGSs 91 = (&1, 7}, fy, 4) and % = (Lo, )

Table 24: LDFS £

N (4 (x), g, (%)), g, (x), Be, (%))
u; ((0.6,0.5), (0.4,0.3))
uy ((0.4,0.3),(0.5,0.4))
us ((0.8,0.9), (0.6,0.3))
Table 25: LDFS £,
7/2 (<%T (X)’ Mg, ( )>7<a22(x)w822(x)>)
V1 ((0.7,0.4),(0.5,0.2))
Vo ((0.8,0.2),(0.4,0.1))

Table 26: p'y

éoll (< g} (X Y) %“ (X7Y)>’ <a,;/1 (X’Y)vﬁl;ll (X7Y)>)
(uy, us) «&a&%&&ao@)
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(uz, v2)((0.8,0.2), (0.5,0.1))

((7'0g0) (g°0‘F°0)) T

$3((0.8,0.2), (0.4,0.1))

(u1,v2)((0.8,0.2),(0.4,0.1)) (us, v2)((0.8,0.2),(0.6,0.1))
E( B(
= (uz,v1)((0.7,0.3), (0.5,0.2)) =
o o
N N
S S
= >
° °
& &
p3((0.7,0.4), (0.5,0.2))

(u1,v1)((0.7,0.4), (0.5,0.2)) (uz, v1)((0.8,0.4), (0.6,0.2))

Figure 5: Maximal product G =% %,

Table 27: 5’2

£’2, (<%g}2 (Xv y)’ %/?/2 (X7 Y)>7 <O[,;/2 (X’ Y)7 /65/2 (X) Y)>)
(uy, uy) ((0.4,0.5),(0.3,0.4))

Table 28: 5’3

é’é (<%g}3 (X, y)? %2/3 (X7 y))? <Oé[;,3 (X, Y)7 55/3 (X, Y)>)
(ug,u3) ((0.4,0.9),(0.5,0.4))

Table 29: pu”l

gl// ((ng/1 (X7 }’), %g//] (X7 y)>7 <ap7'1 (X, y)? /8p7/1 (X7 y)>)

(v1,Vv2) ((0.3,0.9),(0.2,0.5))
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Table 30: £ = £ x £9

vV (G (x,y), 7 (x,¥)), (s (x,y
0.7,0.4), (0.5,0.2
0.8,0.2), (0.4,0.1

), Be(%,¥)))
( ) )
( ) ( )
(0.7,0.3),(0.5,0.2))
( ) ( )
( ) ( )
( )5 )

0.8,0.2), (0.5,0.1
0.8,0.4), (0.6, 0.2
0.8,0.2), (0.6, 0.1

(
(
(
(
(
(

Table 31: p;

&1 (< o (x1y1, X2y2), 27 (x1y1,X2y2)), (g (X1y1, X2y2), B (x1y1,X2y2)))
(u1vi,urve) ((0.6,0.5),(0.4,0.3))
(u1vy, ugvy) ((0.7,0.4),(0.5,0.2))
(ugvy, ugvy) ((0.4,0.3),(0.5,0.4))
(ugvy, ugvs) ((0.8,0.9),(0.6,0.3))
(u;ve, ugvs) ((0.8,0.2),(0.4,0.1))

Table 32: po

& (2 (x1y1, X2y2), 225, (X1y1, X2¥2))s (s, (X131, X2¥2), B, (X171, X2Y2)) )
(ugvy,uzvy) ((0.7,0.4),(0.5,0.2))
(ugva, uzva) ((0.8,0.2),(0.5,0.1))

Table 33: p3

&3 (< (X1Y1=XQY2) (X1Y17X2Y2)>7 <aﬁ3 (X1y1,X2Y2), Bps (X1Y1,XQYQ)>)
(U1V1,U3V1) (<0.7,0.4>, <O.5,0.2>)
(u1va, uzva) ((0.8,0.2),(0.4,0.1))

Then, using the formula given in Theorem 4.12; we calculate the degrees of the vertices in the maximal
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product as follows:

wpy, (1, vi) = Dy, (1) 55, (v1) + Dy, (V1) e, (a1) = (2)(0.7) + (1)(0.6) =
%ﬁ}}g (ur, va) = Dy, (ur)sxg, (va) + Dy, (va)sg: (ur) = (2)(0.8) + (1)(0.6) = 2.2
%ﬁ;(ug,vl) Dy, (u2) g, (V1) 4 Dy, (v1) g, (u2) = (2)(0.7) + (1)(0.4) = 1.8

oy, (U2, Vo) = Dy, (u2) 528, (v2) + D, (v2) 528, (u2) = (2)(0.8) + (1)(0.4) = 2
%ﬁig (uz, vi) = Dy, (u3z)sxg, (v1) + Dy, (v1) g, (ug) = (2)(0.7) + (1)(0.8) = 2.2
%ﬁig (uz, v2) = Dy, (u3)sxg, (v2) + Dy, (va) g, (uz) = (2)(0.8) + (1)(0.8) = 2.4

And,

0, (1, V1) = Dy, (w1) 3¢, (V1) + D, (V1) 2, (w1) = (2)(0.4) + (1)(0.5) = 1.3
0, (U1, va) = Dy, (01) 568, (v2) + Dy, (v2)32g, (w1) = (2)(0.2) + (1)(0.5) = 0.9
#p, (a2, v1) = Dy, (uz) g, (v1) + Dy, (v1) g, (u2) = (2)(0.4) +(1)(0.3) = 1.1
0, (U2, va) = Dy, (u2) 528, (V2) + Dy, (va) s2g, (u2) = (2)(0.2) 4 (1)(0.3) = 0.7
%ﬁg (ug,vy) = Dy, (u3) g, (V1) 4+ Dy, (v1) g, (u3) = (2)(0.4) + (1)(0.9) = 1.7
%ﬁg (usz, vo) = Dy, (u3)sg, (v2) + Dy, (v2) g, (uz) = (2)(0.6) + (1)(0.9) = 1.3

In the similar way, we get an,, (x4,y;) and 510@ (x4,y;) for all x; € 71 and y; € #3, which are shown in TABLE
34.

Table 34: ]D)g;

v <<%]D) X“yj> %]D) (Xl7yj)> < (Xi7yj),BDg(Xi7yj)>>
3), ¢

(ug,vy) ((2,1.3),(1.4,0.7))
(a1, va) ((2.2,0.9),(1.2,0.5))
(a2, v1) ((1.8,1.1),(1.5,0.8))
(ug,vs) ((2,0.7),(1.3,0.6))
(uz,v1) ((2.2,1.7),(1.6,0.7))
(uz, vo) ((2.4,1.3),(1.4,0.5))

Theorem 4.14. If G = (21,5’1,5’2,--- ,pv’k) and G = (Sg,pv”l,pv”g,~~ ,,Ov”k) are two LDFGSs, such that
pv”z- D L,i=1,2,---  k, then the total degree of any vertex in maximal product g = Sél * E?g 1s described as:

TD(xi,y;) = <<%m (Xi,¥5), I, (Xzay])>7<04?1‘]D>g;(xiaYj)a/BTDg(XhYJ»)v (54)
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where

(55)

Proof. Let 4 = (Sl,pu’l,pu/Q, e ,;;’k) and % = (22,,07’1,5”2, e ,p;”k) be two LDFGSs such that such that
P D &1, then o/, D Lo and £, C £ i=1,2,--- , k. We have,

b, (Xi,¥j) = > g (i, Xk) V 22g, (¥5) + > 22 (5, ¥1) V 248, (%3) + 58 (%3, )
(xixk) €)Y =Y1 (v5,y1) €6} xi=x%p,
= > xRy Do vy + [ (i) Vs (v))]
(xixk)EE] Y=Y (v y1)€E] xi=xy
= Dy, (x:) 248, (v;) + (8, (v5) + 28, ()
= Dy, (xi)22, (v;) + >, (v))-
Also,
T, (X0, ¥j) = > g (Xi, Xp) A seg, (y) + > s (¥ y1) A 32, (xi) + 222 (%3, 3 5)
(xi,%k)EE] Y=y (Y€ Xi=Xp,
= Z %32 (Yj) + Z %g’j’(yﬁ yz) + [%EI (xl) N %gz (Yj)}
(xi,%xK)EE] Y =W1 vy €8] xi=xp,

=Dy, (x:)24¢, (v;) + (B, (v5) + 8, (¥5))

= Dy, (x3) 22, (y5) + >p,, (¥5)-

Similarly, we can show that atp, (xi,y;) = Dy, (x;)ag, (yj)—l—aqm% (v;) and Bro, (xi,y;) = Dy, (xi)Be, (y;)+
P, (yj). O

Example 4.15. Let 4 = (¥1,&]) and % = (¥5,4,) be GSs with ¥ = {uj,us}, % = {vi,ve}, & =
{(u1,u2)} and &’ = {(v1,v2)}. The LDFGSs ¥ = (£1,';) and % = (£2, p”,) with underlying GSs ¢ and
%, respectively are shown in FIGURE 6, where £; on #; and £9 on ¥ are given in TABLES 35 and 3v6,
respectively, and LDFRs pv’1 and pv’l’ presented in TABLES 37 and 38, respectively with the condition £; C pf.
By using the Definition 4.1, we obtain the maximal LDFGS G =G xGy = (2, /“)) is portrayed in FIGURE
7, where £ = £1 x £5 given in TABLE 39 on ¥ = ¥1 X % = {(ul,vl), (ug, va), (ug,vi), (ug,vz)} and LDFR
pr=pixpfoné& =& x& = {(ulvl, uva), (u1vy, ugvy), (U ve, ugva), (ugvy, u2v2)} presented in TABLE
40.

Table 35: £

7 (o (%), 58, (%)), (e, (%), Bey (%))
uy ((0.6,0.5),(0.4,0.2))
uy ((0.5,0.7),(0.3,0.5))
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u1((0.6,0.5), (0.4,0.2)) v1((0.5,0.6), (0.4,0.5))

u5((0.5,0.7), (0.3, 0.5)) v5((0.7,0.6), (0.6, 0.4))

Figure 6: LDFGSs % = (£1, ) and % = (£2, )

(uz,v2)(0.7,0.6), (0.6,0.4))

(uz,v1)((0.5,0.6), (0.4,0.5)) (u,v2)(0.7,0.5),(0.6,0.2))

(u1,v1)((0.6,0.5), (0.4,0.2))

Figure 7: The maximal LDFGS G = gl * S%

Table 36: £,

7/2 (<%;T:Z (X)’ %32 (X)>7 <a22 (X)’ 522 (X)>)
V1 ((0.5,0.6),(0.4,0.5))
Vo ((0.7,0.6), (0.6,0.4))

Using the Formula given Theorem 4.14, we calculate the total degrees of all the vertices of the maximal
product in the sequel:
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Table 37: [;/1

S (e (). () oy (%).55 (%))

1281 1281
(uy, up) ((0.9,0.5), (0.6,0.3))

Table 38: pf

&1 ({55, (x), 5%, (%)), (e (%), B (%))

Pl Pl P1 P1
(v1, Vo) ((0.8,0.3),(0.6,0.2))

Table 39: £ = £1 x £o

14 (2 (x,y), 73 (x,y)), (ae(x,y), Be(x,¥)))
(ug,v1) ((0.6,0.5), (0.4,0.2))
(u1,v2) ((0.7,0.5), (0.6,0.2))
(u2,v1) ((0.5,0.6), (0.4,0.5))
(ug, v2) ((0.7,0.6), (0.6,0.4))

Table 40: p1 = p x p!

&1

(<%ZI(X1Y1,X2Y2)7%;31 (x1¥1, X2¥2)), (0 (X1¥1, X2y 2), By, (X1¥1, X2y2)))

uivi,upva)
)
)
)

uzvi, uz2va

)

((0.8,0.3),(0.6,0.2))
((0.9,0.5),(0.6,0.3))
((0.9,0.5),(0.6,0.3))
((0.8,0.3),(0.6,0.2))

2

=

2

=

vi) = Dy, (u1)sg, (v1) + Dy, (v1) = (1)(0.5) + (0.8 +0.5) = 1.8
va) = Dy, (uy)sg, (v2) + %{T”D% (v2) = (1)(0.7) + (0.8 4+ 0.7) = 2.2
v1) = Dy, (u2)sg, (v1) + Dy, (vi) = (1)(0.5) + (0.8 +0.5) = 1.8
vo) =Dy, (a2)sg, (va) + sepp , (v2) = (1)(0.7) + (0.8 4 0.7) = 2.2

M
K
¥
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Also,
#p,, (1, v1) = Dy () 52g, (V1) + >4p,, (vi) = (1)(0.6) + (0.3 +0.6) = 1.5
s, (U1, v2) = Dy, (u1)3g, (va) + %%D% (v2) = (1)(0.6) + (0.3 +0.6) = 1.5
»1p,, (U2, V1) = Dy, (u2) g, (vi) + spp,, (v1) = (1)(0.6) + (0.3 +0.6) = 1.5
»1p,, (U2, Vo) = Dy, (u2) g, (v2) + %%TLD% (v2) =(1)(0.6) + (0.3+0.6) =1.5

In the similar way, we’ve calculated amp,, (x4,¥5) =

Dy, (x:)Be, (v5) + brg,

Dy, (xi)ag, (y;) + atpy, (v5), and Pro, (%i,¥5) =
(y;) for all x; € 71, and y; € 73, which are hsted in the TABLE 41.

Table 41: TD(x;,y;)

(A, (%0, 35), ity (%i,¥5)), (o, (%3, ¥5), Bro,, (X0, ¥5))

)
1.8,1.5),(1.4,1.2))
2.2,1.5),(1.8,1.1))
1.8,1.5),(1.4,1.2))
2.2,1.5),(1.8,1.1))

(
(
(
(§

Theorem 4.16. If f!”vl = (21,/;’1,,5’2,”'

Pl DLy, i =1,2,

75/14;) and ng - ('827&/17;;”27”'

fized, then the total degree of any vertex in mazximal product G =G x %, is characterized as:

TD, (xl, Vi)

where

(<%']I‘]D) (th]) %’]T]D) (X“y])>7<O‘TD<§“(Xiayj)v/BTDg;(Xi7YJ')>)7

m . m
%TIDJ%V Xi,Yj) = %TID)g yj + Dy, (x;)a,
2
n n
1, (Xi,¥j) = %TID)% y;) + Dy, (x;)b,

Proof. Analogous to the proof of Theorems 4.9 and 4.14. U

Theorem 4.17. If %, = (El,pu’l,pv’g,-"

5/1‘ 2'227 2:1727
TD,, (Xw}’]

where

75/k') and % = ('227&/17/;”27'”

(<%m (Xi,¥5)s #ID,, (Xla}’j)>a<04’]1‘]D>g~(xiaYj)a/B’]I‘]D)Eé(Xi’}’j»)a

b, (i, ¥5) = Dy (v) 78, (xi) + b, (%1),
%%D)g; (xi,¥5) = D, (v5) 28, (xi) + %%D)g;l (xi),
atp,, (Xi,y;) = Dy, (v))ae, (%i) + o, (%),
B, (Xi, ;) = Da, (y;)Be, (%i) + Pro,, (x:)

,/;”k) are two LDFGSSs, such that
,k, and £9 is constant LDFS of LDF value ({(a, b) (c,d)), where a,b,c,d € [0,1] are

(56)

, /;” k) are two LDFGSs, such that
,k, then the total degree of any verter in maximal product G =G x%D is postulated as:

(58)

(59)
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Proof. Identical to the proof of Theorems 4.10 and 4.14. O

Theorem 4.18. Ifg”vl = (Sl,pv’l,pv’%--' ,ﬁ’k) and % = (£2,pu”1,pv’/2,--- ,pv”k) are two LDFGSs, such that
pi D Lo, i =1,2--k, and £1 is constant LDFS of LDF value ((a,b),(c,d)), where a,b,c,d € [0,1] are
fized, then the total degree of any vertex in maximal product G =G xY, is given by:

Dy (xi,y;) = (<%17rnmg(xi7}’j)7%%Dg(xz',}’j»v <O[TD<'§7(X7;7y]')7%’]rTan(Xi7yj)>)7 (60)
where
%%Tnﬂj)gv xi’ y] = Dgl y] a + %%Dgl (XZ )

)
) (61)
)
)

Proof. Analogous to the proof of Theorems 4.11 and 4.14. O

5 Regular Linear Diophantine Fuzzy Graph Structures

In this section, we have defined the notions of g;-regular and regular LDFGSs. Some fascinating consequences
are also proved with illustrative examples.

Definition 5.1. An LDFGS ¢ is said to be ((a,b), (c,d))-p; regular, if Dy (x) = ((a,b),(c,d)), for all
x € ¥. Moreover, ¢ is called ((a, b), (c,d))-regular, if D(x) = ((a,b), (c,d)), for all x € .

Example 5.2. From Example 3.2, we can easily see that ¢ is neither p1 nor py regular. Also, not regular
LDFGS.

Remark 5.3. The maximal product of two regular LDFGSs may not be regular, which can justified through
Example 5.4.

Example 5.4. Let ¥ = {uy,us}, % = {vi1,va}, & = {(ui,u2)} and &’ = {(vi,v2)}. Then, % = (#1,8])
and % = (¥4, &5) are GSs.

u1((0.6,0.5), (0.4,0.2)) v1((0.5,0.6), (0.4,0.5))

u((0.5,0.7), (0.3,0.5)) v2((0.7,0.6), (0.6, 0.4))

Figure 8: LDFGSs % = (£1, /) and % = (£2, )

ConsideruLDFSsuﬁil on ¥ and £9 on ¥ which are given in TABLES 42 and 43, respectively.
LDFRs p) and p/ are exhibited in TABLES 44 and 45, respectively.
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Table 42: £

7/1 (<%E (X)v %gl (X)>’ <a21 (X)v /821 (X)>)
u; ((0.6,0.5),(0.4,0.2))
u ((0.5,0.7), (0.3,0.5))

Table 43: £9

Vs (e (%), 528, (%)), (e, (%), Be, (%))
V1 ((0.5,0.6),(0.4,0.5))
) ((0.7,0.6), (0.6,0.4))

Table 44: o'y

& (6 (0, () oy, (9,85, ()

(ug, up) ((0.8,0.4),(0.5,0.2))

Table 45: pf

&' (<%I’}Z, (x), %,’jl (%)) {5 (%), B 5 (x)))
(v, Vo) ((0.8,0.4),(0.5,0.2))

It becomes evident that 4 = (¥4, /,) and % = (¥, p";) are LDFGSs which are depicted in FIGURE 8
and they are ((0.8,0.4), (0.5,0.2))-regular.

By employing Definition 4.1, we obtain the following LDFS £ = £ % £9 given in TABLE 16 on ¥ =
Y X Vo = { uy, vy), (ug, ve), (ug, vi), (UQ,VQ)} and LDFR p; = g} * pf shown in £ on ¥ is calculated in
TABLE 46 on & = & x &' = { w1V, uyva), (upvy, ugvy), (U ve, ugva), (UQV1,LI2V2)}. LDFR p; = pv’1 X ,ou’l’
is calculated in Table 47.

Then the maximal LDFGS ¥ = gvl * 5% = (2, ﬁl) is portrayed in FIGURE 9.

Table 46: £ = £1 x £9

v (2 (xy) 2 (x,¥)), (ee(x,y), Be(x,¥))
(u1,v1) ((0.6,0.5), (0.4,0.2))
(u1,v2) ((0.7,0.5),(0.6,0.2))
(u2,v1) ((0.5,0.6), (0.4,0.5))
(ug, va) ((0.7,0.6), (0.6,0.4))

From Definition 4.6, we can calculate the pi-degrees of each vertex of £ as follows:



100 Ayub S, Shabir M. Trans. Fuzzy Sets Syst. 2025; 4(1)

(uz, va,)((0.7,0.6), (0.6, 0.4))

(uz, v1)((0.5,0.6), (0.4, 0.5)) (u1,v2)((0.7,0.5), (0.6,0.2))

(u1,v1)((0.6,0.5),(0.4,0.2))

Figure 9: The maximal LDFGS g — gl * ffg

Table 47: /5, = p, x p/

&1 (< * 51 o (x1y1,X2Yy2), > (X1Y17X2}’2)>7<O‘p1(X1YI7XZY2) By (lel,X2YQ)>)
(u1vy,upva) ((0.8,0.4),(0.5,0.2))
(urvy, ugvy) ((0.8,0.4),(0.5,0.2))
(uva, ugva) ((0.8,0.4), (0.6,0.5))
(ugvy, uava) ((0.8,0.4), (0.5,0.2))

(¢

]D)ﬁl (u17 Vl)

/\/\/-\/\

sy (Wvy, urve) + s (W1vy, ugvi), sz (U1vy, uva) + 5 (U1vi, ugv)),

uvi, uve) + ag (avy, uavi), By (111V1, w1 va) + B (11v, ugvy)))
0.8,0.4), (0.5,0.2)) + ((0.8,0.4), (0.5,0.2))
1.6,0.8), (1,0.4))

)

I
/—\/\»-‘

Similarly,

Dy, (a1, va) = ((0.8,0.4),(0.5,0.2)) + ((0.8,0.4), (0.6,0.2)) =
= ((0.8,0.4),(0.5,0.2)) + ((0.8,0.4), (0.5,0.2))
5 (u2,v2) = ((0.8,0.4), (0.5,0.2)) + ((0.8,0.4), (0.5,0.2)) =

((1.6,0.8), (1.1,0.4))
= ((1.6,0.8), (1,0.4))
((1.6,0.8),(1,0.4))
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Clearly, ¢ is not regular since Dy, (u1,v1) = ((1.6,0.8), (1,0.4)) # ((1.6,0.8), (1.1,0.4)) = Dy, (u1, va).

Theorem 5.5. If % = (21,5’1,5’2,...,5’k) 18 ((r, S), (s,t))—regular LDFGS and % = (Sg,p”l,p”%...,pv”k)
is an LDFGS, such that ;;”i DL,i=1,2,....k, and £5 is constant LDFS of LDF value ((a, b), (e, d>), where
a,b,c,d € [0,1] are fized, then maximal product G =G «Y, is regular if and only sz% s reqular.

Proof. Let %vl = (Sl,;;’l,pu/z,...,pu’k) be partially regular LDFGS and %VQ = (Sg,pu”l,pv”Q,...,pv”k) be an
LDFGS, such that pv”i DL,t=1,2,....k, and £o = (<a, b, (c, d)) be a constant LDFGS. Then,

Dy (xi,y;5) = <<%]g;(xi,y]'), s, (Xi,¥)), <aDg(Xi’yj)?BDg(Xi’yj)>)

where
s, (Xi,¥5) = Dgy (xi)a + s, (v5);
2., (X, ¥5) = Dagy (x0)b + 545, (y5);
an,, (xi,yj) = Dg, (xi)e + ap,, (v);
P, (%iyj) = Dy, (xi)d + o, (v5)-

This holds for all vertices of ¥ = ¥ x #. Hence, maximal product g = % * %2 is regular.
Conversely, suppose that maximal product G =% %D is regular. Then, for any two vertices of ¥ = ¥#| X ¥4,

%ﬂi(xl, yi) = %{)f;(x% y2)
= Dy, (x1)a + %{D?% (y1) = Dy, (x2)a + %{D?% (y2)
= ra+ g, (y1) =ra+ g, (v2)
= i, (y1) = 25, (v2)
Similarly, %ﬁg (x1,y1) = %ﬁ) (x2,y2) implies that %]D) (Y1) (YZ)' D, (X1,¥1) = ap,(x2,y2) implies

that apg, (y1) = ap, (y2); 5]])?; (x1,y1) = BJD) (Xz,yg) 1mphes that ,BD ( ) = BD% (y2). This holds for all
vertices of %. Hence, % is regular LDFGS. O

Theorem 5.6. If G = (21,5’1,5’2,...,5’k) 18 partially reqular LDFGS and Gy = (22,,(;”1,;;”2,...,5”k) is
an LDFGS, such that ;;’i D Lo, i=1,2,....k, and £9 is constant LDFS of LDF value ((a, b), {c, d>), where
a,b,c,d € [0,1] are fized, then mazimal product G =G xY is regular if and only z'fgvl s reqular.

Proof. Suppose with the given assumptions, we have from Theorem 4.11,

Dg(xwy] <<%]D) me]) %ID) (wa] >7<aDg(X17y])7ﬁDg(wa])>>a

where
., (Xi,¥5) = 2, (xi) + Dy, (y;)a;
1, (Xi,¥;5) = 7, (xi) + D, (v5)b;
ap, (xi,y;) = ap,, (%) + Dy, (y;)c;
(%i,¥5) ) j)d.
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which holds for all vertices of ¥ = ¥7 x #;. Hence, maximal product G = % * %2 is regular.
Conversely, assume that maximal product G — % * gg is regular. Then for any two vertices of ¥ = ¥| x %5,
we have:
%ﬁ; (x1,¥1) = %15; (x2,¥2)
8, (1) ol () () = sl (2) + B, (v2) o (2)
%ﬁ;l (Xl) + rqa = %61‘51 (XQ) “+ roa

m
“p
]D)(qu

(x1) = >, (x2)

1
Similarly, %ﬁg (x1,y1) = %ﬁ) (x2,y2) implies that %D (xl) = %JD (Xg) an,, (x1,y1) = an,, (x2,y2) implies
that apy, (x1) = apy, (x2); B% (x1,y1) = Bp, (XQ,YQ) implies that Bp, ( 1) = ﬁD%& (x2). This proves that
% regular LDFGS. O
Theorem 5.7. If%ul = (81,5’1,5’2,...,5’k) and Gy = (Eg,pv”l,pv”Q,...,pv”k) are two (<r1,31>, (tl,ul))—regular
and ((7"2, s9), (ta, u2>)—regular LDFGSs, respectively, such that ;;”i C £y and pu”z- CLy,i=1,2,....,kand Lo isa
constant LDFS of LDF value ((a, b, {c, d>), where a, b, c,d € [0, 1] are fixed, then mazimal product G =G x%,
is reqular if and only if £, is a constant LDFS of LDF value ((a’,V), (¢, d')), where a/,¥',¢',d" € [0,1] are
fized.

Proof. With the given assumptions, we have from Theorem 4.12,

D, (me] <<%]D) Xlay]) %ID) (wa] >7<OZD%~(X’Hy])7BD%~(X’Hy])>>a
where

sy, (%i,Y5) = Dy (x3) 522, (y5) + Dag, () 548, (xi) = r1a + r2a’;
sy, (%i,¥5) = Doy (%) 528, (y5) + Dagy () 52¢, (xi) = 510+ s2b;
ap, (%5, ¥;) = Dy, (xi)ag, (v5) + D, (v5) g, (xi) = tic+ tac’;
By (xiyyj) = Dy, (xi) Be, (v) + Dag, (v) Be, (%) = urd + uad’;
which holds for all vertices of ¥ = ¥#7 x #. Hence, G =G Gy is regular.
Conversely, assume that ¢4 = 4 *x % is regular. For any two vertices of ¥ = #] x %5, we have:
%ITD@(XMYD = %ITD?C;(X%}Q)
Dy, (x1)3g, (y1) + Dy, (y1) 8, (x1) = Dy, (x2) 52, (v2) + Dy, (y2) 28] (x2)
r12egy (X1) 4 To2eg, (X1) = r12eg, (Y1) + rosg. (X1)
%f:’; (x1) = %f:ng (y1)
Similarly, > _(x1,y1) = »p_ (%2, y2) implies 5§, (x1) = g, (y1); ap,, (x1,¥1) = ap,, (x2, y2) implies ag, (x1) =

ag,(y1); BJD@ (x1,y1) = ﬁ% (x2,y2) implies B¢, (x1) = Be,(y1), which holds for all vertices of 4. Hence, £,
is constant LDF'S. O

6 Conclusion

Graphs are used in various applications such as social networks, recommendation systems, routing algorithms,
and many more. A GS has n mutually disjoint, symmetric and irreflexive relations. Understanding these
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structures and their properties is key to leveraging graphs effectively in solving real-world problems. However,
in certain scenarios, several features of GT might be uncertain. FGSs have many advantages to cope with
vagueness and uncertainty. FGSs are more advantageous to circumvent uncertainty. In this research study,
we have applied the notion of LDFSs to GSs and introduced a novel concept LDFGS. We have defined p;-
edge, p;-path, strength of p;-path, p;-strength of connectedness, p;-degree of a vertex, vertex degree, total
pi-degree of a vertex, and total vertex degree in an LDFGS. Also, we have introduced the p;-size, size, and
order of an LDFGS. Moreover, the ideas of the maximal product of two LDFGSs, strong LDFGS, degree and
pi-degree of the maximal product, p;-regular and regular LDFGS are introduced, along with examples for
clarification. Certain significant results related to the proposed concepts also demonstrated with explanatory
examples such as the maximal product of two strong LDFGSs is also a strong LDFGS, the maximal product
of two connected LDFGSs is also a connected LDFGS but the maximal product of two regular LDFGS may
not be a regular LDGS. Moreover, many interesting and alternative formulas for calculating p;-degrees of an
LDFGS in various situations are proved with examples. LDFGSs are highly beneficial for solving numerous
combinatorial problems involving multiple relations than the existing GSs in the context of F'S, IFS, PFS and
q-ROFS. LDFGSs as an extension of IFGS and LDFG to GSs deals the graph theoretical aspects in more
appropriate way due to their flexibility in selecting MD and NMD alongside their reference parameters.

In the future, we aim to extend our approach to (1) rough linear Diophantine fuzzy graph structures, (2)
rough linear Diophantine fuzzy soft graph structures, (3) linear Diophantine fuzzy soft graph structures, and
(4) Spherical linear Diophantine fuzzy graph structures.
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Abstract. This work presents a modified Pythagorean fuzzy similarity operator and utilizes its potential in the
analysis of questionnaire. Similarity operator is a formidable methodology for decision-making under uncertain
domains. Pythagorean fuzzy set is an extended form of intuitionistic fuzzy set with a better accuracy in complex
real-world applications. Lots of discussions bordering on the uses of Pythagorean fuzzy sets have been explored based
on Pythagorean fuzzy similarity operators. Among the extant Pythagorean fuzzy similarity operators, the work
of Zhang et al. is significant but it contains some flaws which need to be corrected /modified to enhance reliable
interpretation. To this end, this work explicates the Zhang et al.’s techniques of Pythagorean fuzzy similarity
operator by pinpointing their drawbacks to develop an enhanced Pythagorean fuzzy similarity operator, which
appropriately satisfies the similarity conditions and yields consistent results in comparison to the Zhang et al.’s
techniques. Succinctly speaking, the aim of the work is to correct the flaws in Zhang et al.’s techniques via
modifications. To theoretically validate the enhanced Pythagorean fuzzy similarity operator, we discuss it properties
and find out that the similarity conditions are well satisfied. In addition, the enhanced PFSO and the Zhang et al.’s
PFSOs are compared in the context of precision, and it is verified that the enhanced Pythagorean fuzzy similarity
operator can successfully measure the similarity between vastly related but inconsistent PFSs and as well yields a
very reasonable results. Furthermore, the enhanced Pythagorean fuzzy similarity operator is applied to the analysis
of questionnaire on virtual library to ascertain the extent of awareness and effects of virtual library on students’
academic performance via real data collected from fieldwork. Finally, it is certified that the enhanced Pythagorean
fuzzy similarity operator can handle diverse everyday problems more precisely than the Zhang et al.’s Pythagorean
fuzzy similarity operators.
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Keywords and Phrases: Decision making under uncertainty, Intuitionistic fuzzy set, Questionnaire analysis,
Pythagorean fuzzy set, Similarity operator.

1 Introduction

The occurrence of vagueness and uncertainty in decision-making (DM) is a common experience witnessed by
decision-makers. Due to this, fuzzy set (FS) [I] was introduced to curbed uncertainty but imprecision could
not be tackled by FS. To resolve the problem of imprecision, intuitionistic fuzzy set (IFS) was developed [2],
and it has been widely used to discuss practical DM problems. IFS is described by membership degree
(MD) and non-membership degree (ND), where their sum cannot exceeds one. Several practical problems
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have been solved via IFS in real-life problems using distance operators [3-5], aggregation operators [(], and
partial correlation coefficient operator [7]. In addition, other applications of IFSs have been discussed in
medical emergency |3, selection of artificial intelligence [9], admission process [10], and decision-making |1 1].
The similarity metric is a vital research aspect in F'S and its generalizations, and it is useful in determining
the similarity index between two objects. Several techniques of similarity operator between IFS have been
developed and gainfully applied in many fields, like pattern recognition [12], disaster control [13] and medical
diagnostic problems [11]. From the ongoing, it is clear that similarity operators of IFSs have been effectively
used in sundry fields, but there are some cases where IFSs cannot be utilized. For instance, if a decision maker
has MD as 0.7 and ND as 0.5, then the IF'S model cannot be applicable.

By extending the spatial scope of IFS, the term “IFS of type 2”7 or Pythagorean fuzzy set (PFS) was
developed [15,16]. In PFS, the sum of MD and ND may exceeds one but the square sum of MD and ND is
at most one. PFS has a wider dimension of utilizations compare to IFS. In a way to discuss the usefulness of
PFSs, a number of aggregation operators were discussed like Einstein operators, interactive power averaging
operator, geometric aggregation operators using Einstein t-conorm and t-norm [17-19] to illustrate some DM
problems. In the same vein, PFSs are pretty applicable in DM problems based on correlation coefficient
operators [20-23] and distance operators [21-31]. Moreover, Hemalatha and Venkateswarlu [32] used PFSs to
discuss transportation problem using mean square approach, Li et al. [33] presented an analysis of football
activities using Pythagorean fuzzy approach, and various applications of PFSs have been discussed in decision-
making [34-37].

In a clear term, PFS is a special case of IFS, which is fashioned to deal with some problems in which
IFS is inadmissible. For that reason, the application of similarity operators on PFSs is of great important.
The studies on similarity operators on PFS are carried out by modifying similar studies under IFSs. Zeng
et al. [31] presented some methods of similarity operators between PFSs using some distance operators since
both similarity operator and distance operator are dual in nature. Peng et al. [38] constructed some similarity
operators for PFSs and used same in clustering analysis, medical diagnosis and pattern recognition. To
compute the similarity between PFSs, Zhang [39] developed a similarity operator on PFSs and used it to discuss
multi-criteria decision-making (MCDM) problems. Wei and Wei [10] constructed several similarity operators
on PFSs through cosine function with applications in health science and pattern recognition. Recently, Zhang
et al. [11] developed four methods of Pythagorean fuzzy similarity operator (PFSO), which were utilized to
discuss pattern recognition problems. While the first two methods in |11] discarded the hesitation margins, the
other two took into account the whole parameters of PFSs for e reliable outcomes. Nonetheless, the methods
produce identical value other than one whenever the PFSs are equal, which is a violation of the similarity
axioms and thus render the methods unreliable.

The interest of this work is to provide corrections to the four similarity operators between PFSs constructed
in [11] by providing a new similarity operator between PFSs, which is the product of the hybridization of the
four similarity operators. For emphasis, similarity operators in [11] have the following setbacks: (1) they fail
to fulfill the similarity conditions if the PFSs are equal; (2) they yield similarity values that are not defined
within the similarity value range, and thus lack practical interpretation. To this end, this paper proposes
a hybridized similarity operator that corrects the work of Zhang et al. [11|, and proves that the corrected
version can successfully solve the mentioned setbacks observed in [11] via comparative examples using real
collected data. This work contributes to the study of similarity operator under uncertain environments, soft
computing, questionnaire analysis, and decision-making procedures.

The article is structured as follows: Section 2 recaps certain properties of PFSs; Section 3 discusses the
Zhang et al.’s PFSOs and their setbacks; Section 4 provides solution to the setbacks in Zhang et al.’s PFSOs
and discusses the properties of the modified PFSO; Section 5 discusses the application of the corrected Zhang
et al.’s PFSOs in the analysis of questionnaire, and as well as, presents a comparative analysis to express the
advantage of the corrected versions; and Section 6 concludes the paper with suggestions for future inquiries.
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2 Preliminaries

This section discusses properties of PFSs and the Zhang et al’s similarity functions. For clarity sake, assume
A to be the universe of discourse, g as IFS, and ¢ as PFS.

Definition 2.1. [2]An IFS @ in A is defined by p = {(a, My(a), Ny(a)) : a € A}, where My: A — [0,1] and
Ng: A —[0,1] are MD and NMD of a € A in which

0 < Mg(a) 4+ Ny(a) < 1.
In addition, HM of o in A is defined by Hy(a) =1 — My(a) — Ng(a).

Definition 2.2. [16] A PFS ¢ in A is defined by ¢ = {(a, My(a), Ny(a)) : a € A}, where My: A — [0,1] and
Ny: A—[0,1] are MD and NMD of a € A in which

0 < M?(a) + N£(a) < 1.

In addition, HM of £ in A is defined by Hy(a) = \/1 — M?(a) — Ni(a).
Now, we present some operations on PFSs as follows:
Definition 2.3. [16] If ¢, ¢1 and ¢ are PFSs in A, then
(1) €1 = by iff My, (a) = My,(a) and Ny, (a) = Ny,(a) Va € A.
(i1) €1 = Lo iff My, (a) = My,(a) and Ny, (a) = Ny,(a) Va € A.
(113) €1 C Ly iff My, (a) < My,(a) and Ny, (a) > Ny,(a) Ya € A.
(v) € = {(a, Ny(a), My(a)) : a € A}.
(v) 01Nl = {(a,min{My, (a), My, (a)}, max{Ny, (a), N¢,(a)}) : a € A}.
(vi) €1 U Ly = {(a, max{M;, (a), Ny, (a)}, min{Ny, (a), N¢,(a)}) : a € A}.
One of the means to estimate the similarity between PFSs is via similarity measure between them.

Definition 2.4. [1] If ¢, {1 and 5 are PFSs in A = {a1,a2,--- ,aqQ}, then the similarity metric between ¢
and Uy represented by I'(¢1,42) is a function, I': PFS x PFS — [0,1] such that:

(i) T(01,00) = 1, T(fa, b3) = 1,
(ii) T(01,03) =1 & €1 = 0y,
(iii) 0 < T(f1,05) < 1,

(iv) T(l1,05) = T(l2,01),

(v) T(01,0) <T(0y, ) + £y, 0).

In short, I'(¢1, £2) ~ 1 implies there is high similarity between ¢; and ¢35, and I'(¢1, ¢2) ~ 0 implies there is
a negligible similarity between £; and fs.



A Modified Pythagorean Fuzzy Similarity Operator
with Application in Questionnaire Analysis. Trans. Fuzzy Sets Syst. 2025; 4(1) 111

3 Zhang et al.’s PFSOs and Numerical Illustrations

The exponential-based techniques of similarity operators under PFSs were presented by Zhang et al. [11]
because of the failures of some existing approaches of PFSOs. Zhang et al. developed four exponential
based-similarity operators, enumerated as follows:

Tyl ) = =59, [21—max{|M31 (a;) =M, ()| INZ, (a))~NE, (@)} _ 1} (1)
) Q j= ?
2 (4 )—M2 (a; 2 (VN2 (a
Ts(l1, 2) = 222?1[ -t et e e ] 2)
Ty(ly, la) = ~59_ Pl—maxﬂMfl (a))= M2, (@)L INF, (a5)=NE, (@)L | HE, (a))~ HE, (a)|} _ 1} (3)
b Q ]: M
|MZ (a;)=MZ (aj)|+INZ, (a;)=NZ (aj)|+|H (a;)—HF (a;)]
F3(£1,€2) _ 222?:1 |:21_ 01\ 05\ 01\ . 05\ %) 01\ 05\ _ :|’ (4)

where ¢; and /¢ are the PFSs defined in A, a; € A and |A| = Q. The similarity methods in (1) and
(2) excluded the hesitation margins, which makes the approaches defective. Nonetheless, (1) and (2) were
enhanced as (3) and (4), respectively, to yield reliable results. Howbeit, all these methods yield similar results,
most especially, as the hesitation margins become small and for smaller ). We show the defectiveness of these
methods in the following examples:

Example 3.1. Suppose we have two PFSs ¢; and ¢; defined in A = {a;, as,a3} as follows:
51 = {(al, 0.5, 0.4), (az, 0.8, 0.1), (CL3, 0.7, 0.2)} = 62

This is a case of equal PFSs, and we are expected to have I'1 ({1, l2) = ['a(¢1,02) = T'3(l1,02) = T4(l1,42) =
1. Then, by applying (1)—(4) we get

Ty(01,4) = 2103_1 =0.3333
Do (ly,0y) = 21_03_1 =0.3333
L3(ly,4) = 21_03_1 =0.3333 ,
Ly(l1,4) = 21_03_1 = 0.3333,

which violate a similarity condition, i.e., I'(¢1,f3) = 1 < ¢ = {3. Hence, these approaches need to be cor-
rected to satisfy the condition.

Again, we observe that these approaches sometimes produce results that are not within 0 < T'(¢1,45) < 1,
as seen in Example 3.2.

Example 3.2. Suppose that
51 = {(al, 1, 0), (ag, 0.8, 0), (ag, 0.7, 0.1)},

0y = {(a1,0.8,0.1), (az, 1,0), (0.9,0.1)},
l3 ={(a1,0.6,0.2), (a2,0.8,0), (1,0)}
are PFSs in A = {a1,a2,a3}. In case there is another PF'S defined by
¢ ={(a1,0.5,0.3), (a2,0.8,0.2), (1,0)}.
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Now, we apply the approaches to find the similarities between ¢ with each of £1, ¢35, and /3, respectively,
and get the following results:
I'y(¢;,¢) = —0.0626,0.0142,0.2675

To(£;,0) = 0.077,0.1268,0.2887
T3(£;,0) = —0.055,0.0142,0.2844
T4(4;,0) = —0.0626,0.0142, 0.2675

for j = 1,2,3. The negative similarity values proof the failure of the PFSOs. To solve these defectiveness, the
Zhang et al.’s techniques are corrected as follows:

4 Corrections to Zhang et al.’s PFSOs

Because of the problems associated with Zhang et al.’s methods, it is necessary to correct the methods to
enhance reliability, precision, and the satisfication of similarity conditions.

Definition 4.1. Suppose {1 = {(a;, My, (a;), N¢, (a;)) : aj € A} and lo = {(aj, My, (aj), Ne,(aj)) = aj € A}
are PFSs for A = {a1, a2, -+ ,aq}, then the new similarity operator between ¢; and ¢, which corrects the
Zhang et al.’s PFSOs is defined by:

M@

B\ (b1, 0s) = [ 2 (a5)— M3, (a)| +| N2, (a5)~ N2, (a)| + | 7, (a5)— H3, (@) ) 71} (5)

J=t

By incorporating the influence of weight of the elements of A, we have:
Q 1 2 2 2 2 2 2
f(€1,£2) _ Z |:21—§Wj(‘Mel(aj)_MZQ(aj)‘+|N[1 (aj)_N42(aj){+‘H41(aj)_Hz2(aj)‘) _ 1}7 (6)
j=i

where w; € [0, 1] and Z?:l wj = 1.

T
If w; = (%, %, e ,%) , then (6) becomes (5). The first advantage of this corrected version is that, it

incorporates the complete parameters of the sets. We use (5) and (6) to find the similarity between equal
PFSs in Example 3.1 and get

D0y, 0y) =T, (01,65) = 1

which satisfies I'(¢1,¢2) = 1 < £1 = lo. This is the second advantage of the corrected version over Zhang et
al.’s methods.

In addition, the corrected approaches produce results that are within 0 < I'(¢,¢2) < 1. To see this, we
consider Example 3.2 with w; = {0.2,0.4,0.4}, and get the following results:

T'(¢;,¢) = 0.6857,0.7427,0.8251,
T (¢;,€) = 0.6371,0.7304, 0.7956,

for j = 1,2,3. Clearly, these results are better than the results from Zhang et al.’s approaches. The results
from Zhang et al.’s methods and the corrected form are displayed in Table 1.
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Table 1: Results for Comparison

PFSOs Example 3.1 Example 3.2

Iy [41] 0.3333 —0.0626,0.0142,0.2675

Iy [11] 0.3333 0.0770,0.1268, 0.2887

Iy [11] 0.3333 —0.0550,0.0142,0.2844

'y [11] 0.3333 —0.0626,0.0142,0.2675
I, 1.0000 0.6371,0.7304,0.7956

The results in Table 1 justify the faults with the methods in [11] and the superiority of the corrected form.
While the results of Zhang et al.’s methods (i.e., Example 3.2) show that weak resemblance exist between
the PFSs, the new method shows that the PFSs are well related in agreement to mere observation. Now, we
characterize the corrected similarity operator theoretically.

Theorem 4.2. Suppose {1 and ¢y are PFSs in A= {ai,as,--- ,aq}, then
(i) T(t1,l2) = T(£2, 1),
(ii) T(t1,65) = T(L1, o),

(i) 0 < T(f1,4) <1,

(w) T(l1,6s) =1 & 01 =Ly,

Proof. The prove of (i) follows because

Q
(1, 0) = Z[ Lo (|2,  (a))|+| N2 ()= NZ (ap) | +| F2, (a) -2 (a)|) _ 1}

Q
Y Pl—éwj(}M;Q(aj)—Mz (a7)|+| N2 (a5)=NZ (a;)|+| HZ, (a) -2 (a)]) _ 1}

Similarly, (ii) holds.

To prove 0 < T'(£y, £2) < 1, it is sufficient to show that T'(£1,£2) < 1 since I'(¢1, £3) > 0 is straightforward.
. 1
Assume that y = I'(¢1,¢2) and = = §Z?:1 wj(‘Mé(aj) — Mé(aj)‘ + }Nfl(aj) — Né(aj)‘ + ‘Hz
H fg(aj)D, where x € [0,1]. Then, we have y = 2% — 1, which is a curve function with values range from 0

to 1. Thus, 0 <y <1 and hence, 0 §~1~“(€1,€2) <1 as desired, i.e., (iii) holds.
Next, we establish (iv). Suppose I'(¢1,f2) = 1. Then, we have

3oy (| M2, (a)= M2, ()| +| N2, (0)) N2, (ap) [+ B2, (@)=, a)|) _

-5 (} 5 (a5) "*"Né (a3)— Nz, (a;) ‘+|H/z )= HgQ(aj)D —9

2
%%(\Mi(ag’) — Mg, (aj)| + [N, (a;) — N (aj)| + |Hf, (aj) — Hi, (a)]) =1 =
205 (M2, (05) — M, (ag)| + | N2 (a) = N2 (a)] + |2 a5) — H, (05)]) = 0 =
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(| M7 (az) = M7, (aj)| + [N (a5) — N (a)| + |H7, (a;) — H,(a))]) =0 =
My, (a;) = My, (aj), Ne,(aj) = Ney(a;), He, (a;) = H,(ay).

Hence, ¢1 = {5.
Conversely, if /1 = ¢5. Then, ‘Mgl (aj)—Mé(aj)’ =0, ’N521 (aj)—Né(aj)‘ =0, and ‘H€21 (aj)—Hé(aj)’ = 0.
Thus,

1
3w (| MZ (a) = Mg, (a5)] + NG, (a) = N, (a)| + [ H, (a)) = HE, (a)]) =0,
and hence I'(¢y, £y) = 1
O

Theorem 4.3. Suppose {1 and ly are PFSs in A = {ay,a2,--- ,aq}, then

(i) Tu(lr,b2) = T (l2, 1),
(ii) Tyu(ly,0y) =T (01,0s),
(i) 0 < T,(l1,0s) <
() Tu(l1,0s) =1 & 01 = Lo,

Proof. Follow from Theorem 4.2. (]

Theorem 4.4. Given that {1, lo, and {3 are PFSs in A = {a1,a2,--- ,aq} such that {1 C ¢y C l3. Then
(i) T(br,t3) <T
(ii) T(t1,43) <

(iii) Ts(1,03) < Tu(br,02),
(b2, l3).

Proof. Because ¢; C ¢y C (3, we have My, (aj) < My,(a;) < My,(a;) and Ny, (aj) < Ng,(aj) < Nyy(aj)
Va; € A. Thus,

£17£2)

/\/-\

f a‘€3);

() Ty(f1,03) <T,

‘Mgl (CL]) Meg a] ’ Z |Mf1 a]) MKQQ (a])
|NZ (aj) = Nit (aj)| = [N (aj) — N, (aj)
‘Hgl (a‘] Heg (a])} Z ‘Hfl (a’]) Hf22 (a])‘7

such that
| M7 (aj) — M, (aj)| + |NZ (a;) — N, (a;)
+‘Hf21(a’] Hfg a] | ‘Mg CL] MEQ a])
""NL%(% Ne a; |+ ‘Hél a;) Heg aj ‘

2

Clearly, I'(£1,¢3) < T'(¢1,£3) which proves (i). By using the same logic, the proofs of (i), (iii), and (iv) hold.
U

Corollary 4.5. If {1, l, and {3 are PFSs in~A = {a1,~a2,-~ sag} and €1 C Uy C l3. Then f‘(ﬁl,fg) <
min{F(ﬁg,eg),F(ﬁl,@)} and F*(gl,ﬁg) < min {F*(€2,£3),F*(€1,€2)}.
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Proof. From Theorem 4.4, T'(¢1,¢3) < T'(¢1,05) and T'(¢1, 03) < T'(fa, £3). Hence, T'(¢1, £3) < min {f(fg,fg),f(ﬁl,ﬁz)}.
Similarly, I, (61, 03) < min {T (62, 03), T (01, 62)}. O

Theorem 4.6. Suppose {1 C Uy C 43 are PFSs in A= {a1,a2,--- ,aqg}, then
(i) T(t1, o) + T(l2, £3) > T(£1,43),
(i) Tu(l1,l2) + Tu(la, £3) > Tu(£1,L3),
(i) (fl,ﬁz) = (61 Ny, 01 U ls),
() Ty(l1,00) = Tyu(ly N Ly, 01 U L),

Proof. Suppose {1 C £y C 5. Then, I'(41,£3) < T'(£1,65) and T'(¢1,43) < T'(¢,¢3) from Theorem 4.4. Thus,
D'(€1,€3) <€, €2) + I'(€2, £3), which proves (i). Similarly, (ii) follows from (i).
The proof of (iii) follows by using intersection and union of PFSs in terms of I'. Thus,

F(ne6Uk) = [2x o205 | (min{My, (a),Mey (a;)}) — (max{Me, (a;), Mz (a;)}) |

M@

j=i

o o (| (ma{ Ve, (a7),Ney (a)) *~ (min{Ne, (a),Ney a)}) " |+ H2, 0 (@) FZ, oy (0)] ) 1]

Q
Z {2 % 23w]‘ M222(aj)‘ « 2—&2]-(‘Ngl(aj)—N§2(aj)‘+|H[21 (aj)—ng(aj)D . 1]
j=i
(617 62)7
which proves (iii). The proof of (iv) is similar to (i7i). O

5 Application in Questionnaire Analysis

This section deliberates on the use of the new PFSO in the analysis of questionnaire due to the fuzziness in
filling questionnaire. The questionnaire is constructed to measure the extents of awareness and use of virtual
library esources (VLR) by undergraduate medical students. Virtual library (VL) is the incorporation of ICT
into library services, and this has brought remarkable progress in the academic performance of students in
universities [12]. The majority of works done on virtual library made used of questionnaire to decide their
aim and objectives. The process of filling questionnaire is characterized with hesitation on the part of the
respondents and equally, some of the questions in the questionnaire could be ambiguous. This is the reason
why PFS is necessary for questionnaire analysis. This work is governed by the following questions, namely:
(7) what is the level of awareness of the VLR in the department by the students? (i7) what are the effects of
VL on the medical students’ academic wellbeing in the department?

5.1 Data description and presentation

The data for the analysis is drawn from 198 students in the Department of Medicine and Surgery, Benue State
University, Makurdi, Nigeria. 198 students out of the 392 students in the department are gotten by using the
Yamane’s sampling technique [13]. The collected data are presented in Tables 2 and 3, where strongly agree
is represented by /1, agree is {9, disagree is {3, strongly disagree is £4, and the questions are Q1, @2, @3, Q4
and Qs, respectively.
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Table 2: Level of Awareness on the Availability of VL
Questions/Scales £ % by % l3 % i B

1 9% 48 63 31.8 22 111 18 9.1
Q2 68 343 51 258 49 247 30 152
Q3 39 197 50 253 78 394 31 15.7
Q4 34 172 78 394 65 32.8 21 10.6
Qs 105 53 73 369 16 81 4 2

Table 3: Effects of VL on Academic Performance
Questions/Scales 61 % o % ts % by %

Q1 47 2377 81 409 45 227 25 126
Q2 51 258 75 379 46 232 26 13.1
Q3 34 172 83 419 50 253 31 15.7
Q4 42 21.2 72 364 57 288 27 13.6
Qs 52 263 62 31.3 56 28.3 28 14.1

Due to the fuzziness in filling the questionnaire, we transform the data in Tables 2 and 3 into PFD as
displayed in Tables 4 and 5, by taking the percentages of each of the scales as the MGs while 1—MGs are the
NMGs.

Table 4: Data on Level of Awareness of VL

Scales Q1 Q2 Q3 Q4 Qs
2 (0.480,0.520) (0.343,0.657) (0.197,0.803) (0.172,0.828)  (0.53,0.47)
ly (0.318,0.682) (0.258,0.742) (0.253,0.747) (0.394,0.606) (0.369,0.631)
ls (0.111,0.889) (0.247,0.753) (0.394,0.606) (0.328,0.672) (0.081,0.919)
4y (0.091,0.909) (0.152,0.848) (0.157,0.843) (0.106,0.894)  (0.02,0.98)

Table 5: Data on Effects of Virtual Library

Scales Q1 Q2 Q3 Q4 Qs
2 (0.237,0.763)  (0.258,0.742) (0.172,0.828) (0.212,0.788) (0.263,0.737)
ly (0.409,0.591) (0.379,0.621) (0.419,0.581) (0.364,0.636) (0.313,0.687)
ls (0.227,0.773)  (0.232,0.768) (0.253,0.747) (0.288,0.712) (0.283,0.717)
Ly (0.126,0.874) (0.131,0.869) (0.157,0.843) (0.136,0.864) (0.141,0.859)

Now, we find the similarity between the scales in Tables 4 and 5 using the new similarity operator (5) and
get the outcomes in Table 6, which are presented in Figure 1.

Table 6: Results for Analysis
Awareness/Effects  Tw(f1,02) Tw(l1,03) Tw(l1,04) Tu(la,l3) Tu(lo,ly) T.(l3,l4)
Awareness 0.8410 0.6950 0.6994 0.8128 0.7129 0.8243
Effects 0.8178 0.9408 0.8692 0.8545 0.6990 0.8323
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Figure 1: Plot of Results

From these results, for the case of level of awareness of VL, we see that the similarity between SA and A
(i.e., SAA) is the greatest, which implies that the undergraduate medical students are aware of the virtual
library resources in their department. Similarly, for the case of effects of virtual library, it is observed that
the similarity between SA and D (i.e., SAD) is the closest, which implies that the effect of virtual library on
the academic performance of the students is not satisfactory.

5.2 Comparison I

To determine the effectiveness of the corrected similarity method, we show its results side by side with the
results from the methods in [11]. The comparative results are expressed in Tables 7 and 8.

Table 7: Level of Awareness of VL

Methods (61,52) (61,53) (51,54) (52,[3) (52,64) (53,54)
I, 0.8410  0.6950 0.6994 0.8128 0.7129  0.8243
I 0.0486 —0.0338 —0.0254 0.0440 —0.0089 0.0576
Iy 0.0149 —-0.0844 —0.0821 —0.0086 —0.0749 0.0007
I's 0.0149 —-0.0844 —0.0821 —0.0086 —0.0749 0.0007
Iy 0.0149 —-0.0844 —0.0821 —0.0086 —0.0749 0.0007

From Table 7, we see that the similarity between SA and A, and D and SD are very close using the
corrected similarity operator. Among the relations, the similarity between scales SA and A is the greatest.
This implies that the medical students are aware of the existent of VL on their campus. It is observed that
the methods in [11]| fail a similarity condition by giving negative results. Therefore, the methods are not
appropriate PFSOs, which justifies the effected correction.
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Table 8: Effects of VL
Methods (ﬁl,gg) (61,£3> (51,64) (fz,gg) (62,64) (63,64)

I, 0.8178  0.9408 0.8692 0.8545 0.6990 0.8323
I 0.0392  0.1451 0.0926 0.0637 —0.0250 0.0654
I —0.0046 0.1193 0.0409 0.0270 —0.0823 0.0074
I3 —0.0046 0.1193 0.0409 0.0270 —0.0823 0.0074
Iy —0.0046 0.1193 0.0409 0.0270 —0.0823 0.0074

The information in Table 8 shows that the similarity between the scales SA and D is the closest based
on the corrected PFSO. The implication of this is that, VL has not effect on the academic wellbeing of the
medical students because awareness does not translates into effectiveness if the VLR are not put into use. We
observe that the defective methods in |11] produce outcomes that are undefined in the range of the similarity
values. Throughout the study, we see that I's, I's, and Iy in [11] yield the same results.

5.3 PFSO based-MCDM Approach of Analyzing Questionnaire

MCDM is a process of choice making in social sciences, medicine, engineering, etc. MCDM determines the
best option by assessing more than one criteria for the purpose of selection. Due to the present of imprecision
in choice making, MCDM has been studied under PFSs using various information measures. Here, we present
the MCDM approach of analyzing questionnaire of VL based on the corrected similarity operator because it
has been proven to be effective, consistent and reliable with the most precise results compare to the methods
in [11].

5.3.1 Algorithm for the MCDM

The algorithm are as follows:

Step 1. Obtain the Pythagorean fuzzy decision matrix (PFDM) denoted by le = {Qi(gj)}(mxn) for i =
1,2, ,m, 5=1,2,--- ,n, where ); are the questions.

Step 2. Formulate the normalized PFDM /¢ = <MZ;(Qi),Ng;(Q¢)>an, where <Ml7§ (Qz),NZ;(QZ» are the

PFD, and / is defined as:

) : B <Mt7j (Qi), Néj (Qi)), for benefit criterion of ¢
<M€J*' (@), NZ;(Qi» N { <Ngj(Qi), M, (Qi)), for cost criterion of ¢ )
Step 3. Compute PIS (positive ideal solution) and NIS (negative ideal solution) given by
o+ _ o+ ... )+
€~_— {61: ,E?_ @®)
¢ :{617"' ,[n}
where
- <max{ng (Qi)}, min{ley_(Qi)}% if Q; is the BC
© T\ min{M; (@)}, max{N; (@), if @ s the CC, ®)
~ <H111’l{]\4'l7J (QZ)}, maX{NZ] (QZ)}>, if QZ is the BC
© T max{M; (@0} min{N; (Q))}), if Qs is the CC, (10)
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where BC is benefit criterion and CC is cost criterion.
Step 4. Compute the similarities T'x(¢;,£7) and I'.(¢;, 7).
Step 5. Find the closeness coefficients V(¢;) by

7 f* (Zﬁ ng)

V) = D0, )+ T (0, ) 1

<.

forj=1,2,---,n
Step 6. Determine the greatest closeness coefficient for the interpretation.

In case either I, (¢5, 0 ) or (EJ , E*) is negative (which ought not to happen except the similarity operator
is defective), we find V*(¢;) and V~(¢;) thus:
. L. (0;,07) = Do (€, 0
v-i—(gj): _ ( J> ~) I ( J2 ~) , (12)
r ax(€j7£+) - Fmin(fj’f‘i_)
_ f‘*(~agi)_f‘min(g'ag7)mm
V() = = il L (13)
Fmax(ggyg )_Fmin<£]7£ )
before Step 5. Then (11) becomes:
_ +(7.
Vo) = —— ) (14)
VH(E) + V= (45)

forj=1,2,---,n

Note that
(53, 07) = ua (0205, )),
fmm(gj,ﬁ) = lr<n]1£1n{1“ (ﬂj,fr)}
a5 7) = o (5,8},
Puia(f,€7) = min {T.(6;,07)}.

The algorithm is captured in Figure 2.
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Figure 2: Flowchart for Implementation

5.3.2 Casel

Here, we discuss the questionnaire on the level of awareness of VL as presented in Table 4 via MCDM
technique, where @5 is cost criterion since the question gives the least MDs. By Step 2, we get Table 9.

Table 9: Normalized PFDM for Level of Awareness

Scales 61 52 53 €4
Q1 (0.48,0.52)  (0.318,0.682) (0.111,0.889) (0.091,0.909)
Q> (0.343,0.657) (0.258,0.742) (0.247,0.753) (0.152,0.848)
Qs (0.197,0.803) (0.253,0.747) (0.394,0.606) (0.157,0.843)
Qi (0.172,0.828) (0.394,0.606) (0.328,0.672) (0.106,0.894)
Qs (0.47,0.53)  (0.631,0.369) (0.919,0.081)  (0.98,0.02)

Using Step 3, we obtain the PIS and NIS in Table 10.
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Table 10: PIS and NIS for Level of Awareness

Scales 0 A
0. (0.091,0.909)  (0.48,0.52)
Q»  (0.152,0.848) (0.343,0.657)
Qs (0.157,0.843) (0.394,0.606)
Qi (0.106,0.894) (0.394,0.606)
Qs (0.98,0.02)  (0.47,0.53)

By Step 4, we compute the similarities between Ej and ¢~, and le and ¢t using (5) to obtain the results

in Table 11.

Table 11: Similarities of (£;,¢~) and (¢;, ")

Scales Tw(¢;,07) T (¢, 0")
A 0.7088 0.8824
0 0.6719 0.8883
ls 0.6883 0.7730
ly 0.8302 0.6173

Next, by using (11) in Step 6, we obtain the closeness coefficients in Table 12.

Scales  V.(¢;) Ranking
A 0.5546 ond
0y 0.5694 15t
l5s  0.5290 3rd
0y 0.4265 4th

Table 12: Closeness Coefficients for Level of Awareness

From Table 12, we see that the medical students are aware of the existent of VLR because the scale ls
(i.e., A) is ranked first, which tallies with the finding in Table 7.

5.3.3 Case Il

Now, we consider the questionnaire on the effects of VLR on the academic wellbeing via MCDM method using

the PFDM in Table 5, where Q3 is taken as the cost criterion. By Step 2, we get Table 13.

Table 13: Normalized PFDM for Effects of VL

Scales lq £ {3 £y
Q1 (0.237,0.763)  (0.409,0.591) (0.227,0.773) (0.126,0.874)
Q2 (0.258,0.742)  (0.379,0.621) (0.232,0.768) (0.131,0.869)
Q3 (0.828,0.172) (0.581,0.419) (0.747,0.253) (0.843,0.157)
Q4 (0.212,0.788) (0.364,0.636) (0.288,0.712) (0.136,0.864)
Qs (0.263,0.737)  (0.313,0.687) (0.283,0.717) (0.141,0.859)

Using Step 3, we obtain the PIS and NIS in Table 14.
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Table 14: PIS and NIS for Effects of VL

Scales 0 A
O, (0.126,0.874) (0.409,0.591)
Q»  (0.131,0.869) (0.379,0.621)
Qs (0.843,0.157) (0.581,0.419)
Qi (0.136,0.864) (0.364,0.636)
Os  (0.141,0.859) (0.313,0.687)

By Step 4 via (5), we get Table 15.

Table 15: Similarities between (£;,¢7) and (£}, %)
Scales Ty (;,07) T, (¢, 0")
A 0.7593 0.7908
05 0.6737 0.9703
05 0.7505 0.8269
0y 0.8771 0.6737

Next, we find the closeness coefficients for the similarity values using (11) and get Table 16.

Table 16: Closeness Coeflicients for Effects of Virtual Library
Scales  V.(¢;) Ranking
61 0.5102 3rd
12 0.5902 18t
l5  0.5242 ond
0y 0.4344 4th

The values of the closeness coefficient indicate that 172 > 673 b 571 > 574. The interpretation of the ranking
is somehow confusing because it oscillates between agree and disagree, which infers that the medical students
agree to a minimal effect of VLR on their academic wellbeing possibly due to a very poor use of the VLR,
which may be caused by technological barriers, user interface issues, and competing academic commitments.

5.4 Comparison 11

Again, we show the effectiveness of the corrected similarity method via MCDM in comparison with the
defective methods in [11]. The comparative results are shown in Tables 17 and 18, and Figures 3 and 4.

Table 17: MCDM Comparative Results for Case 1

Methods V(1) Vi(la) V.(l3) Vi(ls) Ordering Verdict
T, 0.5546  0.5694 0.5290 0.4265 fly = {1 = (3 =0y, o

| 0.8403 1 0.8513 0 ly>=l3=0y =0y Iy

| 0.6187 0.7997 1 0 lz3=ly=0y =0y I3

D3 [11]  0.8491 0.9359 0.4522 0 o=l =0l3-0y 0y

| 0.8403 1 0.8513 0 lysl3 =01 =0y 1o
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Figure 3: Plot for Comparison

From Table 17, we see that the medical students agree that they are aware of the existent of VLR in
their department. While all the methods give the same interpretation, I's gives different interpretation. The
existing methods give zero and one closeness coefficients due to their defectiveness. From Figure 3, it is only

the corrected similarity operator that shows consistency.

Table 18: MCDM Comparative Results for Case 2

MetNhods V* (61) V* (62) V*(fg) V* (64)

Ordering

Verdict

0.5102
0.4531
0.4731
0.5881
0.4531

0.5902 0.5242 0.4344

1

1
1
1

0.5687
0.5318
0.7151
0.5687

0

0
0
0

by =03 = L1 = {4
g2>23>-g1>-g4
gg>—l73>-gl>-g4
22>53>gl>g4
g2>-l73>-51>-24
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Figure 4: Plot for Comparison

From Table 18, it follows that the medical students agree that the use of VLR has effect on their academic
wellbeing. We observe that the closeness coefficients based on the existing PFSOs [11] for 5 and 04 give
zero and one, respectively due to their defectiveness unlike the corrected PFSO. From Figure 4, we see the
consistency of the corrected PFSO.

6 Conclusion

In this paper, a new PFSO was developed to ease decision-making in imprecise environments. The new PFSO
is the corrected form of the PFSOs in [11], where four PFSOs were constructed which we have demonstrated
to be defective. The new PFSO can be used with or without weight vector. Some numerical illustrations
were used to showcase the defectiveness of the PFSOs in [11] and to demonstrate the overriding significant
of the new PFSO. While the PFSOs in [11] violated the axioms of similarity function, the new PFSO yields
reliable and precise results which are consistent with the axioms of similarity function. In addition, some
theoretic results of the new PFSO were considered and proved. Furthermore, the new PFSO was used to
analyze questionnaire on VL where the collected data were transformed to Pythagorean fuzzy data (PFD).
The questionnaire was designed and distributed to 198 undergraduate medical students for the purpose of
data collection, after which the data were converted to PFD. It is observed that the corrected version of PFSO
could be helpful in decision-making under indeterminate domains since the PFSO is well equipped to control
hesitations that may constitute bottleneck for decision-makers. Exploring the potential real-world applications
of the new PFSO in different imprecise domains is an interesting research direction for future endeavor. The
construction of the modified PFSO limits its application to only Pythagorean fuzzy environment. Thus,
the modified PFSO cannot be used to model decision-making problems under picture fuzzy sets |11], q-rung
orthopair fuzzy sets [15], Fermatean fuzzy sets [10], etc. because the distinct properties of these sets are not
represented in the modified PFSO. However, with some alterations, the modified PFSO could be stretched to
the aforementioned domains and use to solve real-world applications.
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Abstract. Alzheimers disease is an unpredictable and progressive neurodegenerative disorder that initially affects
memory thinking and behavior. Some key features of Alzheimers disease are memory loss, cognitive decline,
behavioral changes, disorientation, and physical symptoms. In this article, we design the procedure of a multi-
attributive border approximation area comparison deep learning algorithm for the diagnosis of Alzheimers Disease.
For this, first, we goal to design the model of complex propositional linear Diophantine fuzzy information with
their basic operational laws. In addition, we analyze the model of complex propositional linear Diophantine fuzzy
power average operator, complex propositional linear Diophantine fuzzy weighted power average operator, complex
propositional linear Diophantine fuzzy power geometric operator, complex propositional linear Diophantine fuzzy
weighted power geometric operator, and also initiate their major properties. Additionally, the key role of this
paper is to arrange relevant from different sources for diagnosing Alzheimers disease under the consideration of
the designed technique. Finally, we compare both (proposed and existing) ranking information to address the
supremacy and strength of the designed models.

AMS Subject Classification 2020: 03B52; 68T27; 68T37; 94D05; 03E72
Keywords and Phrases: Alzheimers Disease, Complex Propositional linear Diophantine fuzzy sets, MABAC
deep learning methods, Power aggregation operators.

1 Introduction

Diagnosing Alzheimers disease is very ambiguous and uncertain, connected with memory loss and changing
behavior because of progressive neurodegenerative disorder [1]. The analysis of Alzheimers disease has been
done by different scholars according to consider the information of crisp data [2], but to analyze the best
one among the collection of data, we needed a soft and valuable technique that can help us in the evaluation
of the procedure of decision-making models [3]. A lot of data has been lost in numerous decision-making
procedures because of limited information and due to this, various problems are unsolved [!]. For this, Zadeh
[0] prepared the fuzzy sets (F'Ss). FSs theory developed with just a function, called truth degree, defined from
fixed sets to unit intervals. In addition, it is quite complex to deal with genuine life problems in the presence
of just F'S theory, because truth and falsity, yes and no, supporting and supporting against information are
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the key parts of various real-life scenarios. For this, the model of FSs is not suitable, therefore, Atanassov
[6, 7] designed the intuitionistic FSs (IFSs). IFSs designed with two different functions but with the same
range, called truth degree and falsity degree with a characteristic that is the sum of both functions belonging
to a unit interval.

In genuine life situations, all experts are independent and they are not restricted to following the condition
of IF'Ss, because the provided information of experts will exceed form unit interval. For this, the model of
Pythagorean FSs (PFSs) was designed by Yager [%]. PFSs are constructed with truth and falsity degrees with
a characteristic that is the sum of the squares of both functions belonging to a unit interval. In addition,
Yager [9] designed the g-rung orthopair FSs (q-ROFSs) in 2016. The model of g-ROFSs has also developed
with truth and falsity information with a model that is the sum of the g-power of both functions belonging
to the unit interval. These techniques are very useful and dominant because of their characteristics and
due to this reason, many scholars have utilized them in various fields. Riaz and Hashmi [10] organized
the linear Diophantine FSs (LDFSs) with a truth and falsity function (Fg(t),d5,(T)) with parameters
(¢, (1), 1'%, (T)).The prominent characteristics of LDFSs, such as (%,(7) * Fro, () + ', (1) * dy, (1) € [0,1],
where (,(T) + Iy, (t) € [0,1]. The model of LDFSs is more powerful and more dominant because of their
features, the condition of LDFSs is developed based on linear Diophantine equation az + by = c.

Ramot et al. [11] designed the complex FSs (CFSs), the function in CFSs is developed in the form of
complex-valued information, where the real and unreal parts of the truth function are limited to unit interval.
In various situations, we will cope with complex problems with the help of two-dimensional information, called
the complex-valued truth function. Further, Alkouri and Salleh [12] designed the complex IFSs (CIFSs) with
complex-valued functions, the condition of CIFSs is that the sum of both functions (for both functions, real
and unreal) belongs to the unit interval. Ullah et al. [13] derived the complex PFSs (CPFSs), the projecting
condition of CPFSs is the sum of the square of both functions (for both functions, real and unreal) belonging
to the unit interval. In 2019, Liu et al. [I1] invented the complex q-ROFSs (Cq-ROFSs), the projecting
condition of Cq-ROFSs is the sum of the g-power of both functions (for both functions, real and unreal)
belonging to the unit interval. In 2020, Ali and Mahmood [15] evaluated the Maclaurin Symmetric mean
operators for Cq-ROFSs. In 2022, Kamaci [10] designed the invented the complex LDFSs (CLDFSs), such as

H = {(T’ <}-;;’(T)"7:Z'L;(T)) ) (‘H(;")P(T)’ &%(T)) ) (C;:Jp(’t)’ %(T)) ) (Ffp(’f),r%(’t))> (T E X}, where the model of

complex-valued membership (non-membership) function is defined by: (]—";;), ]-'ip) : X — [0,1], ((&‘;’p, :I‘Z‘;) :

X — [0, 1]) with 2, () * F, (t) + T (1) x50, (T) € [0, 1], ( o (1) * Fio(t) + T, (1) * d7,(7) € [0, 1]) and ¢, (T)+
Iy, (t) € [0,1] ,( (1) + g, (7) € [0, 1]), where, the model of complex-valued parameters is defined by:
G G T30, T - X — [0, 1] where e, () = 1— (¢35, (7) % Frop () + T, (1) % (1)) €5, (T) = 1— ( © (1) * Fio (1)
+15,(T) * \E[‘{;)(T)), called the refusal function.

In 1980, Gottwald [17] designed the fuzzy propositional logic, a modified version of the FSs theory. In
1988, Atanassov [18] derived the intuitionistic fuzzy propositional calculus with two variants. In 2020, Wang
et al. [19] presented the intuitionistic fuzzy propositional logic with novel plausible reasoning-based decision-
making models. In 2024, Kahraman [20] introduced propositional PFSs with analytical hierarchal process
extensions. In addition, Pamucar and Cirovic [21] invented the (multi-attributive border approximation area
comparison) MABAC technique for classical set theory. Further, Yager [22] evaluated the power averaging
(PoA) technique. In 2009, Xu and Yager [23] introduced the power geometric (PoG) technique for classical
set theory. Jiang et al. [24] derived the power operators for IFSs. Wei and Lu [25] examined the power
operators for PFSs. Garg et al. [20] initiated the power operators for Cq-ROFSs. Liu et al. [27] derived the
power Dombi operators for CPFSs. Rani and Garg [28] evaluated the power operators for CIFSs. Ali [29]
presented the power interaction operator for CIFSs. Ali et al. [30] described the power operators for complex
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intuitionistic fuzzy soft sets. Moslem [31] designed the parsimonious spherical fuzzy AHP models. Moslem
et al. [32] evaluated the fuzzy analytical hierarchy model. Moslem and Pilla [33] invented the spherical fuzzy
group decision-making techniques. Acharya et al. [34] designed the stability analysis for neutrosophic fuzzy
information. Singh et al. [35] evaluated the malaria disease model in crisp and fuzzy information. Momena
et al. [30] initiated the generalized dual hesitant hexagonal fuzzy decision-making techniques. Acharya
et al. [37] constructed the neutrosophic differential equation with decision-making techniques. During the
assessment of the existing models, we noticed or missed that the technique of complex propositional linear
Diophantine fuzzy sets (CPLDFS) needed to be introduced because the above techniques are special cases of
proposed models. In addition, we also noticed that to propose the technique of power operators and MABAC
for CPLDFSs. The key and major contributions of the designed techniques are listed below:

1. To design the procedure of a MABAC deep learning algorithm for the diagnosis of Alzheimers Disease.

2. To design the model of complex propositional linear Diophantine fuzzy (CPLDF) information with their
basic operational laws.

3. To analyze the model of CPLDF power average (CPLDFPoA) operator, CPLDF weighted power average
(CPLDFWPoA) operator, CPLDF power geometric (CPLDFPoG) operator, CPLDF weighted power
geometric (CPLDFWPoG) operator, and also initiate their major properties.

4. To arrange relevant from different sources for diagnosing Alzheimers disease under the consideration of
the designed technique.

5. To compare both (proposed and existing) ranking information to address the supremacy and strength
of the designed models. The graphical interpretation of the designed technique is derived in the form
of Figure 1.

abstract of the proposed theory..png abstract of the proposed theory.bb
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Figure 1: Graphical abstract of the proposed theory
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This article is organized in the following ways: In Section 2, we explained the revised techniques of CLDFSs
with basic definitions. In addition, we also reviewed the PA operator, and PG operator for the group of any
positive integers. In Section 3, we designed the model of CPLDF information with their basic operational
laws. In Section 4, we analyzed the model of CPLDFPoA, CPLDFWPoA, CPLDFPoG, and CPLDFWPoG
operators, and also initiated their major properties. In Section 5, we designed the procedure of a MABAC
deep learning algorithm for the diagnosis of Alzheimers Disease. In Section 6, we arranged relevant from
different sources for diagnosing Alzheimers disease under the consideration of the designed technique. In
Section 7, we compared both (proposed and existing) ranking information to address the supremacy and
strength of the designed models. Some concluding remarks are described in Section 8.

2 Preliminaries

The model of complex linear Diophantine fuzzy information is the reformed version of numerous techniques
and very reliable ideas for controlling imprecise and inexact data. This section goals to explain the revised
techniques of CLDFSs with basic definitions. In addition, we also reviewed the PA operator, and PG operator
for the group of any positive integers.

Definition 2.1. [16] A methodology of CLDFSs for X (universal set), is designed and deliberated by:

H = {(t, (F (1), Fip (1)) , (d5,(0), A5 (7)) 5 (G (D), 6 (D)) 5 (T, (1), T3 (7)) ) = T € X}
Where the model of complex-valued membership (non-membership) function is defined by:

(Fr Fo) : X = [0,1], (5, d5) : X = [0,1])

rp? p

with ¢2,(1) * F2 (1) + T, (1) 4% (1) € [0, 1], ( © (1) % Fo (1) + T% (1) * A5 (1) € [0, 1]) and C2,(1) +T%,(1) €

[0,1], ( ;;,(T) + F%(T) € [0, 1]), where, the model of complex-valued parameters is defined by: (75, 50, ', I'g
X = [0, 1] where £2,(t) = 1—(C%,(t) * F&, (1) + T, (1)  d%,(1)) , £ (1) = 1—( © (1) « F2(1) + T2 (1) &g;,(r)),
called the refusal function. The simple version of CLDFN is mentioned in the following form, such as:

ﬁ& = ((f%&af‘;&> ) <‘E[;J£L7&;;,&> ) (C;:;o&a :;;&> ’ (ngarz&)> & =1,2,--,3

In addition, we goal to describe numerous operational laws for the above existing models, such as algebraic
operational laws, briefly discussed below.

Definition 2.2. [16] Let Hy = ((Fg&]—“;&)( fg,&;;«%),(g;;&, ;;@a),( gfgc,r;;&)),& — 1,2 be two
CLDFN. Thus
o i (Pt + P = P Fap Pt + P = Fo ) (A, a5 22 )
(Gor + G — e + ¢ - o) (e T
o i (P Fep, P Fez) (A + A — A5 dp, )+ 52— A5 457
(Corcam,coicer) (T + T — Tz T 4+ T3 — TS )



Fuzzy MABAC Deep Learning for Diagnosis of Alzheimers Disease: Analysis of Complex
Propositional Linear Diophantine Fuzzy Power Aggregation Insights. Trans. Fuzzy Sets Syst. 2025; 4(1) 133

(e () (e ()”),
nelg = ~ . ~ -
(1= =™ a-(1-¢)") (™. (1))

7)% _ <(f%&)ﬁ@ ’ (f?&y) ’ (1 ~ (a1 (1- ﬂz;&f@) ,
(H&> B (( weye (QJJ&Y@) | (1 (1 -Tes)e 1 (1 _F;;&)ﬁ@)

Moreover, we target to revise the information of score value and accuracy value, for evaluating the relationship
among any two complex linear Diophantine fuzzy numbers.

Definition 2.3. [16] Let Hy, = ((]—";;,&,]-";;&) , (&fg,&;‘;&) , ( e ;;)&) , (ryg,r;;&)) & = 1 be a CLDFN.
Thus

sC (He) = % (P + 7o) = (o + ) + (G + ) - (Tos +13%)) € 1,1

Ac (i) = i (P + 7 ) + (s + @) + (G + o) + (T + 1) ) € 0,1

Thus, if SC (I:Il) > SC (ﬁg) = ﬁl > ﬁg, then if AC <ﬁ1) > AC (ﬁg) = I:Il > JEIQ. Further, we goal to
discuss the technique of PoA and PoG techniques.

Definition 2.4. [22, 23] Let ﬁ&, & =1,2,---,3, be a group of non-negative information. Then
iy ) () ()
o) ( 1, Hoy oo, 3) = 22:1 (1+f](f~l&>> 1@23:1 <1+ﬁ(f1&>) DD 2:1 1+ﬁ(~&>> 3
~ (ea(a)
E T (e (a))
signified the PoA operators, and the technique
(Lti()) (1+(7i)) (1+7(775))

PoG (ghg% . ,g3> _ (H1> 31 (+i(Ag) g (Hz) D21 +i(Ag) & ... & (H3> so_,(a(fg))

(1+7(Hg )

- f[ (Frg ) Z2=iCeatm)

n

called PoG operator with 7 (.Ff&> = Z?;é&:l (ﬁi, .Ff&), and S (ﬁi,ﬁ&) =1-D (ﬁl If&), thus
1. S (Fli,}f&> e [0,1].
2. 8 (Hi, He) = (He, ;).

3. When (ﬁ,-, ff&> > 5 (ﬁk, ﬁl), then D (ﬁi, ff&) <D (ﬁk, ﬁl).
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3 CPLDFSs: Complex Propositional Linear Diophantine Fuzzy Sets

This section goals to explain the new techniques of CPLDFSs with basic definitions. Further, we designed
some algebraic operational laws for CPLDFSs.

Definition 3.1. A methodology of CPLDFSs for X (universal set), is designed and deliberated by:
H = {(7, (Fy5(1), Fiy (1)), (A (1), 45, (0) , (G (1), G (D) (T (1), T (D)) ) = T € X
In addition, we define the truth and parameter function according to their real and imaginary parts, such as
Fn(1) = Ly, (45, () + (Fiy (1) = Ly, (5, (1))
and
() = L7, (T, (1), (¢ (1) = L, (T, (7))
Then

L2, (I%, (1) * LY, (32, (1)) +T%, (1) * 4%, (1) < 1

1
172
= Iy, (1) + 45, (1) (L+ Ly, L7)) < 1= 15 (1) + 4y, (1) < TTLLLZ,

Similarly, we have imaginary parts, such as

1
Iy (1)« d5, (1) £ ————5
1+ ]l"ipLip

thus
e (1) = 1= (G, (1) * Frop (1) + Ty (1) + Ay (1) = 1 = (L2, (T (7)) % Ly, (5, (7)) + Ty (1) % 155, (1))
= 1— (g, (1)« I, (1) (1+ L LE))
then
1-— a‘ﬁp('t) = I’fp('r) * &;:’p('t) (1 + ]L%p]L?p)

and

1—e¥(T)

Iw &w — P
P = L)

Similarly, we have

1-— sgfn(’t)

T (1) % 4% (1) = 2
1p 1P (1 n LzlpLZQp>

But if we use the condition of IFSs, thus we have
Ly, (d5,(7)) + i (1) < 1

1
1
= L’_‘-[fp(T> (1 +]L1”p) S 1 = &;t}p(’t) S m
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Similarly, we have imaginary parts, such as

1
a2 (1) < ————
U s

Thus, we have the condition of refusal function in IFSs, such as
el (1) =1 — (F (1) + d2,(1)) =1 — (L, (d2,(1)) + di,(1) =1 — (d2,(1) (1+1L},))
then

1—e2,(t) = d4(7) (1 +1L1,)

and

" 71—5;"(1) " 71—5;"(1)
a7, (1) = m’ (Crp(’f) = (1+£12"p)>

Similarly, we have

1 (1) = 1—ex(T) (1) = 1—ez(T)
LR CEE IR R A (1+13)

if e7,(1) = €5,(1) = 0, thus d7 (1) = (1+i1p) and Jd3 (1) = (1+}L1 - Then
T ip

|
P =L, () (A=, [ L
g p((l +L%p)> Y Y (1+1L}p)

and

w — .2 71 w — .2 71
Crp(T) - Lrp ((1 + Lgp)) ’ zp(T) - sz (1 N L?p)

Then

1 1 1 1 1 1
8 T <<Lrp <1+1L;p) LL <1+L}p>> 7 <1+]L;p7 1+L},p>> ’
H = 1eX
2 1 2 1 1 1
((Lw <1+1L3p) L (1+L§p)> ’ <1+L3p7 1+]L$.p>>

Thus, we have the following final shape, such as

((]Ll& (15?5) Lle (1=t Lerpg et
= TP\ 14L& )T\ 14L& ’ HLE& )7\ 14L& ’
Hy = & i» & i &=1,2,-- 3.

L2« 1—erpg L?& 1—eipg 1—erpg l—cipg
P\ 4L )T\ 1Lk ’ HLE )0\ 1L
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Definition 3.2. For any Hy,

1,2, we have

(e

S

lg
rp

2
rp

(

175”,2’5
1
1+L,§

(

2
1+,

1—erpg

)
)

1lg
9 ip

2¢
9 ’ip

1—5@2’5
T
14+L,

(
(

1-cipg
2
4L %

175@‘5&

1_5ip§2

14L&

)l

l—erpg

)

1+JL};§C

1-cipg

)

2
1+L%

) (

2
4L %

)

&

)

1 1 sﬁfl + 1o 1 57"1192 1L 1_€Tf1 1o 1_571:0
P\ 1+L.} P\ 14L,3 TP\ 14L,} P\ 1413 )
11 (1 51-11,‘f> + L-IQ (1 5“172 ) . 11 1 aizl,l 12 1_51.]1)3:) ’
P\ 1+, P\ 142 P\ 4L P\ 1+L2
((1—5,.pvf> (1 Erps 1—eip \ [ 1—cipy
1 1 ) 1 1 )
~ ~ 1+L.3 141,32 141t 1412
H)®© Hy = N " P N
L2 (1_5T§1 ) + L22 1 5T§2 21 (1L 5T§1 22 1_55p
P\ 1+L7, P\ 1413 TP\ 1+L;} P\ 1412 )
)
2 1781' w 2 1 Ej 2 1 E; 2 1751‘ by
]14~1 < gl>+L2 1272> _L‘1 ( 1271>L2< 1272
w 1+]L2.1} w 1+]Li3 wp 1+L¢$ w 1+]Lip2
1—erp? 1—erp§ 1—¢e;p¢ 1—¢€ips
1+12} L2 )7\ L 14172
1—epp% 1—¢ 1 1—eipy 1 1—¢;
Ll TPl ) Ll2 rp) L:t P1 | [,+2 < P2 )
7 1 r 1 ’ 1 1 I
( P\ 14} P\ 1412 P\ 1L )P\ 14,2
1 sr{ff + 1—5?3’ . 1 ar{ff l—syﬁ,g’
1+L,} 14,2 1+L,} 4L )’
<1—ai€1 ) N (1—5“1,;) B <1—ai,1,‘f> (1_51.71)5) ;
~ ~ 1 2 1 2
iy &y = 141, } 14L;2 1+L;} 14L;2
L2 1_€T51 L2z 1—5217 L2 1_51'127?) L22 1_51'1275
T T Y Y
P\ 1417} P\ 1+L72 P\ 4L PO\ 1412
1—argl + 1 arg‘g . 1 arg‘l" 1—£T§‘2"
14153 1412 1417} 14L72 )7
<151€1 > + (1 sig‘g> . <1 sig;’) (1 51'12,3’
1+L;} 1+L;2 1+L;} 1+L;2
ne U ne ne
_mlg 175sz"6 1—(1= 1 1—8@‘@2 175sz"c 1—6ip&
P\ 14L, ¢ ’ P\ 14LE ’ 14L& A\ 4L ’
ne e ne ne
1— LQ& 1—erpg 1- (1= [[42& 1—eipg 1—erpg 1—eipg
2 2 2 2
PO\ 14L¥ ’ PO\ 141k ’ 14L& ’ 1+L.§
e ne e e
1—erpg, 1g [ 1—cipg 1—-(1= 1—erpg, 1— [ 1=Eipg
1+L,§ AP\ 1L ’ 4L ¥ ’ 4L ’
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<<L1& (15?3) Lle (1wt 1-enpg 1-cip
. ~ PO\ 14L& )T\ 14L& ’ 14L& )7\ 14L& ’
Definition 3.3. For any Hg, = " v ’ v & =1,
]LQ& l—erg& ]LZ& 1—51-5& l—srg& l—aig&
P Ly )P\ 4L ’ 4L )7\ 14LE
we have

Ll& Hrpfz) —1—1[}& (1 slp&>) <<1 srp&> i <1€¢p§>>) +
~ 1 <( Tp < Lg ip L L Te
S (H&) == 1+L,§ 1+L 1+L,% 1+L,4 ) ) € [-1,1]

2 l—erpg 2& 1—eipg 1—erpg l—sip‘gz
( (s () o () - () - (g
Ll& l—erpg —i—]L}& 1— ew& + 1—erpl 1—cipg. +

- 1 << rp < g ip L& g L
A (H&) -3 ( 1+Lr5 - 1+L,; <1ng1, 1:r]L: y €[-1,1]

- P& —Cipg
2 ) (7))

ip

Thus, if SC <H1) > 8 (m) = [, > Hy, it SC (Eh) SC( ) then if AC <H1> > AC (ﬁ2> = >
Ho.

N
N——

4 CPLDF Power Aggregation Insights

This section is famous for the analysis of the power operators for CPLDFSs, called the CPLDFPoA operator,
CPLDFWPoA operator, CPLDFPoG operator, CPLDFWPoG operator, and their genuine properties.

< <L1& ( 1_5??& > Lle 1_5iffc 1_8?21 1_81'{??5
oy ; P\ 1+LE )P\ 1+L % ’ 4L )7\ 14L& ’
Definition 4.1. Let Hg, = P P p ip &=1,2,--- 3,
2 l—erpg 2¢ [ 1=¢€ipl 1—erpg 1—eipg
L\ e )L | e ) ) el I Te
1415 P\ 4L 141§ 1418

be a group of CPLDF information. Then

CPLDFPoA (H1H2 ,Ffa) =

)
S (1 + 17 (ﬁ&))

Signified the CPLDFPoA operators with 7 (ﬁ&) = Z?;é&:l S (ﬁz, ﬁ&), and S <I§Q, I:I&) =1-D (ﬁ[z, I:I&),
thus

1. S (H f[&> e [0,1].

3. When (f[i,fl&> > 5 (A, A ) then D (HH&) <D (ﬁk,ﬁl).
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(s () () () ()
Theorem 4.2. Let Hg, = P P " » 7& =12,--,3,
LQ& 1—erpg LQ& 1—eipg 1—erpg 1—cipg
TP\ 14LrE )P\ 14LlE ’ HL2E )0\ 4L

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in
Def. (8), such as

CPLDFPoA (ﬁl, Hy,--- FIa)
5 ( +i(Hg)) 5 3(1+ﬁ(ﬁ&))
o 7 lg 1— Erp& Z 1+’7(H& _ 7l 1*5ipt§2 Z&:1(1+ﬁ(ﬁ1&))
(e (R >> - (- () |
_ (4a(Ag)) (1+7(Hg)) ’
13—[ 1- Erp& E 1+77(H& 13—[ 1— szp& 22:1(1_“7(}}&))
&o1 141, &1 14L&
— S "r”]( & 5 3(1+ﬁ(ﬁ&))
2 1—er 2 1+77(H& 1—¢cipy, Sg—1(1+i(Hg))
- (s ()0 g (e (55)) O )
, G Gl
I 1—ep% z& L(1+a(Ag,)) I 1—eip% \ | T2oi (1+i(fg))
=1 \\ L "o A\ L
(( (1 E’“f%) s () (i) (1))
~ & ip & ’ & ’ & ’
Property 4.3. Let Hg, = L b Ly Pl & =12,
1—erpg 2¢ [ 1—€ipQ l—erpg 1—eipg
1L Lip e ) )\ sy )\ e

be a group of CPLDF informat

tio

1. If H, = H,& =1,2,--- ,3, thus CPLDFPoA (ﬁl,ﬁg, .- ,ﬁ3) = H, called the idempotency.

2. If Hy < HY,& =1,2,--- 3, thus CPLDFPoA (ﬁl,ﬁ2, . ,Eg) < CPLDFPoA (H{Hg Hg)
called the monotonicity.
3. If H. = min (ﬁl,ﬁg,--- ,ﬁa), and H, = max (ﬁl,ﬁg,--- ,ﬁg,) & = 1,2,---,3, thus H_ <
CPLDFPoA (ﬁ[l, Hy, - ,f[a) < I;Lr, called the boundedness.
(e G o () ) () (528))
~ p & 7 TTp & ’ & & ’
Definition 4.4. Let Hg, = LtLrp iy Lty L 9.
2 l—erpQ ]Lg& 1—cipg, l—erpg 1-¢eipg,
P 1+]Lf;§f 7Tp 1+]Lf;§é ’ 1+JLE;§,< ’ 1+]L2&
be a group of CPLDF information. Then
N N1<1+~<ﬁ1> . N2<1+~<~2> .
CPLDFWPoA (Hy, Hy,- -+ 1) = — Lo — L Hy @
St (14 () Zha e (147 (7))




Fuzzy MABAC Deep Learning for Diagnosis of Alzheimers Disease: Analysis of Complex

Propositional Linear Diophantine Fuzzy Power Aggregation Insights. Trans. Fuzzy Sets Syst. 2025; 4(1) 139

H

&)7

Signified the CPLDFWPoA operators with 7 (ﬁ&) = Z%&&:l S (I:IZ-, fl&>, and S (ﬁi, fl&> =1-D (lfli,

5 (o fi) €
5 (i) =

6. When S(

(H&v i)
) > 5 (HkHl) then D (HH&> <D (HkHl)

Where chzl Ng = 1, called weight vector.

<<L1& <1—a,~fg Lle (1=eut 1—enp 1=zt
~ P\ 1L ) TP\ 14k ’ 1+L%¢ )7\ 14L& ’
Theorem 4.5. Let Hg, = P P i P & =1,2,---,3
l—erp 2 [ 1—eip® l—erp l—eip®
L2 | —%k | L% ( —%% ) ), s rulll I8 T
P\ 14LrE P\ 1LY +LF 4L

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in

Def. (9), such as

CPLDFW PoA (f]l, Hy, - ,ﬁa)
(147 (fg)) N 3&&(14"7(5’&))
_ 1y [ 1=&rp =2 N& (+a(fg)) 1 e [ e TP Re(1+i(Hg,))
1 ( — L ( 1+L¢ >> )1 &1_:[1 1=Lag 14L& ’
5 & (1+7(Hg)) N Rg (14+7(Hg,)) )
11 l—erpg 23 1 R (1+7i(Hy, ) 11 1—eipg Yo Re (1+i(fig,))
&1 14L& " oor \\ 14L&
= ; N& 14+7(fg,)) N 3N&(1+ﬁ(ﬁ&))
_ 1—erpg T Re(1Hi(fg)) o _ 1—€ipg TR o1 Re (1+i(Hg))
- (- () e t)) ’
N N& 1+7(Hg,)) 5 Rg, (1+7(Hg,))
H le'rp& E& 1 N&(1+77 H& H 1_81'1722 22:1 N&(1+ﬁ(ﬁ&))
2\ Lty o1 \\ LHL7%

& Zp & ?
Property 4.6. Let Hy, = 11+]L 11+]L”’w
Ep —E&;
+L;& 14+L;8

be a group of CPLDF 1nformatlon

1. fHy, =H,&=1,2,--

.3, thus CPLDFW PoA (ﬁl, -

((

((

i

2. If Hy < HY, & = 1,2, -+ ,3, thus CPLDFW PoA (ﬁl,ﬁb, .
called the monotonicity.
3. If A = min (ﬁl,ﬁg,... ,ﬁa), and H, = maz (ﬁl,ﬁz,...

CPLDFW PoA (ﬁl, Hy, -

71:—]3

l—erpl 1—eip§
1 ) 1 )
14+Lpg 14L%
. pr 7&:172’...
l—srp& 1787;17&
LY )7\ 1L

) —H , called the idempotency.

ﬁa) < CPLDFW PoA (ﬁ{,ﬁg, N

,.F~I3> < fl+, called the boundedness.

.3, thus H_ <
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l—Eip&
14L&

lg

)
)

(1+a(H1))

175@‘5&
1
14L&

lg

(e (
(s (o

be a group of CPLDF information. Then

(
(

Definition 4.7. Let Hy =
2¢

2g
ip

Tp

2
4L %

CPLDFPoG (Fll, Hy,---

Signified the CPLDFPoG operators with 7 (I:I&) = Z?#&zl
thus

1-cipg

~i7ﬁ

5(

e 1—erpg 1—eipg
R R i
l—sTp&‘ﬁ’é 1— azp&
’ 1+LE )7 1+]L2&
(1-+4(3)) (1+a(A3)) (1+7(Ag))

&), and S (ﬁi,ﬁ&) —1-D <FIZ»,FI&),

S (Hl ﬁ&) e 0,1]
s (# F[&> =5 (ﬁf ﬁi).
3. When S S , then D (H H&> D (Hk Iffl).
[+ ”1”‘) () () ()
p & 747 & & ) & ?
Theorem 4.8. Let Hg, = - - Ly iy & =1,2,--- 3.,
1 Erpg. 1—eipg 1—erpg 1—eipg
Tp 1+]L,%;§‘ ZP 14L& HLE )0\ L

be a group of CPLDF mformatwn Then, using the mformatzon in Def. (6), we evaluate the information in

Def. (10), such as

CPLDF PoG <H , })
5 3(Hﬁ(ﬁ&)) 5 3(Hﬁ(ﬁ&))
le [ 1=erpg | | T (H+i(Hg)) le [ 1=gipg | | Zo=1(1+i(Ag))
&1_:[1 <Lrp +L§ )) 7&1_:[1 Lrp 1+Lo§ ’
5 (1+7(fg)) 5 (1+7(Hg,))
111 (1- 1—erpg, Y2, (1+i(Hg,)) 1- 1 (1- 1=\ | T2oi (1+i(fg))
=1 14L1E Pt 14L&
- 5 (1+7I(H& 5 (1+7(fg))
IT (L2 1—erpg SR (1a(Hg)) II Ieipg | | S2oi(+a(Ag))
N (1+ﬁ(H&)) N 3(1+77(f1&))
_ [ 1=enp} Yoo (i) 4 _ [ lzeing = (1(Hg )
- (- () -0 <1 <1+Lz§>>
(i) (80 () ()
Property 4.9. Let Hg, = AL P\ Ly Lo )7\ Ly ’ &=1,2,---.,>
l—erpg 1—eipg. l—erpg 1—eipg ’ T Y
1412 Zp 14L& 1+L7s )7\ 14LeE
be a group of CPLDF informatio
1. If H, = H,& =1,2,--- ,3, thus CPLDF PoG (ﬁl,ﬁg, e ,ﬂ}) = H, called the idempotency.

2. If Hy < Hy, & =1,2,---
called the monotonicity.

,3, thus CPLDF PoG (Fh,

Hy, -, M5

) < CPLDFPoG (ﬁ{, -

/
7H3

)

SR (14a(fg))

ﬁa) _ ﬁ122:1(1+ﬁ(ﬁ&)) ? ﬁ222:1(1+ﬁ(1"1&)) D& ﬁazzzl(wﬁ(ﬁ&)) _ ®Z&:11€I&



Fuzzy MABAC Deep Learning for Diagnosis of Alzheimers Disease: Analysis of Complex

Propositional Linear Diophantine Fuzzy Power Aggregation Insights. Trans. Fuzzy Sets Syst. 2025; 4(1) 141
8.0 H- = min (A, Hy,eo  H5), and By = maz (Hy, oo Hh) & = 1,203, thus A <
CPLDFPoG (ﬁl, Hy, - ,.ﬁ[a) < lEI+, called the boundedness.
(o (5) 0 620 () ()
~ rp & > TTp & ’ & ’ & ’
Definition 4.10. Let fg, = Frry i b LN =12, 3,
L2 l—erp ]Lg& 1—eip§ 1—erpg 1—eipg
o\ Ly )\l ) )\ )0 ke
be a group of CPLDF information. Then
(i) L Ra(tiliz)) 3“3(1+’7(f’3)_)
CPLDFW PoC: (ﬁl, Hy, - ,ﬁa) _ ﬁlz&zln&(un(H&)) 2 E[2Z&=1N&(1+W(H&)) Q@ ﬁaz&zll‘t&(Hn(H&))
R (147 (Ag )
_ ®§5:1H—&Z‘2:1 Rg (1+7(Hg))
Signified the CPLDFWPoG operators with 7 (FI&> = Z;&:l S (f[i, fl&>, and S (f[i, fl&) =1-D (IEI“ ﬁ&>,
thus
5 (i) €0
- 5 (M fie) = (H&’ )

6. WhenS( ) >S(Hk,Hl> thenD(.ﬁIi,fI&> SD(ﬁlmﬁl>

Where 22521 N¢, = 1, called weight vector.
(e () s () ) () - ()
~ TP & ’Tp & ’ & ’ & ’

Theorem 4.11. Let Hg, = Ly iy Ly iy & =1,2,--- 3.,

2 1—erp§ 2¢ [ 1—€ipg 1—erp§
((LT;; <1 LQ;L) A () ) ()
+Llrp +lp 1+Lrp

1—5-;:,,&

5))

1417

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in

Def. (11), such as

CPLDFW PoG

N&(1+7] H&)

Rg (1+7(Hg))

1*67;1,25&

Ll :
1+L,§

TP

d
Y2 Re (1+7(Ag)) I
T =1

(v

1+7y

>> S N (1Ha(Ag))

Ng (1+7(Hg ) ’

) T2 e (1+i(fg,)

Ng (147 (Hg))

g, (147 (Ag))
) Z& 1 Ng (1471 (Hg,))

- 11

10

2
1+L.%

3H <1 &>> S 1+n<H&>> L <1 <1—eipzz>

g, s+ T - 1g,
&=1 14+Lrp &1 14L&
- Re (14+71(Ag))

13—[ L2 (1 z—:Tp&)) So_y Re (1+a(Ag)) 13_[ < 2 (1—5“,&

&=1 b L Tgr \ P\ 1L

w >> Ty e (14i(fg))
2 bl

1—c€ipg

@ )) T2, (1+a(fg))

(1+(Hg))
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() (128)). (). )
- TP & b P & b & ) & b
Property 4.12. Let Hg, = Ly i Ly P & =1,2,---

L2& l—erpg ]LQ& 1—eipg. l—erpg 1—eipg
P\ g ) s ) )\ ey )\

be a group of CPLDF information.

1. If H, = H,&=1,2,---,3, thus CPLDFW PoG (ﬁl,flg, ‘e ,f[3> = H, called the idempotency.

2. If Hy < HY,& = 1,2, ,3, thus CPLDFW PoG (ﬁl,ﬁg, . ,I:I3> < CPLDFW PoG (ﬁ;,ﬁg, . ,ng),

called the monotonicity.

3.1t H = min(ffl,flg,--- ,f]a), and ﬁhr = max(ffl,flg,--- ,f[3>,& = 1,2,---,d, thus H_ <

CPLDFW PoG (f{l, Hy,--- ,I~{3) < ﬁ+, called the boundedness.

5 CPLDF MABAC Techniques

In this section, we analyze the MABAC technique for designed operators, called CPLDFPoA operator and
CPLDFPoG operator to deliberate the consistency of the suggested theory. The graphical interpretation of

the proposed application is given in the form of Figure 2.

For this, we have a group of alternatives Hy, Ho, ..., Hy with Ay, Ao, ..., Ay, called attributes for each alterna-
tive with the same order of weighted information, such as Rg, € [0, 1] with Z?z:l Ng, = 1, thus, we design a

matrix by putting their information in the form of CPLDFSs, such as

H = { (7, (F5(0), Fip() , (45,(1), d55(7)) , (G (1), € (1)) 5 (T3 (1), T (7)) = T € X}

In addition, we define the truth and parameter function according to their real and imaginary parts, such as

Frp (1) = Ly, (45, (7)), (F3p (1) = L, (45, (D))

and

i (1) =12, (T, (1), (¢ (v) = L, (T%, (1))
Then

L2, (%, (1)) * LY, (2, (1)) +T%, (1) * 42, (1) < 1

1
172
= Ty, (1) 3y, (1) (1+ Ly L) < 1= T3 (1) + 3, (1) < T+LLLE,
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form of the proposed technique..png form of the proposed technique.bb

Compute the decision Normalize the
matrix matrix if need

‘ ‘ e Scaler power
Find the weighted Scaler multiplication for CPLDF

decision matrix for CPLDF values

values

Find the distance

Find the aggregated CPLDFPoA CPLDFPoG values among the
matrix operator operator weighted and

aggregated matix

Figure 2: Graphical form of the proposed technique.

Thus, we have the following final shape, such as

~ PO\ 14+L-g P\ 14LE 14L& 14L&
H&: +Lp +7,pw +Lp +zpw ’&:1,27...,3
LQ& ]-_Erzpwg: L2& 1—51'53: 1-&;:22 1_51'5&
P L )P\ 4L ’ 4L )7\ 14L;%
After constructing the decision matrix, we goal to design the procedure of the decision-making model for

evaluating numerous genuine life problems. Therefore, we will follow the following technique for evaluating
any type of problem, such as

Step 1: Construction of matrix: We focus on designing a matrix, where the value of the matrix must be the
form of CPLDFNs, such as

15111 P:I12 e Hipy
- Hyy Hyp -+ Hoa
DM = || =1
nx>d
f{nl I;[n2 f{n3

After the construction of the complex propositional linear Diophantine fuzzy matrix, we goal to normalize
the data.
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Step 2: Unvarying the matrix: We goal to normalize the data, if Cost types of data occurrences, such as

((Ll& (1—@{,;& Lle ((1=eut 1—ny =it
P 1Ly )P 4Lk ) ) T\ 4Ly )\ 4L ,
v " i benefit
2 1—£T§& 2 1—615& , l—arg& : 1- slg&
j7 PO\ 14L& P\ 4L 4L 14+L;%
1—erpg 1—eipg Ll 1—erpg 1— azp&
L )7\ 1+ PP\ 4L Zp L cost
l—erpz 175@‘;& LQ& 1—5rp§i 1— Elp&
2y, | o 2, ) rp \ 77 2& 7,p 2¢&
i 14L& 1418 1+L7& 1418

In another case, we goal to go to the next step.
Step 3: Weighted matrix construction: We goal to develop the weighted matrix, such as

1 1 1
PO\ 14L& PO\ 14L& 14L&

neHg
1 (1 pte (1=emt o 1 (1o (et o e )\ 7 ey ) )
14L& P\ 1L ’ 141, A\ 4LE ’
B 1— 1—L2& 1—erpg e 1 1—L2& l—€ipg e 1—erpg e l—€ipg e
TP\ 14L& P\ 14L7% ’ 14LE ’ 14LY
-\ T7e
(f1e)
(5 ()" o5 ()" o ) e

| (-0
(0 ()™ (0 (0)") (- (-

After evaluating the weighted decision matrix, we goal to address the aggregated matrix.

=5)7))
=)))

1—erp,

)"

2
14L&

1—67;1,22
2
1+L ¥

1—cerpg,
2
O

2g
p

2g
rp

2
Y

Step 4: Aggregation matrix construction: We goal to construct the aggregated values matrix by using the
CPLDFPoA operator and CPLDFPoG operator, such as

7}}3)

CPLDFPoA (ﬁl, Hy, -

(1+n( &) N 3(1+’7(H&))
_ 1—erpg Z 1+’7(H& _ _ 1—cipg YR (Hi(Hg))
SACE (w)) g (e () |
1+71(H& (1+7(Hg)) )
13—[ l—Erpzi E 1+77 H& 13—[ 1— €zp& 22:1(1+ﬁ(ﬁ&))
&o1 1+L,¢& &1 14L&
- N _ (4a(fg)) 5 3(1+77(1’:1’&))
_ T 2 [ 1Erpg =2 1*”(H& _ 12 [ 1mEpg ) ) oo, (1Hi(Ag)
o (- (mﬁ) - (- () ’
5 (1+n( &) 5 (147 (fg))
1—57‘7)& Z 1+’7(H& H 1757;pz 22:1(1+ﬁ(f{&))
o1 \\ 1HLeE "o \\ 4L
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and

CPLDFPoG

(1+7(Hg))

)
W> =3

3
1g [ 1=erpg 1(1+i(Hg)) Ll
&1_:[1 <Lrp <1+1L11"§5 > &H1< P <
5 3(1+77(H&)) 5
1—epp% TRmq (1Hi(H,))
1 — 1 _ P& &=1 1 _ 1
&1—:[1 < (H]L?lv&f >> ’ &1;[1 (
- 5 ( +ii(Hg)) 5
20 [1=erp% | | Z2=1 (Hi(Ag)) L2
&1;[1 (Lrp <1+LZ§& >> ’&1_:[1 "’
5 3(1+ﬁ( Hg)) 5
1—erp¥ S (1+i(Hg,))
1— 1— [ i=gi ) ) Ze= 1— 1-—
&1_:[1 ( <1+L3§5 >> ’ &1_:[1 <

weighted value and aggregated values.

E)

l—EipEi

14L&
1—8@2‘2
1+L,&

)

1751';,&
1+L%

lfsipz
2
O

(

(1+a(fg))

)) T3, (1+(fig))

(1+(Hg))

) T2, (1+a(fig,))

(1+7(Hg))

@ >> T2 (+a(fig))
2 bl

(1+7(Hg))

)) T3, (1))

To assess the values of the aggregated matrix, we will find the distance values among the information of

Step 5: Distance matrix construction: We goal to design the values by distance function, such as

D (f{&,f{k) fo{& > I{Ik

Hgp = 0

if Hy,

_D (FI&,fIk> ifHe < Hy

where

r7 7 1 Erps 1—¢,.% 1—¢e. ¥ 1—g. @
D(H&vﬂk): (Ll& S ) e (ST Ek ) e (DT 5 ) gL (27 Fipk

+ 1—67‘;)?5 1—57'1)2] + I_EZPZ; 1—574)(‘]:

14 Li§ 1+ Lo 1+LE T
gy (o) - (Aol ) o () - (o
1+Lr}% 1+LTI’§ 1+Lz’1§& 1+Lz’1’;

+ <1_€W’f§:> (1_57“197@)) + (1_5@?&2) (1—&‘1)7:)‘)
112 |\ 1L Torze ) T\ Tz
L+ Loy 1+ L% 1+ L 1+ L7

Step 6: Appraisal matrix: We goal to address the appraisal information, such as
12
=3 2D (fie. 1)
k=1

Step 8: Ranking matrix: Calculate the ranking data according to the appraisal function for addressing the
best one amid the group of a finite number of values.

6 CPLDF MABAC Deep Learning for Diagnosis of Alzheimers Disease

In this section, we goal to address the problem of the CPLDF MABAC deep learning model for diagnosis of
Alzheimers disease for initiated techniques. Alzheimers disease is an unpredictable and progressive neurode-
generative disorder that initially affects memory thinking and behavior. The analysis of Alzheimers disease
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has been done by different scholars according to the information of crisp data, but to analyze the best one
among the collection of data, we needed a soft and valuable technique that can help us in the evaluation of
the procedure of decision-making models. Some key features of Alzheimers disease are memory loss, cognitive
decline, behavioral changes, disorientation, and physical symptoms. In this article, we design the procedure
of a multi-attributive border approximation area comparison deep learning algorithm for the diagnosis of
Alzheimers Disease. Application point of view, we target data collection for diagnosing Alzheimers disease
involves collecting a brief set of data from different sources, thus with the help of the above model, we aim
to select the major means the best and worst ones among the collecting five, such as

1. Cognitive Assessments.

2. Neuroimaging Results.

3. Genetic Information.

4. Biomarkers.

5. Clinical History and Physical Examination.

Once selected, this information can be integrated into machine learning or deep learning models to analyze
patterns and support diagnostic decision-making. Further, we have some attributes for the above alternatives,
such as

1. Memory Loss.

2. Cognitive Decline.
3. Behavioral Changes.
4. Disorientation.

5. Physical symptom.

Therefore, to evaluate the above problems, we have a group of alternatives Hy, Ho, - - - , Hy with A1, Ag, -+ , A,,
called attributes for each alternative with the same order of weighted information, such as Ng, =€ [0, 1] with
22:1 Ng, = 1, thus, we design a matrix by putting their information in the form of CPLDFSs, such as

H = {(v, (75,0, Fp (1) » (45,(0), 45,(7)) - (G(0), G (1) » (T3, (1), T, (1)) = 7 € X

In addition, we define the truth and parameter function according to their real and imaginary parts, such as
Frp(1) = Ly, (d5,(7)) » (Fip (1) = L, (d5,(7)))
and
Cion(T) = L7, (T (1)), (o (0) = L, (T5,(0))
Then
L2, (I%,(1)) * LL, (2,(1)) +T%,(1) * 5, (1) < 1

1
= T3 (1) + &5y (1) (14 Ly L7,) < 1= Ty (1) + d5(1) < oo
T+LLLE
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Similarly, we have imaginary parts, such as

1

thus

e (1) =1 — (G (1) # F (1) + 415, (1) # (1)) = 1 — (L2, (T,(7)) * Ly, (45, (1)) + T, (1) * o1, (7))
=1— (I%, (1)« de,(1) (1 + Ly, L2))

Tprp
then
L (1) = T%,(1) * d5,(1) (1 + L1, L2)
and
1—e¥(T)
% (1) * d% (1) = ——20r
PO Il = L)
Similarly, we have
1-— E;‘;(T)

% (1) % d% (1) = P/
v v (1 + LgpLgp)

But if we use the condition of IF'Ss, thus we have
LL, (d4%,(1)) + d2,(7) < 1

1
=4y (1) (1+ L)) <1=d¢ (1) < L)

Similarly, we have imaginary parts, such as

1
(1 + ]L}p>

Thus, we have the condition of refusal function in IFSs, such as

er (1) =1 — (Fo (1) + d5,(1)) = 1 = (Ly, (d5,(1)) + i, (1)) =1 — (de,(1) (1 +L},))

di (1) <

then

1 —¢g(T) = d3,(7) (1+ ]L%p)

and

" _1—5;"(”() " _1—5;"(”()
a7, (1) = (1+7£71«p)7 (Crp(’f) = (1+£%p)>

Similarly, we have

1—e¥ (1) 1—¢e¥(7)

W p

ip(T) = my Cip('f) = m

p
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If &5, (1) = €5,(T) = 0, thus dy, (1) = (1+i}p) and Jd,(1) = (1—&-}1.1%)' Then

1 1
PGSy u Sy Iy (520 R (.
8 8 ((1 + L%p)> g Y (1 + L}p)

and

1 1
w0 gy ) (S0 =14 (1)
D z'p)

Then

1 1 1 1 1 1
© ((Lw (i) L (1%)) ! (ww)) ’
teX
2 1 2 1 1 1
((Lrp <1+L2p) >]I‘ip <1+L§p>> ’ <1+L2p7 1+]Lgp>>

Thus, we have the following final shape, such as

((Ll& <1—5T{,5§ Lle (1=t 1—erp 1—cig
= PO\ 14LE )T\ 4Lk ’ HLE )7\ 14L& ’
— D ip TP TP J— ...
He = 1—erpd 2 [ 1—eip® 1—erp¥ 1—e;p¥ & =1,2,000,3,
LQ& Tg& b ]L"& 15& b Té’& 9 15&
PO\ 14+LE P\ 1+L% 1+L§ 141

Therefore, we will follow the following technique for evaluating any type of problem, such as
Step 1: Construction of matrix: We focus on designing a matrix, where the value of the matrix must be the
form of CPLDFNs, see Table 1.

H=

Table 1: CPLDF information decision matrix.

Aq Ay As Ay Aj
Hi ((4,3),(4.2) ((5,1).(5,3) ((6.2),(6,3)) ((7,4),(7,4) ((1,3),(8,5))
Hy ((1,3),(2,6)) ((2,2).(3,5) ((3.4),(4,4) ((4,4).(53) ((1,1),(8,5))
Hs ((3,3),(1,5) ((4,2),(4,4) ((5.3),(3,3)) ((7,4),(5,2) ((1,3),(6,1))
Hy ((6,4).(1,2) ((5,1),(2,1) ((4,2),(3,2)) ((3,3),(1,2) ((1,3),(21))
Hs ((1,5),(2.5) ((2,4).(3,4) ((3.3),(43) ((1,2),(1,2)) ((1,3),(2,1))

Step 2: Unvarying the matrix: We goal to normalize the data, if Cost types of data occurrences, such as

( <L1& (1_&5;& > Ly <1_Eifz ) > < (1_&@ (1-&5;& > > >
rp & L) & ’ & ? & ’
( L )P\ L L)\ ) > bene fit

2 l—erpg 2¢ [ 1—€ipg l—erpg 1—eipg

) 9

i P\ L )P\ gLl 1412 14L2&
l—erpg l—cipg, Lle L—erpg Ll& L—¢cipg
1 Ll& ) 1 ]Ll& ) rp 1 ]Ll& ) ip 1 ]Ll& 9
+Lyp + ip +Lp + ip cost
l—erpg 1—¢ipg L2& 1—erpg L2& 1—cipg
2& 9 2& 9 D 2& 9 7 2&
i 1+L-% 1+L;0 1+L% p 1+L,)
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In another case, we goal to go to the next step. So here we have benefit types of data in Table 1, so we will
go to the next step.

Step 3: Weighted matrix construction: We goal to develop the weighted matrix, where 7jg = 2, see Table 2

Table 2: CPLDF weighted information matrix.

A1 A2 A3 A4 A5

(0.96,0.9375), (0.9722,0.75), (0.9796,0.8889), (0.9844,0.96), (0.75,0.9375),
F (0.36,0.4375), (0.3056,0.75), (0.2653,0.5556), (0.2344,0.36), (0.75,0.4375),
(0.64,0.4444), (0.6944,0.5625), (0.7347,0.5625), (0.7656,0.64), (0.7901,0.6944),

(0.04.0.111) (0.0278,0.0625) (0.0204,0.0625) (0.0156,0.04 (0.0123,0.0278)

(0.75,0.9375), (0.8889,0.8889), (0.9375,0.96), (0.96,0.96), (0.75,0.75),
J7; (0.75,0.4375), (0.5556,0.5556), (0.4375,0.36), (0.36,0.36), (0.75,0.75),
2 (0.4444,0.7347), (0.5625,0.6944), (0.64,0.64), (0.6944,0.5625), (0.7901,0.6944),

(0.1111,0.0204) (0.0625,0.0278) (0.04,0.04) (0. 0278 0.0625) (0. 0123 0.0278)

(0.9375,0.9375), (0.96,0.8889) (0.9722,0.9375), (0.9844,0.96), (0.75,0.9375),
7 (0.4375,0.4375), (0 3056,0.4375), (0.2344,0. 36 0 75,0. 4375
(0.5625,0.5625), (0.6944,0. 4444 0 7347,0.25),

(0.36,0.5556),
(0.25,0.6944),
(0.25,0.0278) (0.0625,0.0625) (0.0278.0. 1111) (0.0204,0. 25)

( 0.64,0.64) )
(0.9796,0.96), (0.9722,0.75), (0.96,0.8889), (0.9375,0.9375), (0.75,0.9375),
i, <(0 2653,0.36), ) ((0 3056,0.75), o 36,0.5556), (0.4375,0. 4375) (0.75,0. 4375
) (

NN

(0.04,0. 04)
(0.25,0.4444), 0.4444,0.25), (0 5625,0.4444), (0.25,0.4444), 0.4444,0. 25
(0.25,0.1111) (0.111,0.25) (0.0625,0.1111) (0. 2501111 (0. 1111025)

(0.75,0.9722), (0.8889,0.96), (0.9375,0.9375), (0.75,0.8889), (0.75,0.9375)
i ( (0.75,0.3056), > (0.5556,0. 36),) ((0.4375,0.4375),) ((0 75,0. 5556),) < (0.75,0.4375) )
5 (0.4444,0.6944) ) (0.64,0.5625), ( )
(0.111,0.0278) (0.04,0.0625)

(0.5625,0.64),
(0.0625,0.04

0.25,0.4444),
(0.25,0.1111)

0.4444,0.25),
0.1111,0.25)

Step 4: Aggregation matrix construction: We goal to construct the aggregated values matrix by using the
CPLDFPoA operator and CPLDFPoG operator, see Table 3.

Table 3: CPLDF aggregated information matrix.

CPLDFPoA CPLDFPoG Weighted vector obtained with the help of power operators

(0.9618,0.9154), (0.9261,0.8913),
; (0.4214,0.5317), (0.3458,0.4916),
H, <(0 7226 0. 5735)7> <(0 7296.0.5883). ) 0.2011,0.199,0.2044,0.2024,0.1931
(0.0214,0.0548) (0.0233,0.0615)
(0.8891,0.9231), (0.8534,0.8965),
) (0.6002,0.5177), (0.5462,0.4716),
Ho <(0 6139.0. 6623)’> ( 0.6442,0.67), > 0.1991,0.2036,0.2932,0.1995,0.1946
(0.0397,0.0331) (o 0515,0. 0358)
(0.9525,0.9358), (0.9186,0.9618),
, (0.4499,0.4497), (0.3813,0.4416)
Hjy <(0 5400.0.4916). ) ( (0.605.0.5442), > 0.1962,0.204,0.2065,0.2026,0.1907
(0.0513,0.0712) 0.084,0.1005)
(0.9491,0.9156), (0 9164,0.8918),
. (0.4579,0.531), (0.3936,0.491),
Hy <(0 3602,0.3546) ) ( 0.4022,0.375) > 0.2014,0.1973,0.2024,0.2037,0.1953
(0.1374,0. 1528) (o 1612,0. 1685)
(0.8389,0.9457) (0.8114,0.9391),
5 (0.67,0.4247), (0.6341,0.4099),
Hs <(0 1475, 04893 ) ( 0.4848.0.5436) > 0.2027,0.2022,0.1988,0.1968,0.1996
0.0947,0. 0716 0.1176,0. 1018)

Step 5: Distance matrix construction: We goal to design the values by distance function, see Table 4.
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Table 4: CPLDF distance values.

CPLDFPoA CPLDFPoG

H;  0.0583,0.0704,0.032,0.0695,0.1102 0.056,0.0691,0.0294,0.0609,0.115

H, 0.0887,0.0286,0.0577,0.0909,0.1169  0.0902,0.0327,0.0522,0.0845,0.1187
Hs 0.0972,0.0675,0.0363,0.0782,0.1452  0.1036,0.0569,0.0324,0.0723,0.148
Hy  0.1002,0.1079,0.07,0.0638,0.1137  0.0948,0.1054,0.0663,0.0665,0.1151
Hs 0.0729,0.0716,0.0852,0.0992,0.0784  0.0733,0.0647,0.0804,0.1061,0.0869

Step 6: Appraisal matrix: We goal to address the appraisal information, see Table 5.

Table 5: CPLDF ranking values.

CPLDFPoA CPLDFPoG

H, 0.0681 0.0654
H, 0.0765 0.0757
Hsy 0.0849 0.0826
H, 0.0911 0.0896
Hs 0.0815 0.0823

Step 8: Ranking matrix: Calculate the ranking data according to the appraisal function for addressing the
best one amid the group of a finite number of values, see Table 6.

Table 6: CPLDF ranking values.

Methods Ranking values Best idea
CPLDFPoA operator fI4 > f{g, > ﬁg > ﬁz > ﬁl fI4
CPLDFPoG operator ﬁ4 > fIg, > lEI3 > fIQ > ﬁl lEI4

According to the data in Table 6, the most preferable decision is Hy, called the Biomarkers for the MABAC
model based on both operators. The simple representation of the data in Table 5 is available in the form of
Figure 3.
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form of data in Table 5..png form of data in Table 5.bb

Figure 3: Graphical form of data in Table 5.

In addition, we will consider the data in Table 1 and, will evaluate it with the help of operators without the

MABAC technique. Thus, the aggregated values matrix by using the CPLDFPoA operator and CPLDFPoG
operator, see Table 7

Table 7: CPLDF aggregated matrix.

CPLDFPoA CPLDFPoG

0.8046,0.7091),
0.2393,0.3157),
0.8501,0.7573),
0.1462,0.2341)

(0.6669,0.7227),
(0.3677,0.3055),

0.7607,0.6843),
0.1954,0.2909),
0.8538,0.7659),
0.1499,0.2427)

(0.6323,0.6945),
(0.3331,0.2773),
0.7835,0.8138) 0.8007,0.8181)
0.1993,0.1819) 0.2165,0.1862)

2 ==
e
X0
o)
]

0.7355,0.7011) 0.7734,0.7331)
0.2266,0.2669) 0.2645,0.2989

(0.7744,0.7095), (0.7363,0.6849),
(0.2637,0.3151), (0.2256,0.2905),
0.6077,0.5955), (0.6294,0.6091),
0.3706,0.3909) 0.3923,0.4045)

(0.5986,0.7671), 0.5744,0.7585),
(0.4256,0.2415), 0.4014,0.2329),
0.669,0.6995), 0.6923,0.7325),
0. 3077 0.2675) 0.331,0.3005)

Score value matrix: We goal to address the Score information, see Table 8.
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Table 8: CPLDF ranking values.

CPLDFPoA CPLDFPoG

H, 0.5464 0.5464
H, 0.4832 0.4832
Hsy 0.4888 0.4888
H, 0.3367 0.3367
Hs 0.373 0.373

Ranking matrix: Calculate the ranking data according to the Score function for addressing the best one amid
the group of a finite number of values, see Table 9.

Table 9: CPLDF ranking values.

Methods Ranking values Best idea
CPLDFPoA operator Hs > Hy > Hy > Hs > H, H;
CPLDFPoG operator ﬁg > ﬁz > I:Il > IEI5 > ﬁ4 E[g

According to the data in Table 9, the most preferable decision is Hs, called the Genetic Information for both

operators. The sensitivity of the proposed information for different values of parameters 7o is described in
Table 10.

Table 10: Representation of the sensitive analysis.

ne Ranking values Best idea
2 Hs;>H,>H, >Hs;> H, H;
4 Hy>Hy,>H,>Hs;> H, H;
6 Hs;>H,>H,>H;> H, H;
8 Hs;>Hy,>H, > H; > H, Hy
10 Hs > Hy > Hy > Hs > Hy Hy
12 Hs> Hy > Hy > Hs > Hy H;

According to the data in Table 10, the most preferable decision is Hs, called the Genetic Information for both
operators for different values of parameters, anyhow, the proposed model is stable for all possible values of
parameters, and the best value is Hs for all values of the parameter. The simple representation of the data
in Table 8 is available in the form of Figure 4.
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form of data in Table 8..png form of data in Table 8.bb

Figure 4: Graphical form of data in Table 8.

Additionally, we will compare the proposed ranking data with the ranking information of various existing
techniques to discuss the efficiency of the invented theory.

7 Comparative Analysis

In this section, we scrutinize and deliberate the supremacy and validity of the designed technique and models
by comparing their ranking values with the ranking values of various models. For this, we goal to collect
various necessary techniques based on fuzzy models and their extensions, then we will evaluate the data
in Table 1 with the help of considered information, such as Pamucar and Cirovic [21] invented the (multi-
attributive border approximation area comparison) MABAC technique for classical set theory. Further,
Yager [22] evaluated the power averaging (PoA) technique. In 2009, Xu and Yager [23] introduced the power
geometric (PoG) technique for classical set theory. Jiang et al. [24] derived the power operators for IFSs.
Wei and Lu [25] examined the power operators for PFSs. Garg et al. [20] initiated the power operators for
Cqg-ROFSs. Liu et al. [27] derived the power Dombi operators for CPFSs. Rani and Garg [28] evaluated
the power operators for CIFSs. Ali [29] presented the power interaction operator for CIFSs. Ali et al. [30]
described the power operators for complex intuitionistic fuzzy soft sets. Thus, the final ranking values are
illustrated in Table 11.



154 Zeeshan A. Trans. Fuzzy Sets Syst. 2025; 4(1)

Table 11: CPLDF comparative model.

Methods Score values Ranking values
Pamucar and Cirovic [21] 0.0,0.0,0.0,0.0,0.0 No

Yager [22] 0.0,0.0,0.0,0.0,0.0 No

Xu and Yager [23] 0.0,0.0,0.0,0.0,0.0 No

Jiang et al. [21] 0.0,0.0,0.0,0.0,0.0 No

Wei and Lu [25] 0.0,0.0,0.0,0.0,0.0 No

Garg et al. [20] 0.0,0.0,0.0,0.0,0.0 No

Liu et al. [27] 0.0,0.0,0.0,0.0,0.0 No

Rani and Garg [28] 0.0,0.0,0.0,0.0,0.0 No

Ali [29] 0.0,0.0,0.0,0.0,0.0 No

Ali et al. [30] 0.0,0.0,0.0,0.0,0.0 No
CPLDFPoA-MABAC 0.0681,0.0765,0.0849,0.0911,0.0815 Hy > Hs > Hy > Hy > H,
CPLDFPoG-MABAC 0.0654,0.0757,0.0826,0.0896,0.0823 Hy > Hs > Hs > Hy > H,
CPLDFPoA 0.5464,0.4832,0.4888,0.3367,0.373  Hs > Hy > H, > Hs > H,
CPLDFPoG 0.5464,0.4832,0.4888,0.3367,0.373  Hs > Hy > H, > Hs > H,

According to the data in Table 6, the most preferable decision is H,, called the Biomarkers for the MABAC
model based on both operators. But, according to the data in Table 11, the most preferable decision is

Hs, called the Genetic Information for both operators. In addition, the limitation of the existing models is
described in Table 12.

Table 12: CPLDF theoretical comparison.

Methods Truth value Falsity value Crisp function Parameters for both function Aggregation operators Techniques/methods Strong condition/not failed Periodic function
Pamucar and Cirovic [21] no no yes no Yes yes no no
Yager [22] no no yes no Yes no no no
Xu and Yager [23] yes yes yes no Yes no no no
Jiang et al. [21] yes yes yes no Yes no no no
Wei and Lu [27] yes yes yes no yes no no no
Garg et al. [20] yes yes yes no yes no no yes
Liu et al. [27] yes yes yes no yes no no yes
Rani and Garg [25] yes yes yes no yes no Yes yes
Ali [29] yes yes yes no yes no no yes
Ali et al. [30] yes yes yes no yes no no yes
Proposed models yes yes yes Yes yes yes Yes yes

Finally, from the information in Table 12, we analyze that the existing techniques and models contain various
limitations because of their features. Every point of view, we have discussed in Table 12, and from the data
in Table 12, and Table 11, we concluded that the existing models are the special cases of the proposed theory.
Hence, the designed techniques are more powerful and more reliable compared to existing models.

8 Conclusion

The complex propositional linear Diophantine fuzzy technique is a very powerful model for handling vague
and uncertain data. The technique of complex propositional linear Diophantine fuzzy sets is the combination
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of numerous valuable ideas, where the key and major contributions of the designed techniques are followed,
such as designing the procedure of a MABAC deep learning algorithm for the diagnosis of Alzheimers Disease.
Further, we design the model of CPLDF information with their basic operational laws. In addition, we analyze
the model of the CPLDFPoA operator, CPLDFWPoA operator, CPLDFPoG operator, and CPLDFWPoG
operator, and also initiate their major properties. Moreover, we arrange relevant from different sources for
diagnosing Alzheimers disease under the consideration of the designed technique. Lastly, we compare both
(proposed and existing) ranking information to address the supremacy and strength of the designed models.
In the future, we will begin the model of complex propositional (p, q) Diophantine fuzzy sets with some
new extensions. In addition, we will evaluate the model of operator, measures, and methods for designed
models and discuss their application in decision-making, artificial intelligence, and data mining to improve
the worth of fuzzy set theory.
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conflict of interest.
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Abstract. The n,m-rung orthopair fuzzy set theory is a robust model for managing uncertainty, particularly in multi-attribute
decision-making. Meanwhile, the hesitant fuzzy model is a well-established tool in decision-making processes. Recognizing the
similarities between these models, we propose a new framework called "c,d-rung orthopair hesitant fuzzy sets," which integrates
both approaches. We examine key operations such as union, intersection, complement, subset, and equality, and introduce
aggregation operators like the c,d-RHFPA, c,d-RHFWA, c,d-RHFPG, and c¢,d-RHFWPG operators. Additionally, an algorithm for
multi-attribute decision-making is developed, which is applied to determine optimal business strategies for sustainable supply
chain management. A comparative analysis with existing methods demonstrates the model's effectiveness, offering insights into
its strengths and limitations. This paper introduces a novel approach to decision-making, outlining its real-world application and
future research directions.
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1 Introduction
1.1 Sustainable supply chain (SSC)

A sustainable supply chain, often referred to as an environmentally friendly or eco-conscious supply chain, is a
business strategy that significantly focuses on incorporating environmentally and socially responsible practices
throughout all phases of the supply chain process. This model has gained prominence in recent years due to growing
concerns about climate change, natural resource depletion, social responsibility, and the need to mitigate the
environmental and social impacts of business operations. Various re-searchers have explored this field from different
perspectives. In 2015, Eskandarpour et al. [1] developed a supply chain network, and [2] outlined multi-objective
optimization for sustainable supply chain. Linton et al. [3], in 2007, introduced the standard model for a sustainable
supply chain, as well as decision models for its design and management in [4]. Resat et al. [5] developed an innovative
model for multi-objective optimization approaches to sustainable supply chain management. Zhao et al. [6] applied
a supply chain optimization model to continuous process industries with sustainability considerations. Eskandari [7]
formulated and optimized a sustainable supply chain network for a blood platelet bank under conditions of
uncertainty. Zhang et al. [8] introduced a novel

*Corresponding Author: Wajid Ali, Email: wajidali00258 @gmail.com, ORCID: 0000-0002-4926-722X
Received: 26 July 2024; Revised: 22 September 2024; Accepted: 25 September 2024; Available Online: 16 January 2025; Published Online: 7 May 2025.

How to cite: Ali W, Shaheen T, Haq IUl, Hassan MM. A novel generalization of hesitant fuzzy model with application in sustainable supply chain
optimization. Transactions on Fuzzy Sets and Systems. 2025; 4(1): 159-180. DOI: https://doi.org/10.71602/tfss.2025.1127340

159


https://sanad.iau.ir/journal/tfss/
https://orcid.org/0000-0002-4926-722X
https://orcid.org/0000-0002-8917-4482
https://orcid.org/0000-0002-1043-5820
https://orcid.org/0000-0002-3479-3606

160 Ali W, Shaheen T, Haq IUIl, Hassan MM. Trans. Fuzzy Sets Syst. 2025; 4(1)

multi-objective optimization model for sustainable supply chain network design, considering multiple distribution
channels. Yu et al. [9] proposed two distinct frameworks for managing supply chain uncertainty by integrating a fuzzy
structure with supply chain network optimization. Kazancoglu et al. [10] focused on leveraging emerging
technologies to enhance the sustainability and resilience of supply chains in a fuzzy environment, particularly in the
context of the COVID-19 pandemic. Goodarzian et al. [11] defined a new bi-objective green medicine supply chain
network design under a fuzzy environment.

Liu et al. [12] demonstrated the application of a supply chain system in agriculture with a Crop Harvest Time
Prediction Model for Better Sustainability, Integrating Feature Selection and Artificial Intelligence Methods. Yadav et
al. [13] developed a sustainable supply chain model for multi-stage manufacturing with partial backlogging under a
fuzzy environment, considering the effect of learning in the screening process. In 2020, Poujavad [14] designed a
hybrid model for analyzing the risks of green supply chains in a fuzzy environment. Alsaed et al. [15] established a
sustainable green A Novel Generalization of Hesitant Fuzzy Model with Application in Sustainable Supply Chain
Optimization [16, 17] worked on a green Supply Chain Member Selection Method Considering Green Innovation
Capability in a Hesitant Fuzzy Environment. Mistarihi et al. [18] developed a Strategic Framework for Disruption
Management under a Fuzzy Environment. Liu [19] utilized g-rung interval-valued orthopair fuzzy data in a large-scale
green supplier selection approach. Chang et al. [20] introduced a fuzzy optimization model for decision-making in
supply chain management. Rehman et al. [21] constructed the application of a supply chain model in enhancing
healthcare supply chain resilience by fuzzy decision-making.

1.2 Fuzzy Sets and their Generalizations

In 1965, Zadeh introduced the concept of Fuzzy sets [22] as a tool to address uncertainty. Fuzzy sets are ordered pairs
where elements from a universal set are assigned member-ship values ranging from 0 to 1. Dubois et al. [23] authored
a book on the fundamentals of fuzzy sets, discussing applications in detail. Attansove et al. [24] designed an extension
of fuzzy sets called intuitionistic fuzzy sets, and Fermatean fuzzy sets were introduced by Senapati et al. [25]. Picture
fuzzy sets and generalized orthopair fuzzy sets were introduced in [26, 27]. Torra [28] extended the FS model into a
Hesitant fuzzy structure and discussed the generalized membership grade. Numerous researchers have contributed to
the field of fuzzy sets and its generalizations [29-35]. Recently, Shahzadi et al. [36] introduced the latest extension of
g-rung orthopair fuzzy sets, known as p,q-rung orthopair fuzzy sets, applied in multi-criteria decision-making. Ibrahim
et al. [37] defined a topological approach for n, m-Rung orthopair fuzzy sets with applications to the diagnosis of
learning disabilities. Continuously, Ibrahim et al. [38] combined two fuzzy frame-works—bipolar fuzzy sets and n,m-
rung orthopair fuzzy sets—and defined an approach for multi-attribute group decision-making based on bipolar n, m-
rung orthopair fuzzy sets. Furthermore, Ibrahim et al. [39] worked on an innovative method for group decision-making
using n, m-rung orthopair fuzzy soft expert set knowledge. Mahmood at al [40] combined intuitionistic fuzzy sets and
hesitant fuzzy sets and called intuitionistic hesitant fuzzy sets with their application in decision-making. Qahtan et al.
[41] used Pythagorean hesitant fuzzy sets for supply chain systems and multiple-attribute decision-making in [42]. Krisci
et al. [43] developed Fermatean hesitant fuzzy sets with medical decision-making applications. Liu et al. [44]
constructed g-rung hesitant fuzzy sets and their application in multi-criteria decision-making. Sarwar et al. [45]
established a decision-making model for failure modes and effects analysis based on rough fuzzy integrated clouds.
Punnam et al. [46] explored a Linear Diophantine Fuzzy Soft Set-Based Decision-Making Approach Using a Revised Max-
Min Average Composition Method. Recently, some novel extensions and generalizations of fuzzy models have been
developed with their applications [47-49]. Aggregation operators play

a crucial role in information calculation, leading to the development of several aggregation operators in literature.
Yager [50] introduced power average operators in 2001, and Xu et al. [51] developed pow-er geometric operators and
their application in group decision-making. Yager and Ronald [52] designed generalized OWA aggregation operators.
Dhankhar et al. [53] discussed multi-attribute decision-making based on the g-rung orthopair fuzzy Yager power
weighted geometric aggregation operator of g-rung orthopair fuzzy values. Ali et al. [54] developed an Innovative
Decision Model Utilizing Intuitionistic Hesitant Fuzzy Aczel-Alsina Aggregation Operators and Its Application. Haq et al.
[55] designed a novel Fermatean Fuzzy Aczel—Alsina Model for Investment Strategy Selection.
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1.3 Motivation and Contribution

In our comprehensive literature review, we have identified key areas of interest and gaps in current research. This
review underscores the significance of fuzzy sets and their extensions, as well as highlighting the burgeoning field of
'Sustainable Supply Chain with Multi-Objective Decision-Making' and its applications. Addressing a notable gap in
existing literature, our research primarily focuses on bridging the disconnect between the advanced "n,m-rung
orthopair fuzzy model" and its application in sustainable supply chain systems. We have recognized the absence of
methodologies based on "n,m-rung orthopair hesitant fuzzy sets" that facilitate multiple-attribute decision-making
within sustainable supply chain contexts. In this paper, we have made several groundbreaking contributions to
address these existing gaps as follows:

i. We successfully designed and developed an innovative combination of n,m-rung orthopair fuzzy sets and
hesitant fuzzy sets, which we have named c,d-rung orthopair hesitant fuzzy sets. This pioneering work utilizes the
synergies between the n,m and c,d models to propel the field forward.

ii. We have introduced and validated a comprehensive series of theorems and properties specific to our proposed
model. This effort has significantly strengthened the theoretical underpinnings of our research.

iii. We have completed the development of an extensive series of aggregation operators for the c,d-rung orthopair
hesitant fuzzy sets. This series includes the c,d-rung orthopair hesitant fuzzy power averaging (c,d-RHFPA) operator,
the c,d-rung orthopair hesitant fuzzy power weighted averaging (c,d-RHFPWA) operator, the c,d-rung orthopair
hesitant fuzzy power geometric (c,d-RHFPG) operator, and the c,d-rung orthopair hesitant fuzzy power weighted
geometric (c,d-RHFWPG) operator.

iv. We have established a detailed algorithm for multiple criteria decision-making using c,d-RHF information. This
robust framework is tailored for navigating com-plex decision processes efficiently.

V. Our research has successfully applied the developed multiple criteria decision-making model to identify
optimal strategies for maintaining sustainable supply chain systems under c,d-rung orthopair hesitant fuzzy
information.

Vi. We conducted a thorough comparison of our model with existing techniques, demonstrating its consistency
and superiority in the field.

vii. Finally, we have clearly articulated the benefits and advantages of our proposed model, emphasizing its
significant impact and practical applications in the realm of sustainable supply chain management.

The article is structured as follows: Section 2 introduces the fundamental concepts relevant to our proposed approach.
Section 3 develops the novel concept of "c,d-rung orthopair hesitant fuzzy Sets," including their operations and
properties. Section 4 details the creation of aggregation operators for c,d-rung orthopair hesitant fuzzy sets, along with
essential results and proofs. Section 5 elucidates the MCDM algorithm using c,d-rung orthopair hesitant fuzzy power
averaging and geometric operators. Section 6 applies these concepts to a sustainable supply chain (SSC) model,
providing a comprehensive exploration of MCDM. Section 7 presents a comparative analysis with existing techniques,
highlighting the strengths and limitations of our approach. Finally, Section 8 concludes the paper and outlines future
research directions. Figure 1 illustrates the manuscript's workflow.
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Figure 1: Flow chart of the sequence of research

2 Preliminaries

In this section, we recall the basic concepts such as intuitionistic hesitant fuzzy sets, Pythagorean hesitant fuzzy sets,
Q-ROHFSs and c,d-rung rung orthopair fuzzy sets. Table 1 shows the symbols, and their descriptions used in the article.

Definition 2.1. let d be a universal set. Then, L = {u, 7w, (u), ¥, (u):u € 9} is called.

1. anintuitionistic hesitant fuzzy set (IHFS) [40] if 0 < max(rrL(u)) + max(lpL(u)) < 1 where m;(u)and Y, (u)
is a collection of distinct elements from [0,1]

2. a Pythagorean hesitant fuzzy set (PHFS) [42] if 0 < max(7rL(u))2 + max(z/)L(u))2 <1 where m;(u) and
Y, (w) is a collection of distinct elements from [0,1]

3. aFermatean hesitant fuzzy set (FHFS) [43]if 0 < max(rrL(u))3 + max(lpL(u))3 < 1where m;(u)and Y, (u)
is a collection of distinct elements from [0,1].

4. aQ-ROFS[44]if0 < max(nL(u))q + max(l,bL(u))q < 1,forq = 1. where m,(uw) and ¥, (u) is a collection of
distinct elements from [0,1].

Where 1t (uw), Y, (u): d — [0,1] are MG and NMG, respectively.

Definition 2.2. [38] let d be a universal set. Then, L = {u, 7, (1), Y, (u): u € 8} is called a c,d-rung orthopair fuzzy set
if 0< (7'[L(u))C + (wL(u))d <1 such that c¢,d € N. The degree of indeterminacy for u € d to L is given as,

nG = "1 - [(me)° + ()], ne o]

Definition 2.3. For a c,d-rung orthopair fuzzy set L = (T[L(u),l,bL(u)), The score (SF) and accuracy functions (AF) are
defined as

S = (m@)" — (Y )?, AW) = (m,@)° + (Yrw)*

Wherever, S(L) € [—1,1] and A(L) € [0,1].
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3 An idea of c,d-rung orthopair hesitant fuzzy sets (c,d RHFSs)

The concept of the novel model called ¢,d-RHFSs with their basic properties and operators are briefly discussed in this

section.
Table 1: Symbols and their descriptions

Symbols Descriptions Symbols Descriptions

Q-ROFSS g-rung orthopair fuzzy sets c¢,d RHFSs  c,d-rung hesitant fuzzy sets

MG Membership grade c,d RHFPA c,d-rung hesitant fuzzy power average
NMG Non-membership grade c,d RHFPG c,d-rung hesitant fuzzy power geometric
SSC Sustainable supply chain MCDM Multi criteria decision making

SF Score function AF Accuracy function

Definition 3.1. let d be a universal set. A c,d rung orthopair hesitant fuzzy sets(c,d-RHFSs) L in 0 is stated as, L =
{u, m, (), Y, (w):u € 8} where 7, (u) and Y, (u) is a set of elements from the [0,1] and 0 < max(nL(u))C +
max(lpL(u))d < 1 suchthatc,d € N. The degree of indeterminacy for u € 9 to L is given as,

ne= [ “1-[e) +(nw)]
Fevad
and y,(u) € [0,1]

Throughout the paper, for our easiness a ¢,d-RHFS is represented as L = (1, ¥,).
Remark 3.2. If c=d for a ¢,d-RHFS L = (77, y,), then we call L = (mr;, ;) is a Q-RHFS where g=c=d.

Definition 3.3. let L = (77, 3,), L, = (nLl.Tl)Ll) and L, = (ﬂLZ,l/)LZ) be three c,d-rung orthopair hesitant fuzzy sets
then,

= | mintes, 2. maxtz, 21
€e1€my 4
ey ETL’L2
f1€yr,
f2 Esz

= | maxtes,e3,mints, 21
€e1€my 4
ey ETL’L2
f1€yr,
f2 Esz

= U (f%,e%)

feyyL

Theorem 3.4. If L = (7, y,) is a c,d-rung orthopair hesitant fuzzy sets then L' is also (¢,d-RHFSs) and (L")’ = L.
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Proof. Let 0 < nf + Y¢ < 1, then.

d\ ¢ c\d
os(f?) +(eE) =)+ (f)*<1 where e€m;, fE€P,. Thus, L' is also (c,d-RHFS) and it is obvious

or- - )

eermy, eermy,

feyy feyy
Whichisagain L. O

Remark 3.5. If L, = (m,,,%,,) and L, = (m,,,¥,, )are two c,d-rung orthopair hesitant fuzzy sets then L, A L, and
L, V L, are also (c,d-RHFSs).

Theorem 3.6. let L; = (T[Ll,l/JLl) and L, = (nLZ,I,DLZ) be two c,d-rung orthopair hesitant fuzzy sets then,
LinL,=L,ANL,;

LivLi,=L,VIL

(LyiAL) VLI, =L,

P W bdp e

Ly VL)AL, =L,

Proof. From Definition 3.3, we have:

= | mintenextmaxtf 0 = | ] (mines ey, maxifo, i) = Lo ALy
€161y, e1€my
ez€my,, ez€my,,
f1€yr, f1€¥r,
fZElpLZ fZEwLZ

= | maxtes e, mintr 0 = | ] (maxtes, e minto, i) = Lo v L,

€161y, e1€my
ez€my,, ez€my,,
f1€yr, f1€¥r,
f2€%1, f2€9L,

3. (LyALy)VL,

= |J minteredmaxt i v| | o [= | (maxtminge, e, e, min(max{r, £i}.£2)) = L.

€e1€m 4 €€, €e1€my 4
EZETL'LZ fZElpLZ BZETL'LZ
VERS f1eyr,
fZElpLz fZEwLZ

4. (LyVLy)AL,

= | maxtered.mintrpa| | Ceafd |= | mintmaxe, e}, e,), max(mingf, 3, £) = L,

e1€my EZETL'LZ e1€my
€2€TL, f2€9r, €2€TL,
f1€¥r, VY )
f2€9L, f2€9L,



A Novel Generalization of Hesitant Fuzzy Model with Application in Sustainable Supply Chain Optimization. Trans. Fuzzy Sets Syst. 2025; 4(1)
165

Theorem 3.7. let L; = (ﬂLl.lllLJ and L, = (7TL2,1/)L2) be two c,d-rung orthopair hesitant fuzzy sets then,
1. (Ll N Lz)’ = L’l Vv L’Z
2. (Ll \4 Lz), = La N L’z

Proof. For the c,d-RHFSs L and L,, we have:

1. (L ALy
a 4 £ c a c a c
= U (minfey, e;}, max{fi, f2})' = U <max{ef,ezc},m1n{ 1d: zd}> - U <ef,f1d) v (ezcrfzd>
€e1€my 4 e1€my 4 e1€my €e2€m,,
e€mL, e2€my,, f1€Y¥r, f2€91,
f&yr, fieyr,
f2€9r, f2€9r,

=LiVvL,
2. Similarto(1). O

Definition 3.8. let L = (7, y,), L; = (Tlexlle) and L, = (an,l/)LZ) be three c,d-rung orthopair hesitant fuzzy sets,
and A is a positive real number (A > 0),then

1. L,®L,

= |J (Verrer—eies.rurz)
e1€my 4
ex€my,,
flele
f2€¢1,

2. L,®L,

= U <e192rd\/f1d+f2d_ 1df2d)

e1€my 4
ez€my,,
flele
f2€¢L,

- | (i=a=e2. )

eErmy,

feyy

= U (e2, VT=(1—FDE)

feyr

Theorem 3.9. let L; = (nL1,¢L1), L, = (TL’LZ,lpLZ) and L; = (nL3,1,bL3) be three c¢,d-RHFSs, and A is a positive real
number (A > 0),then

LaPL, =L, DL,y
Li®L, =L, Ly
LiOL, DL; =L, DL DL,
LiQ®L, QL; =L QL; KL,

Eal
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Proof. From Definition 3.8 we have:

1. L, PL,
= U (C ef +e; — efezc,flfz) = U (E\/ e; +ef— ezcef,fzﬂ) =L, DL,y
e €my €e1€TL,
ez€my, e€my,,
flele flele
f2€91, f2€y1,
2. Ll ® Lz
d d
= U <6132: \/f1d +f2d - f1df2d> = <3231: \/fzd +f1d _fzdfld) =L, QL
€e1€m 4 €e1€my 4
eZEan BZETL'LZ
fieyr, f1€yr,
f2€91, f2€yr,
3. ltissimilarto 1.

4. ltissimilarto2. O

Theorem 3.10. let L = (7, y,), L, = (”Ll"/)Ll) and L, = (an,l/)Lz) be three c,d-rung orthopair hesitant fuzzy sets,
and A is a positive real number (A > 0),then

1. hBL) =L QL
2. (Li®L) =L DL,
3. (LA =(@L)
4. ALY = (LA
Proof. For the ¢,d-RHFSs L, L, and L3, we have

1. (L1 BL)

= U (Yer+ et —etes fifs) = ((flfz)%, (mﬁ)

e1€m 4 e1€my 4
ex€my,, ex€my,,
f1€%L, fieyr,
f2€¢1L, f2€¢1,
a c a c

— c ,d c ,d ) — g/ ’

_ U <f1,e1>® U <f2,e2>—L1®L2
€1€7TL1 eZETELz
f1eyr, f2€9L,

2. ltissimilarto 1.
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3. (LHA
“Y e = U (09 (- (-6 ) )= U (UA)%,(l_(l_(ecpﬁf)
reyy reyL feyL
= |J (a-a-e9mz ) =ary
reyy
4. A(L)

= A eLJL (f%, e%) = eLJL <(1 - (1 - (f%)c)Af’ ((6)%)A

feyy feyy

- Uee:ZL <eA, (a-(- (fd))A)E> = (1% o
ey

4 c,d-rung orthopair hesitant fuzzy aggregation operators
Here, a series of average and geometric operators for c,d-RHFSs is briefly discussed. Moreover, their basic
properties are also explained.
Definition 4.1. let L; = (nLL., IIJLL.), (i =1,2,...,k) be a set of c,d-RHFNs and t = (t;)T be weight vector of L; with 7; > 0
such that ¥, 7; = 1 then, the
1. c,d-rung orthopair hesitant fuzzy weighted averaging (c,d-RHFWA) operator is a mapping c,d — RHFWA:L¥ - L
such that c,d — RHFWA(Ly, Ly, ..., L) =@, 7;L; = Ly @ TyLy ... D Ty Ly
2. c,d-rung orthopair hesitant fuzzy weighted geometric (c,d-RHFWG) operator is a mapping ¢c,d — RHFWG: L¥ — L
such that c,d — RHFWA(Ly, Ly, ..., L) =QK, LT = L7 Q LY ....Q Li*.
Theorem 4.2. let L; = (nLi,szi), (i =1,2,...,k) be a set of ¢,d-RHFNs and 7 = (;)7 be weight vector of L; with 7; > 0
such that ¥¥ , 7; = 1 then,
1. The aggregation value of ¢,d-RHFNs L;(i = 1,2, ..., k) by using c,d — RHFW A operator is also ¢,d-RHFN. And

k % k
¢.d = RHFWA(Ly, Ly, .. L) = | | <<1 -l [a- (eLi)C)Ti> I [0™
i=1 i=1

eLiEnLi
fLi€YL;

2. The aggregation value of c,d-RHFNs L;(i = 1,2, ..., k) by using c,d — RHFW G operator is also ¢,d-RHFN. And
1

k k <
¢,d — RHFWG(Ly, Ly, ..., Ly) = U (n(e“)” , (1 -~ 1_[(1 -~ (fLi)C)”> )

eL;ETL; i=1 i=1
fLi€¥L;
Proof.
1. We can provide proof of the abovementioned results by using mathematical induction. Therefore, we follow as,

(i). Fori = 2since
1

nl= | (-0 ))") ()™

€L1ETL'L1
fL.€¥L4
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and

nl= | (1= @))) ()™
sze:;izz

then C,d - RHFWA(L]_, Lz) = TlLl @ T2L2=

U <(1—(1—(eL1)C)“)%,(fL1)“>ea g <(1—(1—(eL2)C)”)%,(fL2)’2>

eL1€77.'L1 eLZEﬂ.'LZ
fL1€YLq fLy€YL,

1
= U ((1 - (1 - (eLl)c)T1 +1-— (1 - (eLz)C)TZ)C ) (le)Tl(sz)Tz)
oSt
fL,€¥L,

= | (- ()Y 0= (e)) ) ()" ()™
e,
fL,€¥L,

= U (- 0= @) 0 @) )" ()™

er, €L,
eL,ETL,
fL €Y1,
fLy€YL,

- U <<11j(1(eLi)C)Ti>i'1iil[(fLi)”)

€L1€TL’L1
eL,€ML,
fL€YL,
fLy€Y1L,
(ii). Suppose that this result is satisfied for i = r which is,

l T
¢,d — RHFWA(Ly, Ly, o, L) = TyLy @ Tyl o @ T,L, = U ((1 - 1_[(1 - (eLi)C)Tl) .l—[(fu)ri )
i=1 i=1

er;€mL;
fLi€YL;
Now, we will prove that the result is true for i = r 4+ 1 by using (i) and (ii) we have.
¢,d — RHFWA(Ly,Ly, ..., Lyyq) =T L1 @D 13l .. D Ty 1Ly =

U (-TTe-e) e U (0@ 6.0

eL;ETL; €Ly+1€TLr+1
fLi€YL; fLrs1€¥WLryq
r r
- U (- Tle- e =)y - (1] Ja- @))")a
eL;€mL; i=1 i=1
fL€Pr;

L
SO Dl Y | (AT e

= U <<1 - ﬁ(l — (&))" (1 - (eLr+1)C)TT+1>E’lj(fLi)Ti(fLr+1)Tr+1 )

eL;ETL; i=1

fL€Pr;
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- U (1—ﬁ(1—(eL))Tl>C ﬁ(ﬁ ™)

er;€my;
fLi€YL;
The theorem is meeting for i = r 4+ 1. Thus, theorem is fulfilled for whole i.
2. Theproofissameaspartl. O
Theorem 4.3. (Idempotence) let L; = (nL R ) (i =1,2,..., k) be a set of c,d-rung orthopair hesitant fuzzy numbers and
7 = (1;)7 be weight vector of L; with 7; > 0 such that ¥, 7; = 1.If all of L; = (T[Li,IIJLL.), (i=1,2,..,k) are identical to
L = (m,Y,) then
1. ¢, d —RHFWA(Ly, Ly, ...,Ly) =L
2. ¢,d—RHFWG(Ly, Ly, ...,Ly) =L
Proof.
1. SincelL; =L = (m, Y, )i =12,...,k)thenc,d — RHFWG(L,,L,, ..., Ly)
1

- U (- ﬁ[(l - ())) ﬁ[(m)%

eLl.ETL'Ll-

fLi€YL;
1
- <<1—ﬁ(1—(eacw) .]L[(mff)
i=1 i=1

= |J (1-a- ot ]_[(f o = | <(1—(1—(eL)C))%,]_L[(fL)>=L

fLEYL
e Emy, eLEmy,
fLeyy fLEYL
2. Theproofissameasl. 0O

Theorem 4.4. (Boundedness) let L; = (nL I ) (i = 1,2, ..., k) be aset of c,d-rung orthopair hesitant fuzzy numbers and
7= ()7 be weight vector of L; with 7; >0 such that ¥ 7, = 1. Suppose that e; = 1m,il}<{ei}e.e,,u and e =
<i< t

max{e;Ye,en,, fi' = MaxX{fi}pey,,, and fi7 = min{fi}y ey, Then,

1. (ef,fi) <c,d—RHFWA(Ly, Ly, ...,Ly) < (ef, fiD)
2. (ef,f7) <c,d—RHFWG(Ly, Ly, ...,Ly) < (ef, fiH)
Proof.

1. For any L;=(m,,),(i=12...,k) we can get e <g Se[’ and fi <f; < f;f.Then we have
1

k c
er = (1- (1 - ()9 <1—1_[<1‘(e )> <1—1_[(1—(6Li)c)”>
i=1
1
<1—1_[<1—(e+)6)ﬁ> = (1- @~ (eHryan) = ¢

and
K ¢
fi=(1- Q- (1 - ]_[(1 - (f0 )C)ft> (1 -1]a- (m)”)”)
i=1
k < 1
< (1 - 1_[(1 - (f:)c)r") = (1 -(1- (fL+)C)Z{(=1T")C =fi'
Therefore, -

(ef,fi) <c,d—RHFWA(Ly, Ly, ..., L) < (ef, fiD)
2. Theproofissameaspartl. O
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Theorem 4.5. (Monotonicity) let L; = (nLi, lpLi)and M; = (an., 1/)Mi)(i = 1,2,...,k) be two sets of c,d-rung orthopair
hesitant fuzzy numbers. If L; © M;, Vi,then

1. ¢,d—RHFWA(Ly, Ly, ...,Ly) < c,d — RHFWA(M,, M, ..., M)

2. ¢,d —RHFWG(Ly, Ly, ...,Ly) < c,d — RHFWG(M;, M, ..., M)

Proof.
1. Since for all i we have ey, < ey, fi, = fu then
K : k ok K
T. T . .
<<1 T6- ) ) < <<1 T6- ) ) Tt <] )"
eL;ETL; i=1 eM;ETM; i=1 i=1 i=1
fLi€YL; fm€PMm;
Therefore,
K : ok
T i
¢,d — RHFWA(Ly, Ly, ..., L) = U ((1 - l_[(1 —(e)") ) ,H(fLi)T )
eL;EmL; i=1 i=1
fLi€YL;
1
K Tk
< U ((1 - 1_[(1 - (eMi)C)Tl> ,l_[(fMl.)TS =<c,d — RHFWA(M,, M,, ..., M},)
eM; €M i=1 i=1
fmiewMi

2. The proofissimilarto(1). O
The important function for ranking two c,d-rung hesitant fuzzy sets is known as score function and accuracy function.
Here, we will introduce these functions.
Definition 4.6. Let L = (7, ) a c,d-rung orthopair hesitant fuzzy numbers. Then
1. SF of L is defined as follows:
S(my) —S@L)

H(L) = >
2. AF of L is defined as follows:
S +S
A(L) = (m,) . )
Where
kel
S(my) = —l_k :
and
k fc
S@) = —l‘;cf =

Remark 4.7. Let L = (m, ;) a c,d-rung orthopair hesitant fuzzy number. Then it is suggested that,
1. SFH(L) € [-1,1]
2. AFA(L) €[0,1]
Note 4.8. Let L; = (nLl,szl)and L, = (an,z,bLz) be two c,d-rung orthopair hesitant fuzzy numbers. Then comparison
techniques supposed as,
1. IfH(L,) <H(L,),thenL; < L,,
2. IfH(L;) > H(L,), thenL; > L,,
3. IfH(L,) = H(L,), then
(a) FA(Ly) <H(Ly),thenL, < L,,
(b) IfA(Ly) > A(Ly), thenL; > L,
(c) fA(L) =A(Ly),thenL; = L,.

5 Decision making on c,d-rung orthopair hesitant fuzzy sets
This section includes the establishment of a model to use the proposed operators for MCDM under c,d-RHFNs. For a MCDM
problem, assume that L = {L,, L,, ..., L,,,} is a finite set of alternatives and Q = {Q4, Q,, ..., Qx} is a set of
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criteria. Let B = [Lij] = [nLU,IpLU] be a decision matrix be provided by decision makers. A set of weight vector T =
k

mxX

(71,72, .., Tr)T with 7; > 0 such that Zi-‘zl T; = 1 then, the model (Algorithm 1) of managing the MCDM troubles as follows:
Algorithm 1
1. We will establish a decision matrix based on c,d-rung orthopair hesitant fuzzy numbers B = [Ll-j] for
MCDM.
2. Create a normalized c,d-rung orthopair hesitant fuzzy numbers decision matrix B = [Ll-]-] from c,d-rung
orthopair hesitant fuzzy numbers
3. Calculate the alternatives values L;j by using the set of weight vector 7 = (t1, T2, ..., Tp)T and the averaging
and geometric aggregation operaotrs discussed in Section 4.

k

c k
cN\Ti T
Lj =c,d — RHFWA(Lj;, Lj, ..., Ljy) = U (|1- 1_[(1 — (er,)") ,n(f“) )
eL,EmyL; i=1 i=1
fLi€¥L;
or

k k c
Ti c\Ti
Lj =c,d — RHFWG(Ljy, Lj, ..., Ljy) = U (H(e“) | 1- 1_[(1 -(f)) |

eL;EmL; i=1 i=1

fLi€¥L;
Forallj=1,2,...,m.
4.Calculate the score results for all c,d-rung orthopair hesitant fuzzy numbers of L; obtained from Step 3.
5. The best option can be found by obtaining from the comparing techniques using score values and accuracy

values.

6 Case Study via c,d-rung orthopair hesitant aggregation operators
In a rapidly evolving global marketplace, a multinational manufacturing company, NB sons Ltd, is committed to enhancing
its sustainability practices throughout its supply chain. The company recognizes that achieving sustainability goals requires
making strategic decisions that balance economic, environmental, and social factors. NB Sons Ltd has adopted a c,d-rung
orthopair hesitant Information System to evaluate potential solutions for optimizing its supply chain sustainability.
Background:
NB Sons Ltd operates in the electronics industry, producing consumer devices. Their supply chain consists of numerous
suppliers, transportation networks, and manufacturing facilities distributed across various countries. They aim to reduce
their environmental footprint, improve working conditions, and maintain cost-effectiveness. Four alternative strategies
have been identified for supply chain optimization, each with four attributes:
Alternatives and Criteria for MCDM:
A set of alternatives L = {L,L,,L3,L,} and Q = {Q4, Q,, Q3,Q,} are described in our scenario is, Ly (Local Sourcing):
Emphasizing local suppliers and shortening transportation distances. Q4 Cost Efficiency: Lower transportation costs. Q,
Environmental Impact: Reduced carbon emissions due to shorter distances. Q3 Social Responsibility: Support for local
economies and labor conditions. Q4 Product Quality: Product Quality should be attractive. L, (Global Sourcing): Seeking
suppliers from low-cost regions for cost savings.Qq Cost Efficiency: Lower procurement costs. @, Environmental Impact:
Increased transportation-related emissions. QzSocial Responsibility: Ethical concerns related to labor practices abroad. Q4
Product Quality: Product Quality should be attractive. L3 (Green Logistics): Investing in eco-friendly transportation and
warehousing.Q Cost Efficiency: Higher initial investment but potential long-term savings. QEnvironmental Impact:
Reduced emissions from sustainable logistics. Q3Social Responsibility: Improved supply chain sustainability practices. Q4
Product Quality: Product Quality should be attractive.
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L, Supplier Collaboration: Partnering closely with suppliers for sustainable practices. Q4 Cost Efficiency: Potential for cost
savings through collaborative efforts. @Q,Environmental Impact: Reduction in the overall supply chain's carbon footprint.
Q3Social Responsibility: Enhanced labor conditions and ethical sourcing. Q4 Product Quality: Product Quality should be

attractive.

Objective: NB Sons Ltd aims to select the supply chain strategy that best aligns with its sustainability objectives. The
decision-making process involves evaluating the four alternatives based on the three attributes: Cost Efficiency,
Environmental Impact, and Social Responsibility. However, the decision-makers recognize that they have bipolar hesitant
information, meaning they may have conflicting feelings or uncertainties regarding each attribute's importance and
performance for each alternative.

The MCDM matrix is given in the form of Table 2 based on the c,d-rung orthopair hesitant information.

Table 2: c,d-RHF information

Alternatives

Q1 Q2

a3 Q4

L, {0.7,0.3},{0.6,0.5} {0.5,0.4},{0.8,0.4} {0.6,0.5},{0.7,0.4} {0.2,0.1},{0.6,0.2}
L, {0.5,0.2},{0.7,0.6} {0.3,0.1}, {0.6,0.4} {0.6,0.3},{0.7,0.1} {0.3,0.2},{0.8,0.3}
Ls {0.6,0.3},{0.6,0.4} {0.7,0.1},{0.7,0.2} {0.5,0.2},{0.8,0.3} {0.4,0.4},{0.9,0.4}
L, {0.8,0.5},{0.6,0.3} {0.5,0.4},{0.8,0.5} {0.4,0.1},{0.7,0.4} {0.6,0.2},{0.5,0.3}

To aggregate the information given in Table 2, proposed aggregation operators are used where c =3 and d = 1 and
weights for each attribute is takenas t; = 0.1,7; = 0.2,7; = 0.2and t; = 0.5

¢,d — RHFWA(Lj1, Liy, ., Ls) = U ((1 - 1_[(1 - (eLi)C)”> ,ﬂ(fLi)Ti)

or

4
L =c,d — RHFWG(Lj1, Lz, ., Ljs) = U (H(eLi)”,

eL;ETL;  i=1

eLiET[Li

fL€YL;

fLi€YL;

1

4 ¢
)>

-] Ja-r))"

After applying these aggregation operators, we obtain the calculated values shown in Table 3

Table 3: Aggregated results of c,d-RHF information

Alternatives

¢,d-RFWA

¢,d-RHFWG

Ly

{0.0432,0.0106},{0.6454,0.2957}

{0.3444,0.1930},{0.2211,0.0610}

L,

{0.0225,0.0028},{0.7256,0.3270}

{0.3561,0.1813},{0.2758,0.0791}

L;

{0.0546,0.0129},{0.7799,0.3383}

{0.4961,0.2670},{0.3427,0.0651}

Ly

{0.0860,0.0143},{0.5891,0.3419}

{0.5874,0.2574},{0.1981,0.0657}

By applying the score function for c,d-RHF information, we have results in Table 4

Table 4: Score values on different c,d parameters

Alternatives Score (3,2- Score (3,2- Score(1,1- Score(1,1-
RFWA) RHFWG) RFWA) RFWG)
Ly —0.1259 —0.0011 —-0.1771 0.0101
L, —0.1583 —0.0078 —0.2154 —0.00542
Ls —0.1806 0.0048 —0.2098 0.0434
L, —0.1158 0.0443 —0.1556 0.0893

Ranking results based on the score values presented in Table 4 are displayed in Table 5
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Table 5: Ranking of alternatives derived from score values

Alternatives Ranking Best
3,2-RHFWA L4 >L1>L3>1L2 L4
3,2-RHFWG L4 >L3>L1>1L2 L4
1,1-RHFWA L4>L1>L3>L2 L4
1,1-RHFWG L4 >L3>L1>1L2 L4

This ranking shows that the alternative L, Supplier Collaboration: Partnering closely with suppliers for sustainable
practices is the best strategy identified for supply chain optimization.

7 Comparative analysis

In this section, we will compare the established approach with existing techniques and analyze the difference between
these models. The comparison outcomes are presented in Table 6.
Table 6: Comparative analysis

Approaches Alternatives Ranking Best
Proposed 2,3-RHFWA L4>L2>L1>L3>L5 L4
3,2-RHFWA L4>1L2>L1>L3>L5 L4
Ibrahim et 2,3-RFWA L4>1L2>L1>L3>L5 L4
al [38] 3,2-RFWA L4>L2>L1>L3>L5 L4
Mahmood 1,1-RFWA(IFWA) L4>1L2>L1>L3>L5 L4
et al [40]
Khan et al 2,2- L4>L2>L1>L3>L5 L4
[42] RFWA(PFWA)
Krisci [43] 3,3- L4>L2>L1>L3>L5 L4
RFWA(FFWA)

It is evident that when we modified the c,d parameters of the proposed c,d-RHFS model, the results consistently
aligned with those of existing approaches. The proposed model demonstrated compatibility with the outcomes achieved
using n,m-rung orthopair fuzzy sets as presented by Ibrahim [38]. Similarly, our method exhibited promising results when
compared to Intuitionistic hesitant fuzzy sets [40], Pythagorean hesitant fuzzy sets [42], and Fermatean hesitant fuzzy sets
[43]. Through this comparison, we have discovered some significant characteristics of our suggested approach. In the

subsequent section, we will examine in a detailed discussion the advantages of this methodology.
7.1 Benefits and limitations of the proposed technique

The benefits of the proposed approach are discussed as follows,

i. The proposed approach is a more generalized structure, Figure 2 shows this generic structure.

ii. By taking singleton elements in MG and NMG in c¢,d-RHFS then this is converted into n,m-rung orthopair fuzzy

sets [38].
iii. By taking c=d, c,d-RHFS is converted into Q-RHFS [44].
iv. By taking c=d=3, c,d-RHFS is converted into Fermatean hesitant fuzzy set[43].
V. By taking c=d=2, c,d-RHFS is converted into Pythagorean hesitant fuzzy set[42].
vi. By taking c=d=1, c,d-RHFS is converted into intuitionistic hesitant fuzzy set[40].
vii. The proposed approach facilitates the selection process within a multi-attribute decision-making model.
viii. This approach can be expanded to accommodate other decision-making processes such as MULTIMORA,

TOPSIS, and VIKOR models.
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Figure 2: Generalizations of Fuzzy Sets

8 Conclusion
In this research article, we have explored the dimensions of Q-RHFSs, which encapsulate membership and non-
membership grades within the [0,1] interval for each element in a given universe. The evolution of Q-RHFSs has led to the
development of n,m-rung orthopair fuzzy sets, delineating a more expansive version of the original concept. Our research
progresses this idea by amalgamating it with a hesitant fuzzy model, thereby forging the innovative concept of the c,d-
rung orthopair hesitant fuzzy model. This innovative model is particularly suited for effectively managing scenarios laden
with uncertainty.
Our study rigorously confirms that the proposed c,d-rung orthopair hesitant fuzzy model aligns seamlessly with the core
principles and operational mechanisms fundamental to fuzzy set theory. We have innovatively designed a series of power
averaging and geometric aggregation operators, offering an exhaustive elucidation of their roles in the calculation of fuzzy
information. Further, we have applied this model to tackle a critical global challenge: the development of sustainable
supply chain systems. This application focuses on the strategic selection process for corporations, considering a multitude
of attributes. To facilitate this complex decision-making process, we have devised a tailored multiple-attribute decision-
making model, which is attuned to the nuances of the c,d-rung orthopair hesitant fuzzy information.
Our contribution to the academic field is twofold. Firstly, we conduct a comprehensive comparative analysis with existing
models, thereby underscoring the distinctive advantages of our innovative approach. Secondly, the integration of hesitant
fuzzy modeling into the c,d-orthopair fuzzy sets framework markedly improves our capacity to make well-informed
decisions in environments characterized by significant uncertainty.
Looking forward, we are poised to implement our methodology within the dynamic spheres of machine learning and
artificial intelligence. We will further refine and elaborate on existing models by incorporating a variety of aggregation
operators and undertaking comparative analyses. Additionally, we anticipate expanding our model to include the
methodologies discussed in references [56-58]. This expansion will enable us to thoroughly assess the applicability and
efficacy of our methods across an array of techniques and domains, thereby enriching the landscape of fuzzy set theory
and its applications.
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Abstract. In this work, we define a new sequence denominated by fuzzy Leonardo numbers. Some algebraic
properties of this new sequence are studied and several identities are established. Moreover, the relations between
the fuzzy Fibonacci and fuzzy Lucas numbers are explored, and several results are given. In addition, some sums
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1 Introduction

Recently, several researchers have worked enthusiastically with numerical sequences. Their studies cover a
wide range of fascinating aspects, including exploring unique properties, revealing previously known identities,
and even unlocking the secrets behind generating functions and matrices. One of these interesting sequences
is the Fibonacci sequence of numbers. The sequence of Fibonacci { F}, },,>0 is defined by a recurrence relation

of order two, given by
F,=F, 1+ F, 2, (TLZ2), (1)

with initial conditions Fy = 0 and F; = 1. Other classical sequence is the sequence of Lucas numbers { L, },>0,
defined by the same recurrence relation of Fibonacci sequence,

Ly =Lp1+ Lp2, (TL > 2), (2)

but with different initial conditions, Ly = 2 and L; = 1. The Fibonacci sequence has motivated the study of
many other numerical sequences. We can find not only properties of the sequences of Fibonacci but also the
correlated sequences such as Lucas, Pell, and Pell-Lucas and their applications in the following works [1], [2]
and [3].

One of these correlated sequences is the sequence of Leonardo, introduced by Catarino and Borges in [1],
and defined by the recurrence relation

Ley, = Ley—1+ Lep—2+ 1, (n>2), (3)
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with initial conditions Ley = Ley = 1. This recurrence relation can have the equivalent form
Leyy1 =2Le, — Lep—9, (n > 2).
The relation between Leonardo and Fibonacci numbers is given by
Ley = 2F, 1 — 1, (4)

according to Proposition 2.2 in [1].

The Leonardo sequence has given rise to many related research studies, which are, for example, those of
Alp and Koger in [5], Alves and Vieira in [0], Catarino and Borges in [7], Gokbas in [8], Kara and Yilmaz in
[9], Kuhapatanakul and Chobsorn in [10], and Tan and Leung in [11], among others.

On the other hand, since fuzzy set theory has a lot of applications in real life, the interest in workings
and researching has increased in recent years [12, 13, 14]. To face the challenges of ambiguity in various
areas, Zadeh, in the article [15], introduced the fuzzy set theory. The fuzzy set theory is based on the fuzzy
membership function. Given a set A, the membership function denoted by j 4 is a function that associates an
element of a set A to an element in the interval [0, 1]. A fuzzy set A is described by its membership function 4,
and by the fuzzy membership function, we can determine the membership grade of an element concerning
a set (see more details in [16, 17, 18, 19]). Following Duman, in [20], there are many fuzzy membership
function types, which most commonly used are the triangular, trapezoidal, Gaussian, and generalized Bell.
Fuzzy operations on fuzzy sets are defined as crisp operations performed on crisp sets. Operations on fuzzy
sets are done using fuzzy membership functions. Operations such as addition, subtraction, multiplication,
and division are defined in a fuzzy set, [16, 21]. When fuzzy set operations are applied to a set, the result is
a fuzzy set. But these sets need to be converted to a real number, that is, an inference must be made. This
process is called defuzzyfication, which means inversion of fuzzyfication [22].

Recently, a bridge between fuzzy sets and number theory was built when fuzzy Fibonacci and Lucas
number sequences were defined using the triangular membership function by [23], and also several identities
were provided. In addition, other properties are investigated in [20].

We aim to introduce the fuzzy Leonardo numbers using the triangular membership function and give
some new properties of this new sequence. The article is organized as follows. In Section 2, we present the
triangular fuzzy numbers with their operations. Also, the definitions of fuzzy Fibonacci numbers and fuzzy
Lucas numbers are given as identities related to these sequences, which will be useful for the next sections.
Section 3 introduces the fuzzy Leonardo numbers and establishes some properties and identities of this new
set of numbers. In Section 4, some sums involving fuzzy Leonardo numbers are provided. Finally, some
conclusions are stated.

2 Preliminaries concepts

In this section, we will present the definition of triangular fuzzy numbers, such as their arithmetic operations
of the a-cut, a € [0,1]. In addition, the definitions of fuzzy Fibonacci and fuzzy Lucas numbers are given,
and some properties of these numbers are presented.

First, consider the definition of the triangular fuzzy number given by Irmak and Demirtas in [23]. A
triangular fuzzy number, denoted by A = (a1,a2,a3) is represented by three points, two of which are left
and right of the interval, such that ai,as,as are real numbers. The triangular membership function with
A= (a1, a2, a3) is given by

0, z<a
T—a1
—L  ap<r<a
pilz) =49 B4

ws—ag 2<T=a3
0, T > ag
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A triangular fuzzy number can be represented by a-cut operation, which denotes A% To convert a
triangular fuzzy number to a—cut interval, we follow that

A% = [af, a3] = [a1 + aaz — a1), a3 — a(asz — a2)], (5)

where o € [0, 1] and a; for j = 1,2, 3 are real numbers.
Let A = (a1,a2,a3) and B = (by,ba,b3) be the triangular fuzzy numbers and A® = [af,a$] and B* =
(b3, bS] be the a—cut obtained from these numbers. The arithmetic operations of the a—cut are given in [23]

as follows
A% 4+ BY = [af + bT, a5 + b%], (6)
A” a(lx - l ) a’3 - b%]?

AO‘/B“ = [min{ai /bY, a3 /b7, a7 /b5, a5 /b3 }, max{ai /bT, a3 /b7, af /b5, a5 /b3 ],

[
=
A*B® = [min{a7b{, a3b7, aTbs, a5bs }, max{aTdy, a5by, ay'bs, agbs}], (7)
[
= [min{ka{, ka$ }, max{ka{, ka$}],

with k real number. Note that, if a1, b1, as, b, a3 and b3 are positive real numbers with a1 < as < ag, and
by < by < bz, then A“B® = [a$b{, a5§]. Moreover, if k is a positive real number then we have kA® =
[min{ka{, ka3 }, maz{ka$, ka§}] = [ka{, ka3], (see more details in [10, 21]).

In [23], the author introduced the fuzzy Fibonacci numbers and the fuzzy Lucas numbers, which will be
very useful for this article. Let {F),},>0 be the Fibonacci sequence (1). The triangular fuzzy number of
Fibonacci is given by F,, = (F,,_1, F,,, Fny1). Then, we have the following definition.

Definition 2.1. Let {F},},>0 be the Fibonacci sequence (1). The fuzzy Fibonacci numbers are defined by the
expression

FS = [ 7?717F7?+1] = [Fn—l—’_aFn—QaFn"rl —OéFn_l], (8)
for n > 2, where a € [0,1] and initial conditions are F§' = [1 —a,1+ o] and F}* = [o, 1].

Similarly, the definition of fuzzy Lucas numbers, as proposed by Irmak and Demirtas in [23], is as follows:

Definition 2.2. Let {L,}n>0 be the Lucas sequence (2). The fuzzy Lucas numbers are defined by the expres-
sion
Ly =Ly 1, Lyal = [Ln—1 + aln—2, Lny1 — alp—1], 9)
form > 2 where « € [0,1] and initial conditions are L§ = [—1 — 3a, 1 + o, and LY = [2 — a,, 3 — 2a].
Motivated by the previous definitions, we will introduce the fuzzy Leonardo numbers and study some
properties of this new fuzzy sequence of numbers in the next section. Moreover, this article will explore the

connection between the fuzzy Leonardo numbers, the fuzzy Fibonacci numbers, and the fuzzy Lucas numbers
by considering the following identities for non-negative integers n,

[20, Theorem 3.1] Fe o + Fy=3F",, (10)

[20, Theorem 3.2] Fio=11FY s + FY (11)

[20, Theorem 3.3] Foo—Fp = (—Fn, Fu, 2F41) (12)

[23, Theorem 3.1] Fo,—FY =Ly, (13)

[23, Theorem 3.2(a)] 2F o —3F = Ly, (14)

[23, Theorem 3.2(d)] 2F | — FY =Ly, (15)

[23, Theorem 3.2(g)] Fro +FY = LO‘ (16)

[23, Theorem 3.2(b), (c) and (e)] 5F® = 2L, , — 3L8 = LY, | + LY | = 2L%,, — LY . (17)
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For the reason to establish identities involving the fuzzy Leonardo numbers, in this article, we will consider
the following classical identities for Leonardo numbers {Le,, },,>0 established in Proposition 2.3 [1],

L,+L
Le, =2 <”+5”+2> —1, (18)
L L
Lents = <”“‘£””> -1, (19)
Len = Ln+2 — Fn+2 - 1, (20)

for all non-negative integer n, where Fj, is the n-th Fibonacci number given by (1) and L,, is the n-th Lucas
number given by (2).

3 The fuzzy Leonardo numbers, properties and identities

In this section, we will introduce the fuzzy Leonardo numbers and provide some properties of this new
sequence. Moreover, some identities are established.

3.1 The fuzzy Leonardo numbers and properties

Let {Ley }n>0 be the Leonardo sequence of numbers defined by Equation (3) and the triangular fuzzy number
of Leonardo given by Le, = (Ley—_1, Ley, Lent1). Then, it is natural to consider the a—cut of the triangular
fuzzy numbers given in the following definition.

Definition 3.1. Let {Le,}n>0 be Leonardo sequence given by (3). The fuzzy Leonardo numbers are defined
by the following expression

Ley; = [Ley 1, Lep 1] = [Lep—1 + a(Len—2 + 1), Lepy1 — a(Lep—1 + 1)), (21)
for n > 2, where a € [0,1] and initial conditions are Lef = [1 — a, 1+ ], and Le§ = [a, 1].

By Definition 3.1, the elements of the sequence {Le},>0 are the a—cut obtained from the triangular
fuzzy number of Leonardo Le,, and can be operated by using the a—cut operations.

Observe that by considering the triangular fuzzy number 1 = (1,1,1), and by applying the a—cut, we
obtain I* = [1*,1*] =14+ a(l —1),1 —a(1l —1)] = [1,1].

Then, by using the rule of summation (6), we describe a recurrence relation for the fuzzy Leonardo
numbers in the next proposition.

Proposition 3.2. Consider a € [0,1]. Let {Le%}n>0 be the sequence of fuzzy Leonardo numbers. Then, it is
verified
LeY = Lest 1+ Leoy o+ 1%, (22)

where I* = [1,1].
Proof. By considering the sum operation and Expression (21), we have
Ley 1+ Lep o + 1% = [Lepy o, Lep] + [Lepy 3, Lep ] +[17,17]
= [Ley_o+ Lep_5 + 1% Lepy + Len_; + 19
= [Len_g +oa(Lep—3+ 1)+ Lep—3+ a(Lep—g+ 1) + 1,
Le, —a(Len—2+ 1)+ Ley—1 — a(Ley—3+ 1) + 1]
= [Lep—1+ a(Lep—2+ 1), Lepy1 — a(Leyp—1 + 1))

_ «
= Le,,
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which verifies the result. O

In addition, observe that the Leonardo sequence {Ley, },>0 is an increasing sequence of positive integers,
then it is verified the scalar operation kA“ = [ka{, ka§], for k positive real number. Moreover, since it is
verified the recurrence relation for the Leonardo numbers, Le, 1 = 2Le, — Lep—2, (n > 2), with the same
proceedings done in the proof of Proposition 22 and the scalar product, we can obtain a new equation for
the fuzzy Leonardo numbers given by

Leyy = 2Le;, — Ley_,.

3.2 Some Identities

This subsection will provide some new identities for the fuzzy Leonardo numbers. In addition, we will
establish new identities involving the fuzzy Leonardo numbers, the fuzzy Fibonacci numbers, and the fuzzy
Lucas numbers.

Recall the relation between the Leonardo and Fibonacci numbers given by (4), namely, Le, = 2F, ;1 — 1.
Therefore, by using the scalar product, Definition 3.1, and Equation (4), we establish the following result.

Proposition 3.3. Consider o € [0, 1]. Let {Lel } >0 be the sequence of fuzzy Leonardo numbers and {F }n>0
be the sequence of fuzzy Fibonacci numbers. Then, it is verified

Le® = 2F%, — I° (23)

Proof. Equation (21) shows us that LeX = [Le,,—1 + a(Lep—2+1), Ley 1 — a(Ley—1 +1)]. Since it is verified
Le, = 2F,+1 — 1, then

Lel = [Lep—1 + a(Lep—o + 1), Lepy1 — a(Lep—1 + 1)]
= [2F, + 2a(F,—1) — 1,2F,19 — 2a(F),) — 1]
=2[F, + aF,_1, Fhi0 — aF,] — [1%,1%]
=2 ﬁ+1 - 1%
by Equation (8). O
Similarly, recall the identities of the sequence of Leonardo numbers stated in Proposition 2.3 [1], and the

operations in a-cut. Then, the next proposition is stated.

Proposition 3.4. For all non-negative integers n, the following identities hold:

2
Le,y = R (Lf{ + Lf{+2) e (24)
1
Leg+3 = 5 (Lz+1 + Lz-s-?) - 1%, (25)
Lep =Ly o — Fiyy — 17, (26)
where I* = [1,1], Le& is the n-th fuzzy Leonardo numbers, FY is the n-th fuzzy Fibonacci number given by

(8), and LY is the n-th fuzzy Lucas number given by (9).
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Proof. By combining Definition 3.1 and Identity (18) we obtain
Leyy

n

= [Len—1+ a(Leyp—o+ 1), Lept1 — a(Lep—1 + 1)]

- Lnfl =+ LnJrl Lnf2 + Ln Ln+1 + Ln+3 Lnfl + Ln+1

= of( Ll 4 g : Y L
) ) ) 5)

|:<Ln—1 'g Ln+1> +a <Ln—25+ Ln> ’ (Ln-H 'g Ln+3> N <Ln—1 'é‘ Ln+1>] 1o

[(Ln—l + Ln+1) + « (Ln—2 + Ln) 3 (Ln—l—l + Ln+3) -« (Ln—l + Ln—l—l)] - 1¢

TN O] N Do

= (Lg+Lg+2)—IO‘

Similarly, by using Definition 3.1 and Identity (19), we obtain Equation (25), as well as, by using Definition
3.1 and Identity (20) we obtain (26) O

Next, we will provide an identity related to the product of fuzzy Leonardo numbers. To do this, we need
to observe the product rule (7) and the fact of the Leonardo sequence {Ley, },>0 is an increasing sequence of
positive integers. Then we have Lejy, Lejl = [Leg, _Lejl_,, Le, Lef ,].

Theorem 3.5. Consider m and n non-negative integers and let Lel be the n-th fuzzy Leonardo numbers.
Then

Ley, Leyy 1 + Leg, 1 Ley, = [8(=1)"""™(Leam-n—1+1) — Lepy—1 — Lep—m + Ley + Lep—m—1
+a(8(=1)""™(Legm-n—2 + 1) + 8(=1)""Y(Ley_om—2 + 1) + Ley—m + 2Le, 1)
+a?(8(=1)""™ Y Leam—n-1+ 1)+ Lep—1 + Len_m—2),
8(—1)"""*2(Legy—y, + 1) — Legi1 — Len—ma2 + Lemia + Len—m1
—a(12(=1)"""*3(Legy—p—2 + 1) — Lep—_mi2
+12(=1)""™*"2(Legy—n + 1) + Lepis — 1)
+a2(8(—1)"""™ Y Legm—n—1+ 1) + 2Lep—m—2 + Lem—1 — Ley, + 1))

Proof. Using the Definition 21 we obtain

Ley Ley ., 1+ Lep, Ley,_, = [Lep—1 + a(Lem—2 + 1), Leyy1 — a(Lepy—1 + 1)]
X[Lep—m + a(Lep_m—1+ 1), Lep_mia — a(Lep_m + 1)]
+[Lem + a(Ley—1 + 1), Lepyo — a(Ley, + 1))
X[Lep—m—1+ a(Lep—m—o+ 1), Len—mi1 — a(Lep—m—1 + 1)]
= [(Lep—1 + a(Lepm—o + 1)) (Lep—m + a(Lep—m-1 + 1)),
(Lemt1 — a(Lep—1 + 1)) (Lep—mio — a(Ley—m + 1))]
+[(Lem + a(Lepm—1 + 1)) (Lep—m—1 + a(Len—m—2 + 1)),
(Lemia — a(Ley, + 1)) (Lep—mt1 — a(Lep—m—1 + 1))]
= [(Lem—1 + a(Lepm—2 + 1)) (Lep—m + a(Lep—m—1 + 1))
+(Lepm + a(Lepm—1 + 1)) (Lep—m—1 + a(Lep—m—2 + 1)),
(Lemy1 — a(Lepy—1 4+ 1)) (Lep—myo — a(Lep—m + 1)

)

)
+(Lemta — a(Ley, + 1)) (Len—my1 — a(Lep—m—1 + 1))].

Denote A,, = Le,—1 + alLe,_o and B, = Le,+1 — aLe,_1, then we have
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(Lem—l + O[(Lem72 + 1))(L€n—m + a(Lenfmfl + 1) (27)
= (Lem—1+ alep—9)(Lep—m + aley—m—1) + a(Lep—1 4+ aLey—o + Lep—m + aLén—m—1)
= AmAnfm+1 + Of(Lemfl + Lenfm) + OZQ(Leme + Lenfmfl)a

(Lep+1 — a(Lepm—1 + 1)) (Lep—myo — a(Lep—m + 1)) (28)
= (Lem+y1 — alep—1)(Lep—mi2 — aLlen_p) — a(Lepmi1 — aLegy—1 + Lep—mio — aLen )
= BnBn—m+1 — Oé(Lem—i—l + Len—m—i—?) + QQ(Lem—l + Len—m)7

(Lep, + a(Lep—1 + 1)) (Lep—m—1 + a(Ley—m—o + 1)) (29)
= (Lem + aLepy—1)(Lep—m—1 + alep_m—2) + a(Lep, + aLey—1 + Ley—m—1 + aLep_m—2)
= Am+1An—m + a(Lem + Len—m—l) + OZZ(Lem—l + Len—m—2)a

and
(Lemt2 — a(Ley, + 1)) (Lep—mi1 — a(Lep—m—1 + 1)) (30)
= (Lemy2 — alep,)(Lep—mi1 — alen—m—1) + a(Lepmto — aLey, + Leq—mi1 — aLén—m—1)
= Bmy1Bn—m — a(LeerQ + Lenferl) + 052(L€m + Lenfmfl)-

Now, since
AmAn—m+1 = Lep_1Lep—m + a(Len—mLem—Q + Lem—lLen—m—l) + QQLem—QLen—m—ly
Api1An—m = LeyLey 1+ a(LenfmflLemfl + LemLenfme) + a2Lem,1Len,m,2,
ByBn-m+1 = LepyiLlen_myo — a(LemflLenferQ + LeerlLenfm) + O‘2LemflLenfm,
Byii1Bp-m = LepnyoLlen my1 — O‘(LemLenan»l + Lem+2L6nfmfl) + O12-[/emL€nfmfl,

then, by summing Equations (27) and (29), we obtain the first component given by

AmAn—mi1 + a(Lem—1+ Len—m) + a?(Lem—2 + Len—m—1) (31)
+Ami1An—m + a(Ley + Lep_m—1) + a?(Lem—1 + Leny—m—2)
=Ley_1Len_m + LepyLep_mm—1
+a(Lep—mLepm—o+ Ley—1Len—m—1+ Lep—m—1Lem—1 + Lep Ley -2+ Léey—1 + Ley—m + Léey, + Ley 1)
+a?(Lem_oLlen m—1+ Lem 1Len m—o+ Lem 2+ Len_m-_1).

Similarly, by summing Equations (27) and (29), we obtain the second component given by

BimBn—mi1 — a(Lemy1 + Len—ma2) + a?(Lem—1 + Len_m) (32)
+Bpi1Bnm — a(Lemio + Len_mi1) + o?(Ley, + Len—m-1)
= Lemy1Len—my2 + LepmioLlen_mi1
—a(Lem—1Len—mia + Lemi1Len—m + Lepy Ley i1 + LeproLey_pm—1 + Lemi1 + Lep—mt2)
+a?(Lep_1Ley_m + LepmLen m-1+ Lepm_1+ Lep ).



188 Spreafico E, Costa E, Catarino P. Trans. Fuzzy Sets Syst. 2025; 4(1)

Theorems 2.1 and 2.14 in [5] established

Le_,, = (-1)"(Lep—o+1) — 1,
LepLey, + LesLey = 4(—1)"(Leg—s—1 + 1)(Leg—¢—1 + 1) — Ley, — Ley, + Leg + Ley,
for positive integers n, k, m,s and t with k +m = s + ¢, then holds:

Ley—1Len—m + LepLey -1 =4(—1)"""(Le—g + 1)(Leam—n—1+1) — Leyy—1 — Lep—pm + Ley, + Lep—pm—1
= 8(*1)n_m(L€2mfn71 + 1) —Lem—1 — Lep—m + Lép + Len—m—1,

Leg—olen m + Lep—1Lenm1 = 8(_1)n_m(L62m—n—2 + 1) —Lepy 92— Leym + Lepy 1+ Lep 1,

Ley m—1Llepm 1+ LegLey o2 = 8(_1)m71(Len—2m—2 + 1) —Len—m—1— Lep—1+ Lepy + Lep—m—2,

and

Ley—1Lep—m + Lep Lep—m—1 = 8(—1)"""™(Leam—n—1+1) — Leyy—1 — Lep—m + Ley, + Lep—pm—1.

Therefore, we can rewrite Equation (31) in the form

A Ap—ma1 +a(Ley 1+ Len ) + ?(Lepm—o+ Len—m—1) (33)
+Ami1An—m +a(Ley + Lep_m-1) + a®(Lem—1 + Len_m—2)
=8(—1)"""(Leam-n—1+1) — Ley—1 — Lep—m + Lepy + Lep—m—1
+a(8(=1)"""(Leam—n—2+ 1) +8(=1)" Y (Lep_2m-_2+1) + Lep_m + 2Len 1)
+a?(8(—=1)""™ Y Leam-n-1+1) + Ley_1 + Leq_m_2).

Similarly, we have,

Lemi1Llen mio+ LemyoLen my1r = 8(—1)""""2(Legym—n + 1) — Lemi1 — Len—ma2 + Lemio + Len_my1,

Lepm—1Len—my2 + Lepyi1Lley—y = 12(_1>nim+3(L62m—n—2 + 1) — Ley—1 — Lep—my2 + Lepmy1 + Ley—p,

Ley, Len—my1 + LepmyoLey —m—1 = 12(_1)n_m+2(L62m7n + 1) — Ley — Ley—mi1 + Lemqo + Ley_m—1,

and

Ley—oLen—m—1+ Lep—1Lep_ym—o = 8(_1)n7m71(L€2m—n—1 + 1) — Lepm—2 — Ley—m—1+ Lep—1 + Lep_pm—2.



A Note on the Fuzzy Leonardo Numbers. Trans. Fuzzy Sets Syst. 2025; 4(1) 189

Therefore

BuBn—mi1 — a(Lemi1 + Len—ma2) + o?(Ley—1 + Lep_m)
+Bi1Bnm — a(Lemio + Ley_mi1) + a?(Ley, + Len—m-1)
=8(—1)"""™* 2(Leay,pn + 1) — Legy1 — Len—ma2 + Lemyo + Len—mai1
—a(12(=1)"""™3(Legm—n—2 + 1) — Lep_myo + 12(=1)""™2(Leg,, + 1) + Leyysz — 1)
+a?(8(—=1)""™ Y Legm-n-1+1) +2Lep_m—2 + Leg_1 — Ley, + 1).

which proves the theorem. O
Next, we will provide identities involving the fuzzy Leonardo numbers and the fuzzy Fibonacci numbers.

Proposition 3.6. Consider o € [0, 1]. Let {LeS },>0 be the sequence of fuzzy Leonardo numbers and {Fy}n>0
be the sequence of fuzzy Fibonacci numbers. Then, the following identities hold:

Leqg— Ley  =22F 5, n > 1; (34)

Leq s+ Lep o +21% =6F} 5, n>1; (35)

Ley, 1 — Ley = (—2F,,2F,,4F, 1), n > 0; (36)

Lep,y — Ley 3 =2Ly, n>3; (37)

Lepy . =3Ley | +21* +2L;, n>1; (38)

2Ley — Lep 1 + 1% =2L%, n>1; (39)

Ley + Ley o +21% =2L5, n> 2, (40)

SLep 1 +51% =2(Lyyy + Ly 1) =2(2Ly 1, — Ly), n > 1, (41)

where E in the n-the fuzzy Fibonacci number, and where LY in the n-the fuzzy Lucas number.

Proof. First, by combining Equations (23) and (11), we have

LS,y = 2F% —I°

9(11F2, 5 + F2) — I
22FC, o+ 2F% — I°
= 22FL 5+ Ley_y,

which proves Equation (34). Similarly, by combining Equations (23) and (10), we obtain Equation (35). By
combining Equations (23) and (12) we get Equation (36). Finally, for to prove Equations (37), (38), (39),
(40), and (41), we combine Equations (23) and (13), Equations (23) and (14), Equations (23) and (15),
Equations (23) and (16), and using Equations (23) and (17), respectively. O

4 Some sums involving fuzzy Leonardo numbers
In this section, we will provide some identities involving the sums of fuzzy Leonardo numbers. First, recall

I* = [1%,1%] = [1, 1]. By definition of the fuzzy number, we obtain A*J* = [*A* = A® for all A*. Therefore,
we have the following lemma.
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Lemma 4.1. Consider the fuzzy number I¢ = [1,1]. Then

Proof. Note that, by summation rule (6),

ZIO‘ = Z[lma]:Z[u]: 21 1]

= =1 j=1 =1
_ {n(n; 1)’n(n2—{— 1)} B {n n; 1)r |

as required. O

Theorem 4.2. Let {Leg"}jzo be the sequence of fuzzy Leonardo numbers. Then the sum of the n first terms
of the sequence consisting of these fuzzy numbers is given by

- (n—1)n]”
> Lef =2F5, — F) - [2] +[1—a,1+0]
j=0

Proof. Combining Theorem 3.5 in [5], Lemma 4.1 and Proposition 3.3, we get
n n
She = SR )+ L
=0 j=1
n—1 n
= | ) 2Fy = > 1| + Lef
7=0 7j=1
n—1 n—1
= 2 Fi* — I* — F%,
7=0 7j=1

as required. O

Proposition 4.3. Let {Lejof}jzo be the sequence of fuzzy Leonardo mumbers. Then the sum of n first even
terms of the sequence is:

S Le; = 2Fg, — FY) - [(”‘”"

r+[1—a,1+a].

, 2
7=0
Proof. Note that
n
> Les; = Z 285 —I%) + Le
=0 j=1
n—1
7=0
n—1

= 2 szl ZIO‘ [1—a,1+a].
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According Theorem 3.5 in [5], and Lemma 4.1, we have that
n «
n—1)n
Sreg = - - | "5 wi-aita),
j=0
as required. O

Proposition 4.4. Let {Le?‘}jzg be the sequence of fuzzy Leonardo numbers. Then the sum of n first odd
terms of the sequence is:

- « a a (TL B 1)” “
E Legjq = 2(Fapq — V) — T +[1—a,1+al
Jj=0

Proof. Observe that

n

n
> Leiy = > (2F5 —I%) + Le§
i=0 j=1

n—1 n
= | 2Fg - 17| + Leg
§=0 j=1
n n—1
= 2) Fg-> I"+[1-a,1+aq].
j=0 j=1

Therefore, by Theorem 3.5 in [5] we obtain
n «
(n—1)n
>t = A F) - |UG] -l
j=0

as desired. O

A direct and immediate consequence of Proposition 4.3 and Proposition 4.4 is the result we now present,
which arises naturally from the established relationships and further reinforces the conclusions derived from
the propositions.

Proposition 4.5. Let {Le }jn>0 be the sequence of fuzzy Leonardo numbers. For all non-negative integers
n, we have the following formulas:

n

> (~1)fLep = 2F5, — 2F5), ,3;
§=0

if the last term is negative and

n
Z(—l)kLeg = 2F5, 9 — 2F5, 1 + [2n + 1]%
j=0

if the last term is positive.
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Proof. First, consider that the last term is negative, then

2n—+1

> (=1)Lep
k=0
= Leg — Lef + Ley — Le§ +--- + Ley, — Leg, 4

= (Leg + Leg + -+ Leg,) — (Lef + Le§ + - + Le5,, 1)
n n
= D Lefi— ) Lefusn
k=0 k=0
-1 @
- (2(F2°‘n . {("2)”] Fl—a 1+ a]>

a « (n_l)n “
—(2(F5 — FT) — ECE +[1—a,1+q]
= 2F2an_2F207[1+1'

In which case that last term is positive, then

2(n+1)
S (-1 Leg
k=0
— Lef — Lef + Le§ — Le§ + -~ + Le§, — LeSyyy + LeS, 1
n+1 n

J— [0 (6%
= E Lesy, — E Legy 4
k=0 k=0

_ <_2(F§‘n+2 —;f“) - [W} Hh-ans Od)

e} ¢ (n — 1)” “
(2B - F) - |5 4 -1 al
= 2F5,0—2Fy, 1 + [2n+1]7,

which verifies the result. O

5 Conclusion

In this study, we introduced a new sequence of fuzzy numbers, namely, the sequence of fuzzy Leonardo
numbers. We established the recurrence relation to this new sequence, some properties, as well as some
identities. In addition, we explored the relation between fuzzy Leonardo, fuzzy Fibonacci, and fuzzy Lucas
numbers, and some identities were given. Moreover, we provided some sums identities for the fuzzy Leonardo
numbers.

It seems to us that all results given here are new in the literature.

Number sequences, especially recurring ones, establish patterns in the real world and are therefore used
as discrete growth models. Discrete models are easy to solve and, in some cases, can describe solutions with
predictions that are as good as continuous models. On the other hand, in some real problems, we have a
certain degree of uncertainty about the solution, and that is why we use a fuzzy number to give us flexibility
in finding the best solution for that problem. The construction presented in this article, a priori, is simply
the immersion of a recurring integer sequence over the fuzzy number structure. However, generally, the
combination of both theories can be the premise for establishing discrete growth models that combine the
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flexibility of fuzzy logic with the structural properties of the discrete models, and then the models can be
discussed closer to the real world.
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Abstract. A hybrid method for the numerical solution of the system of delayed linear fuzzy mixed Volterra-
Fredholm integral equations (FMDVFIES) is introduced. Using the hybrid of Bernstein polynomials and block-
pulse functions (HBBFs), an approximate solution for the equations system is provided. Firstly, the HBBFs and
their operational matrices are introduced, and some of their characteristics are described. Then by applying the
operational matrices on FMDVFIES convert it to the algebraic equations system. The numerical solution is obtained
by solving this algebraic system. Then the convergence is investigated and some numerical examples are presented
to show the effectiveness of the method.
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1 Introduction

Some decisions are uncertain or imprecise because they are based on imprecise data. And the dynamics
governing these data cannot be stated definitively. This area of imprecise logic was first described by Zadeh
in [1]. For the role of fuzzy concepts in real life, I refer the reader to the text of Lotfizadeh’s letter in [2]: “The
first significant real life applications of fuzzy set theory and fuzzy logic began to appear in the late seventies
and early eighties. Among such applications were fuzzy logic controlled cement kilns and production of steel.
The first consumer product was Matsushitas shower head, 1986. Soon, many others followed, among them
home appliances, photo-graphic equipment, and automobile transmissions. A major real life application was
Sendais fuzzy logic control system which began to operate in 1987 and was and is a striking success. In the
realm of medical instrumentation, a notable real life application is Omrons fuzzy logic based and widely used
blood pressure meter.”

This concept of fuzzy quickly spread in most fields of science and engineering. Especially the role of fuzzy
mathematics in this expansion has been very significant. It can be claimed that it is used in all branches
of classical mathematics. Including mathematical analysis, which has a wide expansion in all its concepts
such as derivatives [3, 1] differential equations, [, 6, 7, &], the concept of fuzzy integral [9, 10]. Differential
and integral equations [11, 12], and various exact and approximate methods for solving them have been

*Corresponding Author: Bahman Ghazanfari, Email: ghazanfari.ba@lu.ac.ir, ORCID: 0000-0002-7232-5117
Received: 13 October 2024; Revised: 10 January 2025; Accepted: 16 January 2025; Available Online: 24 January 2025;
Published Online: 7 May 2025.

How to cite: Ghazanfari B., A hybrid method for numerical solution of fuzzy mixed delay Volterra-Fredholm integral equations
system. Transactions on Fuzzy Sets and Systems. 2025; 4(1): 195-212. DOI: https://doi.org/10.71602/tfss.2025.1186803

(This article is the extended version of the article that was presented at The 22nd Iran Fuzzy Systems Conference.)

195


https://sanad.iau.ir/journal/tfss/
https://doi.org/10.71602/tfss.2025.1186803
https://orcid.org/0000-0002-7232-5117

196 Ghazanfari B. Trans. Fuzzy Sets Syst. 2025; 4(1)

presented. Abbasbandy et al. [13] applied Rung-Kutta method for fuzzy differential equations, Araghi et
al. [14] introduced the Lagrange interpolation based on the extension principle for fuzzy Fredholm integral
equations, Ezzati et al. [15] presented numerical solution of two-dimensional fuzzy Fredholm integral equation
of the second kind using fuzzy bivariate Bernstein polynomials, Shafiee et al. [16] applied predictor corrector
method for nonlinear fuzzy Volterra integral equations, and Amin et al. [17] used Haar wavelet for solution
of delay Volterra-Fredholm integral equations.

Many researchers have demonstrated the efficiency and error reduction of the combined Bernstein and
Block Pulse methods for various fuzzy and non-fuzzy problems, such as [18] and [19] for fuzzy Fredholm
integral equations, and [20] for fractional differential equations, and [21] for a system of linear Fredholm
integral equations.

Delayed integral equations are a very important area in mathematics, where many phenomena in physics,
biology and economics are modeled by such equations. Therefore, finding an exact or approximate solution
for them is very important. Considering that many parameters in these models can have an uncertain nature.
Therefore, their solution can be considered based on fuzzy concepts.

A numerical approximation method is proposed using the combination of Bernstein and block-pulse
functions (HBBF) to FMDVFIES.

y(t)=1ft)® ZAj Oyt—1)® /Ot /01 k(s,t) ©® y(t)dtds, T;,t € [0, 1], (1)

where 0 < 7; <1, Aj € My, the set of real p x p matrices, for j =1,...,0, and y(t) = yo(t), t <0, and

() = [y1(8), 32(t), -, yp(D)]"

is unknown function for every ¢ € (0,1]. While f(¢) and k(s,t) are known vector and matrix functions
respectively,

£(t) = [f1(6), fa(t), ., Fo(®)]T,
and
k(s,t) = [kij(s,t)], i,5=1,2,...,p.

The main outlines of the hybrid method to FMDVFIES can be expressed as follows:

e The non-zero coefficients of Bernstein polynomials are natural numbers. Therefore, there is no coefficient
error in the computations, a property that some polynomials, such as the Legendre and Bernoulli polynomials,
do not have it.

e Presenting the transformation matrix of Bernstein polynomials to block pulse functions.

e Determined operational matrices.

e By substituting these matrices into the fuzzy integral equations system with time delay, we arrive at a
system of algebraic equations.

e By solving this system of linear equations, we obtain a numerical solution to the problem.

The structure of the article is as follows: In Section 2, some basic results from Bernstein polynomial,
hybrid functions and an overview of fuzzy concepts are given. The main idea are presented in Section 3.
In Section 4, uniqueness of the solution and convergence analysis are investigated. The proposed method is
tested through two numerical examples in Section 5. The conclusions are given in the last section.

2 Preliminaries

2.1 Bernstein polynomials

The M order of Bernstein polynomials on [0, 1] are defined as [22]:
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M
m

B (t) = (

Hybrid functions ¢, (t), for n =1,2,..., N and m =0,1,2,..., M — 1 on [0, 1] are defined as

>tm(1—t)M—m, m=0,1,..., M. (2)

Gom(t) _{ Brny—1(Nt —n+1), % <t< %
rmAn 0, otherwise

where n and M are the number of BPFs and the order of Bernstein polynomials respectively.
A function f € L?[0,1] can be expanded in terms of HBBFs as follows:

N M-1
f(t) = Z Z Cnmwnm(t) = CT\I}@)? (4)
n=1 m=0
where
C = [€10, s CLM—1,C205 - »COM—15CNOs -+ s CNM—15]"
U= [10, «o s PIM—1,1205 v s V201, VN0 o s UNM-1]"
and ¢ = % where (-,-) denote the inner product on L?[0, 1].

2.2 An overview of fuzzy concepts

A pair y = (y(r),y(r)) for r € [0, 1] is called a parametric form of y if

1. y(r) is a bounded left continuous monotonic increasing function on [0, 1],

2. 7j(r) is a bounded left continuous monotonic decreasing function on [0, 1],

3. Vre[0,1], y(r) <y(r).

A number a € R can be represented as y(r) = 5(r) = a, Vr € [0,1].

Suppose E! be the set of all upper semi-continuous normal convex fuzzy numbers with bounded r—level
intervals. It means that if v € E' then the r—level set

[v], = {slv(s) >r}, 0<r<1,

is a closed bounded interval which is denoted by [v], = [vi(7), va(r)].

Lemma 2.1. Let v,w € E! and s be scalar. Then for r € (0,1]
v+ wl, = [v1(r) + wi(r), va(r) + wa(r)],

[v —w], = [v1(r) — wa(r), v2(r) —wi(r)],

[v-wly = [min{v(r) - w1 (r), vi(r) - wa(r), va(r) - wi(r),va(r) - w2(r)},
max{v(r) - wi(r), vi(r) - we(r),va(r) - wi(r), va(r) - wo(r)}H,

[sv], = s[v]y.

So, the set of all fuzzy numbers E! with addition and multiplication which is a convex cone and can be
embedded into the Banach space B = C[0,1] x C[0,1], (B,]| . |) where

,  max |v(r)|}. (5)

0<r<1

| (u,0) [} = sup{ mas. Ju(r)
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The distance between u and v can be denoted as:

D(u,v) = sup {max[|u(r) —v(r)|,[u(r) —v(r)[]}, (6)
0<r<1
If f(t) is continuous in the metric D, then its definite integral exists [23], and

Lbf(t;r)dtz/abf(t;r)dt, WZ/:f(t;r)dt.

2.3 Block Pulse Functions and transformation matrix
The block-pulse functions (BPFs) and some well-known properties are introduced.

1 (i_l)T < t < Q
bi(t) =4 Lo (7)
0, otherwise

fort =1,2,---n are defined as a set of BPFs that have the following properties:

N b;(t), 1 =7,

bi(t)b;(t) = {0’ i (8)

/Tb'(t)b'(t)dt: W 1= (9)
o 7 0, i .

The set of BPF's is complete.

The BPF's expansion:
The expansion of f € L[0,T), with respect to BPFs B(t) = (by(t), ba(t), ..., b,(t))" is defined as [24]:

F) = (f1, far oo fn)B(t) = FTB(t) = BT (1) F,

where F' = (f1, fo, ..., fn)T is given by F = %fOT f()B(t)dt and f; is the block pulse coefficient with respect
to bi(t) fori =1,2,--- ,n.
Now, assume that K (s, ) belongs to L?([0,T] x [0, T]) we can write

T T
K(s,7) ~ BT (s)KB(r), with K = % /0 /0 BT (s)K (s, 7)B(r)drds,

and h = %
And also, from [241], can be found that
T
/ B ()BT (1)dt = h, (10)
0
and fg B(t)dt ~ PB(t) where
1 2 2]
01 2 2
h
=2 1
P 5 0 0
0 0 0 1]
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Therefore,
T T
/ F(t)dt ~ / FTB(t)dt ~ FTPB(1). (11)
0 0
For time delay 7 = gh with a non-negative integer ¢, we have
B(t—71)=HPB(t), (12)
where

(q+1)th-column

!
0 ... 010 ... 0]
0 00 1 0
Hi=10 ... 0 00 ... 1
0 00 0
0 00 0 0]

2.4 Transformation matrix

The HBBFs can be expanded into N M —terms of BPFs [25] as

Unarxi(t) = Pnamrx N B« (t) (13)
where
A O O --- O
0o A O --- O
b =
o o --- 0O A

and A = (am+17i)M><M whit
M—-1—m
M-1 M—-—1—m 1
_ k
ami1i =M kE_l <—1>< m )( K >k+m+1

i+1 k+m+1 i k+m+1
M T\

i=0,1,--- ,NM—1.

, (14)

For example, with N =2 and M = 3,

U(t) = [10(t), ¥11(t), Y12(t), Yoo (t), a1 (), oz ()]

and
B = [b1(t), ba(t), ..., bs(t)]" .
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Such that
Pro(t) = 482 — 4t + 1 1
P11(t) = —8t% + 4t , when 0 <t< 3 (15)
P1o(t) = 412
Poo(t) = 4t? — 8t + 4 .
Por(t) = —8t2 + 12t —4 3, when 5 St<l, (16)
Poo(t) = 4t2 — 4t + 1
and
A O
Qo6 = [0 A} )
with
v 7 1
7 0% A
A=+ B L
27 27 27

For more details, see [25].

3 The Main idea

Consider the parametric form of LFMDVFIES as follows:

_ o x t 1
() f(t)@ZAj@y(tTj)@/o /0 K(s,t) © §(t)dtds, 5.t € [0, 1], (17)
j=1

where y(t) and f(t) are parametric form of y(t) and £(t) in Eq. (1),

gl(t) = (yi(tar)vw(tv ’I"), :'jl(t - Tj) = (&(t - Ty, T)am(t — Tjs T))v
fz(t) = (fi(t,T’), fi(t, r)), 1= 1, 2, Py j = 1, 2, ey 0.
The expansion of functions g;(t), f;(t) and kij(s,T) can be written as follows:

G =Y o), fit)=FLoW(t), kyj(s) =0 ()K;(r), (18)

where Y;, F; are vectors of NM x 1 and Kj; is a matrix of NM x NM.
h= 1/(NM),7‘j = q]‘h, j: 1,2,...,0’.

vilt =) =Y 0 W(t— 7)) = ¥ © 0B(t — )
=Y 0 @HUB(t) =Y, © PHU O U(t),

HBY% = ®H%®~ !, and also, we have

yi(t — ;) ~Y;"HBY © (1), if t —7; >0,

yi(t — 75) = woi(t), if t —71; <0, (19)
where y;(t) denotes the i—th element of the y((¢). The integration of vector ¥(¢) can be approximated as

(I0)(t) ~ PY(t), (20)
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where the NM x NM matrix P is called the HBBfs operational matrix of integration.

(I0)(t) ~ (IDB)(t) = B(IB)(t) ~ PPB(t) = PPO1U(1), (21)
SO
P =opdL
And also
T T
/ U (t)wldt :/ B ()BT ()07 dt = hdd” = Dy,
0 0
hence
AAT O o .. 10
T 0 AAT O ... 0
Dh =537 S _
NM | : ST VU
) O .. O AAT

By substituting Eqs (18)—(21) into (17), we have

Yiou=rFToved AYey'©HBY 0V

j=1
t 1
@ / / UKV oy Ydtds. (22)
0 0
And hence i
Y'=F"®) Y"©D,, ©@HBY®Y" © DK"P,
j=1
where .
AU 0 O @)
0o AW o o)
Dy = . )
O O 0 AW
then

Y'o |I6> Dyy» ©HBY o DIKTP| = FT.
j=1

The approximate solution of Eq.(17) can be found by solving these linear equations and taking y(t) =
YT ©w(t).

4 Uniqueness of the solution and Convergence analysis

Consider the equation

B t 1
F(O) = (D) @t — 1) @ /0 /0 K(s,t) © §(t)dtds, 7.t € [0,1], (23)

or of even more general form:

_ o * t rl
0) f(t)@ZAj®§(t—Tj)@/0 /0 k(s,t) © ¥ (t)dtds, .t € [0,1]. (24)
j=1
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4.1 Uniqueness

For Eqs.(23) and (24), the delays ¢ — 7 and ¢t — 7; are bounded and y(t) = yo(t), t < 0. Then y(t — 7) is a
known function of ¢ for 0 <t < 7. We then show that Eq.(23) has a unique solution y(¢) for —7 < ¢ < 7 and
then can be compute the solution for —7 <t < 27 and so on. By continuing this process, the existence and
uniqueness of the solution for all —7 <t <1 is obtained. For any 0 < 7 < 1, consider Cy = C([—7,0], EP).
Suppose that ¥ € C(Jo, EP) where Jy = [—7, 7] and also f € C([0,1], EP), and

k = [kijlpxp, kij € C([0,1] x [0,1], R),

such that

max max | k(s t)|=K
1<4,j<p 0<s,t<1

Theorem 4.1. Suppose that y(t) = yo(t), t <0, and yo(t) € Cp. If

HkHoo—lrgaécZ\kwst)\_pK<1 0<st<1

then Eq.(23) has a unique solution y(¢) on Jp.
Proof. Define the metric on C(Jy, EP) by

We define the operator T on C(Jy, EP) by

Ta(t) =yo(t), —T<t<0,

Tu(t) = £(t) ® yo(t) // (s,2) ®u(z)dzds,t € [0,7], T > 0.
We find that D(Tu(¢t),Tv(t)) =0, —7 <t <0,and for 0 <t <,

D(Tu(t),Tv(t)) =

D( )@ yolt // (s,z) ©®u(z)dzds,
t) ®yolt // (s,2) ©v( )dzds)
< /0 /O pKD(E(2), %(2))dzds

t 1
| D(TG(t), TH(1)) [l DI /0 /0 | D(EE(2), ¥(2)) [loc dds
Hence we have
| DITE(), T9(1)) [loo <]l DE(), (=) 1o -

So, the operator T is a contraction on C(Jy, EP). Therefore T" has a unique fixed point y € C(Jy, EP), and
consequently this y = y(¢) is the unique solution of Eq.(23) on Jy. O
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Theorem 4.2. Suppose that y;(t)y, v and y;(t) are the approximate solution by HBBFs and exact solution
of i — th component of y(t) in Eq. (17) respectively. If k;;(s, t) for all s,t € [0, 1] is continuous and bounded,
then y;(t) N — ¥i(t) as M, N — oo, for any i =1,2,...,p

Proof.
o *x P *
D(yi(t), yi(t) m,n) < ZD ) ot i), ,(l)le(t_T])MN)+
j=1i=1
p *
D</ / ki (s, 7)y(7)drds / / ki (s, m)yi (T MNde8>
=1
o x P % .
= [0 | DGt — 7). Gilt — ) ar.)+
j=11=1
p * t el N M-1
D(/ / ki (s, 7) (1)drds, / / 0(5:,7)) D Clam¥nm(T des>
=1 0 /o n=1m=0
o x P *
<S> 1a | DGt = 7), Gt = 7)arn)+
Jj=11=1
p * t rl t 01 N M-1
KY D / / @(T)drds,/ / SN clnmtnm( de3>,
=1 0 0 n=1 m=0
where

kii(s. t)|= K.
(Jax max | ki(s,1) |

lim D (yi(t), yi(t) m,n)

M,N—oc0
g x Pk
< Mljlvrgoogg |af | D@t — 73), Gult — 7)arw) +
p * 1 N M-1
MljlvniooZDU/yl des//ZZDclnmwnm des>
- ~ n=1m=
Mglvninglzg | al | D@t — 7)), 5t — 75)an)+
p * t 1 N M-1
K;D (/0 /0 yl(T)de&/O MIJ{fIgooz:lmz:OCl nmwnm deS)
o * P *
< Mlﬁfrgoo]z:; | a )| D@t —7), Gu(t — 7)) an)+

+ 1P * N M-1
K//ZD(@(T, hn_1) ZZCWW%LW )des
0o Jo o

=1 =1 m=0
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Since
N M-1
yl = MIJ{TIEOO Z Z C nmwn m
n=1 m=0
and for any ¢t —7; > 0
N M-1
phim Bt =)y = | lm Zl ZO ClmPnm(t = 75) = Gult = 77),
n=1m=

and for t —7; <0
it — 1) MmN = oo(t) = ui(t — 75).

Hence,
li (t— 1 (t—
v Z|a |yt —75) im Z\a | Ou(t — 75) M-
Therefore, for every ¢ = 1,2, ..., p,

N M-1
li D y(t), 1 =
i ( il 2 2 it )

n=1 m=0

g

5 Examples

Example 5.1. Consider the following FMDVFIES:
~ t rl
A0 = Ao /27130 [ [ o godds
0 Jo
t rl
ea/ / ks © Go(t)dtds, t € [0,1],
0 Jo

~ t 1
ya(t) :f2(t)@?]1(t—2/3)@2?]2(t—1)@/0 /0 ko1 © ya(t)dids

t 1
@ / / koo © ya(t)dtds,
0 JO

where 71 (t) = 42(t) =0, ¢ <0, and

) = (52 (7 = @ = 5/e) (e - #/2) — (1))t~ /3)

~(1/2)e (- 1/3)),

filtr) = (C50) (7' = (2= 5/e)(t — 2/2) = (1/4)(t ~ £°/3)
~(1/2)e I H(E - 1/3)),
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) (£ = (4/e = )2/2 = (1/5)(t~ /2)
_e*(t*2/3)H(t —-2/3)—(t—1)H(t - 1)) )

fQ(tv 7’) = (

r+1
8

Bltr) = (G50 (6= (e = DR/2— (1/5)(t — £/2)

—e 2 (L= 2/3) — (t - DH(E - 1)),

H is the Heaviside function as:

1, t>0,
H(t) = oo
0, otherwise,

and
]ﬁ?n = t2<1 — S), klg = t2(1 — 82),

]{221 = (1 — t2)8, ]{322 = t3(1 — S).

The exact solutions are as follows:

ity = DT gy gy = B0
yalt,r) = (lzr)t’ Ta(tr) = —87“)15.

The errors are shown in Figs. 1 and 2 and the numerical values and error values are given in Tables 1, 2, 3
and 4.

Example 5.2. Consider the following FMDVFIES:

t 1

Jl(t)zﬁ(t)émfl(t—l)@/ ks © g (t)dids

0

/

t 1
@/ / k12 ® ya(t)dtds,

0 JO

where

Filtr) =(/4) (7 = (6~ 16/e)(t — 3/3) — (L/4)(t — 1*/4)
—e Dt - 1)) ,

Fit,r) =(1/2 - r/4) (e — (6 — 16/e)(t — £/3) — (1/)(t - £1/4)
et - 1)) ,
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fa(t,r) =(r/4) (t — (1/4)(t +t2/2) — (1/2)(t — 5/6)H(t — 5/6))
+(1/2 —r/4)t3 /e,

fo(t,r) =(1/2 —r/4) (t — (1/4)(t + t2/2) — (1/2)(t — 5/6)H(t — 5/6))
+ (T‘/4)t3/€.

H is the Heaviside function, and
kll = t3(1 — 52), ]{}12 = t2(1 — 83),

oy = (1 +12)s?, kgo = t3(1 + ).

The exact solutions are as follows:

ret 2 —r)e?
ﬂ(t,’l“) = Ta E(tvr) = 4)
rt (2—1r)t
t = — t = .
ﬂ( ,’I") 4’ 3/2( 7T) 4

The errors are shown in Figs. 3 and 4 and the numerical values and error values are given in Tables 5, 6, 7
and 8.

0.06 —

MaxError

0.01 -
—%— Max Error y1
—+— Max Error y2
0 | | | | | | | | | |

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t

Figure 1: The errors for M = 3, N = 2 in Example 5.1.
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MaxError
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0.04 -

0.03 -

0.02 -

0.01 -
—%— Max Error y1
—+— Max Error y2

0 | | | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 2: The errors for M = 3, N = 4 in Example 5.1.

Table 1: Aproximate and exact solutions and errors for M = 3 and N = 2 in Example 5.1.

t =0.333 App. Exact App. Exact Max

r yi(t,r) | yi(¢,r) Error yi(t,r) | yi(t,r) Error Error
0.00000 0.01575 | 0.02986 | 0.01410 | 0.04656 | 0.08957 | 0.04300 | 0.04300
0.16667 0.01832 | 0.03483 | 0.01651 | 0.04400 | 0.08459 | 0.04060 | 0.04060
0.33333 0.02089 | 0.03981 | 0.01892 | 0.04143 | 0.07961 | 0.03819 | 0.03819
0.50000 0.02346 | 0.04478 | 0.02133 | 0.03886 | 0.07464 | 0.03578 | 0.03578
0.66667 0.02602 | 0.04976 | 0.02374 | 0.03629 | 0.06966 | 0.03337 | 0.03337
0.83333 0.02859 | 0.05474 | 0.02614 | 0.03373 | 0.06469 | 0.03096 | 0.03096
1.00000 0.03116 | 0.05971 | 0.02855 | 0.03116 | 0.05971 | 0.02855 | 0.02855

Table 2: Aproximate and exact solutions and errors for M = 3 and N = 2 in Example 5.1.

t =0.333 App. Exact App. Exact Max

r ya(t,r) | y2(t,7) Error y2(t,r) | y2(t,r) Error Error
0.00000 0.03373 | 0.04167 | 0.00793 | 0.10164 | 0.12500 | 0.02336 | 0.02336
0.16667 | 0.03939 | 0.04861 | 0.00922 | 0.09599 | 0.11806 | 0.02207 | 0.02207
0.33333 0.04505 | 0.05556 | 0.01050 | 0.09033 | 0.11111 | 0.02078 | 0.02078
0.50000 0.05071 | 0.06250 | 0.01179 | 0.08467 | 0.10417 | 0.01950 | 0.01950
0.66667 | 0.05637 | 0.06944 | 0.01307 | 0.07901 | 0.09722 | 0.01821 | 0.01821
0.83333 0.06203 | 0.07639 | 0.01436 | 0.07335 | 0.09028 | 0.01693 | 0.01693
1.00000 0.06769 | 0.08333 | 0.01564 | 0.06769 | 0.08333 | 0.01564 | 0.01564

Table 3: Aproximate and exact solutions and errors for M = 3 and N = 4 in Example 5.1.

t =0.333 App. Exact App. Exact Max

r yi(t,r) | yi(¢,r) Error yi(t,r) | gi(t,r) Error Error
0.00000 0.01411 | 0.02986 | 0.01574 | 0.04888 | 0.08957 | 0.04069 | 0.04069
0.16667 | 0.01701 | 0.03483 | 0.01782 | 0.04598 | 0.08459 | 0.03861 | 0.03861
0.33333 0.01991 | 0.03981 | 0.01990 | 0.04308 | 0.07961 | 0.03653 | 0.03653
0.50000 0.02281 | 0.04478 | 0.02198 | 0.04019 | 0.07464 | 0.03445 | 0.03445
0.66667 | 0.02570 | 0.04976 | 0.02406 | 0.03729 | 0.06966 | 0.03237 | 0.03237
0.83333 0.02860 | 0.05474 | 0.02614 | 0.03439 | 0.06469 | 0.03029 | 0.03029
1.00000 0.03150 | 0.05971 | 0.02822 | 0.03150 | 0.05971 | 0.02822 | 0.02822
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MaxError

MaxError

Table 4: Aproximate and exact solutions and errors for M = 3 and N = 4 in Example 5.1.

t =0.333 App. Exact App. Exact Max
r y2(t,r) | ya2(t,7) Error y2(t,r) | y2(t,r) Error Error
0.00000 0.03381 | 0.04167 | 0.00785 | 0.10144 | 0.12500 | 0.02356 | 0.02356
0.16667 | 0.03945 | 0.04861 | 0.00916 | 0.09580 | 0.11806 | 0.02225 | 0.02225
0.33333 0.04508 | 0.05556 | 0.01047 | 0.09017 | 0.11111 | 0.02094 | 0.02094
0.50000 0.05072 | 0.06250 | 0.01178 | 0.08453 | 0.10417 | 0.01964 | 0.01964
0.66667 | 0.05635 | 0.06944 | 0.01309 | 0.07890 | 0.09722 | 0.01833 | 0.01833
0.83333 0.06199 | 0.07639 | 0.01440 | 0.07326 | 0.09028 | 0.01702 | 0.01702
1.00000 0.06762 | 0.08333 | 0.01571 | 0.06762 | 0.08333 | 0.01571 | 0.01571
0.04 -
0.035
0.03
0.025 [~
0.02 |-
0.015 [~
0.01 —
—%— Max Error y1
0.005 [~ —+— Max Error y2
j
0 ! ! ! ! ! ! ! ! |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t
Figure 3: The errors for M = 3, N = 2 in Example 5.2.
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Figure 4: The errors for M = 3, N = 4 in Example 5.2.
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Table 5: Aproximate and exact solutions and errors for M = 3 and N = 2 in Example 5.2.

t =0.333 App. Exact App. Exact Max
r yi(t,r) | yi(¢,r) Error gi(t,r) | git,r) Error Error
0.00000 0.00000 | 0.00000 | 0.00000 | 0.33627 | 0.35827 | 0.02199 | 0.02199
0.16667 0.02539 | 0.02986 | 0.00447 | 0.30825 | 0.32841 | 0.02016 | 0.02016
0.33333 0.05077 | 0.05971 | 0.00894 | 0.28023 | 0.29855 | 0.01833 | 0.01833
0.50000 0.07616 | 0.08957 | 0.01341 | 0.25220 | 0.26870 | 0.01650 | 0.01650
0.66667 0.10154 | 0.11942 | 0.01788 | 0.22418 | 0.23884 | 0.01466 | 0.01788
0.83333 0.12693 | 0.14928 | 0.02235 | 0.19616 | 0.20899 | 0.01283 | 0.02235
1.00000 0.15231 | 0.17913 | 0.02682 | 0.16814 | 0.17913 | 0.01100 | 0.02682
Table 6: Aproximate and exact solutions and errors for M = 3 and N = 2 in Example 5.2.
t =0.333 App. Exact App. Exact Max
r ya(t,r) | ya2(t,7) Error y2(t,r) | y2(t,r) Error Error
0.00000 0.00747 | 0.00000 | 0.00747 | 0.16343 | 0.16667 | 0.00324 | 0.00747
0.16667 0.01721 | 0.01389 | 0.00332 | 0.15048 | 0.15278 | 0.00230 | 0.00332
0.33333 0.02694 | 0.02778 | 0.00083 | 0.13753 | 0.13889 | 0.00136 | 0.00136
0.50000 0.03668 | 0.04167 | 0.00499 | 0.12458 | 0.12500 | 0.00042 | 0.00499
0.66667 0.04642 | 0.05556 | 0.00914 | 0.11163 | 0.11111 | 0.00052 | 0.00914
0.83333 0.05616 | 0.06944 | 0.01329 | 0.09868 | 0.09722 | 0.00146 | 0.01329
1.00000 0.06589 | 0.08333 | 0.01744 | 0.08573 | 0.08333 | 0.00240 | 0.01744

Table 7: Aproximate and exact solutions and

errors for M = 3

and N =4 in Example 5.2.

t =0.333 App. Exact App. Exact Max

r yi(t,m) | yai(t,r) Error gi(t,r) | gi(t,r) Error Error
0.00000 0.00000 | 0.00000 | 0.00000 | 0.33595 | 0.35827 | 0.02231 | 0.02231
0.16667 | 0.02536 | 0.02986 | 0.00450 | 0.30796 | 0.32841 | 0.02045 | 0.02045
0.33333 0.05071 | 0.05971 | 0.00900 | 0.27996 | 0.29855 | 0.01859 | 0.01859
0.50000 0.07607 | 0.08957 | 0.01349 | 0.25197 | 0.26870 | 0.01673 | 0.01673
0.66667 | 0.10143 | 0.11942 | 0.01799 | 0.22397 | 0.23884 | 0.01487 | 0.01799
0.83333 0.12679 | 0.14928 | 0.02249 | 0.19597 | 0.20899 | 0.01301 | 0.02249
1.00000 0.15214 | 0.17913 | 0.02699 | 0.16798 | 0.17913 | 0.01116 | 0.02699

Table 8: Aproximate and exact solutions and

errors for M = 3

and N =4 in Example 5.2.

t =0.333 App. Exact App. Exact Max

r ya(t,r) | y2(t,7) Error ga(t,r) | y2(t,r) Error Error
0.00000 0.00817 | 0.00000 | 0.00817 | 0.16091 | 0.16667 | 0.00576 | 0.00817
0.16667 0.01771 | 0.01389 | 0.00382 | 0.14818 | 0.15278 | 0.00460 | 0.00460
0.33333 0.02725 | 0.02778 | 0.00052 | 0.13545 | 0.13889 | 0.00344 | 0.00344
0.50000 0.03679 | 0.04167 | 0.00487 | 0.12272 | 0.12500 | 0.00228 | 0.00487
0.66667 0.04633 | 0.05556 | 0.00922 | 0.11000 | 0.11111 | 0.00111 | 0.00922
0.83333 0.05587 | 0.06944 | 0.01357 | 0.09727 | 0.09722 | 0.00005 | 0.01357
1.00000 0.06541 | 0.08333 | 0.01792 | 0.08454 | 0.08333 | 0.00121 | 0.01792
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6 Conclusion

First, the properties of Bernstein polynomials and their combination with block pulse functions are presented.
Then, the important transformation matrix is introduced, which is one of the advantages of this work,
because it can be generalized to other polynomials and its combination with block pulse functions, where
the operational matrices are more easily calculated. We applied the method of combining functions to mixed
fuzzy integral equations system with time delay. Then, by using the transformation matrix, we determined
other operational, delay, and Fredholm and Volterra integrals matrices. By substituting these matrices into
the fuzzy integral equations system with time delay, we arrive at a system of algebraic equations. By solving
this system of linear equations, we obtain a solution to the problem. Then, we proved the uniqueness and
convergence of the method. And some numerical examples are presented to show the effectiveness of the
method. The results showed that the hybrid methods are very useful for these types of systems. For future
research, this method can be used for such equations with nonlinear or nonlinear delay functions. And also,
it can be applied to other polynomials and its combination with block pulse functions.
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1 Introduction

Real number sequences have been a subject of study within Mathematics, particularly in the field of Analysis.
In this context, the domain of the function that generates the sequence is the set of natural numbers (N) and
the image is defined as the set of real numbers (R). In addition, one can define a sequence of real numbers
by writing the current value in terms of its predecessors. This type of sequence is also known as a recursive
sequence, which must be started from one or more initial conditions, as occurs, for instance, in the Fibonacci
and plant growth sequences [1].

There are several well-known real sequences, such as the Lucas sequence, in which the real sequence is
the same as in the Fibonacci sequence, but the initial values differ. Also, there is the arithmetic sequence
(each term is the sum of the previous term and a constant difference), geometric sequence (each term is the
product of the previous term and a constant ratio), triangular number sequence (each term can be arranged
in an equilateral triangle), and many others.

This work focuses on the study of an extension of recursive sequences, in the following sense: the domain
of the function that generates the sequence remains the set of natural numbers, but its values lie in the set of
fuzzy numbers (Rx). Such sequences are known as fuzzy sequences, and the motivation for working with this
approach is based on the uncertainty in determining an exact value for the initial conditions of a recursive
sequence, as seen in population dynamics [2].
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In this particular work, the fuzzy sequences, considered here, are given in the form of
Xn - f(XO)X17 ce 7Xn—l)7

where f : R% — Ryr is a linear fuzzy function. An example of this type of fuzzy sequence is given by
X, =3X,_1+2X,,_9. An example of a fuzzy sequence that is not of this type is given by X,, = X,,_1* X, _o.

For this purpose, the initial conditions of the recursive sequence must be given by fuzzy numbers, conse-
quently, the operations involved in obtaining the n-th value of the sequence, in terms of the previous n — 1
values, must be appropriated for fuzzy numbers. In the literature, there are various arithmetics for fuzzy
numbers. This work will explore only two: the standard arithmetic and the interactive arithmetic.

The standard arithmetic is considered because it is the most common arithmetic operation used in the
literature. Moreover, several properties of this arithmetic are well known. For example, it is always possible
to compute the standard sum between fuzzy numbers; it is a commutative and associative operation, but
it does not satisfy the opposite element; it always produces a fuzzy number with a bigger width than each
width of the operands; and so on [2].

On the other hand, the choice of interactive arithmetic arises from the fact that the n-th term of the
sequence depends on its predecessors. This dependence is intrinsically modeled by the concept of interac-
tivity [3]. Interactivity is a fuzzy relation that emerges from a joint possibility distribution between fuzzy
numbers. This relation is similar, but not equivalent, to the concept of dependence for random variables.

In the context of interactivity, there are several arithmetic operations proposed in the literature, all of
which incorporate this relation. Carlsson and Fuller [1] proposed an addition (subtraction) for fuzzy numbers
that assumes a linear correlation between the fuzzy numbers. Barros and Santo Pedro [5] explored these
operations by proposing a fuzzy derivative. Wasques et al. [(] showed that Hukuara difference and its
generalizations incorporate the relation of interactivity, which means that several papers in the literature use
the relation of interactivity implicitly or explicitly since these fuzzy differences are widely considered in the
fuzzy set theory.

This work addresses fuzzy number sequences that incorporate the interactivity relation, illustrating their
advantages over using usual arithmetic for fuzzy numbers. The paper is organized as follows. Section 2
provides the mathematical background for the fuzzy sets theory and the construction of the interactive sum
Jo. Section 3 explores fuzzy number sequences with different types of arithmetic operations. Section 4
presents the conclusion of the paper.

2 Mathematical Background

A fuzzy subset A of a universe X is characterized by a membership function py : X — [0, 1], where p(z),
or simply A(x), indicates the degree to which x € X belongs to A. Every classical subset A of X is, in
particular, a fuzzy set, as it can be described by the characteristic function x4 : X — {0,1}, which is a
particular case of a membership function. One way to handle fuzzy sets computationally is through a-cuts,
defined by [A]* = {z € X : A(z) > a} if 0 < a < 1 and [A]* = {z € X : A(z) > 0} if a = 0, where Y
represents the closure of the set Y C X.

The set of fuzzy numbers, denoted by Rz, is formed by fuzzy subsets of R whose a-cuts are non-empty,
bounded, closed, and nested intervals for all a € [0,1]. These a-cuts are denoted by [A]* = [a,,a]], Va €
[0,1] [2]. The set of fuzzy numbers with continuous endpoints agy, a?f) : [0,1] — R is denoted by Rg,. An
example of this type of fuzzy number is the triangular fuzzy number, denoted by triple (a; b; ¢), witha < b < ¢,
and characterized by the a-cuts [a + a(b — a),c + a(b — ¢)]. The width of a fuzzy number A is defined by

width(A) = |ag — ag | [2].
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Let A and B be fuzzy numbers. The Pompeiu-Hausdorff distance Dy, : Rr x Rr — [0, 4+00) is given by

DOO(A’ B) = sup (max{|a; - ba_|a ’a;t - bz”’)’ VAvB € Rr.
a€l0,1]

A sequence of fuzzy numbers is defined by a function F': N — Rz. This sequence is denoted by X,,, where
X, represents the value F'(n) and X, is referred to as the n-th term of the sequence, that is, F'(n) = X,,, for
all n € N. A sequence X,, converges to X, if for every e > 0, there exists ng such that D (X, X)) <, for
all n > ng.

A fuzzy relation J € F(R?) is said to be a joint possibility distribution between the fuzzy numbers
Aq, Ay € Ry if

Ai(y) = sup J(x1,x2),
{(z1,22)€R? : z;=y}
forall y € R and Vi =1, 2.

This means that A; and Ay can be obtained by the projection of J in x and y direction, respectively.
The fuzzy numbers A; and A are also called be the marginals of J.

Let A1, As € Rx and let J be a joint possibility distribution between them. The fuzzy numbers A; and
Ay are sald to be non-interactive if

J(a;l,xg) = Jmin(l’l,:rg) = min{Al(ml),Ag(xg)}, V(%l,xg) S RZ.

Otherwise, that is, if J # Jmin, then Ay and A are said to be interactive fuzzy numbers.

The above definition states that the concept of interactivity between fuzzy numbers arises from the notion
of joint possibility distribution. This idea is similar (but not equivalent) to the definition of dependence in
the case of random variables, that is, the relation of dependence is similar to interactivity and independence
is similar to non-interactivity.

There are different types of interactivity associated with various joint possibility distributions, such as
interactivity via Jr [4, 5, 7]. This joint possibility distribution establishes a linear correlation between the
membership functions of the involved fuzzy numbers, which restricts the applicability of Jz, [%, 9]. For example,
the joint possibility distribution Jz, can not be applied for the pair of fuzzy numbers A; and Ao, where A
is a triangular symmetric fuzzy number (for example A; = (1;2;3)) and Ag is a triangular non-symmetric
fuzzy number (for example A; = (1;2;4)).

The following joint possibility distribution does not have such restrictions. Specifically, it can be applied
to any pair of fuzzy numbers in Rrc. Given Ay, Ay € Rre, for each z € R and « € [0, 1], consider the
functions [10]:

gi(z,0) = min |w+z|, and ¢a(z,) = max |w+ z|. (1)
wE[AQ]D‘ wE[AﬂD‘

Also consider the sets R, and L(z, ) defined as follows:
Ri — {ai_a,a;-z if « €10,1)
“ ) A fa=1

and L'(z,a) = [A3_]* N [—gi(z,a) — 2, 9i(z, @) — 2], with i = {1,2}.
The joint possibility distribution Jy is defined by the following membership function [10]

min{A1($1>,A2(.%'2)}, if (xl,.%‘g) e P

0 , otherwise

Jo(z1,22) = {
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where
P=J |J Pl with Pi(a)={(z1,22): 2 € R, e 23_; € L'(xs, )},
=1 aE[O,l]
The following definition is a generalization of Zadeh’s extension principle [I1], which aims to extend

real functions to fuzzy functions. Let J € F(R™) be a joint possibility distribution of Ay, ..., 4, € Rr and
f:R™ — R. The sup-J extension of the function f applied to (41, ..., Ay) is defined by

fJ(Alu'“uAn)(y) = sup J(£17"'7$n)7
(xl,...,xn)ef_l(y)

where f~1(y) = {(z1, ..., 2n) € R : f(21, ..., 70) = y}.
Through the sup-J extension principle, the arithmetic between interactive fuzzy numbers is obtained. For
example, the interactive sum and difference between A; and As is defined as follows:

(A1 +75A2)(y) = sup J(z1,z2) and (A1 —jA2)(y)= sup J(x1,22),

r1t+T2=Y T1—T2=Y
where J is an arbitrary joint possibility distribution.

Definition 2.1. [0] Let A, B € Rz.. The interactive fuzzy sum defined by

(A1 40 A2)(y) = sup Jo(z1,22) (3)

T1+x2=Y
is called the Jy-sum.
The Jp-sum for triangular fuzzy numbers can be easily computed according to the following theorem.

Theorem 2.2. [12] Let A = (a;b;c) and B = (d;e; f) be triangular fuzzy numbers. Let Jy be the joint
possibility distribution between A and B, given by (2). Thus

(@+ )Ab+e)b+e(b+e)V(c+d), if width(A) > width(B)

((c+d)AN(b+e)b+e(b+e)V(a+f)), if width(A) < width(B) )

A—i—oB—{

For example, the Jy-sum between A = (1;2;3) and B = (0;2;4) is equal to
A+ B = (min{3+0,2+ 2};2 + 2;max{1l + 4,2+ 2}) = (3;4;5).
On the other hand, the usual sum is given by
A+B=(1+4+0;2+2;3+4) = (1;47),

which has a bigger width than (3;4;5).
Also, the subtraction operator can be defined in a similar way.

Definition 2.3. Let A, B € Rx. The usual fuzzy difference is defined by

(A1 — A2)(y) = sup min{Ay(z1), A(z2)}. (5)

Tr1—x2=Y

Definition 2.4. [(] Let A, B € Rz,. The interactive fuzzy difference defined by

(A1 —1 A2)(y) = sup  Jo(x1,2) (6)

1 —T2=Y

is called the I-difference.
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For example, the I[-difference between A = (1;3;4) and B = (1;2;3) is equal to
A—rB=A+¢(—B) = (min{l + (—1),34+ (=2)};3 + (=2);max{4 + (—3),3 4+ (=2)}) = (0;1; 1).
On the other hand, the usual sum is given by
A-B=A+4+(-B)=(1-3;3—-2;4—-1)=(-2;1;3),
which has bigger width than (0;1;1). Also, note that
A—1 A=A+ (=A) = (a;b;¢) +o (—¢; —b; —a) = (0;0;0),

for all triangular fuzzy numbers A. Indeed, this result holds for any fuzzy number, that is, A —; A = 0 for
all AeR Fe [ ]

The next section discusses sequences that are obtained through a discrete equation, where the arithmetic
operations involved in the equation are given by interactive arithmetic operations.

3 Fuzzy Number Sequence

The sequences that will be considered here are obtained recurrently, that is, each term z,, € R of the sequence
is given as a function of the previous terms z1,...,x,_1 from one or more initial conditions. For example,
the sequence defined by the Equation (7)

Tp = Tp—1 — T'Tn-2, (7)

where r € R, with initial conditions x; and x».

Taking the value of r = 0.25 and initial conditions z; = x2 = 1, this sequence assumes the following
values {1;1;0.75;0.5;0.3125; 0.1875; . ..}, converging to 0.

Considering that the initial conditions are uncertain and given by fuzzy numbers, the sequence given
in (7) is extended by the following fuzzy numbers sequence

Xn =X 101X, 9, (8)

where 7 € R, with X; and X5 being fuzzy numbers, and the operation & is a difference between fuzzy
numbers.

Two cases will be analyzed here. The first one is when the fuzzy initial conditions are non-interactive,
in this case, the usual difference must be considered. In the second case the fuzzy initial conditions are
interactive, and thus, an interactive difference must be taken into account.

3.1 Usual Arithmetic Sequence

For the usual difference, we have the following sequence
Xn = Xn,1 - T‘Xn,Q. (9)

Taking the initial conditions X; = X3 = (0;1;2) and r = 0.25, we obtain the following sequence of fuzzy
numbers represented in Figure 1. Figure 2 shows the 16-th term X4 computed in this sequence.

Each element of the sequence X,, given in (9) can be found in Table 1. Note that the width of X,,, that
is, the size of the O-cut of X,,, is increasing with n. This implies that the uncertainty about the elements
increases as n increases, this behavior is connected to the usual arithmetic.
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Figure 1: Fuzzy number sequence given by Equation (9) for n = 16. Each element of the sequence X,, is
represented in shades of gray, with Xy described by the lightest shade, and X4 by the darkest shade.
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Figure 2: X5 = (—14.080791;0.00048828; 14.0818).

Note that, if the initial conditions are given by triangular fuzzy numbers, then the (n — 1)-ary term of
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Table 1: Sequence of fuzzy numbers obtained from Equation (8) from the initial conditions X; = Xo =
(0;1;2), r = 0.25 and n = 16.

Usual Arithmetic Interactive Arithmetic
n X n X
1 (0;1;2) 1 (0;1;2)
2 (0;1;2) 2 (0;1;2)
3 (—0.475;0.75;1.975) 3 (—0.15;0.75; 1.485)
4 (—0.97,0.5;1.97) 4 (—0.01;0.5;0.99)
5 (—1.46375; 3.125; 2.0888) 5 (—0.00625; 0.3125; 0.61875)
6 (—1.95625;0.1875;2.3313) 6 (—0.00375;0.1875; 0.37125)
7 (—2.478438;0.10938; 2.6972) 7 (—0.0021875;0.10938; 0.21656)
8 (—3.06125;0.0625; 3.1863) 8 (—0.00125; 0.0625; 0.12375)
9 (—3.735547;0.035156; 3.8059) 9 (—0.00070312;0.035156; 0.069609)
10 (—4.532109;0.019531;4.5712) 10 (—0.00039062; 0.019531; 0.038672)
11 (—5.483574;0.010742; 5.5051) 11 (—0.00021484;0.010742; 0.02127)
12 (—6.626367;0.0058594; 6.6381) 12 (—0.00011719;0.0058594; 0.011602)
13 (—8.002632;0.0031738; 8.009) 13 | (—0.00063477;0.0031738;0.0062842)
14 (—9.662153;0.001709; 9.6656) 14 | (—0.00003418;0.0017090; 0.0033838)
15 | (—11.664398;0.0091553;11.6662) 15 | (—0.000018311;0.00091553;0.0018127)
16 | (—14.080791;0.00048828; 14.0818) 16 | (—0.000009765;0.00048828; 0.0009668)

this sequence is given by

Xn—1 = (an—2 —ren_3;bp—g — rby_3;cn_o — ran_3),

whose a-cuts are given by

[(Xn-1]* = [apn—2 —7rcn—3+ a(bp—o —rbp_3 — (an—2 — rca—3)),
Cn—2 — Tap-3 + a(bp_o — rby_3 — (2 — ran—3))]

= [(ap—2 —rep—3)(1 — @) + a(bp—o — rby—_3),

(cn—2 —ran—3)(1 —a) + a(bp_a — rby_3)]

and the n-ary term of this sequence is given by

Xpn = (an—1 —rcn—2;bp—1 — rbp_2;cn_1 — ran—2),

whose a-cuts are given by

[(Xn]* = [(an—1 —ren—2)(1 —a)+ a(byp—1 — rby—2),
(cn—1 —ran—2)(1 —a) + a(bp—1 — rbp—2)].

For all r > 0, it follows that

Doo(Xn,Xn—1) = sup (max{|ag —bg|,|al —bZ[})
a€gl0,1]

= max{|a,—1 —r7cp—2 — (@n—2 — 7Cn—3)|,|cn—1 — rapn—2 — (cn—2 — ran—3)|}
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or

Doo(Xnaanl) = maX{’bnfl - Tban - (bn72 - Tbn73)|7 |bn71 - rbn72 - (bn72 - Tbn73)|}
= |bn—1 - Tbn—2 - (bn—2 - Tbn—3)|-

Since width(Xp—1) < width(X,), it follows that for » > 1 the above sequences do not converge. This

comment gives raise to the following proposition.

Proposition 3.1. Let be the fuzzy sequence given by
Xn =X —1rX,_o,

where the subtraction operation — is given by the usual difference for fuzzy numbers. Thus, the fuzzy sequence
X, diverges, forr > 1.

3.2 Sequence via Interactive Arithmetic

For interactive arithmetic, several differences can be used, for example, gH-difference [13], L-difference [7]
and [-difference [0]. In the simulations performed here, only the I-difference will be considered, since it
exists for any pair of fuzzy numbers, in contrast to the gH-difference (which can not be computed for any
triangular fuzzy numbers) and L-difference (which can not be computed for triangular fuzzy numbers with
different shapes). For the I-difference, the following fuzzy sequence

Xp=Xpno1 —17X5-2, (10)

is illustrated in Figure 3.

Figure 4 depicts the 16-th term X6 computed from the sequence (10). It is possible to observe that the
output produced by this sequence is indeed a fuzzy number. Moreover, the operation —; preserves the shape
of the triangular fuzzy number.

As in usual arithmetic, the elements of [X,]! are the same as in the classical sequence. Now, due to the
interactive arithmetic obtained by the set Jy, the width of each X, € Rz, is decreasing with n. Therefore,
the uncertainty about such elements decreases over time.

The right tabular of Table 1 illustrates the values of each element of the sequence (10). Analyzing the
table, it is possible to quantitatively compare each X,, given by (9) and (10). It can be observed that the
width of the fuzzy numbers produced by the sequence (10) is smaller or equal than the width of the fuzzy
numbers produced by the sequence (9), for all n € N. Consequently, the uncertainty about the fuzzy sequence
given in (8) is smaller using the I-difference than the usual difference.

Moreover, if the initial conditions are given by triangular fuzzy numbers, then the (n — 1)-ary term of this
sequence is given by

Xn—1 = (min{an—2 — ran—3,bp—9 — rby_3}; by—o2 — rby_s; max{b,_o — rb,_3,cn_2 — rep_3}),
if width(X,—2) > width(rX,_s3) or
Xp—1 = (min{c,—2 —r¢n_3,bp—2 — rbp_3}; b2 — rbp_3; max{by,_o — rby_3,an_2 — rap_3}),
if width(X,—2) < width(rX,_3) and the n-ary term of this sequence is given by
X, = (min{an—1 — rap—2,bp—1 — rby—2}; b1 — rby_o; max{b,_1 — rby_2,cn—1 — rcn—2}),
if width(X,,—1) < width(rX,_s) or

X, = (min{cn—l —rCp—2,bp_1 — rbn—?}; bp—1 — rbp_2; max{bn—l —rbp—2,apn_1 — ran—2})-
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Alfa

Figure 3: Fuzzy number sequence given by Equation (10) for n = 16. Each element of the sequence X, is
represented in shades of gray, with X; described by the lightest shade, and X4 by the darkest shade.
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If 0 < r < 1, then Dy(X,, X,—1) is a lower bounded and decreasing function with respect to n, since
width(X,) < width(X,_1), where a,_2 — ran—s3, by—1 — rby_2 and ¢,—1 — rc,—2 are decreasing sequences.

: X16 = (0.00009; 0.00488; 0.00966)
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Such reasoning is summarized in the following proposition.

Proposition 3.2. Let be the fuzzy sequence given by
Xp=Xpn1—17Xn2,

where the subtraction operation —r is given by the interactive difference (2.4). Thus, the fuzzy sequence Xy,
converges, for any 0 < r < 1.

Similar results would be obtained using the gH-difference and the L-difference, if it were possible to
calculate X,,—1 © rX,,_s for each n. This comment is attributed to the fact that every arithmetic operation
coming from a joint possibility distribution J # Jyi, produces fuzzy numbers with a smaller width than the
usual arithmetic [14].

4 Conclusion

This work studied sequences of fuzzy numbers that assume values in Rr,. Each element of this sequence is
obtained by recurrence according to the equation (8), with fuzzy initial conditions.

Through some simulations, using the I-difference, it was noticed that the interactive arithmetic produces
a sequence of elements with a smaller width than the width of the elements obtained by the usual arithmetic.
This result is valid for all interactive arithmetic. It is worth mentioning that other interactive arithmetic
could have been used, such as the differences gH and L, however, it is not always possible to compute them.
The I-difference, on the other hand, does not have such restrictions.

From the point of view of applications, a smaller width implies less uncertainty about the elements of
the sequence {X,}. The sequence provided by usual arithmetic has an increasing width, and therefore,
it propagates uncertainty over its elements. On the other hand, using the I-difference, the width of the
sequence decreases, which is better for controlling uncertainty over time. This makes interactive arithmetic
more suitable for modeling than the usual one.

It is worth noting that in several applications the usual sum and the gH-difference are used in the same
equation. This is not consistent with joint possibility distributions, since the gH-difference is an interactive
arithmetic operation [0], and the usual sum is not.
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