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Professor John N. Mordeson is a distinguished mathematician and educator who has made significant con-
tributions to the field of fuzzy logic and its applications. He is currently a Professor Emeritus of Mathematics
at Creighton University. Dr. Mordeson earned his B.S., M.S., and Ph.D. degrees from Iowa State University.
Throughout his career, he has authored twenty books and more than two hundred journal articles on fuzzy
science, making remarkable advancements in the field. He also serves on the editorial boards of numerous
academic journals, continuing to make valuable contributions to fuzzy science. John N. Mordeson was born

in the United States on April 22, 1934. His early fascination with mathematics and science was evident
during his school years, where he consistently excelled. His intellectual curiosity led him to pursue higher
education, embarking on a journey that would ultimately establish him as a prominent figure in mathematics
and computer science. He received his B.S., M.S., and Ph.D. in mathematics from Iowa State University,
Ames, IA, USA, in 1959, 1961, and 1963, respectively. Following the completion of his doctorate, Mordeson
began his academic career as a professor of mathematics. His teaching style was renowned for its clarity and
rigor, making complex mathematical concepts accessible to his students. Mordeson’s research interests have
been broad, but he is best known for his work in algebra and fuzzy mathematics, particularly in address-
ing global challenges such as climate change, the coronavirus pandemic, human trafficking, and biodiversity.
Additionally, he has developed an extensive set of tools for applying fuzzy mathematics and graph theory to
social issues, including human trafficking and illegal immigration.

Dr. Mordeson has made significant contributions to the field of fuzzy mathematics through his numerous
books. Each work reflects his unique approach of merging theoretical advancements with practical applica-
tions. Among his most notable books are:

..
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”Fuzzy Automata and Languages: Theory and Applications” This book introduces fuzzy automata and
languages, expanding classical automata theory by incorporating fuzziness into state transitions. It covers
fundamental theory and applications in areas like pattern recognition and linguistics.

”Fuzzy Graphs and Fuzzy Hypergraphs” This work explores fuzzy extensions of graph theory, widely
used in network analysis, computer science, and decision-making. It includes applications of fuzzy graphs in
social networks, transportation networks, and communication systems.

”Fuzzy Mathematics in Medicine” This book discusses the role of fuzzy mathematics in medical contexts,
particularly in diagnosis, prognosis, and decision-making under uncertainty. It demonstrates how fuzzy set
theory can model medical scenarios with imprecise or incomplete information.

”Fuzzy Group Theory” Extending classical group theory with fuzzy set concepts, this book is aimed at
researchers in algebra and offers insights into applying fuzzy sets to abstract algebraic structures like groups.
”Fuzzy Decision Making in Modeling and Control” This book addresses decision-making processes in complex
systems where uncertainty and ambiguity are present. It presents methods for using fuzzy logic to improve
modeling and control in fields such as engineering and artificial intelligence.

”Fuzzy Set Theory and Fuzzy Controller Design” Mordeson explores fuzzy controllers, essential in in-
dustrial automation, and explains how fuzzy set theory principles can enhance controller design, particularly
for systems challenging to model precisely.

”Fuzzy Mathematics: Approximation Theory” Focusing on approximation theory in fuzzy mathematics,
this book explores how fuzzy set theory improves accuracy in mathematical function approximations, with
applications in engineering, economics, and beyond.

”Interval-Valued Fuzzy Set Theory” Introducing interval-valued fuzzy sets, this book provides a more
flexible representation of uncertainty, suitable for complex decision-making environments where each element
has an interval of possible membership values.

”Applications of Fuzzy Sets and Fuzzy Logic” This text covers the practical uses of fuzzy sets and fuzzy
logic across disciplines, from engineering and computer science to economics and social sciences, showcasing
fuzzy logic’s versatility in handling vagueness and imprecision. ”Fuzzy Semigroups” A focus on semigroups
in abstract algebra, this book extends classical semigroup theory into the fuzzy domain, modeling systems
with partial or uncertain information, useful in algebra and computer science research.

Mordeson has authored and co-authored numerous research papers and books on fuzzy mathematics, mak-
ing significant contributions to its development and dissemination. His work often bridged the gap between
abstract mathematical theory and practical applications, making his research valuable to both academics
and industry professionals. In addition to his research and teaching, Professor Mordeson has undertaken
various leadership roles throughout his career. He has served as a department chair and participated in
numerous academic committees, playing a key role in shaping the direction of research and education within
his department. His influence extends beyond his institution through his active involvement in professional
organizations, conferences, and the editorial boards of academic journals. He is a respected figure in the
global mathematical community, known for his collaborations with other researchers and his mentorship of
young mathematicians.

Throughout his career, Professor John N. Mordeson has received numerous awards and honors for his
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contributions to mathematics and education. His work has been widely cited, and his ideas have inspired
generations of researchers. Mordesons lasting impact is evident not only in the mathematical theorems and
concepts that bear his influence but also in the countless students and colleagues he has inspired over the
years. His dedication to the pursuit of knowledge and his passion for teaching have left an indelible mark
on the academic community. His passion for mathematics and education endures, and he often reflects on
the importance of fostering curiosity and critical thinking in students. His work remains significant, and his
influence is still evident in the fields of fuzzy mathematics and beyond.
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(This paper is dedicated to Professor ”John N. Mordeson” on the occasion of his 91st birthday.)

Abstract. In this paper, we continue the investigation started in [1]. We obtain new results derived from novel
concepts developed in analogy with others already established, e.g., the fact that leftoids (X, ∗) for φ are super-
transitive if and only if φ(φ(x)) = φ(x) for all x ∈ X. In addition we apply fuzzy subsets in this context and we
derive a number of results as consequences.

AMS Subject Classification 2020: 20N02; 03E72

Keywords and Phrases: Below, Above, Transitive, Fuzzy, Contractive, Contained, (α−, β−, γα−, γβ−)order-
preserving (reversing).

1 Introduction

In developing a general theory of groupoids one seeks to define concepts and obtain information that applies
to as general a class of groupoids as possible. Thus, e.g., the observation that (Bin(X),2) is a semigroup
with identity is one such of this type. Another one is the description of the notions of order for all groupoids
(X, ∗). Here one does not expect there to be a “precise” answer of this type one often expects. Here we use
the relations β (below: x∗y = y) and α (above: x∗y = x) which are then combined with ≤ (x ≤ y : xβy, yαx)
which compares with other definitions of ≤ made for certain classes of groupoids (e.g., BCK-algebras ([2, 3]),
pogroupoids ([4, 5, 6]). The work done in [1] was convincing enough to suggest that a follow up paper might
be in order, and that in this paper it might also be proper to open the door to introduce ideas that are
both related to the material in [1] and to the general subject of “fuzzification” of crisp algebraic theories.
Hopefully this effort has been successful.

Zadeh [7] introduced the notion of a fuzzy subset as a function from a set into unit interval, and Rosenfeld
[8] applied this concept to the theory of groupoids and groups. Mordeson and Malik [9] published a book, Fuzzy
commutative algebra, which are fuzzifications of several classical algebras, and Ahsan et al. [10] publisehed a
book, Fuzzy semirings with applications to automata theory. Kim and Neggers [5] applied it to pogroupoids
which are algebraic representations of partially ordered sets, and obtained an equivalent condition for some
relation to be transitive for any fuzzy subset. Han et al. [11] discussed on linear fuzzifications of groupoids
with special emphasis on BCK-algebras. Liu et al. [12] studied the notion of hyperfuzzy groupoids as a
natural extension of the basic concepts of fuzzy groupoids.

..
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We recall that the notion of the semigroup (Bin(X), 2) was introduced by Kim and Neggers [13]. Shin
et al. [14] introduced the notion of abelian fuzzy subsets on a groupoid, and discussed diagonal symmetric
relations, convex sets, and fuzzy center on Bin(X). Ahn et al. [1] studied fuzzy upper bounds in Bin(X).

Allen et al. [15] studied several types of groupoids related to semigroups, i.e., twisted semigroups. Allen
et al. [16] developed a theory of companion d-algebras, and they showed that if (X, ∗, 0) is a d-algebra, then
(Bin(X),⊕, ⋄0) is also a d-algebra. Kim et al. [17] introduced the notions of generalized commutative laws
in algebras, and investigated their relations by using Smarandache disjointness. Moreover, they showed that
every pre-commutative BCK-algebra is bounded. Hwang et al. [18] generalized the notion of implicativity
which was discussed in BCK-algebras, and applied it to several groupoids, BCK/BCI-algebras and their
generalizations.

2 Preliminaries

Let (X, ∗) be a groupoid, i.e., a non-empty set X and a binary operation “∗” on X, and let x, y, z ∈ X. x is
said to be below y, denoted by xβy, if x ∗ y = y; x is said to be above y, denoted by xαy, if x ∗ y = x. An
element z ∈ X is said to be β-between x and y, denoted by z ∈< x, y >β, if xβz, zβy; an element z is said
to be α-between x and y, denoted by z ∈< x, y >α, if xαz and zαy.

We refer to [19] for basic concepts of the graph theory.

Example 2.1. [20] Let D = (V,E) be a digraph and let (V, ∗) be its associated groupoid, i.e., ∗ is a binary
operation on V defined by

x ∗ y :=

{
x if x→ y ̸∈ E,
y otherwise.

Let D = (V,E) be a digraph with the following graph:

3 •

##G
GG

GG
GG

GG
• 4

1 •

OO

• 2

OO

Then its associated groupoid (V, ∗) has the following table:

∗ 1 2 3 4

1 1 1 3 1
2 2 2 2 4
3 3 2 3 3
4 4 4 4 4

It is easy to see that there are no elements x, y ∈ V such that both xαy and xβy hold simultaneously. Note
that the relations α and β need not be transitive. In fact, 1 → 3, 3 → 2 in E, but not 1 → 2 in E imply that
1β3, 3β2, but not 1β2. Similarly, 1α4, 4α3, but not 1α3.

Remark 2.2. In Example 2.1, z ∈< x, y >β means that xβz, zβy, i.e., x → z → y in E. Similarly,
z ∈< x, y >α means that xαz, zαy, i.e., there is no arrow from x to z, and no arrow from z to y in E.

Example 2.3. [20] Let R be the set of all real numbers and let x, y ∈ R. If we define a binary operation
“∗” on R by x ∗ y := y2, then (R, ∗) is not a semigroup. In fact, (x ∗ y) ∗ z = z2, while x ∗ (y ∗ z) = z4. If
xβy and yβz, then z = y ∗ z = z2 and hence z = 0 or z = 1, which implies that x ∗ z = z, i.e., xβz, proving
that β is transitive.
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Let (X, ∗) be a groupoid and let x, y ∈ X. Define a binary relation “≤” on X by x ≤ y ⇐⇒ xβy, yαx.
Then it is easy to see that ≤ is anti-symmetric.

Note that the order “x ≤ y” defined by x ∗ y = 0 in BCK-algebras is a partial order.

Let (X, ∗) be a groupoid and let x, y ∈ X. We define an interval as follows:

[x, y] := {q ∈ X |x ≤ q ≤ y}.

Proposition 2.4. [20] Let (X, ∗) be a groupoid and let x, y ∈ X. Then z ∈ [x, y] if and only if z ∈< x, y >β
and z ∈< y, x >α.

Given a set X and a function φ : X → X, we consider a groupoid (X, ∗, φ) where the multiplication is
given by the formula

x ∗ y = φ(x).

We call such a groupoid (X, ∗, φ) a leftoid for φ. In particular, if φ(x) = idX(x) = x, then (X, ∗, idX) has a
multiplication

x ∗ y = x

and the groupoid (X, ∗) is referred to as a left zero semigroup. Similarly, we define a rightoid and right zero
semigroup, i.e., x ∗ y := φ(y) for all x, y ∈ X.

Given a non-empty set X, we let Bin(X) denote the collection of all groupoids (X, ∗). Given groupoids
(X, ∗) and (X, •), we define a binary operation “2” on Bin(X) by

(X,2) := (X, ∗)2 (X, •)

where

x2 y = (x ∗ y) • (y ∗ x)

for any x, y ∈ X. Using that notion, Kim and Neggers proved the following theorem.

Theorem 2.5. [13] (Bin(X), 2) is a semigroup, i.e., the operation “2” is associative. Furthermore, the
left-zero semigroup is the identity for this operation.

3 Below and above in groupoids

Proposition 3.1. Let (X, ∗) be a leftoid for φ and let x, y1, y2 ∈ X. If xβy1 and xβy2, then y1 = y2.

Proof. If xβyi (i = 1, 2), then φ(x) = x ∗ y1 = y1 and φ(x) = x ∗ y2 = y2. Since φ is a mapping, we obtain
y1 = y2. □

In case of the rightoid (X, ∗) for φ, if xβy, then φ(y) = y, i.e., there is no element x ∈ X such that xβy
and φ(y) ̸= y.

Proposition 3.2. If (X, ∗) is a leftoid for φ and xαy, then x is a fixed point of φ.

Proof. If xαy, then x = x ∗ y = φ(x), i.e., x is a fixed point of φ. □

Proposition 3.3. If (X, ∗) is a leftoid (rightoid) for φ and x ≤ y, then x ∈ φ−1(y) and y is a fixed point of
φ.

Proof. The proof is straightforward. □

Proposition 3.4. Let (X, ∗) be a leftoid for φ, and let β be transitive. If xβz, zβy, then y = z.
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Proof. Since β is transitive, if xβz, zβy, then xβy and x ∗ z = z. Since (X, ∗) is a leftoid for φ, we obtain
z = φ(x) and hence y = x ∗ y = φ(x) = z. □

The following property can be easily proved.

Proposition 3.5. Let (X, ∗) be a leftoid for φ. If β is transitive, then either < x, y >β= ∅ or < x, y >β= {y}
for all x, y ∈ X.

Given a mapping φ : X → X, we define a set by

Fix(φ) := {x ∈ X |φ(x) = x }.

Theorem 3.6. Let (X, ∗) be a rightoid for φ and let y ∈ Fix(φ). If x ∈ X, then < x, y >β = Fix(φ).

Proof. If z ∈< x, y >β, then xβz, zβy. Since (X, ∗) is a rightoid, we have z = x ∗ z = φ(z), and hence
z ∈ Fix(φ). If z ∈ Fix(φ), then z = φ(z). For any x ∈ X, since (X, ∗) is a rightoid, we have x ∗ z = φ(z) = z,
i.e., xβz. Moreover, z ∗y = φ(y) = y, since y ∈ Fix(φ), i.e., zβy. This shows that z ∈< x, y >β for all x ∈ X.
□

Theorem 3.6 shows that if (X, ∗) is a rightoid for φ, then < x, y >β =< x′, y′ >β = Fix(φ) for all x, x′ ∈ X
and y, y′ ∈ Fix(φ).

Note that if xαz, zαy, where (X, ∗) is a rightoid for φ, then x = x ∗ z = φ(z) and z = z ∗ y = φ(y). This
shows that x is uniquely determined by y under φ,

Theorem 3.7. Let (X, ∗) be a leftoid for φ and let x, y ∈ X. Then

(i) |[x, y]| ≤ 1,

(ii) if z ∈ [x, y], then y, z ∈ Fix(φ),

(iii) if x ∈ [x, y], then x = y ∈ Fix(φ).

Proof. (i) Assume that there exist z1, z2 ∈ [x, y]. Then xβz1 and xβz2. This shows that zi = x ∗ zi = φ(x)
where i = 1, 2. Since φ is a mapping, we obtain z1 = z2.

(ii) If z ∈ [x, y], then yαz, zαx and hence y = y ∗ z = φ(y) and z = z ∗ x = φ(z), proving that y, z ∈ Fix(φ).

(iii) If x ∈ [x, y], then x ∈ Fix(φ) by (ii). We claim that x = y. Assume x ̸= y. Since x ≤ y, we have
xβy, yαx. It follows that y = x ∗ y = φ(x). Since φ(x) = x, we have x = y, a contradiction. □

Proposition 3.8. If (X, ∗) is a rightoid for φ and x, y ∈ X, then [x, y] ⊆ Fix(φ), and [x, y] = {y} when
[x, y] ̸= ∅.

Proof. If z ∈ [x, y], then zαx and hence z = x ∗ z = φ(z), proving that z ∈ Fix(φ). Now, yαz implies
y = y ∗ z = φ(z) = z, since z ∈ Fix(φ). □

4 Transitivity in groupoids

Given a groupoid (X, ∗), the relation β (below) is given by xβy iff x ∗ y = y ([20]). Now, if β is transitive,
then (xβy) ∗ (yβz) = xβz, i.e., (x ∗ y) ∗ (y ∗ z) = x ∗ z when x ∗ y = y, y ∗ z = z, x ∗ z = z. Thus, if
(x∗y)∗ (y ∗ z) = x∗ z, then this identity reflects a transitivity-like property which in any case is more general
than a transitivity in the β-relation. Of course, we can argue the same way for the α-relation (above) given
by xαy iff x ∗ y = x. Thus the condition (x ∗ y) ∗ (y ∗ z) = x ∗ z also generalizes the α-relation in the same
manner. Since α and β are definitely not the same, we shall consider the following.
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A groupoid (X, ∗) is said to be super-transitive if for all x, y, z ∈ X,

(x ∗ y) ∗ (y ∗ z) = x ∗ z.

Every left-zero semigroup as well as every right-zero semigroup is therefore super-transitive as well. More-
over, every Boolean group (X, ∗) (i.e., x2 = eX for all x ∈ X) is super-transitive, since (x ∗ y) ∗ (y ∗ z) =
x ∗ (y ∗ y) ∗ z = x ∗ z for all x, y, z ∈ X.

Theorem 4.1. Let (X, ∗) be a leftoid for φ. Then (X, ∗) is super-transitive if and only φ(φ(x)) = φ(x) for
all x ∈ X.

Proof. If (X, ∗) is super-transitive, then (x ∗ y) ∗ (y ∗ z) = x ∗ z for all x, y, z ∈ X. Since (X, ∗) is a leftoid,
we have (x ∗ y) ∗ (y ∗ z) = φ(x) ∗φ(y) = φ(φ(x)) and x ∗ z = φ(x). Assume φ(φ(x)) = x for all x ∈ X. Then
(x ∗ y) ∗ (y ∗ z) = φ(x) ∗ φ(y) = φ(φ(x)) = φ(x) = x ∗ z, proving that (X, ∗) is super-transitive. □

Corollary 4.2. Let (X, ∗) be a rightoid for φ. Then (X, ∗) is super-transitive if and only φ(φ(x)) = x for
all x ∈ X.

Proof. The proof is similar to the proof of Theorem 4.1. □
Note that super-transitive groupoids with homomorphisms form a category, since super-transitivity is

expressed in identity form.
A groupoid (X, ∗) is said to be α-transitive if xαy, yαz implies xαz, and a groupoid (X, ∗) is said to be

β-transitive if xβy, yβz implies xβz. A groupoid (X, ∗) is transitive if it is both α-transitive and β-transitive.

Example 4.3. Let X := {x, y, z} be a set with the following table.

∗ x y z

x y z x
y z x y
z z x y

Then (X, ∗) is trivially β-transitive, since β = {(u, v)|u ∗ v = v} = ∅. But α = {(x, z), (y, z), (z, x)}. This
shows that xαz, zαx, but not xαx, proving that (X, ∗) is not α-transitive.

Proposition 4.4. Every super-transitive groupoid is transitive.

Proof. Let (X, ∗) be a super-transitive groupoid. Assume that xαy, yαz. Then x ∗ y = x, y ∗ z = y, and
hence x ∗ z = (x ∗ y) ∗ (y ∗ z) = x ∗ y = x, i.e., xαz, proving that (X, ∗) is α-transitive.

Assume that xβy, yβz. Then x ∗ y = y, y ∗ z = z. Since (X, ∗) is super-transitive, we obtain x ∗ z =
(x ∗ y) ∗ (y ∗ z) = y ∗ z = z, i.e., xβz, proving that (X, ∗) is β-transitive. □

Corollary 4.5. Let (X, ∗) be a transitive groupoid. If x ≤ y, y ≤ z, then x ≤ z.

Proof. The proof is straightforward. □
The converse of Proposition 4.4 need not be true in general.

Example 4.6. Let X := {0, 1, 2, 3} be a set with the following table.

∗ 0 1 2 3

0 0 1 2 1
1 1 1 2 1
2 2 2 2 1
3 1 2 1 3

Then it is easy to see that (X, ∗) is transitive, but it is not super-transitive, since (2∗1)∗(1∗3) = 2 ̸= 1 = 2∗3.
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5 Applications to fuzzy subgroupoids

In this section, we apply the concept of fuzzy subsets to groupoid theory mentioned in the above sections.

Let (X, ∗) ∈ Bin(X). A mapping µ : X → [0, 1] is said to be a fuzzy subgroupoid of X if, for all x, y ∈ X,

µ(x ∗ y) ≥ min{µ(x), µ(y)}.

A mapping µ : X → [0, 1] is said to be a contractive fuzzy subgroupoid of X if, for all x, y ∈ X,

µ(x ∗ y) ≤ min{µ(x), µ(y)}.

Proposition 5.1. Let (X, ∗) be a left-zero semigroup.

(i) every fuzzy subset µ : X → [0, 1] is a fuzzy subgroupoid of X,

(ii) if µ : X → [0, 1] is contractive, then it is a constant mapping.

Proof. (i) Given x, y ∈ X, since (X, ∗) is a left-zero semigroup, we have µ(x ∗ y) = µ(x) ≥ min{µ(x), µ(y)},
proving that µ is a fuzzy subgroupoid of X.

(ii) Assume that µ is contractive. Then µ(x∗y) ≤ min{µ(x), u(y)} for all x, y ∈ X. Since (X, ∗) is a left-zero
semigroup, we obtain that µ(x) ≤ min{µ(x), µ(y)} for all x, y ∈ X. This shows that µ(x) ≤ µ(y) for all
x, y ∈ X, i.e., µ is a constant function. □

Let (X, ∗) ∈ Bin(X). A mapping µ : X → [0, 1] is said to be a contained fuzzy subgroupoid of X if, for all
x, y ∈ X,

µ(x ∗ y) ≤ max{µ(x), µ(y)}.

Proposition 5.2. Let (X, ∗) be a left-zero semigroup. Then every mapping µ : X → [0, 1] is a contained
fuzzy subgroupoid of X.

Proof. The proof is straightforward. □
Let (X, ∗) ∈ Bin(X) and let µ : X → [0, 1] be a mapping. A mapping µc : X → [0, 1] is said to be a

complement of µ if, for all x ∈ X, µc(x) := 1− µ(x).

Proposition 5.3. Let (X, ∗) be a groupoid. If µ : X → [0, 1] is a contained fuzzy subgroupoid of X, then µc

is a fuzzy subgroupoid of X.

Proof. It follows from that 1−max{µ(x), µ(y)} = min{1− µ(x), 1− µ(y)} for all x, y ∈ X. □
Let (X, ∗) ∈ Bin(X). A mapping µ : X → [0, 1] is said to be a expansive fuzzy subgroupoid of X if, for all

x, y ∈ X,

µ(x ∗ y) ≥ max{µ(x), µ(y)}.

Note that every expansive fuzzy subgroupoid of X is also a fuzzy subgroupoid of X. Moreover, a fuzzy
subset µ is an expansive fuzzy subgroupoid of X if and only if µc is a contractive fuzzy subgroupoid of X.

Example 5.4. Let X := [0,∞). Define a binary operation x ∗ y := x+ y for all x, y ∈ X where “+” is the
usual addition of real numbers. Then every order-preserving mapping µ is expansive, since µ(x+ y) ≥ µ(x)
and µ(x+ y) ≥ µ(y) for all x, y ∈ X.

Theorem 5.5. Let (X, ∗), (X, •) ∈ Bin(X) and let (X,2) := (X, ∗)2(X, •). Then the following are hold:

(i) if µ is contractive fuzzy subgroupoid on (X, ∗) and (X, •), then it is also contractive fuzzy subgroupoid
on (X,2),
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(ii) if µ is contained fuzzy subgroupoid on (X, ∗) and (X, •), then it is also contained fuzzy subgroupoid on
(X,2),

(iii) if µ is expansive fuzzy subgroupoid on (X, ∗) and (X, •), then it is also expansive fuzzy subgroupoid on
(X,2).

Proof. (i) Given x, y ∈ X, we have

µ(x2y) = µ((x ∗ y) • (y ∗ x))
≤ min{µ(x ∗ y), µ(y ∗ x)}
≤ min{µ(x), µ(y)},

proving that µ is a contractive fuzzy subgroupoid on (X,2). Others are similar to (i) and we omit the proofs.
□

Proposition 5.6. Let (X, ∗) ∈ Bin(X). If µ : (X, ∗) → [0, 1] is both a contractive fuzzy subgroupoid of X
and a fuzzy subgroupoid of X, then µ(x ∗ y) = min{µ(x), µ(y)} for all x, y ∈ X.

Proof. It follows from that min{µ(x), µ(y)} ≤ µ(x ∗ y) ≤ min{µ(x), µ(y)} for all x, y ∈ X. □
Let (X, ∗) ∈ Bin(X). A mapping µ : X → [0, 1] is said to be β-order-preserving if xβy implies µ(x) ≤ µ(y),

and a mapping µ : X → [0, 1] is said to be β-order-reversing if xβy implies µ(x) ≥ µ(y). A mapping
µ : X → [0, 1] is said to be expanding if µ(x) ≤ µ(x ∗ y) for all x, y ∈ X, and a mapping µ : X → [0, 1] is said
to be contracting if µ(x) ≥ µ(x ∗ y) for all x, y ∈ X.

Proposition 5.7. Let (X, ∗) ∈ Bin(X). Then every expanding (resp., contractive) fuzzy subset µ : X → [0, 1]
is β-order-preserving (resp., reversing).

Proof. Assume that xβy. Then x ∗ y = y. Since µ is expanding, we obtain µ(x) ≤ µ(x ∗ y) = µ(y), proving
that µ is β-order-preserving. The other part is similar, and we omit it. □

Theorem 5.8. Let (X, ∗) ∈ Bin(X) and let a, b, a+ b ∈ [0, 1]. Then the following conditions hold:

(i) if µ and ν are β-order-preserving, then aµ+ bν is also β-order-preserving,

(ii) if µ, ν are expanding, then aµ+ bν is also expanding,

(iii) if µ is β-order-preserving, then µc is β-order-reversing,

(iv) if µ is expanding, then µc is contracting.

Proof. Let µ, ν : X → [0, 1] be fuzzy subsets of X. Given x ∈ X, we have (aµ + bν)(x) = aµ(x) + bν(x) ≤
(a+ b)max{µ(x), ν(x)} ≤ a+ b ≤ 1.

We consider (i). If µ and ν are β-order-preserving and xβy, then µ(x) ≤ µ(y), ν(x) ≤ ν(y). It follows
that (aµ + bν)(x) = aµ(x) + bν(x) ≤ aµ(y) + bµ(y) = (aµ + bν)(y). Other proofs can be shown easily, and
we omit the proofs. □

Let (X, ∗) ∈ Bin(X). A map µ : X → [0, 1] is said to be γβ-order-preserving if xβz, zβy implies
µ(x) ≤ µ(z) ≤ µ(y).

Note that every β-order-preserving mapping µ of a groupoid (X, ∗) is γβ-order-preserving.

Proposition 5.9. Let (X, ∗) be a groupoid with the following property (P ):

xβz =⇒ ∃ y ∈ X such that zβy. (P )

If µ is a γβ-order-preserving mapping on (X, ∗), then it is a β-order-preserving mapping on (X, ∗).
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Proof. Let xβz. Since (X, ∗) has the property (P ), there exists y ∈ X such that zβy. Since µ is a γβ-order-
preserving mapping, we obtain µ(x) ≤ µ(z) ≤ µ(y), which shows that µ is a β-order-preserving mapping.
□

Example 5.10. Let X := [0,∞). Define a binary operation ∗ on X by x ∗ y := max{x, y} for all x, y ∈ X.
Assume xβy. Then y = x ∗ y = max{x, y} and hence x ≤ y. If we put z := y + 1, then y ∗ z = y ∗ (y + 1) =
max{y, y + 1} = y + 1 = z. Hence (X, ∗) has the property (P ).

Example 5.11. Let X := [0,∞). Define a binary operation ∗ on X by x ∗ y := x+ y for all x, y ∈ X, where
“+” is the usual addition of real numbers. Assume xβ1. Then 1 = x ∗ 1 = x + 1, and hence x = 0, i.e.,
0β1. If we assume that there is y ∈ X such that 1βy, then y = 1 ∗ y = 1 + y, which shows that 1 = 0, a
contradiction. Hence (X, ∗) does not have the property (P ).

Let (X, ∗) ∈ Bin(X). A mapping µ : X → [0, 1] is said to be α-order-preserving if xαy implies µ(x) ≥ µ(y).
A map µ : X → [0, 1] is said to be γα-order-preserving if xαz, zαy implies µ(x) ≥ µ(z) ≥ µ(y).

Proposition 5.12. Let (X, ∗) be a groupoid with the following property (Q):

xαz =⇒ ∃ y ∈ X such that zαy. (Q)

If µ is a γα-order-preserving mapping on (X, ∗), then it is a α-order-preserving mapping on (X, ∗).

Proof. The proof is similar to the proof of Proposition 5.9. □
Let (R, ∗) be a leftoid for φ, where φ(x) := x2 for all x ∈ R. Then 1 ∗ 2 = φ(1) = 1 and hence aα2.

If we assume (R, ∗) satisfies the condition (Q), then there exists y ∈ R such that 2αy. It follows that
2 = 2 ∗ y = φ(2) = 4, a contradiction. Hence such a groupoid (R, ∗) does not satisfy the condition (Q).

Given a groupoid (X, ∗), a map µ : X → [0, 1] is said to be a super-symmetric fuzzy subset of (X, ∗) if
µ((x ∗ y) ∗ (y ∗ z)) ≥ µ(x ∗ z) for all x, y, z ∈ X.

Thus, if (X, ∗) is a left-zero semigroup, then every mapping µ : (X, ∗) → [0, 1] is a super-symmetric fuzzy
subset of (X, ∗), since µ((x ∗ y) ∗ (y ∗ z)) = µ(x) ≥ µ(x) = µ(x ∗ z) for all x, y, z ∈ X. Similarly, for any right
zero semigroup, every mapping µ : (X, ∗) → [0, 1] is also a super-symmetric fuzzy subset of (X, ∗).

Proposition 5.13. Let (X, ∗) be a leftoid for φ. If µ : X → [0, 1] is a map with µ(φ(x)) ≥ µ(x) for all
x ∈ X, then µ is a super-symmetric fuzzy subset of (X, ∗).

Proof. Given x, y, z ∈ X, since (X, ∗) is a leftoid for φ, we have µ((x ∗ y) ∗ (y ∗ z)) = µ(φ(x) ∗ φ(y)) =
µ(φ(φ(x)) ≥ µ(φ(x)) = µ(x ∗ z), proving the proposition. □

It is a question of some interest to determine a super-symmetric fuzzy subset of a groupoid (X, ∗) to be a
fuzzy subgroupoid of (X, ∗), i.e., µ(x∗y) ≥ min{µ(x), µ(y)} for all x, y ∈ X. Clearly, every map µ : X → [0, 1]
of a left-zero semigroup (X, ∗) is also a fuzzy subgroupoid of (X, ∗).

Proposition 5.14. Let (X, ∗) be a leftoid for φ. If µ : X → [0, 1] is a map with µ(φ(x)) ≥ µ(x) for all
x ∈ X, then µ is a fuzzy subgroupoid of (X, ∗).

Proof. If µ(φ(x)) ≥ µ(x) for all x ∈ X, then µ(φ(φ(x)) ≥ µ(φ(x)) ≥ µ(x) and hence µ(x ∗ y) = µ(φ(x)) ≥
µ(x) ≥ min{µ(x), µ(y)} for all x, y ∈ X, proving that µ is a fuzzy subgroupoid of (X, ∗). □

Clearly, there is much more information waiting to be obtained here as well.
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6 Conclusion

In this paper, we have continued the investigation started in [20] of what we may discover in the theory of
groupoids (binary systems) by separating the concepts of below (xβy) and above (xαy) in general groupoids,
and then recombining them to obtain what looks to be a candidate for the best relation ≤ available in general.
After doing so, we introduce the idea of super-transitivity in groupoids as a generalization of the notions β
and α in identity form, (x ∗ y) ∗ (y ∗ z) = x ∗ z which allows us to make claims about the class of groupoids
for which this identity holds, i.e., that this yields a variety. Having done so we may then concern ourselves
with introducing fuzzy subsets µ on groupoids (X, ∗) which have certain properties of interest, e.g., being
contracting on expanding which defined in the natural way provides new but not unexpected information. A
bit stickier is the class of µ((x ∗ y) ∗ (y ∗ z)) ≥ µ(x ∗ z) for super-symmetric fuzzy subsets of (X, ∗) introduced
with a standard looking inequality and the problem being the determination of fuzzy subsets of this type
which are also fuzzy subgroups and conversely. Certain problems look innocent enough but may yet prove
not to be trivial as they are solved.
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We shall prove a general formula for the solution of optimization problem, from which we obtained effective
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obtained from numerical data.

AMS Subject Classification 2020: 03B52; 90B50

Keywords and Phrases: Fuzzy variables, Demand vectors, mλ–measure, mλ–inventory problem.

1 Introduction
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The mathematical formulation of the inventory model starts from the following initial data (model pa-
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The demands are mathematically modeled by the variables D1, · · · , Dn; the order quantities will be the
variables x1, · · · , xn. The total profit from the sale of the n types of goods will have the following expression::

π(x⃗, D⃗) =

n∑
i=1

(dixi − ci −
hix

2
i

2Di
) (see [1], [2]).

In a neutral inventory problem, one will determine those values of x1, · · · , xn for which the total profit

π(x⃗, D⃗) =
n∑
i=1

(dixi − ci −
hix

2
i

2Di
) is maximal. When making the decision the risk is taken into account, the

values of x1, · · · , xn will be determined so that at the same time the maximum profit is achieved, and the
risk (represented by various mathematical concepts) to be minimal.

The formulation of an inventory problem depends on how the demands D1, · · · , Dn are modeled, as well
as on how profit maximization and risk minimization are evaluated. The classical treatment of inventory
problems is a probabilistic one: the demands D1, · · · , Dn are random variables and, for risk - neutral models,
the objective function of the maximization problem is the expected value of the total profit. In the case of a
risk - averse attitude of the decision maker, several ways to describe the risk were proposed: in [3], [4] by means
of mean-variance models and in [5] by using the value-at-risk (VaR) as a risk measure. In [6], the coherent
risk measures [7] have been used in defining the objective function of an inventory problem. Using the multi-
item inventory system introduced by Luciano et al. [5] (called, shortly, LCP-model), [8] developed several
inventory problems, with decision-makers having various positions towards risk: from a neutral attitude to
risk-averse attitude, corresponding to variance, mean-absolute deviation (MAD) and conditional value-at-risk
(CVaR) as risk measures.

The credibility theory, specially developed by Liu in [9], is another way to model the fuzzy uncertainty.
Its fundamental concept is the credibilistic measure [10] and its main indicators are the credibilistic expected
value and the credibilistic variance (cf. [9], [10]). From the literature dedicated to the credibilistic treatment
of inventory problems we mention the papers: [11], [12], [1], [13]. In this paper we will have as the starting
point the papers [14], [15], [16] of Li and Liu: the first one concerns a multi - item inventory problem in which
the decision - maker is neutral and the second one is a risk - averse inventory model. In both papers, the
demands and the total profits are fuzzy variables and the expected profit is the credibilistic expected value
of total profit. In [15] appears a risk evaluated by the notion of absolute semi - deviation.

In [17], Yang and Iwamura introduced a new measure mλ as a convex linear combination of a possibility
measure Pos and its associated necessity measure Nec (λ is a parameter in the interval [0, 1]). By using the
measure mλ, in [18] the notions of the expected value Eλ(ξ) and the variance V arλ(ξ) of a fuzzy variable ξ are
defined. These two indicators retain some algebraic properties of the possibilistic indicators corresponding
to [9]. In this way, the credibility theory is enlarged to a new theory that models the fuzzy uncertainty (this
will be named mλ - theory). An issue that arises naturally is an mλ–theory leading to the development of
different economic and financial themes. Papers [19], [20], [21], [22] introduce new credibilistic real options
models, which are based on the optimism-pessimism measure and interval–valued fuzzy numbers. The model
outcomes are compared to the original credibilistic real options model through a numerical case example in a
merger and acquisition context. Paper [18] applies mλ–theory in the study of optimal portfolios when assets
returns are described by triangular or trapezoidal fuzzy variables.

In this paper we shall study a multi - item risk neutral inventory problem in the framework of an mλ - the-
ory. We shall assume that the demandsD1, · · · , Dn are fuzzy variables and the criterion used in determination

of the order quantities x1, · · · , xn is the maximization of the mλ - expected value
n∑
i=1

[dixi− ci−
hix

2
i

2
Eλ(

1

Di
)]

of the total profit. We shall prove a general formula for computing the solution of optimization problem,
of which we will then get formulas for effective computation of inventory problem solution whenever the
demands are trapezoidal or triangular fuzzy numbers. For λ = 1

2 we shall obtain as a particular case the
credibilistic inventory problem of [14], as well as the form of its solution.
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The paper is structured as follows. Section 2 contains introductory material on possibility and necessity
measures, credibility measure and mλ - measure, as well as on their relationship. In Section 3 we present the
definition of the mλ - expected value and some of its basic properties. Section 4 deals with the construction of
a risk neutral inventory model whose objective function is defined by using the notion of mλ - expected value.
By using the linearity of mλ–expected operator Eλ(.), a general formula for the solution of the maximization
problem is obtained. In Section 5 we proved some explicit formulas for this solution in the particular cases
when the demands are trapezoidal and triangular fuzzy numbers. The proofs of these formulas are based
on the form of mλ–expected value Eλ(A) of a trapezoidal fuzzy number A (see Proposition 3.4). Section 6
highlights how by applying the percentile method of Vercher et al. [23] we can build an inventory problem
starting from a dataset. In this inventory problem, the components of a demand vector are trapezoidal fuzzy
numbers, such that one can apply the formulas from Section 4 to compute the solution of the optimization
problem.

2 Preliminaries

Let X be a universe whose elements can be individuals, objects, states, alternatives, etc. An events A is a
subset of X: the set of events will be the family P (X) of subsets of X. The complement of the event A will
be denoted by Ac.

In this paper we shall assume that the elements of the universe X are real numbers (X ⊆ R). A fuzzy
variable will be an arbitrary function ξ : X → R.

The notions of possibility measure and necessity measure can be introduced both axiomatically and
through a possibility distribution (cf. [24], [25], [26]).

A possibility measure on X is a function Pos : P(X) → [0, 1] such that

(Pos1) Pos(∅) = 0; Pos(X) = 1;

(Pos2) Pos(
∪
i∈I Ai) = supi∈IPos(Ai), for any family (Ai)i∈I of events.

A necessity measure on X is a function Nec : P(X) → [0, 1] such that

(Nec1) Nec(∅) = 0; Nec(X) = 1;

(Nec2) Nec(
∩
i∈I Ai) = infi∈INec(Ai), for any family (Ai)i∈I of events.

The notions of possibility measure and necessity measure are dual: to each possibility measure Pos one
can assign a necessity measure Nec(A) = 1 − Pos(Ac) and, vice-versa, to each necessity measure Nec one
can assign a possibility measure Pos(A) = 1−Nec(Ac).

Given a possibility measure Pos on the universe X, for any parameter λ ∈ [0, 1] consider the function
mλ : P (X) → [0, 1] defined by

mλ(A) = λPos(A) + (1− λ)Nec(A), (1)

for any event A;

(Nec is here the necessity measure associated with Pos).

This new measure was introduced by Yang and Iwamura in [17] as a convex linear combination of Pos
and Nec by means of the weight λ. If λ = 1

2 then one obtains the notion of credibility measure in the sense
of Liu’s monograph [9]:

Cred(A) =
1

2
(Pos(A) +Nec(A)), (2)

for any event A.

A possibilistic distribution on X is a function µ : X → [0, 1] such that supx∈X = 1; µ is normalized if
µ(x) = 1 for some x ∈ X.
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Let us fix a possibility distribution µ : X → [0, 1]. Then one can associate with µ a possibility measure
Pos and a necessity measure Nec by taking

Pos(A) = supx∈Aµ(x) (3)

for any event A;
Nec(A) = infx∈Aµ(x) (4)

for any event A.
Then for each parameter λ ∈ [0, 1], the measure mλ defined by (1) will have the following form:

mλ(A) = λsupx∈Aµ(x) + (1− λ)infx∈Aµ(x), (5)

for any event A.
According to [9], we say that the normalized possibility distribution µ is the membership function asso-

ciated with a fuzzy variable ξ if for any event A we have

Pos(ξ ∈ A) = supx∈Aµ(x). (6)

Then the following equalities hold:

Nec(ξ ∈ A) = infx∈Aµ(x); (7)

mλ(ξ ∈ A) = λsupx∈Aµ(x) + (1− λ)infx∈Aµ(x). (8)

3 The Expected Value Associated with the Measure mλ

We fix a parameter λ ∈ [0, 1] and assume that ξ is a fuzzy variable, µ is its membership function and mλ is
the measure defined in (5).

Following [18], the expected value of ξ w.r.t. the measure mλ is defined by

Eλ(ξ) =

∫ 0

−∞
[mλ(ξ ≥ r)− 1]dr +

∫ ∞

0
mλ(ξ ≥ r)dr. (9)

If λ = 1
2 then one obtains the credibilistic expected value of ξ w.r.t. the credibility measure Cr defined

in (2):

EC(ξ) =

∫ ∞

0
Cr(ξ ≥ r)dr −

∫ 0

−∞
Cr(ξ ≤ r)dr. (10)

The previous notion of credibilistic expected value was introduced by Liu and Liu in [10].
The following result shows that the expected operator Eλ(·) is linear.

Proposition 3.1. [18] Let ξ1, ξ2 be two fuzzy variables such that Eλ(ξ1) <∞, Eλ(ξ2) <∞ and α, β are two
non - negative real numbers. Then the following hold:

Eλ(ξ1 + ξ2) = Eλ(ξ1) + Eλ(ξ2); (11)

Eλ(αξ1) = αEλ(ξ1). (12)

Lemma 3.2. If ξ > 0 then Eλ(ξ) =
∫∞
0 mλ(ξ ≥ r)dr and Eλ(ξ) > 0.
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According to [9], p.73, a trapezoidal fuzzy variable ( = trapezoidal fuzzy number) ξ = (r1, r2, r3, r4), with
r1 ≤ r2 ≤ r3 ≤ r4, is defined by the following membership function:

µξ(x) =


x−r1
r2−r1 r1 ≤ x ≤ r2,

1 r2 ≤ x ≤ r3,
x−r3
r4−r3 r3 ≤ x ≤ r4,

0 otherwise.

(13)

If r2 = r3 then one obtains the triangular fuzzy number ξ = (r1, r2, r4).

Lemma 3.3. [18] For any trapezoidal fuzzy variable ξ = (r1, r2, r3, r4) we have:

mλ(ξ ≤ x) =



1 r4 ≤ x,
λ(r4−x)+x−r1

r4−r3 r3 ≤ x ≤ r4,

λ r2 ≤ x ≤ r3,
λ(x−r1)
r2−r1 r1 ≤ x ≤ r2,

0 x ≤ r1.

(14)

Proposition 3.4. [18] For any trapezoidal fuzzy variable ξ = (r1, r2, r3, r4) the expected value Eλ(ξ) has the
form

Eλ(ξ) = (1− λ)
r1 + r2

2
+ λ

r3 + r4
2

. (15)

Corollary 3.5. For any triangular fuzzy variable ξ = (r1, r2, r4) the expected value Eλ(ξ) has the form

Eλ(ξ) = (1− λ)
r1
2

+
r2
2

+ λ
r4
2
. (16)

4 An Inventory Problem with Fuzzy Variables as Demands

This section concerns a risk - neutral multi - item inventory problem characterized by the following two
hypotheses:

(I) the components of the demand vector are fuzzy variables;

(II) the objective function of the inventory model is defined by using the expected value operator Eλ(·)
introduced in the previous section.

The inventory problem with n items has the following initial data:

• c1, . . . , cn : unit fixed costs per inventoried item;

• d1, . . . , dn : unit revenues per inventoried item;

• h1, . . . , hn : unit holding costs per inventoried item;

• D⃗ = (D1, . . . , Dn) : fuzzy demand vector in the inventory problem;

• x⃗ = (x1, . . . , xn) : order quantity vector in the inventory problem.

The components D1, . . . , Dn of D⃗ are fuzzy variables. We shall assume that ci ≥ 0, di ≥ 0 and Di > 0,
for all i = 1, . . . , n.

Remark 4.1. The initial data of the possibilistic inventory problem are similar to the probabilistic inven-
tory problems from [5], [8], the credibilistic inventory problems from [14],[15] and the possibilistic inventory
problems from [27].
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We will further observe that the essential difference between the three types of models lies in the way
of choosing the objective function of the optimization problem: the models in [5], [8] use the probabilistic
expected value, those in [14], [15] use Liu credibilistic expected value [9] and those in [27] use the possibilistic
expected value from [28].

Starting from above input data we will formulate a risk-neutral problem. Similar with [14], p. 132, the

quantity dixi is the total revenue of the ith item and the fuzzy variables
hix

2
i

2
1
Di

is the holding cost of the ith

item.
We fix a parameter λ ∈ [0, 1], so we can use the expected value operator Eλ(·) defined in (9). According

to Lemma 3.2, we remark that Ef (
1
Di

) > 0, for all i = 1, . . . , n.
The profit function of item i has the following form:

πi(xi, Di) = dixi − ci −
hix

2
i

2

1

Di
(17)

The total profit function of the possibilistic inventory problem has the following form:

π(x⃗, D⃗) =

n∑
i=1

πi(xi, Di) =

n∑
i=1

(dixi − ci −
hix

2
i

2

1

Di
) (18)

Then the optimization problem associated with the previous inventory model has the following form:{
max
x⃗

Eλ(π(x⃗, D⃗))

x⃗ ≥ 0
(19)

Remark 4.2. The objective function in the optimization problem (19) is the expected value Eλ(π(x⃗, D⃗)) of
the fuzzy variable π(x⃗, D⃗) (w.r.t. the measure mλ).

Remark 4.3. For λ = 1
2 we obtain as a particular case the credibilistic inventory problem studied in [14]:{

max
x⃗

Eλ(π(x⃗, D⃗))

x⃗ ≥ 0
(20)

By applying Proposition 3.1 to (18), the expected value Eλ(π(x⃗, D⃗)) can be written

Eλ(π(x⃗, D⃗)) =

n∑
i=1

[dixi − ci −
hix

2
i

2
Eλ(

1

Di
)] (21)

hence the optimization problem (19) becomes max
x1,...,xn

n∑
i=1

[dixi − ci −
hix

2
i

2
Eλ(

1

Di
)]

xi ≥ 0, i = 1, . . . , n

(22)

The decision - maker aims to find the non - negative values x1, . . . , xn that maximize the expected total
profit Eλ(π(x⃗, D⃗)).

In particular, setting λ = 1
2 in (22) one obtains the credibilistic inventory problem from [14]. max

x1,...,xn

n∑
i=1

[dixi − ci −
hix

2
i

2
EC(

1

Di
)]

xi ≥ 0, i = 1, . . . , n

(23)
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Proposition 4.4. The optimization problem (22) has the following solution:

x∗i =
di

hiEλ(
1
Di

)
, (24)

for i = 1, . . . , n

Proof. In order to find the solution of the optimization problem (22) we write the first - order condition

∂

∂xi

n∑
i=1

(dixi − ci −
hix

2
i

2
Eλ(

1

Di
)) = 0,

for i = 1, . . . , n,
therefore by a simple computation we obtain the equations

di − hiEλ(
1

Di
)xi = 0, (25)

for i = 1, . . . , n.
We remind that Eλ(

1
Di

) > 0 for i = 1, . . . , n. Thus the solution of the optimization problem (13) will
have the following form

x∗i =
di

hiEf (
1
Ai
)
,

for i = 1, . . . , n.
□

5 Solution Form when the Demands are Trapezoidal Fuzzy Variables

According to Proposition 4.4, in order to compute the values (x∗1, . . . , x
∗
n) of the solution of inventory problem

(22) we need to compute the expected values Eλ(
1
D1

), . . . , Eλ(
1
Dn

). The computation of these expected values
depends on the form of the fuzzy variables D1, · · · , Dn and in most cases this operation seems to be very
difficult. In this section we solve this problem whenever the demands D1, · · · , Dn are trapezoidal or triangular
fuzzy numbers. The formulas obtained for the computation of the optimal solutions x∗1, . . . , x

∗
n have simple

algebraic forms which makes them very suitable from a computational point of view.
We will fix the parameter λ ∈ [0, 1]. The following proposition is a key result of this section: the

application of the formula (26) will lead us to find the form of optimal solutions x∗1, . . . , x
∗
n.

Proposition 5.1. Let D be a trapezoidal fuzzy number D = (r1, r2, r3, r4) such that 0 < r1 ≤ r2 ≤ r3 ≤ r4
then the expected value Eλ(

1
D ) has the following form

Eλ(
1

D
) =

λ

r2 − r1
ln
r2
r1

+
1− λ

r4 − r3
ln
r4
r3

(26)

Proof. Firstly we observe that the condition 0 < r1 means D > 0, hence one obtains 1
D > 0. By using

Lemma 3.3 we get the following equalities:

mλ(
1

D
≥ r) = mλ(D ≤ 1

r
) =



1 r4 ≤ 1
r ,

λ(r4− 1
r
)+ 1

r
−r3

r4−r3 r3 ≤ 1
r ≤ r4,

λ r2 ≤ 1
r ≤ r3,

λ( 1
r
−r1

r2−r1 r1 ≤ 1
r ≤ r2,

0 1
r ≤ r1.
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which can be written as follows:

mλ(
1

D
≥ r) =



1 r ≤ 1
r4
,

1
r4−r3 [(1− λ)1r + λr4 − r3]

1
r4

≤ r ≤ 1
r3
,

λ 1
r3

≤ r ≤ 1
r2
,

λ
r2−r1 [

1
r − r1]

1
r2

≤ r ≤ 1
r1
,

0 1
r ≤ 0.

(27)

According to Lemma 3.2 we obtain

Eλ(
1

D
) =

∫ ∞

0
mλ(

1

D
≥ r)dr = I1 + I2 + I3 + I4 (28)

where I1, I2, I3, I4 have the following expressions:

I1 =

∫ 1
r4

0
dr =

1

r4

I2 =
1

r4 − r3

∫ 1
r3

1
r4

[λ(r4 −
1

r
) +

1

r
− r3]dr =

1

r4 − r3
[(1− λ) ln

r4
r3

+ (λr4 − r3)(
1

r3
− 1

r4
)]

I3 = λ

∫ 1
r2

1
r3

dr = λ(
1

r2
− 1

r3
)

I4 =
λ

r2 − r1

∫ 1
r1

1
r2

[
1

r
− r1]dr =

λ

r2 − r1
[ln

r2
r1

− r1(
1

r1
− 1

r2
)]

Substituting in (28) these values of I1, I2, I3, I4 we get the formula (26).

□

Corollary 5.2. [14] Let D be a trapezoidal fuzzy number D = (r1, r2, r3, r4) such that 0 < r1 ≤ r2 ≤ r3 ≤ r4
then the credibilistic expected value EC(

1
D ) has the following form

EC(
1

D
) =

1

2(r2 − r1)
ln
r2
r1

+
1

2(r4 − r3)
ln
r4
r3

(29)

Proof. If we take λ = 1
2 in (26) then we obtain the formula (29). □

Remark 5.3. If in formula (26) one takes r2 = r3 then D is the triangular fuzzy number D = (r1, r2, r4)
and the expected value Eλ(

1
D ) has the following form

Eλ(
1

D
) =

λ

r2 − r1
ln
r2
r1

+
1− λ

r4 − r3
ln
r4
r2

(30)

If in (30), we set λ = 1
2 then we get the formula of the credibilistic expected value Eλ(

1
D ) from Theorem

2 of [14]:

EC(
1

D
) =

1

2(r2 − r1)
ln
r2
r1

+
1

2(r4 − r2)
ln
r4
r2

(31)
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Figure 1: Trapezoidal fuzzy number

Remark 5.4. Often in literature a trapezoidal fuzzy number D is given under the form D = (a−α, a, b, b+β),
with a, b ∈ R and α, β ≥ 0 (Figure 1). Thus its membership µD has the form:

µD(x) =


1− a−x

α a− α ≤ x ≤ a,
1 a ≤ x ≤ b,

1− x−b
β b ≤ x ≤ b+ β,

0 otherwise.

Assuming that 0 < a− α we have D > 0 and the formula (26) becomes

Eλ(
1

D
) =

λ

α
ln

a

a− α
+

1− λ

β
ln
b+ β

b
(32)

Remark 5.5. Assume that a triangular fuzzy number D is written under the form D = (a − α, a, a + β),
with a ∈ R and α, β ≥ 0. If 0 < a− α the formula (30) becomes

Eλ(
1

D
) =

λ

α
ln

a

a− α
+

1− λ

β
ln
a+ β

a
(33)

The previous formulas (26), (30), (32) and (33) provide very computable expressions for the expected
value Eλ(

1
D ) for the particular cases when D is a trapezoidal or a triangular fuzzy number.

By using these formulas we are now able to compute the solution x∗1, · · · , x∗n of the optimization problem
(22) whenever the components D1, . . . , Dn of demand vector are trapezoidal fuzzy numbers, respectively
triangular fuzzy numbers.

Theorem 5.6. Assume that the components A1, . . . , An of demand vector A⃗ are trapezoidal fuzzy numbers
Di = (ai − αi, ai, bi, bi + βi), i = 1, . . . , n, where 0 < ai − αi ≤ ai ≤ bi ≤ bi + βi, for i = 1, . . . , n. Then the
solution of the optimization problem (13) has the following form

x∗i =
di

hi[
λ
αi
ln ai

ai−αi
+ 1−λ

βi
ln bi+βibi

]
, (34)

for all i = 1, . . . , n.
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Proof. By (32), for each i = 1, . . . , n we have

Eλ(
1

Di
) =

λ

αi
ln

ai
ai − αi

+
1− λ

βi
ln
bi + β

bi

If we substitute these values of Eλ(
1
D1

), · · · , Eλ( 1
Dn

) in (24) then we get the desired formula (34).

□

Corollary 5.7. If D1, . . . , Dn are the triangular fuzzy numbers Di = (ai−αi, ai, ai+βi), i = 1, . . . , n, where
0 < ai − αi ≤ ai ≤ bi + βi, for i = 1, . . . , n then the solution of optimization problem (19) has the form

x∗i =
di

hi[
λ
αi
ln ai

ai−αi
+ 1−λ

βi
lnai+βiai

]
, (35)

for all i = 1, . . . , n.

Proof. If in (34) one sets b = a, then the formula (35) follows immediately. □
Now we shall write the formula (34) for the following particular values of λ:

(a) λ = 1/3 (the pessimistic case)

x∗i =
3di

hi[
1
αi
ln ai

ai−αi
+ 2

βi
ln bi+βibi

]
, (36)

for all i = 1, . . . , n.

(b) λ = 1/2 (the credibilistic case [14])

x∗i =
2di

hi[
1
αi
ln ai

ai−αi
+ 1

βi
ln bi+βibi

]
, (37)

for all i = 1, . . . , n.

(c) λ = 2/3 (the optimistic case)

x∗i =
3di

hi[
2
αi
ln ai

ai−αi
+ 1

βi
ln bi+βibi

]
, (38)

for all i = 1, . . . , n.

6 A Numerical Example

In order to solve the optimization problems associated with some inventory models we should know the form
of the variables D1, · · · , Dn and of the (probabilistic, credibilistic, possibilistic, etc.) indicators that appear
in models. In the examples of credibilistic inventory problems from [14], [15] the expressions of D1, · · · , Dn

are assumed to be trapezoidal fuzzy numbers.

In general, the mathematical expressions of D1, · · · , Dn are not known, but through measurements can
be found different values of them. In the numerical example of possibilistic inventory problem from [27] it
started from a data table, then the method of Vercher et al. [23] was applied to determine the concrete form
of fuzzy numbers D1, · · · , Dn.

In this section we will present the solution of an mλ-inventory problem in which the initial information
on the variables D1, · · · , Dn (which in our case are trapezoidal numbers) is given in the form of a numerical
table. In order to obtain the trapezoidal numbers that describe the demands D1, · · · , Dn we will apply the
sample percentile method of Vercher et al. [23].
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Table 1: Data on demand vector

Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10

35 20 30 25 28 33 18 18 31 20

30 30 50 25 32 37 27 28 33 27

15 35 28 36 25 20 33 17 25 31

25 35 40 35 35 40 35 20 30 37

25 28 25 32 50 37 28 19 35 35

28 25 42 27 45 28 28 37 35 37

31 27 36 35 43 35 35 27 22 35

30 24 39 28 27 35 24 37 27 25

44 33 44 28 32 22 39 30 29 25

37 34 37 44 44 32 47 36 28 37

23 17 22 33 32 29 31 31 45 19

Table 2: Trapezoidal fuzzy numbers

A1 A2 A3 A4 A5

(28,30,9,10.5) (27,30,8.5,5) (36,39,12.5, 5) (28,32,3,4) (32,35,6,10)

A6 A7 A8 A9 A10

(32,35,11,2) (28,33,7,6) (27,30,9.5,7) (29,31,5.5,4) (27,35,7.5,2)

We continue with the presentation of the values of basic parameters di, ci, di, so the inventory problem
is entirely defined. Finally, we apply the formulas (36)- (38) in order to obtain the optimal solutions of the
model.

Our inventory problem has a demand vector of size 10. Table 1 contains the data we have on demand
vector.

In column i of Table 1 are placed the known values of item i. In a probabilistic inventory model, the
above columns will contain values of random variables. In this case the maximization problem of the model
will be obtained by usual statistical methods.

Under the hypothesis that the 10 items are modeled by trapezoidal fuzzy numbers, one has to convert the
data from the above table in 10 such fuzzy numbers (each column is assigned to a trapezoidal fuzzy number).

Let’s present shortly the percentile method of Vercher et al. [23], by which to a data set of real numbers
x1, . . . , xm one assigns a trapezoidal fuzzy number A = (a, b, α, β).

Let us denote by Pk the k-the percentile of the sample x1, . . . , xm. Then the trapezoidal fuzzy number
A = (a, b, α, β) will be determined by the formulas:

a = P40, b = P60, α = P40 − P5, β = P95 − P60 (39)

By applying Vercher et al.’s method [23] to each of the columns of Table 1 obtains the trapezoidal fuzzy
numbers in Table 2.

The trapezoidal fuzzy numbers A1, . . . , A10 obtained from Table 1 will be the components of the demand
vector of a risk neutral multi–item inventory problem. This inventory problem will be defined by the data in
the first five columns of Table 3:

Columns two, three and four of Table 3 contain the unit fixed costs, unit revenues and holding costs of the
model. The trapezoidal fuzzy numbers from the fifth column make up the demand vector in themλ–inventory
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Table 3: The elements of the inventory problem

Item di ci hi Ai = (ai, bi, αi, βi) x∗i (λ = 1/3) x∗i (λ = 1/2) x∗i (λ = 2/3)

1 12 2 0.5 (28,30,9,10.5) 718.21 668.76 627.44

2 11 1 0.6 (27,30,8.5,5) 518.19 486.88 459.14

3 14 3 0.5 (36,39,12.5, 5) 1019.75 961.42 909.4

4 10 4 0.8 (28,32,3,4) 387.92 371.9 357.14

5 11 5 0.9 (32,35,6,10) 432.03 409.19 388.64

6 10 3 0.9 (32,35,11,2) 355.13 336.3 319.37

7 12 2 0.5 (28,33,7,6) 743.93 696.25 654.32

8 15 1 0.6 (27,30,9.5,7) 710.45 661.32 618.54

9 13 3 0.7 (29,31,5.5,4) 563.24 541.63 521.61

10 13 4 0.9 (27,35,7.5,2) 437.88 405.88 378.24

problem. In fact, for distinct parameters λ ∈ [0, 1] we obtain distinct inventory problems. We consider the
three inventory models (a)-(c) corresponding to the parameters 1/3, 1/2 and 2/3. By applying the formulas
(36)-(38) we obtain the solutions of the three optimization problems. These solutions are placed in the last
three columns of Table 3.

Remark 6.1. Regarding the last three columns of Table 3, it is noticed that with the increase of the
parameter λ (13 <

1
2 <

2
3) the solution values of the optimization problem decrease. The theoretical argument

of this fact is given by Proposition 8.2 in the Appendix.

7 Conclusion

In the work we studied a new inventory model whose construction is based on the parametric measure mλ

(introduced by Yang and Iwamura in [17]) and on the notion of mλ–expected value (introduced by Dzouche et
al. in [18]). More precisely, in this inventory model, the demands and the total profit are fuzzy variables and
the objective function of the optimization problem is the mλ–expected value of total profit. It was found the
general form of the solution of the optimization problem and when the demands are trapezoidal or triangular
fuzzy variables computationally efficient forms of the solution have been found.

An open problem is finding the calculation formulas for the optimal solutions also when the demands are
represented by other types of fuzzy variables: discrete repartitions, Erlang fuzzy variables, etc.

The inventory model in the paper is risk–neutral. Another open problem is the study of risk–averse
inventory models in the framework of mλ–theory. It would also be interesting to treat some mean–value
inventory model, in which besides maximizing the mλ–expected value of the total profit to be required to
minimize the mλ–variance of the total profit (the notion of mλ–variance has been defined in [18]). Defining
a notion of mean–absolute deviation in the context of an mλ–theory would lead to an inventory model in
which the risk is eventually represented by this indicator.

Continuing the research line from [14], [15], in paper [16] is investigated an inventory problem in which
the components of the demand vector are type-2 fuzzy variables. This model is studied with the techniques
of Liu’s credibility theory [9]. It arises naturally a question of extending this model to mλ–theory, so that
giving the parameter λ the value 1

2 to obtain as a particular case some results of [16].

The newsvendor problem is a core concept in inventory management dealing with stochastic demand.
Traditionally, it centers on a single goal: either minimizing expected costs or maximizing expected profits.

A mean–variance model for the newsvendor problem is presented in paper [29]. A newsvendor problem
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is studied in which the maximization of expected profit and the minimization of risk, expressed by the
profit variance, are required. It would be interesting to formulate and study a newsvendor problem in which
the expected profit is expressed by mλ–expected value and the risk of profit by mλ–variance (according to
Definition 2 of [18]).

8 Appendix

One asks the question of how the solutions of the optimization problem (20) vary depending on the parameter
λ. We will give a solution to this problem in case when the demandsD1, . . . , Dn are trapezoidal fuzzy numbers.

Lemma 8.1. Assume that ξ is a trapezoidal fuzzy variable. If λ1 ≤ λ2 then Eλ1(ξ) ≤ Eλ2(ξ).

Proof. See Proposition 1 of [18]. □
Let λ1, λ2 be two parameters in the interval [0, 1]. We consider the two inventory problems with the

same input data, but with different objective functions of the optimization problems, defined by the expected
operators Eλ1(ξ) and Eλ2(ξ), respectively.

We denote by x∗1, . . . , x
∗
n the solution of the optimization problem corresponding to Eλ1(ξ) and with

y∗1, . . . , y
∗
n the solution of the optimization problem corresponding to Eλ2(ξ).

Proposition 8.2. Assume that the demands D1, . . . , Dn are trapezoidal fuzzy variables. If λ1 ≤ λ2 then
x∗i ≥ y∗i for any i = 1, . . . , n.

Proof. Assume that λ1 ≤ λ2. By Proposition 4.4, the solutions x∗1, . . . , x
∗
n and y∗1, . . . , y

∗
n are written in the

following form:

x∗i =
di

hiEλ1(
1
Di

)
(40)

for i = 1, . . . , n.

y∗i =
di

hiEλ2(
1
Di

)
(41)

for i = 1, . . . , n.
Applying Lemma 8.1 for any i = 1, . . . , n the following implications hold:

λ1 ≤ λ2 ⇒ Eλ1(
1

Di
) ≤ Eλ2(

1

Di
) ⇒ 1

Eλ2(
1
Di

)
≤ 1

Eλ1(
1
Di

)
(42)

By (40)-(42) for any i = 1, . . . , n we will have:

x∗i − y∗i =
di
hi
(

1

Eλ2(
1
Di

)
− 1

Eλ1(
1
Di

)
) ≥ 0.

We conclude that x∗i ≥ y∗i for any i = 1, . . . , n. □
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Abstract. Using the concept of fuzzy points, the notion of fuzzy filters in pre-ordered residuated systems is intro-
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1 Introduction

The concept of a residuated relational system introduced by Bonzio et al. [1] is a mathematical structure
used in the study of ordered algebraic systems, particularly in the fields of logic, lattice theory, and category
theory. These systems generalize certain aspects of algebraic structures like lattices and posets, with a focus
on the relationship between operations and their adjoints, often in the context of residuation. They developed
the concept of a pre-ordered residuated system, which is nothing but a residuated relational system whose
relation is pre-order, i.e., reflexive and transitive. Their work like this is based on generalizing the concept of
residuated poset, by replacing the usual partial order to a pre-order. Romano [2, 3, 4, 5] called the pre-ordered
residuated system a quasi-ordered residuated system. He introduced and analyzed the notion of filters in
pre-ordered residuated systems. The purpose of this paper is to study the filter of a pre-ordered residuated
system using the fuzzy set theory. For this, we will use the concept of fuzzy points. We introduce the concept
of fuzzy filters in a pre-ordered residuated system, and investigate their relevant properties. We consider
characterizations of fuzzy filter. We construct ∈t-set, (extended) qt-set, positive set, etc., and explore the
conditions under which these can be filters.

2 Preliminaries

Definition 2.1 ([1]). Let (X,⊙,→, 1) be an algebra of type (2,2,0) and let R be a binary operation on X.
A structure X := (X, ⊙, →, 1, R) is called a residuated relational system if the following three conditions are
valid.
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(i) (X,⊙, 1) is a commutative monoid,

(ii) (∀a ∈ X) ((a, 1) ∈ R),

(iii) (∀a, b, c ∈ X) ((a⊙ b, c) ∈ R) ⇔ (a, b → c) ∈ R).

Let X := (X, ⊙, →, 1, R) be a residuated relational system. For every element y of X, consider the
following two mappings:

fy : X → X, x 7→ x⊙ y and gy : X → X, x 7→ y → x.

Proposition 2.2 ([1]). Every residuated relational system X := (X, ⊙, →, 1, R) satisfies:

(∀x, y ∈ X)(gx(y) = 1 ⇒ (x, y) ∈ R). (1)

(∀x ∈ X)((x, g1(1)) ∈ R). (2)

(∀x ∈ X)((1, gx(1))) ∈ R). (3)

(∀x, y, z ∈ X)(gx(y) = 1 ⇒ (fx(z), y) ∈ R). (4)

(∀x, y ∈ X)((x, gy(1)) ∈ R). (5)

Moreover, if R is reflexive, then

(∀x ∈ X)((1, gx(x)) ∈ R). (6)

(∀x, y ∈ X)(fx((gx(y)), y) ∈ R). (7)

(∀x, y ∈ X)((x, gy(fy(x))) ∈ R). (8)

(∀x, y ∈ X)((x, g1(x)) ∈ R, (g1(x), x) ∈ R). (9)

(∀x, y ∈ X)(x, ggx(y)(y)) ∈ R). (10)

Also, if R is antisymmetric, then

(∀x, y ∈ X)((x, y) ∈ R ⇔ gx(y) = 1). (11)

If R is also reflexive, then (fy(x), x) ∈ R and (fy(x), y) ∈ R. (12)

Recall that a binary relation “R” on a set X is said to be pre-order if it is reflexive and transitive. Note
that the pre-order relation is sometimes called the quasi-order relation.

Definition 2.3 ([1, 2]). A residuated relational system X := (X, ⊙,→, 1, R) is called a pre-ordered residuated
system if R is a pre-order relation on X.

The pre-ordered residuated system X := (X, ⊙, →, 1, R) will be denoted by X := (X, ⊙, →, 1, ≲).

Definition 2.4 ([2]). Let X := (X, ⊙, →, 1, ≲) be a pre-ordered residuated system. A subset F of X is
called a filter of X if it satisfies:

(x, y ∈ X)(x ∈ F, x ≲ y ⇒ y ∈ F ), (13)

(x, y ∈ X)(x ∈ F, gx(y) ∈ F ⇒ y ∈ F ). (14)

A fuzzy set ð in a set X of the form

ð(b) :=
{
t ∈ (0, 1] if b = a,
0 if b ̸= a,

is said to be a fuzzy point with support a and value t and is denoted by ⟨at⟩.
For a fuzzy set ð in a set X, we say that a fuzzy point ⟨at⟩ is



32 Jun YB. Trans. Fuzzy Sets Syst. 2025; 4(1)

(i) contained in ð, denoted by ⟨at⟩ ∈ ð, (see [6]) if ð(a) ≥ t.

(ii) quasi-coincident with ð, denoted by ⟨at⟩ q ð, (see [6]) if ð(a) + t > 1.

If a fuzzy point ⟨at⟩ is contained in ð or is quasi-coincident with ð, we denote it ⟨at⟩ ∈∨q ð. If a fuzzy point
⟨at⟩ is contained in ð and is quasi-coincident with ð, we denote it ⟨at⟩ ∈∧q ð. If ⟨at⟩α ð is not established for
α ∈ {∈, q,∈∨q,∈∧q}, it is denoted by ⟨at⟩α ð.

Given t ∈ (0, 1] and a fuzzy set ð in a set X, consider the following sets

(ð, t)∈ := {a ∈ X | ⟨at⟩ ∈ ð} and (ð, t)q := {a ∈ X | ⟨at⟩ q ð}

which are called an ∈t-set and a qt-set of ð, respectively, in X. Also, we consider the set

(ð, t)∈∨q := {a ∈ X | ⟨at⟩ ∈∨q ð}

which is called the t(∈∨q)-set of ð.
It is clear that (ð, t)∈∨q = (ð, t)∈ ∪ (ð, t)q.

3 Fuzzy Filters

In what follows, let X := (X, ⊙, →, 1, ≲) denote a pre-ordered residuated system, and it will be simply
written by X only.

First, we introduce a central concept that will be used throughout the paper.

Definition 3.1. A fuzzy set ð in X is called a fuzzy filter of X if its nonempty ∈t-set (ð, t)∈ is a filter of X
for all t ∈ (0, 1].

Example 3.2. Let X := (−∞, 1] ⊂ R (the set of real numbers). If we define two binary operations “⊙” and
“→” on X as follows:

x⊙ y = min{x, y} and x→ y =

{
1 if x ≤ y,
y if x > y,

for all x, y ∈ X, then X := (X, ⊙, →, 1, ≤) is a pre-ordered residuated system (see [5]). Let ð be a fuzzy set
in X given by

ð : X → [0, 1], x 7→


0.78 if x ∈ (0, 1],
0.62 if x ∈ (−3, 0],
0.37 otherwise.

Then ð is a fuzzy filter of X := (X, ⊙, →, 1, ≤).

Example 3.3. Let X = {b1, b2, b3, b4} be a set and two binary operations “⊙” and “→” on X are given as
follows:

⊙ b1 b2 b3 b4
b1 b1 b2 b3 b4
b2 b2 b2 b2 b4
b3 b3 b2 b2 b4
b4 b4 b4 b4 b4

→ b1 b2 b3 b4
b1 b1 b2 b3 b4
b2 b1 b1 b1 b1
b3 b1 b2 b1 b4
b4 b1 b2 b3 b1
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We give a binary relation “≲” as follows:

≲:= {(b1, b1), (b2, b2), (b3, b3), (b4, b4), (b4, b1), (b3, b1), (b2, b1), (b2, b3), (b2, b4)}.

Then X := (X, ⊙, →, b1, ≲) is a pre-ordered residuated system (see [7]). Let ð be a fuzzy set in X given by

ð : X → [0, 1], x 7→


1
n if x = b1,
1
4n if x = b2,
1
2n if x = b3,
1
3n if x = b4,

where n is a natural number. Then ð is a fuzzy filter of X := (X, ⊙, →, b1, ≤).

We discuss the characterization of fuzzy filters.

Theorem 3.4. A fuzzy set ð in X is a fuzzy filter of X if and only if it satisfies:

(∀x, y ∈ X)(x ≲ y ⇒ ð(x) ≤ ð(y)), (15)

(∀x, y ∈ X)(ð(y) ≥ min{ð(x),ð(gx(y))}). (16)

Proof. Assume that ð is a fuzzy filter of X. Then its nonempty ∈t-set (ð, t)∈ is a filter of X for all t ∈ (0, 1].
If (15) is not valid, then there exists a, b ∈ X such that a ≲ b and ð(a) > ð(b). Then a ∈ (ð, ð(a))∈, but
b /∈ (ð, ð(a))∈ which is a contradiction. Hence ð(x) ≤ ð(y) for all x, y ∈ X with x ≲ y. Suppose that
(16) is false. Then ð(b) < min{ð(a), ð(ga(b))} for some a, b ∈ X. If we take t := min{ð(a),ð(ga(b))}, then
a ∈ (ð, t)∈, ga(b) ∈ (ð, t)∈ and b /∈ (ð, t)∈. This is a contradiction, and thus ð(y) ≥ min{ð(x), ð(gx(y))} for
all x, y ∈ X.

Conversely, let ð be a fuzzy set in X that satisfies (15) and (16). Let x, y ∈ X. If x ∈ (ð, t)∈ and x ≲ y,
then t ≤ ð(x) ≤ ð(y) by (15), i.e., ⟨yt⟩ ∈ ð. Thus y ∈ (ð, t)∈. If x ∈ (ð, t)∈ and gx(y) ∈ (ð, t)∈, then

ð(y) ≥ min{ð(x), ð(gx(y))} ≥ t

by (16) and so y ∈ (ð, t)∈. Hence (ð, t)∈ is a filter of X for all t ∈ (0, 1], and therefore ð is a fuzzy filter of X.
□

Theorem 3.5. In X, a fuzzy set ð in X satisfies (15) if and only if the following assertion is valid.

(∀x, y, z ∈ X)(∀t ∈ (0, 1])(fy(x) ∈ (ð, t)∈, x ≲ gy(z) ⇒ z ∈ (ð, t)∈). (17)

Proof. Assume that ð satisfies (15) and let x, y, z ∈ X be such that x ≲ gy(z) and fy(x) ∈ (ð, t)∈ for all
t ∈ (0, 1]. Then fy(x) ≲ z by Definition 2.1(iii), and so ð(z) ≥ ð(fy(x)) ≥ t by (15). Hence z ∈ (ð, t)∈.

Conversely, let ð be a fuzzy set in X that satisfies (17). In the proof of Theorem 3.4, we can observe that
ð satisfies (15) if and only if ð satisfies:

(∀x, y ∈ X)(∀t ∈ (0, 1])(x ∈ (ð, t)∈, x ≲ y ⇒ y ∈ (ð, t)∈).

Let x, y ∈ X be such that x ≲ y and x ∈ (ð, t)∈ for all t ∈ (0, 1]. Then f1(x) = x ∈ (ð, t)∈ and x ≲ g1(y). It
follows from (17) that y ∈ (ð, t)∈. Therefore ð satisfies (15). □

Proposition 3.6. In X, if a fuzzy set ð in X satisfies (15), then

(∀x ∈ X)(∀t ∈ (0, 1])(x ∈ (ð, t)∈ ⇔ g1(x) ∈ (ð, t)∈), (18)

or equivalently,

(∀x ∈ X)(∀t ∈ (0, 1])(ð(x) ≥ t ⇔ ð(g1(x)) ≥ t). (19)
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Proof. Let ð be a fuzzy set in X that satisfies (15). Then by the proof process of Theorem 3.4, we know the
following:

x ∈ (ð, t)∈, x ≲ y ⇒ y ∈ (ð, t)∈

for all x, y ∈ X and t ∈ (0, 1]. Using (9) leads to x ≲ g1(x) and g1(x) ≲ x. It follows that if x ∈ (ð, t)∈ (resp.
g1(x) ∈ (ð, t)∈), then g1(x) ∈ (ð, t)∈ (resp., x ∈ (ð, t)∈). Hence (18) is valid. □

Corollary 3.7. Every fuzzy filter ð of X satisfies the condition (18).

Lemma 3.8 ([1]). Every pre-ordered residuated system X := (X, ⊙, →, 1, ≲) satisfies:

(∀x, y ∈ X)(fy(x) ≲ x, fy(x) ≲ y). (20)

Proposition 3.9. In X, if a fuzzy set ð in X satisfies (15), then

(∀t ∈ (0, 1])((ð, t)∈ ̸= ∅ ⇒ 1 ∈ (ð, t)∈). (21)

(∀x, y ∈ X)(∀t ∈ (0, 1])(fy(x) ∈ (ð, t)∈ ⇒ x ∈ (ð, t)∈, y ∈ (ð, t)∈). (22)

(∀x, y ∈ X)(∀t ∈ (0, 1])(x, y ∈ (ð, t)∈, x ≲ y ⇒ gx(y) ∈ (ð, t)∈). (23)

(∀x, y ∈ X)(∀t ∈ (0, 1])(1 ∈ (ð, t)∈, x ≲ y ⇒ gx(y) ∈ (ð, t)∈). (24)

Proof. Assume that (ð, t)∈ ̸= ∅ for all t ∈ (0, 1], and let x ∈ (ð, t)∈. Since x ≲ 1 by Definition 2.1(ii),
it follows from (15) that ð(1) ≥ ð(x) ≥ t. Hence 1 ∈ (ð, t)∈. Let x, y ∈ X and t ∈ (0, 1] be such that
fy(x) ∈ (ð, t)∈. Then ð(fy(x)) ≥ t. Since fy(x) ≲ x and fy(x) ≲ y by (20), it follows from (15) that
ð(x) ≥ ð(fy(x)) ≥ t and ð(y) ≥ ð(fy(x)) ≥ t, that is, ⟨xt⟩ ∈ ð and ⟨yt⟩ ∈ ð. Hence x ∈ (ð, t)∈ and y ∈ (ð, t)∈,
and so (22) is valid. Let x, y ∈ X and t ∈ (0, 1] be such that x, y ∈ (ð, t)∈ and x ≲ y. Since fx(x) ≲ x
by (20), we have fx(x) ≲ y by the transitivity of ≲. Thus x ≲ gx(y) by Definition 2.1(iii), which implies
from (15) that ð(gx(y)) ≥ ð(x) ≥ t. Hence gx(y) ∈ (ð, t)∈. Suppose that 1 ∈ (ð, t)∈ for all t ∈ (0, 1] and let
x, y ∈ X be such that x ≲ y. Then fx(1) = x ≲ y, and so 1 ≲ gx(y) by Definition 2.1(iii). Using (15) leads
to ð(gx(y)) ≥ ð(1) ≥ t, and so gx(y) ∈ (ð, t)∈. □

Corollary 3.10. Every fuzzy filter ð of X satisfies the four conditions (21), (22), (23) and (24).

Theorem 3.11. For every nonempty subset F of X, consider a fuzzy set ðF in X which is defined by

ðF : X → [0, 1], x 7→
{
s1 if x ∈ F,
s2 otherwise

where s1 > s2 in [0, 1]. Then ðF is a fuzzy filter of X if and only if F is a filter of X.

Proof. Assume that ðF is a fuzzy filter of X. Let x, y ∈ X. If x ∈ F and x ≲ y, then ðF (y) ≥ ðF (x) = s1 by
(15), and so ðF (y) = s1. Thus y ∈ F . If x ∈ F and gx(y) ∈ F , then ðF (x) = s1 and ðF (gx(y)) = s1. Using
(16) leads to ðF (y) ≥ min{ðF (x), ðF (gx(y))} = s1, and so ðF (y) = s1. Thus y ∈ F . Therefore F is a filter
of X.

Conversely, suppose that F is a filter of X. For every x, y ∈ X with x ≲ y, if x ∈ F , then y ∈ F and so
ðF (y) = s1 = ðF (x). If x /∈ F , then ðF (x) = s2 < ðF (y). Let x, y ∈ X. If x ∈ F and gx(y) ∈ F , then y ∈ F
and thus ðF (y) = s1 = min{ðF (x), gx(y)}. If x /∈ F or gx(y) /∈ F , then ðF (x) = s2 or ðF (gx(y)) = s2. Hence
ðF (y) ≥ s2 = min{ðF (x), ðF (gx(y))}. Therefore ðF is a fuzzy filter of X by Theorem 3.4 □

Let ð be a non-constant fuzzy set in X and we construct the next set called positive set.

X0 := {x ∈ X | ð(x) ̸= 0}. (25)

It is clear that X0 ̸= ∅. We explore conditions for the positive set of ð to be a filter.
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Theorem 3.12. If ð is a non-constant fuzzy filter of X, then its positive set is a filter of X.

Proof. Let ð be a non-constant fuzzy filter of X. Let x, y ∈ X. If x ∈ X0 and x ≲ y, then ð(y) ≥ ð(x) ̸= 0
by (15), and so y ∈ X0. If x ∈ X0 and gx(y) ∈ X0, then ð(y) ≥ min{ð(x),ð(gx(y))} ̸= 0 by (16). Hence
y ∈ X0, and therefore X0 is a filter of X. □

In the following example, we can see that the converse of Theorem 3.12 is not true in general.

Example 3.13. Consider the pre-ordered residuated system X := (X, ⊙, →, b1, ≲) in Example 3.3. Let ð
be a fuzzy set in X given by

ð : X → [0, 1], x 7→


0.2
k if x = b1,
0
k if x = b2,
0.8
k if x = b3,
0.6
k if x = b4,

where k is a natural number. Then X0 = {b1, b3, b4} is filter of X. If we take t := 0.5
k , then (ð, t)∈ = {b3, b4}.

We can observe that b4 ≲ b1 and b1 /∈ (ð, t)∈. Hence ð is not a fuzzy filter of X.

Theorem 3.14. If a non-constant fuzzy set ð in X satisfies the following conditions:

(∀x, y ∈ X)(∀t ∈ (0, 1])(x ∈ (ð, t)∈, x ≲ y ⇒ y ∈ (ð, t)q), (26)

(∀x, y ∈ X)(∀t ∈ (0, 1])(x ∈ (ð, t)∈, gx(y) ∈ (ð, t)∈ ⇒ y ∈ (ð, t)q), (27)

then the positive set of ð is a filter of X.

Proof. Let x, y ∈ X be such that x ∈ X0 and x ≲ y. Since x ∈ (ð,ð(x))∈, it follows from (26) that
y ∈ (ð,ð(x))q. If y /∈ X0, then ð(y) = 0 and so ⟨yð(x)⟩ q ð, i.e., y /∈ (ð,ð(x))q. This is a contradiction,
and thus y ∈ X0. Let x ∈ X0 and gx(y) ∈ X0. If we take t := min{ð(x),ð(gx(y))}, then x ∈ (ð, t)∈ and
gx(y) ∈ (ð, t)∈. Using (27) leads to y ∈ (ð, t)q. Hence ð(y) + t > 1, and so ð(y) ̸= 0, i.e., y ∈ X0. Therefore
X0 is a filter of X. □

Theorem 3.15. If a non-constant fuzzy set ð in X satisfies the following conditions:

(∀x, y ∈ X)(∀t ∈ (0, 1])(x ∈ (ð, t)q, x ≲ y ⇒ y ∈ (ð, t)∈), (28)

(∀x, y ∈ X)(∀t ∈ (0, 1])(x ∈ (ð, t)q, gx(y) ∈ (ð, t)q ⇒ y ∈ (ð, t)∈), (29)

then the positive set of ð is a filter of X.

Proof. Let x, y ∈ X be such that x ∈ X0 and x ≲ y. Then ð(x) ̸= 0, and so ð(x) + 1 > 1, i.e., x ∈ (ð, 1)q.
Thus y ∈ (ð, 1)∈ by (28), which shows that y ∈ X0. Let x ∈ X0 and gx(y) ∈ X0. Then ð(x) ̸= 0 ̸= ð(gx(y)),
and hence ð(x) + 1 > 1 and ð(gx(y)) + 1 > 1, that is, x ∈ (ð, 1)q and gx(y) ∈ (ð, 1)q. It follows from (29)
that y ∈ (ð, 1)∈. Thus y ∈ X0 and therefore X0 is a filter of X. □

Theorem 3.16. If a non-constant fuzzy set ð in X satisfies the following conditions:

(∀x, y ∈ X)(∀t ∈ (0, 1])(x ∈ (ð, t)q, x ≲ y ⇒ y ∈ (ð, t)q), (30)

(∀x, y ∈ X)(∀t ∈ (0, 1])(x ∈ (ð, t)q, gx(y) ∈ (ð, t)q ⇒ y ∈ (ð, t)q), (31)

then the positive set of ð is a filter of X.



36 Jun YB. Trans. Fuzzy Sets Syst. 2025; 4(1)

Proof. Let x, y ∈ X be such that x ∈ X0 and x ≲ y. Then ð(x) ̸= 0, and so ð(x) + 1 > 1, i.e., x ∈ (ð, 1)q.
Thus y ∈ (ð, 1)q by (30), which implies ð(y) + 1 > 1. Hence ð(y) ̸= 0, and so y ∈ X0. Let x ∈ X0 and
gx(y) ∈ X0. Then ð(x) ̸= 0 ̸= ð(gx(y)), and hence ð(x) + 1 > 1 and ð(gx(y)) + 1 > 1, that is, x ∈ (ð, 1)q
and gx(y) ∈ (ð, 1)q. Using (31) induces y ∈ (ð, 1)q. If y /∈ X0, then ð(y) = 0 and thus y /∈ (ð, 1)q which is a
contradiction. Hence y ∈ X0 and therefore X0 is a filter of X. □

We establish conditions for the qt-set (ð, t)q to be a filter of X.

Theorem 3.17. If ð is a fuzzy filter of X, then its nonempty qt-set is a filter of X for all t ∈ (0, 1].

Proof. Assume that (ð, t)q ̸= ∅ for all t ∈ (0, 1]. Let x, y ∈ X be such that x ∈ (ð, t)q and x ≲ y. Then
ð(x) + t > 1 and so ð(y) ≥ ð(x) > 1 − t by (15). Hence y ∈ (ð, t)q. Let x ∈ (ð, t)q and gx(y) ∈ (ð, t)q.
Then ð(x) + t > 1 and ð(gx(y)) + t > 1. It follows from (16) that ð(y) ≥ min{ð(x), ð(gx(y))} > 1− t. Thus
y ∈ (ð, t)q, and therefore (ð, t)q is a filter of X for all t ∈ (0, 1]. □

Proposition 3.18. Given a fuzzy set ð in X, if its qt-set is a filter of X for all t ≤ 0.5, then the following
conditions are established.

(∀x, y ∈ X)(∀t ∈ (0, 0.5])(x ∈ (ð, t)q, x ≲ y ⇒ y ∈ (ð, t)∈), (32)

(∀x, y ∈ X)(∀t1, t2 ∈ (0, 0.5])

(
x ∈ (ð, t1)q, gx(y) ∈ (ð, t2)q
⇒ y ∈ (ð,max{t1, t2})∈

)
. (33)

Proof. Let t ∈ (0, 0.5] and suppose that (ð, t)q is a filter of X. Let x, y ∈ X be such that x ∈ (ð, t)q and
x ≲ y. Then y ∈ (ð, t)q by (13), and so ð(y) > 1− t ≥ t. Hence y ∈ (ð, t)∈. Let x, y ∈ X and t1, t2 ∈ (0, 0.5]
be such that x ∈ (ð, t1)q and gx(y) ∈ (ð, t2)q. Then x ∈ (ð,max{t1, t2})q and gx(y) ∈ (ð,max{t1, t2})q. It
follows from (14) that y ∈ (ð,max{t1, t2})q. Hence

ð(y) > 1−max{t1, t2} ≥ max{t1, t2},

and so y ∈ (ð,max{t1, t2})∈. □

Proposition 3.19. Given a fuzzy set ð in X, if its qt-set is a filter of X for all t ≥ 0.5, then the following
conditions are established.

(∀x, y ∈ X)(∀t ∈ (0.5, 1])(x ∈ (ð, t)∈, x ≲ y ⇒ y ∈ (ð, t)q), (34)

(∀x, y ∈ X)(∀t1, t2 ∈ (0.5, 1])

(
x ∈ (ð, t1)∈, gx(y) ∈ (ð, t2)∈
⇒ y ∈ (ð,max{t1, t2})q

)
. (35)

Proof. Let t ∈ (0.5, 1] and suppose that (ð, t)q is a filter of X. Let x, y ∈ X. If x ∈ (ð, t)∈ and x ≲ y,
then ð(x) ≥ t > 1 − t, i.e., x ∈ (ð, t)q. Hence y ∈ (ð, t)q by (13). If x ∈ (ð, t1)∈ and gx(y) ∈ (ð, t2)∈, then
ð(x) ≥ t1 > 1−t1 ≥ 1−max{t1, t2} and ð(gx(y)) ≥ t2 > 1−t2 ≥ 1−max{t1, t2}, that is, x ∈ (ð,max{t1, t2})q
and gx(y) ∈ (ð,max{t1, t2})q. It follows from (14) that y ∈ (ð,max{t1, t2})q. □

Corollary 3.20. Every fuzzy filter ð of X satisfies (32), (33), (34) and (35).

Theorem 3.21. If a fuzzy set ð in X satisfies the following conditions:

(∀x, y ∈ X)(∀t ∈ (0.5, 1])(x ∈ (ð, t)q, x ≲ y ⇒ y ∈ (ð, t)∈∨q), (36)

(∀x, y ∈ X)(∀t ∈ (0.5, 1])(x ∈ (ð, t)q, gx(y) ∈ (ð, t)q ⇒ y ∈ (ð, t)∈∨q), (37)

then the nonempty qt-set is a filter of X for all t ∈ (0.5, 1].
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Proof. Let x, y ∈ X and t ∈ (0.5, 1], and assume that (ð, t)q is nonempty. If x ∈ (ð, t)q and x ≲ y, then
y ∈ (ð, t)∈∨q by (36). It follows that y ∈ (ð, t)∈ or y ∈ (ð, t)q. If y ∈ (ð, t)∈, then ð(y) ≥ t > 1 − t and so
y ∈ (ð, t)q. Let x ∈ (ð, t)q and gx(y) ∈ (ð, t)q. Then y ∈ (ð, t)∈∨q by (37), and thus y ∈ (ð, t)∈ or y ∈ (ð, t)q.
If y ∈ (ð, t)∈, then ð(y) ≥ t > 1− t and so y ∈ (ð, t)q. Consequently, (ð, t)q is a filter of X. □

Proposition 3.22. Given a filter F of X, if we define a fuzzy set ∂F in X as follows:

∂F : X → [0, 1], x 7→
{
s1 if x ∈ F ,
s2 otherwise

where s1 ≥ 0.5 > s2 = 0, then the following assertions hold.

(∀x, y ∈ X)(∀t ∈ (0, 1])(x ∈ (∂F , t)q, x ≲ y ⇒ y ∈ (∂F , t)∈∨q). (38)

(∀x, y ∈ X)(∀t1, t2 ∈ (0, 1])

(
x ∈ (∂F , t1)q, gx(y) ∈ (∂F , t2)q
⇒ y ∈ (∂F ,min{t1, t2})∈∨q.

)
. (39)

Proof. Let x, y ∈ X and t ∈ (0, 1] be such that x ∈ (∂F , t)q and x ≲ y. Then ∂F (x) + t > 1. If x /∈ F ,
then ∂F (x) = s2 = 0 and so t > 1 a contradiction. Thus x ∈ F and hence y ∈ F since F is a filter of
X. Hence ∂F (y) = s1 ≥ 0.5. If t ≤ 0.5, then ∂F (y) ≥ 0.5 ≥ t and so y ∈ (∂F , t)∈. If t > 0.5, then
∂F (y) + t > 0.5 + 0, 5 = 1 which means y ∈ (∂F , t)q. Thus y ∈ (∂F , t)∈∨q. Let x, y ∈ X and t1, t2 ∈ (0, 1]
be such that x ∈ (∂F , t1)q and gx(y) ∈ (∂F , t2)q, that is, ∂F (x) + t1 > 1 and ∂F (gx(y)) + t2 > 1. If x /∈ F
or gx(y) /∈ F , then ∂F (x) = s2 = 0 or ∂F (gx(y)) = s2 = 0. Hence t1 > 1 or t2 > 1 which is a contradiction.
Hence x ∈ F and gx(y) ∈ F . Since F is a filter of X, we have y ∈ X and thus ðF (y) = s1 ≥ 0.5. If t1 ≤ 0.5
or t2 ≤ 0.5, then ðF (y) ≥ 0.5 ≥ min{t1, t2}. Thus y ∈ (∂F ,min{t1, t2})∈. If t1 > 0.5 and t2 > 0.5, then
∂F (y) + min{t1, t2} > 0.5 + 0.5 = 1, i.e., y ∈ (∂F ,min{t1, t2})q. Therefore, y ∈ (∂F ,min{t1, t2})∈∨q. □

Theorem 3.23. If ∂F is the fuzzy set in X which is described in Proposition 3.22, then its qt-set (∂F , t)q is
a filter of X for all t ∈ (0.5, 1]

Proof. Let x, y ∈ X and t ∈ (0.5, 1]. If x ∈ (∂F , t)q and x ≲ y, then ∂F (x) + t > 1, and so x ∈ F because
if not, then ∂F (x) = s2 = 0 and thus t > 1 a contradiction. Since F is a filter of X, we get y ∈ F . So
∂F (y) = s1 ≥ 0.5. Since t ∈ (0.5, 1], it follows that ∂F (y) + t = s1 + t > 0.5 + 0.5 = 1, i.e., y ∈ (∂F , t)q.
Suppose that x ∈ (∂F , t)q and gx(y) ∈ (∂F , t)q. Then ∂F (x) + t > 1 and ∂F (gx(y)) + t > 1. If x /∈ F or
gx(y) /∈ F , then ∂F (x) = s2 = 0 or ∂F (gx(y)) = s2 = 0. Hence t = ∂F (x) + t > 1 or t = ∂F (gx(y)) + t > 1, a
contradiction. Thus x ∈ F and gx(y) ∈ F , which induces y ∈ F . So ∂F (y) = s1 ≥ 0.5. Since t ∈ (0.5, 1], it
follows that ∂F (y) + t = s1 + t > 0.5 + 0.5 = 1, i.e., y ∈ (∂F , t)q. Therefore (∂F , t)q is a filter of X. □

Definition 3.24. A fuzzy set ð in X is called a (0.5, 1]-fuzzy filter of X if its nonempty ∈t-set (ð, t)∈ is a
filter of X for all t ∈ (0.5, 1].

Example 3.25. Consider the pre-ordered residuated system X := (X, ⊙, →, b1, ≲) in Example 3.3. Let ∂
be a fuzzy set in X given by

∂ : X → [0, 1], x 7→


0.9 if x = b1,
0.4 if x = b2,
0.7 if x = b3,
0.3 if x = b4.

Then ∂ is a (0.5, 1]-fuzzy filter of X.

It is clear that every fuzzy filter is a (0.5, 1]-fuzzy filter. But the converse may not be true. In fact, the
(0.5, 1]-fuzzy filter ∂ in Example 3.25 is not a fuzzy filter of X since b2 ≲ b4 and ∂(b2) = 0.4 ≰ 0.3 = ∂(b4).

We now discuss the characterization of (0.5, 1]-fuzzy filters.
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Theorem 3.26. A fuzzy set ð in X is a (0.5, 1]-fuzzy filter of X if and only if it satisfies:

(∀x, y ∈ X)(x ≲ y ⇒ ð(x) ≤ max{ð(y), 0.5}), (40)

(∀x, y ∈ X)(max{ð(y), 0.5} ≥ min{ð(x),ð(gx(y))}). (41)

Proof. Assume that ð in X is a (0.5, 1]-fuzzy filter of X. Then the nonempty ∈t-set (ð, t)∈ is a filter
of X for all t ∈ (0.5, 1]. If the condition (40) is not valid, then there exists a, b ∈ X such that a ≲ b
and ð(a) > max{ð(b), 0.5}. Hence t := ð(a) ∈ (0.5, 1] and a ∈ (ð, t)∈. But b /∈ (ð, t)∈, a contradiction.
Hence ð(x) ≤ max{ð(y), 0.5} for all x, y ∈ X with x ≲ y. Suppose that the condition (41) is not establish.
Then max{ð(b), 0.5} < min{ð(a), ð(ga(b))} for some a, b ∈ X. If we take s := min{ð(a), ð(ga(b))}, then
s ∈ (0.5, 1], a ∈ (ð, s)∈ and ga(b) ∈ (ð, s)∈. But max{ð(b), 0.5} < s leads to b /∈ (ð, s)∈, which is a
contradiction. Therefore max{ð(y), 0.5} ≥ min{ð(x), ð(gx(y))} for all x, y ∈ X.

Conversely, let ð be a fuzzy set in X that satisfies two conditions (40) and (41). Let t ∈ (0.5, 1] be such
that (ð, t)∈ ̸= ∅. If x ∈ (ð, t)∈ and x ≲ y, then max{ð(y), 0.5} ≥ ð(x) ≥ t > 0.5 by (40). Thus ð(y) ≥ t,
i.e., y ∈ (ð, t)∈. If x ∈ (ð, t)∈ and gx(y) ∈ (ð, t)∈, then ð(x) ≥ t and ð(gx(y)) ≥ t. It follows from (41) that
max{ð(y), 0.5} ≥ min{ð(x), ð(gx(y))} ≥ t. Since t > 0.5, we get ð(y) ≥ t and so y ∈ (ð, t)∈. Therefore ð is a
(0.5, 1]-fuzzy filter of X. □

Corollary 3.27. Every fuzzy filter ð of X satisfies the two conditions (40) and (41).

Theorem 3.28. If ð is a (0.5, 1]-fuzzy filter of X, then its nonempty qt-set is a filter of X for all t ∈ (0, 0.5).

Proof. Assume that ð is a (0.5, 1]-fuzzy filter of X. Let t ∈ (0, 0.5) be such that (ð, t)q ̸= ∅. If x ∈ (ð, t)q
and x ≲ y, then

max{ð(y), 0.5} ≥ ð(x) > 1− t > 0.5

by (40), and so ð(y) > 1 − t. Hence y ∈ (ð, t)q. Let x, y ∈ X be such that x ∈ (ð, t)q and gx(y) ∈ (ð, t)q.
Then ð(x) > 1− t and ð(gx(y)) > 1− t. It follows from (41) that

max{ð(y), 0.5} ≥ min{ð(x), ð(gx(y))} > 1− t > 0.5.

Hence ð(y) > 1− t and thus y ∈ (ð, t)q. Therefore (ð, t)q is a filter of X. □
Now let’s think about a more generalized form of Definition 3.1 and Definition 3.24.

Let ð be a fuzzy set in X. Then the ∈t-set (ð, t)∈ is a filter of X for some t ∈ (0, 1], but can not be a filter
of X for other t ∈ (0, 1]. Let

JX := {t ∈ (0, 1] | (ð, t)∈ is a filter of X}.

If JX = (0, 1], then ð is a fuzzy filter of X. If JX = (0.5, 1], then ð is a (0.5, 1]-fuzzy filter of X. However,
in general, the question arises as to what the form of the fuzzy filter is if JX is a non-empty subset of (0, 1],
for example JX = (0, 0.5] or JX = (δ, ε] for δ, ε ∈ (0, 1] with δ < ε. Based on this question, we consider the
following definition.

Definition 3.29. Let δ < ε in [0, 1]. A fuzzy set ð in X is called a fuzzy filter with thresholds δ and ε (briefly,
(δ, ε]-fuzzy filter) of X if its nonempty ∈t-set (ð, t)∈ is a filter of X for all t ∈ (δ, ε].

It is clear that if a fuzzy set ð in X satisfies ð(x) ≤ δ < ε for all x ∈ X, then ð is a (δ, ε]-fuzzy filter of X,
and every fuzzy filter is a (δ, ε]-fuzzy filter for every δ, ε ∈ (0, 1] with δ < ε.
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Example 3.30. Consider the pre-ordered residuated system X := (X, ⊙, →, b1, ≲) in Example 3.3. Let ð
be a fuzzy set in X given by

ð : X → [0, 1], x 7→


0.6 if x = b1,
0.3 if x = b2,
0.8 if x = b3,
0.5 if x = b4.

Then ð is a (0.27, 0.58]-fuzzy filter of X since

(ð, t)∈ =


{b1, b3} if 0.5 < t ≤ 0.58,
{b1, b3, b4} if 0.3 < t ≤ 0.5,
X if 0.27 < t ≤ 0.3,

is a filter of X for all t ∈ (0.27, 0.58]. But it is not a (0.27, 0.65]-fuzzy filter of X because if we take
t := 0.63 ∈ (0.27, 0.65], then (ð, t)∈ = {b3} is not a filter of X.

It is obvious that if (δ, ε1] ⊆ (δ, ε2], then every (δ, ε2]-fuzzy filter is a (δ, ε1]-fuzzy filter, but the converse
may not be true as shown in Example 3.30.

Theorem 3.31. A fuzzy set ð in X is a (δ, ε]-fuzzy filter of X if and only if the following conditions hold.

(∀x, y ∈ X)(x ≲ y ⇒ min{ð(x), ε} ≤ max{ð(y), δ}), (42)

(∀x, y ∈ X)(max{ð(y), δ} ≥ min{ð(x),ð(gx(y)), ε}). (43)

Proof. Suppose that ð is a (δ, ε]-fuzzy filter of X. Let x ≲ y in X. If min{ð(x), ε} > max{ð(y), δ}, then
there exists t ∈ (0, 1] such that

min{ð(x), ε} ≥ t > max{ð(y), δ}.

Then ð(y) < t and ð(x) ≥ t, that is, y /∈ (ð, t)∈ and x ∈ (ð, t)∈, and t ∈ (δ, ε]. This is a contradiction, and so
min{ð(x), ε} ≤ max{ð(y), δ}. If (43) is not established, then

max{ð(b), δ} < t ≤ min{ð(a), ð(ga(b)), ε}

for some a, b ∈ X and t ∈ (0, 1]. It follows that t ∈ (δ, ε], b /∈ (ð, t)∈, a ∈ (ð, t)∈ and ga(b) ∈ (ð, t)∈. This is a
contradiction, and thus ð satisfies the condition (43).

Conversely, we assume that ð satisfies the two conditions (42) and (43). Let x, y ∈ X and t ∈ (δ, ε]. If
x ≲ y and x ∈ (ð, t)∈, then

max{ð(y), δ} ≥ min{ð(x), ε} ≥ t > δ

by (42). Hence ð(y) ≥ t, i.e., y ∈ (ð, t)∈. If x ∈ (ð, t)∈ and gx(y) ∈ (ð, t)∈, then

max{ð(y), δ} ≥ min{ð(x), ð(gx(y)), ε} ≥ t > δ

by (43), and so ð(y) ≥ t, i.e., y ∈ (ð, t)∈. Consequently, (ð, t)∈ is a filter of X for all t ∈ (δ, ε]. Therefore ð is
a (δ, ε]-fuzzy filter of X. □

Given a fuzzy set ð in X, we say the set

(ð, t)∗q := {x ∈ X | ð(x) + t ≥ 1}

is an extended qt-set of ð.
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Theorem 3.32. If ð is a (δ, ε]-fuzzy filter of X and δ < 0.5, then its nonempty extended qt-set is a filter of
X for all t ∈ (0, δ] ∩ [1− ε, 1].

Proof. Assume that ð is a (δ, ε]-fuzzy filter of X and δ < 0.5. Let t ∈ (0, δ]∩ [1−ε, 1] be such that (ð, t)∗q ̸= ∅.
If x ∈ (ð, t)∗q and x ≲ y, then

max{ð(y), δ} ≥ min{ð(x), ε} ≥ min{1− t, ε} = 1− t ≥ 1− δ > δ

by (42). Hence ð(y) ≥ 1 − t, that is, y ∈ (ð, t)∗q . Let x, y ∈ X be such that x ∈ (ð, t)∗q and gx(y) ∈ (ð, t)∗q .
Then ð(x) + t ≥ 1 and ð(gx(y)) + t ≥ 1. It follows from (43) that

max{ð(y), δ} ≥ min{ð(x), ð(gx(y)), ε} ≥ min{1− t, ε} = 1− t ≥ 1− δ > δ.

Thus ð(y) ≥ 1− t, that is, y ∈ (ð, t)∗q . Consequently, (ð, t)∗q is a filter of X. □

4 Conclusion

As a mathematical structure, a residuated relational system has been introduced by S. Bonzio and I. Chajda
in 2018, and it combines elements of algebra, order theory, and relational calculus. They also extended
the residuated relational system by introducing pre-ordered residuated systems using pre-order relation, and
further studied the various properties involved. D. A. Romano [2, 3, 4, 5] introduced and analyzed the
concept of (weak implicative, shipt, implicative, comparative) filters in pre-ordered residuated systems. With
the purpose of this paper in the study of filters in pre-ordered residuated systems using the concept of fuzzy
points, we introduced fuzzy filter and identified various properties. Based on the ideas of this paper and
the results obtained, we will study various fuzzy versions for different types of filters, for example, (weak
implicative, shipt, implicative, comparative) filters, in the future.
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Abstract. Atanassov’s intuitionistic fuzzy set is more adept at representing and managing uncertainty. Within
intuitionistic fuzzy set theory, intuitionistic fuzzy measure is a significant field of study. In order to address decision
making, we present a novel similarity metric between intuitionistic fuzzy sets in this study. First, based on the
minimum and maximum levels of similarity, we suggest a new similarity metric between intuitionistic fuzzy values.
It is capable of overcoming the limitations of current approaches to gauging the degree of resemblance between fuzzy
intuitionistic sets. It is also possible to show some aspects of the suggested similarity measure between intuitionistic
fuzzy sets by taking into account the modal operators and their different extensions. Finally, we apply the proposed
similarity measure between intuitionistic fuzzy sets to deal with a real life problem. The suggested action can
provide a precise outcome. The application section examines a real-world issue of choosing the best course of action
among n options based on m criteria. A fictitious case study is created along with the method’s algorithm.
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1 Introduction

In 1965, L.A. Zadeh [1] created and introduced the idea of a fuzzy set. Eighteen years later, in 1983, Atanassov
[2] introduced the concept of intuitionistic fuzzy sets as an extension of fuzzy sets. The fundamental dis-
tinction between these two ideas is that, in intuitionistic fuzzy set theory, hesitation margin is taken into
account in addition to both membership function and non-membership function. In fuzzy set theory, only
the membership function is taken into account. Scholars and researchers [3, 4, 5, 6, 7, 8] are exerting great
effort to advance and refine this field.
The notion of modal operators were first introduced by Atanassov [9] in 1986. Modal operators (□,♢) de-
fined over the set of all intuitionistic fuzzy sets that convert every intuitionistic fuzzy set into a fuzzy set.
Atanassov [9] also introduced the operators (⊞,⊠) in intuitionistic fuzzy set. More relations and properties
on these operators are regorously studied in [10, 11, 12, 3, 4, 5]. The second extension of the operators ⊞
and ⊠ are introduced by K. Dencheva [13].
There are circumstances in which fuzzy set theory is not the best fit and should be replaced with intuitionistic
fuzzy set theory. intuitionistic fuzzy set theory has been researched as a helpful resource for decision-making
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issues, logic programming, etc. In this work, we establish a similarity measure between two intuitionistic
fuzzy sets A and B of a set E and apply it to a problem involving decision-making. The issue under consider-
ation is choosing the best course of action from n options based on m criteria in cases when the information
at hand is intuitionistic fuzzy.
Recently, there has been a lot of focus on measures of similarity between Intuitionistic Fuzzy Sets as a cru-
cial tool for image processing, machine learning, pattern detection, and decision making [14, 15]. Numerous
measurements of similarity have been put forth. Some of them are derived from the widely used distance
measures.
The first study was carried out by Szmidt and Kacprzyk [16] extending the well-known distances measures,
such as the Hamming distance and the Euclidian distance, to IFS environment and comparing them with the
approaches used for ordinary fuzzy sets. Therefore, several new distance measures were proposed and applied
to pattern recognition. Grzegorzewski [17] also extended the Hamming distance, the Euclidean distance, and
their normalized counterparts to IFS environment. Hung and Yang [18] extended the Hausdorff distance to
Intuitionistic Fuzzy Sets and proposed three similarity measures.
On the other hand, instead of extending the well-known measures, some studies defined new similarity mea-
sures for Intuitionistic Fuzzy Sets. Dengfeng and Chuntian [19] suggested a new similarity measure for IFSs
based on the membership degree and the nonmembership degree. Ye [15] conducted a similar comparative
study of the existing similarity measures between Intuitionistic Fuzzy Sets and proposed a cosine similarity
measure and a weighted cosine similarity measure. Xu and Chen [20] introduced a series of distance and
similarity measures, which are various combinations and generalizations of the weighted Hamming distance,
the weighted Euclidean distance, and the weighted Hausdorff distance. Xu and Yager [21] developed a simi-
larity measure between Intuitionistic Fuzzy Sets and applied the developed similarity measure for consensus
analysis in group decision making based on intuitionistic fuzzy preference relations.
Zeng and Guo [22] investigated the relationship among the normalized distance, the similarity measure, the
inclusion measure, and the entropy of interval-valued fuzzy sets. It was also showed that the similarity mea-
sure, the inclusion measure, and the entropy of interval-valued fuzzy sets could be induced by the normalized
distance of interval-valued fuzzy sets based on their axiomatic definitions. Moreover, Zhang and Yu [23] pre-
sented a new distance (or similarity) measure based on interval comparison, where the Intuitionistic Fuzzy
Sets were, respectively, transformed into the symmetric triangular fuzzy numbers. Comparison with the
widely used methods indicated that the proposed method contained more information, with much less loss of
information. Li et al. [24] introduced an axiomatic definition of the similarity measure of Intuitionistic Fuzzy
Sets. The relationship between the entropy and the similarity measure of IFS was investigated in detail. It
was proved that the similarity measure and the entropy of IFS can be transformed into each other based on
their axiomatic definitions.
Several writers have recently discussed the use of various similarity measures in image processing, pattern
recognition, medical diagnosis, and decision making. Song et al.[25] presented some applications to pattern
recognition and presented a new similarity metric for intuitionistic fuzzy sets. Ejegwa et al.[26] represented
Thao et al.’s correlation coefficient of Intuitionistic fuzzy sets for medical diagnostic analysis on some selected
patients. Based on Spearman’s correlation coefficient, Ejegwa et al. [27] identified medical emergencies in 2024
using novel intuitionistic fuzzy correlation measurements. Recently tendency coefficient based on weighted
distance measure for intuitionistic fuzzy sets was discussed by Anum et al. [28]. Additionally, Ejegwa et al.
[29] presented a novel approach to calculating the distance between intuitionistic fuzzy sets and discussed
about how to use it in the admissions process. Zhou et al.[30] provided a detailed discussion of the generalised
similarity operator for intuitionistic fuzzy sets and how to apply it using the multiple criteria decision mak-
ing technique and the recognition principle. In a paper pertaining to the intuitionistic fuzzy sets approach,
Nwokoro et al.[31] also made predictions regarding maternal outcomes.
Therefore, we propose a novel method for decision-making based on intuitionistic fuzzy set theory. The
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proposed similarity measure depends on membership degree, and hesitation margin. This paper proves that
the proposed measures satisfy the properties of the axiomatic definition for similarity measures. In addition,
several numerical examples are provided to establish some relations. The final section presents the suggested
similarity measure’s use for decision-making.

2 Preliminary Concepts

Throughout this study, intuitionistic fuzzy set and fuzzy set are denoted by IFS and FS respectively.

Definition 2.1. [9] Let X be a nonempty set. An intuitionistic fuzzy set A in X is an object having the
form A={⟨x, µA(x), νA(x)⟩ : x ∈ X},where the functions µA, νA : x → [0, 1]define respectively, the degree of
membership and degree of non-membership of the element x ∈ X to the set A, which is a subset of X, and
for every element x ∈ X, 0 ≤ µA(x) + νA(x) ≤ 1.
Furthermore, we have πA(x)= 1-µA(x)-νA(x) called the intuitionistic fuzzy set index or hesitation margin of
x in A. πA(x) is the degree of indeterminacy of x ∈ X to the IFS A and πA(x) ∈ [0, 1] that is πA : x→ [0, 1]
and 0 ≤ πA(x) ≤ 1 for every x ∈ X.
πA(x) expresses the lack of knowledge of whether x belongs to IFS A or not.

Definition 2.2. [9] Let X be a nonempty set. If A is an IFS drawn from X, then the modal operators which
are also termed as necessity and possibility operators can be defined as

1. □A= {⟨x, µA(x), 1− µA(x)⟩ : x ∈ X}

2. ♢A= {⟨x, 1− νA(x), νA(x)⟩ : x ∈ X}

For a proper IFS, □A ⊂ A ⊂ ♢A and □A ̸= A ̸= ♢A.

Definition 2.3. [9] Let X be a nonempty set. If A is an IFS drawn from X, then,

1. ⊞A= {⟨x, µA(x)
2 , νA(x)+1

2 ⟩ : x ∈ X}

2. ⊠A= {⟨x, µA(x)+1
2 , νA(x)

2 ⟩ : x ∈ X}

For a proper IFS, ⊞A ⊂ A ⊂ ⊠A and ⊞A ̸= A ̸= ⊠A.

Definition 2.4. [32] Let α ∈ [0, 1] and let A be an IFS. Then the first extension of the operators ⊞ and ⊠
can be defined as

1. ⊞αA= {⟨x, αµA(x), ανA(x) + 1− α⟩ : x ∈ X}

2. ⊠αA= {⟨x, αµA(x) + 1− α, ανA(x)⟩ : x ∈ X}.



A Novel Method of Decision-Making Based on
Intuitionistic Fuzzy Set Theory. Trans. Fuzzy Sets Syst. 2025; 4(1) 45

Definition 2.5. [13] Let α, β, α+ β ∈ [0, 1] and let A be an IFS. Then the second extension of the operators
⊞ and ⊠ can be defined as

1. ⊞α,βA= {⟨x, αµA(x), ανA(x) + β⟩ : x ∈ X}

2. ⊠α,βA= {⟨x, αµA(x) + β, ανA(x)⟩ : x ∈ X}.

Definition 2.6. [33] Let us consider two IFSs A and B of a fixed set E. The similarity measure between A
and B denoted by s(A,B) is defind by an interval [eAB, e

′
AB], where

eAB = maxmin
x∈E

{µA(x), µB(x)}

e
′
AB = maxmin

x∈E
{µA(x) + πA(x), µB(x) + πB(x)}

Here eAB indicates the minimum amount of similarity and e
′
AB indicates the maximum amount of similarity

between A and B.
It can be noted that

1. s(A,B) ⊆ [0, 1].

2. s(A,B) = s(B,A).

3. If πA(x) = 0 and πB(x) = 0, ∀x ∈ E, then eAB = e
′
AB.

Moreover it may be mentioned that eAB ̸= e
′
AB for A = B.

.

Proposition 2.7. [33] Let A and B be two IFSs and s(A,B) = [eAB, e
′
AB], then

1. s(□A,□B) = eAB,

2. s(♢A,♢B) = e
′
AB.

3 Measure of Similarity between Intuitionistic Fuzzy Sets

This section provides an example-based explanation of Definition 2.6, leading to some intriguing findings.

Example 3.1. Consider two IFSs A and B of E = {x1, x2, x3, x4} given by the following table:

x µA νA µB νB

x1 0.65 0.26 0.72 0.18

x2 0.32 0.46 0.56 0.38

x3 0.80 0.12 0.48 0.42

x4 0.70 0.25 0.83 0.12
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Using Definition 2.6, we have eAB = 0.70 , e
′
AB = 0.75 and hence similarity measure between A and B is

[0.70, 0.75].

Theorem 3.2. Let A and B be two IFSs and s(A,B) = [eAB, e
′
AB], then

1. s(⊞A,⊞B) = [12eAB,
1
2e

′
AB ],

2. s(⊠A,⊠B) = [12eAB + 1
2 ,

1
2e

′
AB + 1

2 ].

Proof. 1. L.H.S = maxminx∈E{µA(x)
2 , µB(x)

2 },maxminx∈E{µA(x)
2 + πA(x)

2 , µB(x)
2 + πB(x)

2 }
= maxminx∈E

1
2{µA(x), µB(x)},maxminx∈E

1
2{µA(x) + πA(x), µB(x) + πB(x)}

= 1
2 maxminx∈E{µA(x), µB(x)}, 12 maxminx∈E{µA(x) + πA(x), µB(x) + πB(x)}

= [eAB, e
′
AB]

Similarly the other statement can be proved.

□

Theorem 3.3. Let α ∈ [0, 1] and let A & B be two IFSs. If s(A,B) = [eAB, e
′
AB], then

1. s(⊞αA,⊞αB) = [αeAB, αe
′
AB],

2. s(⊠αA,⊠αB) = [αeAB + 1 - α, αe
′
AB + 1- α ].

Proof. 1. L.H.S = maxminx∈E{αµA(x), αµB(x)},maxminx∈E{αµA(x) + απA(x), αµB(x) + απB(x)}
= αmaxminx∈E{µA(x), µB(x)}, αmaxminx∈E{µA(x) + πA(x), µB(x) + πB(x)}
= [αeAB, αe

′
AB]

Similarly the other statement can be proved.
□

Theorem 3.4. Let A & B be two IFSs with α, β ∈ [0, 1] and α+ β = 1. If s(A,B) = [eAB, e
′
AB], then

1. s(⊞α,βA,⊞α,βB) = [αeAB, αe
′
AB],

2. s(⊠α,βA,⊠α,βB) = [αeAB + β, αe
′
AB + β ].

Proof. Similar to the Theorem 3.3 □
The above theorem is not true for α, β ∈ [0, 1] and α+ β < 1.
If we consider the example 3.1 with α = 0.7 and β = 0.1 then it is found that s(⊞α,βA,⊞α,βB) = [0.49, 0.725]
̸= [αeAB, αe

′
AB] and s(⊠α,βA,⊠α,βB) = [0.59, 0.825] ̸= [αeAB + β, αe

′
AB + β ].

Example 3.5. Consider the IFSs A and B of E as in example 3.1. To find s(□A,□B) and s(♢A,♢B) we
have to construct the new tables as

x µA 1− µA µB 1− µB

x1 0.65 0.35 0.72 0.28

x2 0.32 0.68 0.56 0.44

x3 0.80 0.20 0.48 0.52

x4 0.70 0.30 0.83 0.17

Hence s(□A,□B) = 0.70 = eAB.
And
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x 1− νA νA 1− νB νB

x1 0.74 0.26 0.82 0.18

x2 0.54 0.46 0.62 0.38

x3 0.88 0.12 0.58 0.42

x4 0.75 0.25 0.88 0.12

Hence s(♢A,♢B) = 0.75 = e
′
AB.

Example 3.6. Consider the IFSs A and B of E as in example 3.1. To find s(⊞A,⊞B) and s(⊠A,⊠B) we
have to construct the new tables as

x µA(x)
2

νA(x)+1
2

µB(x)
2

νB(x)+1
2

x1 0.325 0.63 0.36 0.59

x2 0.16 0.73 0.28 0.69

x3 0.40 0.56 0.24 0.71

x4 0.35 0.625 0.415 0.56

Hence s(⊞A,⊞B) = [0.35, 0.375] = [ eAB
2 ,

e
′
AB
2 ].

And

x µA(x)+1
2

νA(x)
2

µB(x)+1
2

νB(x)
2

x1 0.825 0.13 0.86 0.09

x2 0.66 0.23 0.78 0.19

x3 0.90 0.06 0.74 0.21

x4 0.85 0.125 0.915 0.06

Hence s(⊠A,⊠B) = [0.85, 0.875] = [ eAB
2 + 1

2 ,
e
′
AB
2 + 1

2 ].

Example 3.7. Consider the IFSs A and B of E as in example 3.1. To find s(⊞αA,⊞αB) we construct the
table with α = 0.7.

x αµA(x) ανA(x) + 1− α αµB(x) ανB(x) + 1− α

x1 0.455 0.482 0.504 0.426

x2 0.224 0.622 0.392 0.566

x3 0.56 0.384 0.336 0.594

x4 0.49 0.475 0.581 0.384

Hence s(⊞αA,⊞αB) = [0.49, 0.525] = [αeAB, αe
′
AB].

In a similar manner, we create the table that follows to locate s(⊠αA,⊠αB).

x αµA(x) + 1− α ανA(x) αµB(x) + 1− α ανB(x)

x1 0.755 0.182 0.804 0.126

x2 0.524 0.322 0.692 0.266

x3 0.86 0.084 0.636 0.294

x4 0.79 0.175 0.881 0.084

Hence s(⊠αA,⊠αB) = [0.79, 0.825] = [αeAB + 1− α, αe
′
AB + 1− α].
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Example 3.8. Consider the IFSs A and B of E as in example 3.1. To find s(⊞α,βA,⊞α,βB) we construct
the table taking α = 0.7 and β = 0.3 with α, β ∈ [0, 1] and α+ β = 1.

x αµA(x) ανA(x) + β αµB(x) ανB(x) + β

x1 0.455 0.482 0.504 0.426

x2 0.224 0.622 0.392 0.566

x3 0.56 0.384 0.336 0.594

x4 0.49 0.475 0.581 0.384

Hence s(⊞α,βA,⊞α,βB) = [0.49, 0.525] = [αeAB, αe
′
AB].

In a similar manner, we create the table that follows to locate s(⊠α,βA,⊠α,βB).

x αµA(x) + β ανA(x) αµB(x) + β ανB(x)

x1 0.755 0.182 0.804 0.126

x2 0.524 0.322 0.692 0.266

x3 0.86 0.084 0.636 0.294

x4 0.79 0.175 0.881 0.084

Hence s(⊠α,βA,⊠α,βB) = [0.79, 0.825] = [αeAB + β, αe
′
AB + β].

The measure of similarity has been thoroughly explored and defined in intuitionistic fuzzy set theory by
numerous authors [33, 34, 35].
Chen [36] defined a similarity measure between two fuzzy sets A and B of X using the vector approach as
follows:

s(A,B) =
A.B

A
2 ∨B2 (1)

Where, A is the vector ⟨µA(x1), µA(x2), ...⟩, B is the vector ⟨µB(x1), µB(x2), ...⟩ and X = {x1, x2, x3, ...}, the
symbol ”.” stands for scalar product of two vectors.
De et al.[33] also provide an analogous definition for the similarity measurement between two IFSs A and B
of E.

s(A,B) =

∑
x∈E Ax.Bx∑

x∈E(A
2
x) ∨

∑
x∈E(B

2
x)

(2)

Where Ax is the vector [µA(x), πA(x)] and Bx is the vector [µB(x), πB(x)]∀x ∈ E.
Clearly,

1. s(A,B) ∈ [0, 1].

2. s(A,B) = s(B,A).

3. eAB = e
′
AB if A = B.

4. If πA(x) = 0 and πB(x) = 0, ∀x ∈ E, then s(A,B) becomes equal to the measure of similarity defined
by Chen [4].

In this section, a new kind of similarity measure between two intuitionistic fuzzy sets are defined.
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Definition 3.9. Let us consider two IFSs A and B of a fixed set E. Similarity measure s(A,B) between A
and B is defined by

s(A,B) =
eAB

e
′
AB

=
maxminx∈E{µA(x), µB(x)}

maxminx∈E{µA(x) + πA(x), µB(x) + πB(x)}
(3)

The larger the value of s(A,B), the more the similarity between the intuitionistic fuzzy sets.
Now let’s look at example 3.1. It may be demonstrated that, for equation (2), the value of similarity measure
s(A,B) = 0.9254, while, by Definition 3.9, similarity measure s(A,B) = 0.9333. Therefore, Definition 3.9 is
more suited to offer the optimal solution.

Theorem 3.10. For any two IFSs A and B of a fixed set E, the following statements are true:

1. 0 ≤ s(A,B) ≤ 1.

2. s(A,B) = s(B,A).

3. If πA(x) = 0 and πB(x) = 0, ∀x ∈ E, then s(A,B) becomes equal to 1.

Proof. Obvious. □
In the above theorem, eAB ̸= e

′
AB if A = B.

4 Application for Decision Making

This section describes a procedure for determining, given n possibilities, the most efficient course of action
based on m criteria. Suppose that there are n actions A, B, C,...where each action depends upon all of the
m criteria x1, x2, x3,... .
A criterion-value ⟨µA, νA⟩ consists of the membership value and the non-membership value of the alternative
A. The indeterministic or hesitation part is the remaining amount πA = 1− µA − νA. Here ⟨µA, νA⟩ are the
IFSs of the set A under all criteria.
For two IFSs A and B of E, A is said to dominate B if s(S,A) ≥ s(S,B). It is clear that the super IFS S
dominates all.

4.1 Algorithm

The steps of algorithm of this method are as follows:
First step: Construct the criteria-matrix using the standard and available alternatives.
Second step: Calculate s(S,X) = eSX

e
′
SX

.

Third step: Find all the similarity measures like s(S,X), where X = A,B,C,D and E.
Fourth step: If s(S,X) has more than one value, choose that one corresponding to which the indeterministic
part is greatest.
Fifth step: Choose the optimal action.
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4.2 A Case-Study

Here, we look at how a student might be selected for a desirable engineering branch based on a few different
factors. Let S be the standard alternative and A, B, C, D, and E, are the available alternatives or the
desirable engineering branches as Computer Science, Electronics, Biotechnology, Chemical and Mechanical
Engineering. Moreover, the criteria are

1. Cut-off marks in entrance test (x1),

2. Students’ choice (x2),

3. Availability of subjects or branches (x3),

4. Availability of seats (x4).

Here, we create a case study using hypothetical information. The criteria-matrix is displayed as follows.

x S A B C D E
⟨µS , νS⟩ ⟨µA, νA⟩ ⟨µB, νB⟩ ⟨µC , νC⟩ ⟨µD, νD⟩ ⟨µE , νE⟩

x1 ⟨0.9, 0.05⟩ ⟨0.7, 0.2⟩ ⟨0.76, 0.2⟩ ⟨0.86, 0.1⟩ ⟨0.9, 0.02⟩ ⟨0.75, 0.2⟩
x2 ⟨0.8, 0.1⟩ ⟨0.75, 0.22⟩ ⟨0.83, 0.14⟩ ⟨0.78, 0.18⟩ ⟨0.79, 0.15⟩ ⟨0.79, 0.15⟩
x3 ⟨0.85, 0.05⟩ ⟨0.81, 0.12⟩ ⟨0.8, 0.1⟩ ⟨0.7, 0.2⟩ ⟨0.81, 0.14⟩ ⟨0.83, 0.13⟩
x4 ⟨0.88, 0.05⟩ ⟨0.65, 0.25⟩ ⟨0.61, 0.24⟩ ⟨0.68, 0.3⟩ ⟨0.57, 0.28⟩ ⟨0.67, 0.28⟩

Hence we get,
s(S,A) = eSA

e
′
SA

= max{0.70,0.75,0.81,0.65}
max{0.80,0.78,0.88,0.75} = 0.81

0.88 = 0.92045.

s(S,B) = eSB

e
′
SB

= max{0.76,0.80,0.80,0.61}
max{0.80,0.86,0.90,0.76} = 0.80

0.90 = 0.88889.

s(S,C) = eSC

e
′
SC

= max{0.86,0.78,0.70,0.68}
max{0.90,0.82,0.80,0.70} = 0.86

0.90 = 0.95556.

s(S,D) = eSD

e
′
SD

= max{0.90,0.79,0.81,0.57}
max{0.95,0.85,0.86,0.72} = 0.90

0.95 = 0.94737.

s(S,E) = eSE

e
′
SE

= max{0.75,0.79,0.83,0.67}
max{0.80,0.85,0.87,0.72} = 0.83

0.87 = 0.95402.

This indicates that the best alternative is C i.e., Biotechnology is the optimal solution.

5 Conclusion

In order to determine the similarity measure between intuitionistic fuzzy sets, we describe a model or method
for intuitionistic fuzzy sets in this study. The primary characteristic of this model is that the hesitation margin
has also been taken into account and computed.We looked at a multi-criteria decision-making problem where
the data were intuitionistic fuzzy rather than crisp. We accomplish this by comparing each of the criterion
value sets with the super intuitionistic fuzzy set S. The best effective course of action is determined to be
the criteria value set that most closely resembles S. The similarity measuring method is the name of the
procedure. In addition to determining the best course of action, the method assists in creating a panel that
reveals the second, third, and so on ideal actions. The proposed similarity measure shows great capacity for
determining intuitionistic fuzzy sets. It has been illustrated that the proposed similarity measure performs
as well as or better than previous measures. Further research will be focused on its applications in other
practical fields.
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Abstract. In [1], states are ranked with respect to the best states to work. In [2], states are ranked with respect
to the peace and security for women. We determine the fuzzy similarity measure of these to rankings. We find the
similarity to be high for one of the measures and very high for the other. We then break the United States into
regions and determine the fuzzy similarity measure of these two rankings for each region. The fuzzy similarity here
is medium for one measure and high for the other. Similarity plays a role in many fields. There exists many special
definitions of similarity which have been used in different areas. We choose to use fuzzy similarity measures which
seem appropriate in rankings. In fact, we develop some new measures.
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1 Introduction

It is stated in [3] that states have had to step up for workers and their families in the past few decades,
as Congress has stalled on taking action. For example, while the federal minimum wage has been stuck at
$7.25 an hour for 14 years, most states have mandated higher wages. In [3], The Best States to Work Index
provides how the states rank overall and by policy area.

In [1], it is stated that since women make up the majority of the workforce-and-many are supporting
families-this dimension considers how far the tipped minimum wage goes to cover the cost of living for a
family of three (one wage earner and two children). In [1], The Best States for Working Women Index
provides how the states rank overall and by policy area.

The U. S. Women, Peace and Security Index (WPSI) is a measurement of women’s rights and opportunities
in the United states. It examines how women’s legal protections vary by state, and how their rights and
opportunities vary based on their race. The index incorporates three basic dimensions of women’s well-being:
inclusion, justice, and security. Inclusion includes economic, social, and political aspects, justice includes
formal laws and informal discrimination, and security includes the family, community, and societal levels.

In [1], states are ranked with respect to the best states to work. In [2], states are ranked with respect
to the peace and security for women. The rankings can be found in Tables 1 - 6. We determine the fuzzy
similarity measure of these two rankings. We find the similarity to be high. We then break the United States
into regions and determine the fuzzy similarity measure of these two rankings for each region. Similarity plays
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a role in many fields. There exists many special definitions of similarity which have been used in different
areas. We choose to use fuzzy similarity measures which seem appropriate in rankings. In particular, we use
the t-norm algebraic product and the t-conorm, algebraic sum.

Let X be a set with n elements. We let FP(X) denote the fuzzy power set of X. We let ∧ denote
minimum and ∨ maximum. For two fuzzy subsets µ, ν of X, we write µ ⊆ ν if µ(x) ≤ ν(x) for all xϵX. If µ
is a fuzzy subset of X, we let µc denote the complement of µ, i.e., µc(x) = 1− µ(x) for all xϵX.

Let A be a one-to-function of X onto {1, 2, ..., n}. Then A is called a ranking of X. Define the fuzzy

subset µA of X by for all xϵX, µA(x) =
A(x)
n . Then µA is called the fuzzy subset associated with A. For

A a ranking of X, we have
∑

xϵX A(x) =
n(n+1)

2 and
∑

xϵX µA(x) =
n+1
2 since

∑
xϵX A(x) = 1 + 2 + ...+ n.

Throughout the paper, A and B will denote rankings of a set X with n elements.

2 Distance Functions and Fuzzy Similarity Measures

Let T be a t-norm and ST a t-conorm. Then T and ST are called dual if for all a, bϵ[0, 1], T (a, b) =
1− ST (1− a, 1− b). Clearly, ∧ are ∨ dual.

Definition 2.1. [4] Let T and S be a t-norm and t -conorm, respectively. Define the function d : [0, 1] ×
[0, 1] → [0, 1] by ∀a, bϵ[0, 1],

d(a, b) =

{
S(a, b)− T (a, b) if a ̸= b,

0 if a = b.

∣∣∣∣
Consider (4) in the following result. Suppose a ≤ b ≤ c. We show S(a, c)− T (a, c) ≤ S(a, b)− T (a, b) +

S(b, c)−T (b, c). This is equivalent to S(a, c)+T (a, b)+T (b, c) ≤ S(a, b)+S(b, c)+T (a, c). Now S(a, c) ≤ S(b, c)
and T (a, b) ≤ T (a, c). Also, T (b, c) ≤ b ∧ c ≤ b ≤ a ∨ b ≤ S(a, b).

Theorem 2.2. [4] Let T and S be a t-norm and t -conorm, respectively. Let d be defined as in Definition
2.1. Then d satisfies the following properties: ∀a, b, cϵ[0, 1],

(1) 0 ≤ d(a, b) ≤ 1;

(2) d(a, b) = 0 if and only if a = b;

(3) d(a, b) = d(b, a);

(4) d(a, c) ≤ d(a, b) + d(b, c) if b ∧ c ≤ b ≤ a ∨ b.

Let T and S be a given t-norm and t-norm, respectively. Let d be defined as in Definition 2.1. Define
D : FP(X)×FP(X) → [0, 1] by all (µ, ν)ϵFP(X)×FP(X), D(µ, ν) =

∑
xϵX d(µ(x), ν(x)).

Define S : FP(X) × FP(X) → [0, 1] as follows: ∀(µ, ν)ϵFP(X) × FP(X), S(µ, ν) = 1 − D(µ, ν).Then
S(µ, ρ) = 1−D(µ, ρ) ≥ 1−D(µ, ν)−D(ν, ρ) = S(µ, ν)−D(ν, ρ) = S(ν, ρ)−D(µ, ν). Thus S(µ, ρ) ≤ S(µ, ν)
and S(µ, ρ) ≤ S(ν, ρ) if µ ⊆ ν ⊆ ρ.

We have that DH(µ, ν) =
1
n

∑n
i=1 |µ(xi)− ν(xi)| = 1

n

∑n
i=1((µ(xi)∨ ν(xi)−µ(xi)∧ ν(xi)). This motivates

the consideration of the following definition. Let f(xi) = (µ(xi)⊕ ν(xi)− µ(xi)⊗ ν(xi) if µ(xi) ̸= ν(xi) and
f(xi) = 0 if µ(xi) = ν(xi).

For all µ, νϵFP(X), define D⊗(µ, ν) =
1
n

∑n
i=1 f(xi). Define D+

⊗(µ, ν) =
1
n

∑n
i=1((µ(xi)⊕ ν(xi)− µ(xi)⊗

ν(xi)). Then D
+
⊗(µ, ν) = D⊗(µ, ν) +

∑
xϵX+((µ(x) ⊕ ν(x) − µ(x) ⊗ ν(x)), where X+ = {xϵX|µ(x) = ν(x)}.

We note that D+
⊗(µ, ν) does not satisfy (2) of Theorem 2.2.

Define S⊗(µ, ν) = 1−D⊗(µ, ν) and S
+
⊗(µ, ν) = 1−D+

⊗(µ, ν).
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We first wish to determine the smallest value S+
⊗(µA, µB) can be for a given X. The smallest value

S+
⊗(µA, µB) can be determined from the largest value D+

⊗(µA, µB) can be. Now
∑n

i=1(µA(xi)+µB(xi)) is the
fixed value n+1.Hence the largest value for D+

⊗(µA, µB) is determined from the smallest
∑n

i=1 µA(xi)µB(xi)
since

∑n
i=1(µA(xi)⊕ µB(xi)− µA(xi)⊗ µB(xi)) =

∑n
i=1(µA(xi) + µA(xi)− µA(xi)µB(xi)− µA(xi)µB(xi)).

The rankings A : 1, ..., i, ..., n and B : n, ..., n− i+ 1, ...1 yield the smallest value for
∑n

i=1 µA(xi)µB(xi).
We have

n∑
i=1

A(xi)B(xi) =

n∑
i=1

i(n− i+ 1)

= (n+ 1)

n∑
i=1

i−
n∑
i=1

i2

=
(n+ 1)n(n+ 1)

2
− n(n+ 1)(2n+ 1)

6

= n[
n2 + 2n+ 1

2
− 2n2 + 3n+ 1

6

= n[
1

6
n2 +

1

2
n+

1

3
].

Thus

n∑
i=1

µA(xi)µB(xi) =
1

n2
n[
1

6
n2 +

1

2
n+

1

3
]

=
1

6
n+

1

2
+

1

3n
.

Hence

1

n

n∑
i=1

(µA(xi) + µB(xi)− 2µA(xi)µB(xi)) =
1

n

n∑
i=1

(µA(xi) + µB(xi)

−2
1

n

n∑
i=1

µA(xi)µB(xi))

=
1

n
[n+ 1− 2(

1

6
n+

1

2
+

1

3n
)]

= 1 +
1

n
− 1

3
− 1

n
− 2

3n2

=
2

3
− 2

3n2
.

Thus the smallest value S+
⊗(µA, µB) can be is 1− (23 − 2

3n2 ) =
1
3 + 2

3n2 .

We have just proved the following result.

Theorem 2.3. Thus the smallest value S+
⊗(µA, µB) can be is 1− (23 − 2

3n2 ) =
1
3 + 2

3n2 .

Theorem 2.4 ([5], Theorem 3.5). If n is even, the smallest value SH(µA, µB) can be is 1
2 .

If n is odd, the smallest value SH(µA, µB) can be is 1
2 + 1

2n2 .
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Example 2.5. Let n = 3. Consider the rankings A : 1, 2, 3 and B : 3, 2, 1. Then S+
⊗(µA, µB) = 1− 1

3(
6+6
3 −

23+4+3
9 ) = 1− 1

3(4−
20
9 ) =

11
27 . Using the above result, S+

⊗(µA, µB) =
1
3 + 2

3n2 , we obtain 1
3 + 2

27 = 11
27 .

Theorem 2.6. [4] Let T and ST be a dual t-norm and t -conorm, respectively. Let d be defined as in
Definition 2.1. Then (4) of Theorem 2.2 holds.

Recall that X+ = {xϵX|µA(x) = µB(x)} for given µA, µB.

Theorem 2.7. Let s+⊗ be the smallest value S+
⊗(µA, µB) can be. Then s⊗ = s+⊗ +

∑
xϵX+((µA(x) ⊕B (x) −

µA(x)⊗ µB(x)) is the smallest value S⊗(µA, µB) can be, where S⊗ = 1−D⊗.

Proof. Recall D+
⊗(µA, µB) = D⊗(µA, µB) +

∑
xϵX+((µA(x) ⊕ µB(x) − µA(x) ⊗ µB(x)). Now S+

⊗ = 1 −D+
⊗

and S⊗ = 1 −D⊗. Let s⊗ be the smallest value S⊗(µA, µB) can be. Now S+
⊗(µA, µB) = 1 −D+

⊗(µA, µB) =
1−(D⊗(µA, µB)+

∑
xϵX+((µA(x)⊕µB(x)−µA(x)⊗µB(x)) = S⊗(µA, µB)+

∑
xϵX+((µA(x)⊕µB(x)−µA(x)⊗

µB(x)). Now s+⊗ = s+
∑

xϵX+((µA(x)⊕ µB(x)− µA(x)⊗ µB(x)) for some s determine by D⊗. Then s ≥ s⊗.
Suppose s > s⊗. Then s

+
⊗ = s+

∑
xϵX+((µA(x)⊕ µB(x)− µA(x)⊗ µB(x) > s⊗ +

∑
xϵX+((µA(x)⊕ µB(x)−

µA(x)⊗ µB(x)), a contradiction. Thus s = s⊗. Hence s+⊗ = s⊗ +
∑

xϵX+((µA(x)⊕ µB(x)− µA(x)⊗ µB(x)).
□

Theorem 2.8. The largest value S+
⊗(µA, µB) can be is 2

3 + 1
3n2.

.

Proof. We first find the smallestD+
⊗(µA, µB) can be. This value is determined from the rankings A : 1, 2, ..., n

and B : 1, 2, ..., n. We have

1

n

n∑
i=1

(
i

n
+
i

n
− 2

i

n

i

n
) =

1

n

n∑
i=1

2i

n
− 2

n

n∑
i=1

i2

n2

=
2

n2

n∑
i=1

i− 2

n3

n∑
i=1

i2

=
2

n2
(
n(n+ 1)

2
− 2

n3
(
n(n = 1)(2n+ 1)

6

=
n+ 1

n
− 1

n2
(n+ 1)(2n+ 1)

3

=
n+ 1

n
− 1

3n2
(2n2 + 2n+ 1)

= 1 +
1

n
− 2

3
− 1

n
− 1

3n2

=
1

3
− 1

3n2
.

Thus the largest value S+
⊗(µA, µB) can be is 1− (13 − 1

3n2 ) =
2
3 + 1

3n2 . □
Consider Theorems 2.4, 2.7, and 2.8. Suppose that s denotes the smallest value for some fuzzy similarity

measure S and l the largest. Define

Ŝ(µA, µB) =
S(µA, µB)− s

l − s
.

Then Ŝ(µA, µB) varies between 0 and 1. For values between 0 and 0.2, we say that the fuzzy similarity
is very low, between 0.2 and 0.4 low, between 0.4 and 0.6 medium, between 0.6 and 0.8 high, and between
0.8 and 1 very high. Some related work can be seen in [6].
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3 United States

We determine fuzzy similarity measures for the rankings, best states for women and the peace and security
index for the United States.

:

Table 1: United States

State Women WPSI State Women WPSI

Oregon 1 18 Florida 26 30
California 2 15 Michigan 27 21
New York 3 8 Missouri 28 38
Washington 4 24 South Dakota 29 29
Connecticut 5 2 Indiana 30 34
Massachusetts 6 1 Ohio 31 25
New Jersey 7 11 Iowa 32 23
Nevada 8 35 Idaho 33 39
Colorado 9 14 Pennsylvania 34 17
Hawaii 10 10 Kentucky 35 47
Puerto Rico Oklahoma 36 42
Illinois 11 13 Wisconsin 37 16
District of Columbia 12 3 North Dakota 38 20
Vermont 13 4 Kansas 39 26
Maine 14 9 Arizona 40 31
Rhode Island 15 5 Louisiana 41 51
New Mexico 16 40 Arkansas 42 49
Minnesota 17 12 West Virginia 43 46
Maryland 18 7 Utah 44 36
Virginia 19 27 Wyoming 45 43
Delaware 20 22 South Carolina 46 44
Alaska 21 28 Texas 47 41
Nebraska 22 19 Mississippi 48 50
Montana 23 32 Alabama 49 48
Tennessee 24 45 Georgia 50 37
New Hampshire 25 6 North Carolina 51 33

We consider DH(µA, µB) =
1
n

∑
xϵX |µA(x)−µB(x)|. Here n = 51.We find DH(µA, µB) =

1
51

456
51 = 456

2601 =
0.1753. Thus SH(µA, µB) = 1− DH(µA, µB) = 0.8247.

By Theorem 2.4, the smallest SH(µA, µB) can be is 1
2 + 1

2n2 = 1
2 + 1

5202 = 0.5002. Thus ŜH(µA, µB) =
0.8247−0.5002

1−0.5002 = 0.3245
0.4998 = 0.6495. The fuzzy similarity measure is high.

We now consider D⊗(µA, µB) =
1
n

∑
xϵX+(µA(x)⊕µB(x)−µA(x)⊗µB(x)).We first see that µA(Hawaii) =

µB(Hawaii) and µA(South Dakota) = µB(South Dakota). We find

D⊗(µA, µB) =
1

51
(
2574

51
− 2

41497

512
)

=
2574

2601
− 82994

132651
= 0.9896− 0.6257 = 0.3639.

Thus S⊗(µA, µB) = 1− 0.3639 = 0.6361.
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By Theorem 2.3, the smallest S+
⊗(µA, µB) can be is 1

3 +
2

3n2 = 1
3 +

2
7803 = 0.3333+ .00003 = 0.3336. Thus

the smallest S⊗(µA, µB) can be is 0, 3336 + 0.0062 + 0.0202 = 0.3600.
By Theorem 2.8, the largest S+

⊗(µA, µB) can be is 2
3 +

2
3n2 = 2

3 +
2

7803 = 0.6667 + 0.0003 = 0.6670. Hence
the largest S⊗(µA, µB) can be is 0, 6670 + 0.0062 + 0.0202 = 0.6734.

Thus Ŝ⊗ = 06361−0.3600
0.6734−0.3600 = 0.2761

0.3134 = 0.8810. The fuzzy similarity measure is very high.

4 Regions

Suppose µA(x) = µB(x) = 1 for some xϵX. Then µA(x) ⊕ µB(x)− µA(x) ⊗ µB(x) = µA(x) + µB(x)−
2A(x)µB(x) = 0. Thus S⊗(µa, µB) = S+

⊗(µa, µB) if this is the only x in X such that µA(x) = µB(x). Thus
we have S⊗(µA, µB) = S+

⊗(µA, µB) for the following region.

Table 2: West

State Women WPSI

Oregon 1 4
California 2 3
Montana 3 7
Washington 4 5
Nevada 5 8
Colorado 6 2
Hawaii 7 1
Alaska 8 6
Idaho 9 10
Utah 10 9
Wyoming 11 11

Here n = 11. SH(µA, µB) = 1− 26
121 = 1− 0.2149 = 0.7851. The smallest SH(µA, µB) can be is 1

2 +
1

2n2 =

0.5 + 1
242 = 0.5041. Thus ŜH(µA, µB) = 0.7851−0.5041

1−0.5041 = 0.2810
0.4959 = 0.5666. The fuzzy similarity measure is

medium.
We first note that µA(Wyoming) = µB(Wyoming). We have that

D⊗(µA, µB) =
1

11
(
110

11
− 2

338

121
)

=
110

121
− 676

1331
= 0.9091− 0.5079 = 0.4012.

Thus S⊗(µA, µB) = 1 − 0.4012 = 0.5988. By Theorem 2.3, the smallest S⊗(µA, µB) can be is 1
3 + 2

3n2 =
1
3 + 2

363 = 0.3333 + .00055 = 0.3355.

By Theorem 2.8, the largest S(µA, µB) can be is 2
3 +

2
3n2 = 2

3 +
2

363 = 0.6667 + 0.0055 = 0.6814 = 0.6612.

Thus Ŝ⊗ = 0.5988−0.3355
0.6612−0.335 = 0.2233

0.3257 = 0.6856. The fuzzy similarity measure is high.

Table 3: Southwest

State Women WPSI

New Mexico 1 2
Oklahoma 2 4
Arizona 3 1
Texas 4 3
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Here n = 4. SH = 1− 6
16 = 1−0.3750 = 0.6250. The smallest SH can be is 1

2 = 0. Thus ŜH = 0.6250−0.500
1−0.5000 =

0.1250
0.5000 = 0.2500. The fuzzy similarity measure is low.

We have that D⊗(µA, µB) = 1
4(

20
4 − 225

16) = 20
16 − 50

64 = 1.25 − 0.7812 = 0.4688. Hence S⊗(µA, µB) =
S+
⊗(µA, µB) = 1− 0.4688 = 0.5412. By Theorem 2.3, the smallest S+

⊗(µA, µB) can be is 1
3 + 2

3n2 = 1
3 + 2

48 =
0.3333 + .0147 = 0.3480

By Theorem 2.8, the largest S(µA, µB) can be is 2
3 + 2

3n2 = 2
3 + 2

48 = 0.6667 + 0.0417 = 0.6814.

Thus Ŝ⊗(µA, µB) =
0.5412−0.3480
0.6814−0.3480 = 0.1932

0.3334 = 0.5895. The fuzzy similarity measure is medium.

Table 4: Midwest

State Women WPSI

Illinois 1 2
Minnesota 2 1
Nebraska 3 4
Michigan 4 6
Missouri 5 12
South Dakota 6 10
Indiana 7 11
Ohio 8 8
Iowa 9 7
Wisconsin 10 3
North Dakota 11 5
Kansas 12 9

Here n = 12. SH(µA, µB) = 1− 38
144 = 1− 0.2639 = 0.7361. The smallest SH can be is 1

2 = 0.5000. Thus

ŜH(µA, µB) =
0.7361−0.5000

1−0.5000 = 0.2361
0.5000 = 0.4722. The fuzzy similarity measure is medium.

We first note that µA(Ohio) = µB(Ohio). We have that

D⊗(µA, µB) =
1

12
(
140

12
− 2

493

144
)

=
140

144
− 986

1728
= 0.9722− 5706

= 0.4016.

Thus S⊗(µA, νB) = 1 − 0.4016 = 0.5984. By Theorem 2.3, the smallest S⊗(µA, µB) can be is s+⊗ +∑
xϵX+((µA(x)⊕µB(x)−µA(x)⊗µB(x)) = 1

3+
2

3n2+0.00043+0.0371 = 1
3+

2
432+0.0371 = 1

3+0.0036+0.0371 =
0.3333 = 0.0046 = 0.371 = 0.3750, where s+⊗ is the smallest S+

⊗(µA, µB) can be.

By Theorem 2.8, the largest S⊗(µA, µB) can be is l+⊗ +
∑

xϵX+((A(x) ⊕ µB(x) − µA(x) ⊗ µB(x)) =
2
3 + 2

3n2 + 0.0370 + 0.0210 = 2
3 + 2

432 + 0.0307 = 0.6667 + 0.0046 + 0.0370 = 0.7083, where l+⊗ is the largest
S+
⊗(µA, µB) can be.

Thus Ŝ⊗(µA, µB) =
0.5984−0.3750
0.7983−0.3750 = 0.2234

0.3333 = 0.6703. The fuzzy similarity measure is high.
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Table 5: Southeast

State Women WPSI

Puerto Rico
Washington D. C. 1 1
Virginia 2 2
Tennessee 3 7
Florida 4 3
Kentucky 5 9
Louisiana 6 13
Arkansas 7 11
West Virginia 8 8
South Carolina 9 6
Mississippi 10 12
Alabama 11 10
Georgia 12 5
North Carolina 13 4

Here n = 13. SH(µA, µB) = 1− 42
169 = 1− 0.2485 = 0.7515. The smallest SH(µA, µB) can be is 1

2 +
1

2n2 =

0.5 + 1
338 = 0.5030. Thus ŜH(µA, µB) = 0.7515−0.5030

1−0.5030 = 0.2485
0.4970 = 0.5000. The fuzzy similarity measure is

medium.

We first note that µA(Washington D. C.) = µB(Washington D. C.), µA(Virginia) = µB(Virginia), and
µA(West Virginia) = µB(West Virginia). We have that

D⊗(µA, µB) =
1

14
(
140

14
− 2

629

196
)

=
140

196
− 1258

2744
= 0.7143− 4585

= 0.2558.

Thus S⊗(µA, µB) = 1 − 0.2558 = 0.7442. By Theorem 2.3, the smallest S⊗(µA, νB) can be is s+⊗ +∑
xϵX+((µA(x)⊕µB(x)−µA(x)⊗µB(x)) = 1

3+
2

3n2+0.00043+0.0210 = 1
3+

2
507+0.0253 = 1

3+0.0039+0.0252 =
0.3333 + 0.3625, where s+⊗ is the smallest S+

⊗(µA, µB) can be.

By Theorem 2.8, the largest S⊗(µA, µB) can be is l+⊗(µA, µB)+
∑

xϵX+((µA(x)⊕µB(x)−µa(x)⊗µB(x)) =
2
3 + 2

3n2 + 0.0043 + 0.0210 = 2
3 + 2

507 + 0.0253 = 0.6667 + 0.0039 + 0.0253 = 0.6958, where l+⊗ is the largest
S+
⊗(µA, µB) can be.

Thus Ŝ⊗(µA, µB) =
0.6422−0.3625
0.6958−0.3625 = 0.2797

0.3333 = 0.8392. The fuzzy similarity measure is very high.
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Table 6: Northeast

State Women WPSI

New York 1 7
Connecticut 2 2
Massachusetts 3 1
New Jersey 4 9
Vermont 5 3
Maine 6 8
Rhode Island 7 4
Maryland 8 6
Delaware 9 11
New Hampshire 10 5
Pennsylvania 11 10

Here n = 11. SH(µA, µB) = 1− 35
121 = 1− 0.2893 = 0.7107. The smallest SH(µA, µB) can be is 1

2 +
1

2n2 =

0.5 + 1
242 = 0.5041. Thus ŜH(µA, µB) = 0.7107−0.5041

1−0.5041 = 0.2066
0.4959 = 0.4166. The fuzzy similarity measure is

medium.
We first note that µA(Connecticut) = µB(Connecticut). We have that

D⊗(µA, µB) =
1

11
(
128

11
− 2

444

121
)

=
128

121
− 888

1331
= 1.0579− 0.6672

= 0.3907.

Thus S⊗(µA, µB) = 1 − 0.3907 = 0.6093. By Theorem 2.3, the smallest S⊗(µA, µB) can be is s+⊗ +∑
xϵX+((µA(x)⊕µB(x)−µA(x)⊗µB(x)) = 1

3+
2

3n2 +0.0271 = 1
3+

2
363+0.0271 = 1

3+0.0055+0.0271 = 0.3659,
where s+⊗ is the smallest S+

⊗(µA, µB) can be.
By Theorem 2.8, the largest S⊗(µA, µB) can be is l+⊗ +

∑
xϵX+((µA(x) ⊕ µB(x) − µA(x) ⊗ µB(x)) =

2
3 + 2

3n2 + 0.0271 = 0.6667 + 0.0033 + 0.0271 = 0.6993, where l+⊗ is the largest S+
⊗(µA, µB) can be.

Thus Ŝ⊗(µA, µB) =
0.6093−0.3659
0.6993−0.3659 = 0.2434

0.3334 = 0.7301.The fuzzy similarity measure is high.

5 Conclusion

In this paper, we used two fuzzy similarity measures of the rankings best states for women to work and the
peace and security of women. We accomplished this for the United States in general and for various regions
of the U. S We found the similarity to be medium to high for one fuzzy similarity measures and high to very
high for another. Additional results on the best places for women to work can be found in [5].
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Abstract. Graph structure (GS) is an advancement of the graph concept which effectively represents intricate
situations with various connections, frequently used in computer science and mathematics to illustrate relationships
among objects and extensively researched in fuzzy sets (FS), intuitionistic fuzzy set (IFS), pythagorean fuzzy set
(PFS) and q-rung orthopair fuzzy set (q-ROFS). Meanwhile, a linear Diophantine fuzzy set (LDFS) is a remarkable
extension of the existing notions of a FS, IFS, PFS and q-ROFS by comporting reference parameters that removed
all the limitations related to membership degree (MD) and non-membership degree (NMD). According to the best
of our knowledge, there is a lack of elegantly proposed GS extension for LDFSs in the current literature. As a
result, this research focuses on introducing first linear Diophantine fuzzy graph structure (LDFGS) concept which
extends the existing notions of GS in various contexts of FSs. Several key concepts in LDFGSs are presented, such
as ρ̆i-edge, ρ̆i-path, strength of ρ̆i-path, ρ̆i-strength of connectedness, ρ̆i-degree of a vertex, vertex degree, total
ρ̆i-degree of a vertex, and total vertex degree in an LDFGS. In addition, we introduce the ρ̆i-size, size, and order
of an LDFGS. Moreover, this article presents the ideas of the maximal product of two LDFGSs, strong LDFGS,
degree and ρ̆i-degree of the maximal product, ρ̆i-regular and regular LDFGSs, along with examples for clarification.
Certain significant results related to the proposed concepts also demonstrated with explanatory examples such
as the maximal product of two strong LDFGSs is also a strong LDFGS, the maximal product of two connected
LDFGSs is also a connected LDFGS but the maximal product of two regular LDFGS may not be a regular LDGS.
Moreover, many interesting and alternative formulas for calculating ρ̆i-degrees of an LDFGS in various situations
are proved with examples. LDFGSs are highly beneficial for solving numerous combinatorial problems involving
multiple relations, and they surpass existing concepts of GSs within the FS context due to their flexibility in selecting
MD and NMD alongside their reference parameters.
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1 Introduction

Incorporating uncertainties into real-world applications has become essential for addressing a variety of prac-
tical issues such as data analysis, computational intelligence, and sustainability. In 1965, Zadeh [1] poineered
the concept of FS and fuzzy logic for modelling uncertain situations by assigning the MD to each object
rather than absolute membership and absolute non-membership. Since then, FS theory have been studied by
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scholars and scientists in a wide range of practical fields including artificial intelligence, medical science, com-
putational sciences and decision analysis [2, 3, 4]. Since MD is not sufficient to describe many real situations,
there is a need for NMD such as educated and uneducated, perfection and imperfection, sick and healthy,
etc. In order to deal with such situations, Attanassov [5, 6] proposed the idea of IFS with the addition of
NMD such that the sum of MD and NMD is not greater than one. Due to the large space of MD and NMD,
IFSs were studied enormously in various fields of applications [7, 8]. However, there are still many real-life
problems where the condition of IFS is not satisfied. For instance, a professional is asked to comment on
the viability of a strategy to invest in the real estate industry. Imagine that the expert rates this investment
plan’s degree of feasibility at 0.8 and its degree of impossibility at 0.6. Since 0.8 + 0.6 > 1, the IFS cannot
be utilized to appropriately express this information. As a result, Yager [9] presented the idea of PFS, which
meets the requirement that the sum of squares of the MD and the NMD is less than equal to 1 for each
element. But if the decision-maker expresses his view as 0.9 for agree and 0.8 for not agree, we can see that
0.92+0.82 > 1. To deal with the situations, Yager [10] investigated q-ROFS as a more generic version of IFS
and PFS. In q-ROFSs, the total of the q-powers for truthfulness and falsehood grades is kept within a unit
interval. This indicates that q-ROFSs provide additional data storage to characterize ambiguous or unclear
facts. Researchers have given the PFS theory and q-ROFS theory a lot of attention over the past five years,
and numerous insightful theoretical and practical findings have been made in a variety of fields. For instance,
Yager [11] presented a multi-attribute decision making technique for PFS. Khan et al. [12] developed a new
ranking technique for q-ROFSs based on entropy function and hesitancy index with a detailed critical analy-
sis of the previously ranking methods. Liu and Wang [13] proposed some q-ROF aggregation operators and
utilized them to solve multi-attribute decision making problems.

Although MD and NMDs are subject to certain restraints under the theories mentioned earlier of IFS,
PFS, and q-ROFS. To overcome all these restrictions associated with MD and NMD, Riaz and Hashmi [14]
introduced an augmented generalized form of FS known as LDFS with the inclusion of reference parameters.
Due to the inclusion of reference or control parameters, LDFSs have a wide space of MD and NMD, in
contrast to the commonly used ongoing conceptions, made this theory more advanced, trustworthy and
easy to model uncertainties. Due to the advancement of LDFSs and its freedom regarding MD and NMD,
various scientists have started to create fresh theories about this emerging and sophisticated concept. For
instance, Almagrabi et al. [15] established the concept of q-linear Diophantine fuzzy set (q-LDFS) and its
application in emergency decision support system for COVID19. Ayub et al. [16] introduced the notion
of linear Diophantine fuzzy relations (LDFRs) and studied their algebraic structures with an application
in decision making. Further Ayub et al. [17, 18] studied the roughness of a crisp set by using the level
sets of an LDFR and by

(
⟨s, t⟩, ⟨u, v⟩

)
-indiscernibility of an LDFR over dual universes, respectively. A

comprehensive details on the study of rough approximations of an LDFS via an LDFR, inituitionistic fuzzy
relation (IFR) and fuzzy relation (FR) together with their applications in the field of decision making,
respectively, have presented in [19, 20, 21]. Gül and Aydoğdu [22] proposed linear Diophantine fuzzy TOPSIS
(LDF-TOPSIS) based on some novel distance and entropy definitions for LDFSs. Iampan et al. [23] presented
linear Diophantine fuzzy Einstien aggregation operators for multi-criteria decision-making problems. Inan
et al. [24] established a multiple attribute decision model to compare the firms occupational health and
safety management perspectives. Riaz et al. [25] introduced linear Diophantine fuzzy soft rough sets with a
practical application to select the sustainable material handling equipment. Kamaci [26, 27] studied linear
Diophantine fuzzy algebraic structures and introduced the concept of complex linear Diophantine fuzzy sets
with their applications using cosine similarity measures, respectively. Further Riaz et al. [28] proposed the
concept of spherical linear Diophantine fuzzy sets and presented their applications in modeling uncertainties
in MCDM.

The concept of graph theory (GT) started with finding a walk linking seven bridges in Konigsberg. Sub-
sequently, it has developed enormously in all the domains of sciences and humanities with wide applications



66 Ayub S, Shabir M. Trans. Fuzzy Sets Syst. 2025; 4(1)

in the field of operations research, economics and system analysis. A graph is used to represent mathematical
networks that define the association between vertices and edges. A vertex can be used to symbolize a work-
station, while the edges denote the association between stations. However, graphs often do not reflect many
physical processes appropriately due to the obvious complexity of various properties of the structures. Many
real-world phenomena have been emphasized to define the concept of fuzzy graphs (FGs). In 1973, Kauffman
[29] introduced the concept of the fuzzy graph (FG) based on Zadehs fuzzy relations (FR) [30]. Mordeson [4]
have further studied FGs and fuzzy hypergraphs. Fuzzy graph theory (FGT) has many applications in various
areas, including, data mining, networking, image segmentation, clustering, communication, planning, image
capturing, and scheduling. A detailed study on FGs has presented in [4, 31]. Karunambigai and Parvathi [32]
utilized IFS to describe an intuitionistic fuzzy graph (IFG). Shannon and Atanassov [33], and Parvathi et al.
[34] utilized IFS to describe intuitionistic fuzzy graphs (IFGs) and their basic operations via intuitionistic
fuzzy relation (IFR) [35]. Verma et al. [36] established the concept of pythagorean fuzzy graph (PFG) by
first coining the idea of pythagorean fuzzy relation (PFR). Akram et al. [37, 38] studied certain PFS-graphs
and q-ROF graphs (q-ROFGs) under Hamacher operators. Hanif et al. [39] presented the concept of an LDF
graph (LDFG) by using the idea of an LDF relation (LDFR) which was introduced by Ayub et al. [16].

Since a graph is a pair of set of vertices V and one relation E on V , which is capable of describing
abundant real-life phenomenons. However, in many real life situations that concern more than one type
of relations, GT cannot work efficiently. In order to deal such situations, Sampathkumar [40] generalized
the notion of graphs and introduced the concept of graph structures (GSs). GS has n mutually disjoint,
symmetric and irreflexive relations. Ramakrishnan and Dinesh [41, 42, 43] introduced fuzzy graph structures
(FGSs) and investigated some related properties. Later on, Akram and Sitara [44, 45] and Akram et al.
[46] investigated degree, total degree and few properties of semi-strong min product, maximal product and
residue product of FGSs. Sharma and Bansal [47, 48] introduced the concept of IF-graph structure (IFGS).
Further, Sharma et al. [49] presented the notion of regular IFGSs with a detailed study of their important
consequences and useful examples for illustration. Sitara et al. [50] studied the concept of q-rung picture
fuzzy graph structure (q-RPFGS).

1.1 Research Gaps and Motivations

The following subsection will summarize the main objectives and areas of knowledge lacking in the theories
discussed earlier.

1. GSs are commonly employed in analyzing various structures, such as graphs, signed graphs, semigraphs,
edge-colored graphs, and edge-labled graphs. GSs play a crucial role in researching various areas within
computer science and computational intelligence. FGSs are more beneficial compared to GS due to their
ability to address the uncertainty and ambiguity commonly found in various real-world phenomena.

2. The latest extension of FS theory, called LDFS introduced by Riaz and Hashmi [14], eliminates con-
straints related to MD and NMD found in previous concepts like FS, IFS, PyFS, and q-ROFS by adding
reference parameters. It allows the decision maker greater freedom in their judgment when facing any
decision-making issue. Indeed, reference parameters play a significant role in determining the optimal
solution in decision analysis.

3. Recently, Hanif et al. [39] proposed the concept of LDF-graph (LDFG) with some fundamental oper-
ations and properties. LDFGs are more beneficial than FG, IFG, PFGS, and q-ROFG because they
have a broader range of MD and NMD.

4. Since GSs are more valuable than graphs due to their ability to handle multiple relationship issues
effectively. By viewing existing literature, it appears that there is a lack of investigation on LDF graph
structures (LDFGS).
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5. To address this research gap, we explore GS within LDFSs and introduce the concept of LDFGS, which
eliminates specific restrictions on MD and NMD found in current FGSs.

6. Several key concepts of LDFGSs are introduced with demonstrative examples. Certain significant and
fascinating results are proved using different scenarios along with concrete examples. LDFGSs are
certainly better than the current concepts of FGSs, IFGSs, and q-RPFGS because of the expanded
scope of MD and NMD. LDFGSs are a valuable resource in addressing issues involving numerous
connections within the context of LDFSs.

1.2 Aim of the Proposed Study

The main purposes of this research paper are:

• To establish a detailed study on GS in the context of LDFSs and hence introduce the concept of LDFGS.

• To define key notions such as ρ̆i-edge, ρ̆i-path, strength of ρ̆i-path, ρ̆i-strength of connectedness, ρ̆i-
degree of a vertex, degree of a vertex, total ρ̆i-degree of a vertex, and total degree of a vertex in an
LDFGS, ρ̆i-size of an LDFGS, size, and the order of an LDFGS.

• To introduce the notion of the maximal product of two LDFGSs, strong LDFGS, degree and ρ̆i-degree
of the maximal product.

• To present the concept of ρ̆i-regular and regular LDFGS.

• To develop their important consequences with illustrative examples.

1.3 Organization of the Paper

Our remaining part of this paper is organized in the following manners:

Certain basic notions related to FS, IFS, PFS, q-ROFS, LDFS, FR, IFR, LDFR, GS, FGS, and IFGS
are presented in Section 2. In Section 3, the concept of LDFGS is introduced with an explanatory example.
Furthermore, some fundamental concepts in LDFGS such as ρ̆i-edge, ρ̆i-path, strength of ρ̆i-path, ρ̆i-strength
of connectedness, ρ̆i-degree of a vertex, degree of a vertex, total ρ̆i-degree of a vertex, and total degree of a
vertex in an LDFGS, ρ̆i-size of an LDFGS, size of an LDFGS, and the order of an LDFGS are introduced
with constructive examples. In Section 4, the notion of the maximal product of two LDFGSs, strong LDFGS,
degree and ρ̆i-degree of the maximal product are introduced. Some important results related to these concepts
are also proved with illustrative examples. Section 5 presents the concept of ρ̆i-regular and regular LDFGS
with some related consequences and examples. Finally, section 6 consists of some concluding remarks of this
research article and some future research directions related to the novel born ideas in this research article.

2 Preliminaries

In this section, some fundamental notions of FS, IFS, PFS, q-ROFS, LDFS, FR, IFR, LDFR, GS, FGS and
IFGS are given which are indispensable to understanding the contributions of this paper. For more details,
we refer the reader to study [16, 41, 42, 40, 14]. Throughout this research manuscript, V ,V1, and V2 are
denoted as universal sets, unless otherwise stated.

Definition 2.1. [1] A FS on V is defined by F =
{⟨

x,κmF (x)
⟩
: x ∈ V

}
, where κmF : V −→ [0, 1] is a

membership function (MF) which assigns the MD to each object x ∈ V .
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Definition 2.2. [5] An IFS I on V is a set of triplets of the form:

I =
{(

x,
⟨
κmI (x),κnI (x)

⟩)
: x ∈ V

}
, (1)

where κmI ,κ
n
I : V −→ [0, 1] specify the MD and NMD, respectively, which satisfy 0 ≤ κmI (x) + κnI (x) ≤ 1,

for all x ∈ V .

Definition 2.3. [9] A PFS P on V is an object of the form:

P =
{(

x,
⟨
κmP(x),κnP(x)

⟩)
: x ∈ V

}
, (2)

where κmP ,κ
n
P : V −→ [0, 1] specify for the MD and NMD, respectively, fulfilling 0 ≤

(
κmP(x)

)2
+
(
κnP(x)

)2 ≤
1, for all x ∈ V .

Definition 2.4. [11, 10] A q-ROFS Q on V is an object of the form:

Q =
{(

x,
⟨
κmQ (x),κnQ(x)

⟩)
: x ∈ V

}
, (3)

where κmQ ,κ
n
Q : V −→ [0, 1] are used for the MD and NMD, respectively such that 0 ≤

(
κmQ (x)

)q
+
(
κnQ(x)

)q ≤
1, for all x ∈ V , where q ∈ [1,∞).

Definition 2.5. [14] An LDFS L over V is an expression of the following form :

L =
{(

x,
⟨
κmL (x),κnL(x)

⟩
,
⟨
αL(x), βL(x)

⟩)
: x ∈ V

}
, (4)

where κmL ,κnL : V −→ [0, 1] are MD and NMD, and αL(x), βL(x) ∈ [0, 1] are corresponding reference param-
eters, respectively, with 0 ≤ αL(x) + βL(x) ≤ 1 and 0 ≤ αL(x)κmL (x) + βL(x)κnL(x) ≤ 1, for all x ∈ V . The
degree of hesitation of any x ∈ V is denoted and defined as ⊠L(x) = 1 −

(
αL(x)κmL (x) + βL(x)κnL(x)

)
, for

all x ∈ V .

From now onward, we will use LDFS(V ) for the set of all LDFSs over V . For simplicity, we will use
L =

(
⟨κmL (x),κnL(x)⟩, ⟨αL(x), βL(x)⟩

)
for an LDFS over V .

Definition 2.6. [14] Let L1 =
(⟨

κmL1
(x),κnL1

(x)
⟩
,
⟨
αL1(x), βL1(x)

⟩)
and L2 =

(⟨
κmL2

(x),κnL2
(x)
⟩
,
⟨
αL2(x),

βL2(x)
⟩)

be two LDFSs on V . Then, for all x ∈ V ,

(1) L1 ⊆ L2 if and only if κmL1
(x) ≤ κmL2

(x),κnL1
(x) ≥ κnL2

(x), and αL1(x) ≤ αL2(x), βL1(x) ≥ βL2(x);

(2) L1 ∪ L2 =
(⟨

κmL1
(x) ∨ κmL2

(x),κnL1
(x) ∧ κnL2

(x)
⟩
,
⟨
αL1(x) ∨ αL2(x), βL1(x) ∧ βL2(x)

⟩)
;

(3) L1 ∩ L2 =
(⟨

κmL1
(x) ∧ κmL2

(x),κnL1
(x) ∨ κnL2

(x)
⟩
,
⟨
αL1(x) ∧ αL2(x), βL1(x) ∨ βL2(x)

⟩)
;

(4) Lc1 =
(⟨

κnL1
(x),κmL1

(x)
⟩
,
⟨
βL1(x), αL1(x)

⟩)
;

A subset E of the cartesian product V1 × V2 is a binary relation from V1 to V2 which is basically the set
of edges from V1 to V2.
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Definition 2.7. [30] A FR ρ on V1 × V2 is defined as:

ρ =
{⟨

(x1,x2),κmρ (x1,x2)
⟩
, (x1,x2) ∈ V1 × V2

}
, (5)

where κmρ : V1 × V2 −→ [0, 1] is a MF which specifies the grade of membership to which the objects x1 ∈ V1

and x2 ∈ V2 are connected to each other.

Definition 2.8. [35] An IFR ρ̇ from V1 to V2 is an object of the form:

ρ̇ =
{(

(x1,x2),
⟨
κmρ̇ (x1,x2),κnρ̇ (x1,x2)

⟩)
: x1 ∈ V1,x2 ∈ V2

}
, (6)

where κmρ̇ ,κnρ̇ : V1×V2 −→ [0, 1] indicate the MD and NMD from V1 to V2, respectively with 0 ≤ κmρ̇ (x1,x2)+
κnρ̇ (x1,x2) ≤ 1, for all (x1,x2) ∈ V1 × V2.

Definition 2.9. [16] An LDFR ρ̌ from V1 to V2 is an expression having the form:

ρ̌ =
{(

(x1,x2),
⟨
κmρ̌ (x1,x2),κnρ̌ (x1,x2)

⟩
,
⟨
αρ̌(x1,x2), βρ̌(x1,x2)

⟩)
: x1 ∈ V1,x2 ∈ V2

}
, (7)

where κmρ̌ ,κnρ̌ : V1×V2 −→ [0, 1] denotes the MD and NMD among the entities of V1 and V2, and αρ̌(x1,x2),
βρ̌(x1,x2) ∈ [0, 1] are the corresponding reference parameters to κmρ̌ (x1,x2) and κnρ̌ (x1,x2), respectively.
These MD and NMD obey the constraint 0 ≤ αρ̌(x1,x2)κmρ̌ (x1,x2)+βρ̌(x1,x2)κnρ̌ (x1,x2) ≤ 1 for all (x1,x2) ∈
V1 × V2 with 0 ≤ αρ̌(x1,x2) + βρ̌(x1,x2) ≤ 1. The degree of hesitation can be calculated as:

γ ⊠ρ̌ (x1,x2) = 1−
(
αρ̌(x1,x2)κmρ̌ (x1,x2) + βρ̌(x1,x2)κnρ̌ (x1,x2)

)
, (8)

where γ is the corresponding reference parameter of indeterminacy. For simplicity, we shall use

ρ̌ =
(⟨

κmρ̌ (x1,x2),κnρ̌ (x1,x2)
⟩
,
⟨
αρ̌(x1,x2), βρ̌(x1,x2)

⟩)
for an LDFR from V1 to V2. The collection of all

LDFRs from V1 to V2 by LDFS(V1 × V2).

Definition 2.10. [16] Let ρ̌1 =
(⟨

κmρ̌1(x1,x2),κnρ̌1(x1,x2)
⟩
,
⟨
αρ̌1(x1,x2), βρ̌1(x1,x2)

⟩)
be an LDFR from V1

to V2 and ρ̌2 =
(⟨

κmρ̌2(x2,x3),κnρ̌2(x2,x3)
⟩
,
⟨
αρ̌2(x2,x3), βρ̌2(x2,x3)

⟩)
be an LDFR from V2 to V3. Then,

their composition is denoted and defined by :

ρ̌1 ◦ ρ̌2 =
(⟨(

κmρ̌1 ◦ κ
m
ρ̌2

)
(x1,x3),

(
κnρ̌1 ◦ κ

n
ρ̌2

)
(x1,x3)

⟩
,
⟨(
αρ̌1 ◦ αρ̌2

)
(x1,x3),

(
βρ̌1 ◦ βρ̌2

)
(x1,x3)

⟩)
(9)

where (
κmρ̌1 ◦ κ

m
ρ̌2

)
(x1,x3) =

∨
x2∈V2

(
κmρ̌1(x1,x2) ∧ κmρ̌2(x2,x3)

)
, (10)

(
κnρ̌1 ◦ κ

n
ρ̌2

)
(x1,x3) =

∧
x2∈V2

(
κnρ̌1(x1,x2) ∨ κnρ̌2(x2,x3)

)
, (11)

(
αρ̌1 ◦ αρ̌2

)
(x1,x3) =

∨
x2∈V2

(
αρ̌1(x1,x2) ∧ αρ̌2(x2,x3)

)
, (12)

(
βρ̌1 ◦ βρ̌2

)
(x1,x3) =

∧
x2∈V2

(
βρ̌1(x1,x2) ∨ βρ̌2(x2,x3)

)
, (13)

for all x1 ∈ V1,x2 ∈ V2,x3 ∈ V3.
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Definition 2.11. Let ρ̌ =
(⟨

κmρ̌ (x1,x2),κnρ̌ (x1,x2)
⟩
,
⟨
αρ̌(x1,x2), βρ̌(x1,x2)

⟩)
be an LDFR from V1 to V2.

Then, the set

Supp(ρ̌) =
{
(x1,x2) : κmρ̌ (x1,x2) > 0,κnρ̌ (x1,x2) > 0⟩, ⟨αρ̌(x1,x2) > 0, βρ̌(x1,x2) > 0

}
(14)

is called the support of ρ̌.

Definition 2.12. [40] Let V be any non-empty set known as the vertex set and E1,E2, · · · ,Ek be mutually
disjoint relations (sets of edges) of V such that each Ei, 1 ≤ i ≤ k is symmetric and irreflexive. Then,
G =

(
V ,E1,E2, · · · ,Ek

)
is called a graph structure (GS).

Definition 2.13. [41, 42] Let G =
(
V ,E1,E2, · · · ,Ek

)
be a GS. Then, Ĝ =

(
F , ρ1, ρ2, · · · , ρk

)
is called

fuzzy graph structure (FGS) of GS G , where F is a FS on V and ρi are irreflexive, symmetric and mutually
exclusive FRs on V , for all 1 ≤ i ≤ k, if 0 ≤ κmρi (x,y) ≤ κmF (x) ∧ κmF (y) for all x,y ∈ V , i = 1, 2, · · · , k.

Definition 2.14. [47] Let G =
(
V ,E1,E2, ...,Ek

)
be a GS, I =

⟨
κmI (x),κnI (x)

⟩
be an IFS on V and

ρ̇i =
⟨
κmρ̇i (x1,x2),κnρ̇i(x1,x2)

⟩
be irreflexive, symmetric and mutually disjoint IFRs on V , i = 1, 2, ..., n,

where x,x1,x2 ∈ V . Then, Ġ =
(
I , ρ̇1, ρ̇2, ..., ρ̇n

)
is called intuitionistic fuzzy graph structure (IFGS) of G ,

if
κmρ̇i (x1,x2) ≤ κmI (x) ∧ κnI (x2), and κnρ̇i(x1,x2) ≥ κnI (x1) ∨ κnI (x2),

for all x1,x2 ∈ V , i = 1, 2, ..., n.

3 Linear Diophantine Fuzzy Graph Structures (LDFGS)

In this section, we introduce the idea of LDFGS and some basic notions in LDFGSs containing ρ̆i-edge,
ρ̆i-path, strength of ρ̆i-path, ρ̆i-strength of connectedness, ρ̆i-degree of a vertex, degree of a vertex, total
ρ̆i-degree of a vertex, and total degree of a vertex in an LDFGS, ρ̆i-size of an LDFGS, size of an LDFGS,
and the order of an LDFGS are introduced with constructive examples. Throughout this section, we will use
simply G for a GS G =

(
V ,E1,E2, ...,En

)
(see Definition 2.12).

Definition 3.1. Let L =
(⟨

κmL (x),κnL(x)
⟩
,
⟨
αL(x), βL(x)

⟩)
be an LDFS over V , G be a GS and ρ̆i ∈

LDFS(Ei), i ∈ {1, 2, · · · , k}. Then, Ğ =
(
L, ρ̆1, ρ̆2, ..., ρ̆k

)
is called an LDFGS of G , if for all x,y ∈ V :

κmρ̆i (x,y) ≤ κmL (x) ∧ κmL (y),

κnρ̆i(x,y) ≥ κnL(x) ∨ κnL(y),
αρ̆i(x,y) ≤ αL(x) ∧ αL(y),

βρ̆i(x,y) ≥ βL(x) ∨ βL(y).

 (15)

Example 3.2. Let V =
{
x1,x2,x3,x4

}
, E1 =

{
(x1,x2), (x1,x3), (x3,x4)

}
, and E2 =

{
(x1,x4), (x2,x3), (x2,x4)

}
.

Then, G =
(
V ,E1,E2

)
is the GS. Define an LDFS L ∈ LDFS(V ) exhibited in TABLE 1.

Consider two LDFRs ρ̆1, ρ̆2 over E1,E2, respectively which are shown in TABLES 2 and 3, respectively.
By simple calculations, we can easily see that Ğ =

(
L, ρ̆1, ρ̆2

)
is an LDFGS of GS G =

(
V ,E1,E2

)
shown

in Figure 1.
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Table 1: Tabular representation of LDFS L

V
(⟨

κmL (x),κnL(x)
⟩
,
⟨
αL(x), βL(x)

⟩)
x1

(
⟨0.4, 0.3⟩, ⟨0.2, 0.1⟩

)
x2

(
⟨0.6, 0.2⟩, ⟨0.3, 0.2⟩

)
x3

(
⟨0.4, 0.5⟩, ⟨0.4, 0.2⟩

)
x4

(
⟨0.7, 0.3⟩, ⟨0.6, 0.2⟩

)
Table 2: ρ̆1

ρ̆1

(⟨
κmρ̆1(x,y),κ

n
ρ̆1
(x,y)

⟩
,
⟨
αρ̆1(x,y), βρ̆1(x,y)

⟩)
(x1,x2)

(
⟨0.4, 0.4⟩, ⟨0.2, 0.3⟩

)
(x1,x3)

(
⟨0.3, 0.6⟩, ⟨0.2, 0.3⟩

)
(x3,x4)

(
⟨0.4, 0.5⟩, ⟨0.4, 0.2⟩

)
Table 3: ρ̆2

ρ̆2

(⟨
κmρ̆2(x,y),κ

n
ρ̆2
(x,y)

⟩
,
⟨
αρ̆2(x,y), βρ̆2(x,y)

⟩)
(x1,x4)

(
⟨0.4, 0.3⟩, ⟨0.2, 0.3⟩

)
(x2,x3)

(
⟨0.3, 0.5⟩, ⟨0.2, 0.3⟩

)
(x2,x4)

(
⟨0.6, 0.4⟩, ⟨0.3, 0.4⟩

)

...

x1
(
⟨0.4, 0.3⟩, ⟨0.2, 0.1⟩

)

..

x4
(
⟨0.7, 0.3⟩, ⟨0.6, 0.2⟩

)

..
x2

(
⟨0.6, 0.2⟩, ⟨0.3, 0.2⟩

)..
x3

(
⟨0.4, 0.5⟩, ⟨0.4, 0.2⟩

).

ρ̆2
(
⟨0.4, 0.3⟩, ⟨0.2, 0.3⟩

)

.

ρ̆
1

(
⟨0.3, 0.6⟩, ⟨0.2, 0.3⟩ )

.

ρ̆
1 (⟨

0
.4
,
0
.4⟩

,⟨
0
.2
,
0
.3⟩ )

.

ρ̆2
( ⟨0.

6,
0.
4⟩,

⟨0.
3,

0.
4⟩
)

.
ρ̆2

(
⟨0.3, 0.5⟩, ⟨0.2, 0.3⟩

)
.

ρ̆
1
( ⟨0

.4
,
0
.5
⟩,

⟨0
.4
,
0
.2
⟩)

Figure 1: Ğ =
(
L, ρ̆1, ρ̆2

)
Definition 3.3. Let Ğ =

(
L, ρ̆1, ρ̆2, ..., ρ̆k

)
be an LDFGS with underlying GS G . If (x,y) ∈ Supp(ρ̆i), then

(x,y) is called ρ̆i-edge of Ğ .

Example 3.4. In Example 3.2, (x1,x4), (x2,x3), (x2,x4) are ρ̆2-edges since Supp(ρ̆2) =
{
(x1,x4), (x2,x3),

(x2,x4)
}
and (x1,x2), (x1,x3), (x3,x4) are ρ̆1-edges since Supp(ρ̆1) =

{
(x1,x2), (x1,x3), (x3,x4)

}
.

Definition 3.5. Let Ğ =
(
L, ρ̆1, ρ̆2, ..., ρ̆k

)
be an LDFGS with underlying GS G . A ρ̆i-path of Ğ is a sequence
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of vertices (x0,x1,x2, ...,xl) which are distinct except possibly x0 = xl, such that (xj−1,xj) is a ρ̆i-edge for
all j = 1, 2, 3, ..., l.

Example 3.6. In Example 3.2, (x3,x1,x2), and (x2,x1,x3,x4) are ρ̆1-paths. And, (x2,x3,x4), (x1,x4,x2),
and (x1,x4,x2,x3) are ρ̆2-paths.

Definition 3.7. In an LDFGS Ğ =
(
L, ρ̆1, ρ̆2, ..., ρ̆k

)
with underlying GS G , two vertices x,y of Ğ are said

to be ρ̆i-connected, if they are joined by a ρ̆i-path.

Example 3.8. In Example 3.2, all vertices x1, x2, x3, x4 are ρ̆1- and ρ̆2-connected according to the Example
3.6 since they are joined by both ρ̆1- and ρ̆2- paths. Since for all x,y ∈ V they are connected by ρ̆i for all
i = 1, 2, so Ğ is connected LDFGS because ρ̆1(x1,x3) > 0, ρ̆1(x1,x2) > 0, and ρ̆1(x3,x4) > 0 so, x1, x3

are ρ̆1-connected, x1, x2 are ρ̆1-connected, and x3, x4 are ρ̆1-connected, respectively. Similarly, x2, x3 are
ρ̆2-connected, x2, x4 are ρ̆2-connected, and x1, x4 are ρ̆2-connected.

Definition 3.9. Let P = (x0,x1,x2, ...,xl) be a ρ̆i-path of an LDFGS Ĝ =
(
L, ρ̆1, ρ̆2, ..., ρ̆k

)
with underlying

GS G . Then, the strength of the ρ̆i-path P, is denoted and defined as:

St(P) =
(⟨

κmSt(P),κ
n
St(P)

⟩
,
⟨
αSt(P), βSt(P)

⟩)
, (16)

where

κmSt(P) =
k∧
j=1

κmρ̆i (xj−1,xj),κnSt(P) =
k∨
j=1

κnρ̆i(xj−1,xj)

αSt(P) =

k∧
j=1

αρ̆i(xj−1,xj), βSt(P) =

k∨
j=1

βρ̆i(xj−1,xj)


(17)

for i = 1, 2, ..., k.

Example 3.10. (Continued from Example 3.6) We have seen that (x3,x1,x2), and (x2,x1,x3,x4) are ρ̆1-
paths. And, (x2,x3,x4), (x1,x4,x2), and (x1,x4,x2,x3) are ρ̆2-paths. We can calculate their strengths as
follows:

Strength of ρ̆1-path P1 = (x3,x1,x2) :

κmSt(P1)
= ∧3

j=2κmρ̆1(xj−1,xj) = κmρ̆1(x1,x2) ∧ κmρ̆1(x1,x3) = 0.4 ∧ 0.3 = 0.3

κnSt(P1)
= ∨3

j=2κnρ̆1(xj−1,xj) = κnρ̆1(x1,x2) ∨ κn.ρ̆1(x1,x3) = 0.4 ∨ 0.6 = 0.6

αSt(P1) = ∧3
j=2αρ̆1(xj−1,xj) = αρ̆1(x1,x2) ∧ αρ̆1(x1,x3) = 0.2 ∧ 0.2 = 0.2

βSt(P1) = ∨3
j=2βρ̆1(xj−1,xj) = βρ̆1(x1,x2) ∨ βρ̆1(x1,x3) = 0.3 ∨ 0.3 = 0.3

So, St(P1) =
(
⟨0.3, 0.6⟩, ⟨0.2, 0.3⟩

)
. Similarly, we can calculate strength of ρ̆1-path P2 = (x2,x1,x3,x4)

which is given by St(P2) =
(
⟨0.3, 0.6⟩, ⟨0.2, 0.3⟩

)
, strength of ρ̆2-path P3 = (x2,x3,x4) is St(P3) =(

⟨0.3, 0.5⟩, ⟨0.2, 0.4⟩
)
and strength of ρ̆2-path P3 = (x1,x4,x2,x3) is St(P4) =

(
⟨0.3, 0.5⟩, ⟨0.2, 0.4⟩

)
.

Definition 3.11. Let Ğ =
(
L, ρ̆1, ρ̆2, ..., ρ̆n

)
be an LDFGS of GS G . Then, ρ̆i-strength of connectedness of

any two vertices x1,x2 is denoted and defined as:

(
ρ̆i
)∞

(x1,x2) =

(⟨(
κmρ̆i
)∞

(x1,x2),
(
κnρ̆i
)∞

(x1,x2)
⟩
,
⟨(
αρ̆i
)∞

(x1,x2),
(
βρ̆i
)∞

(x1,x2)
⟩)

, (18)
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where (
κmρ̆i
)∞

(x1,x2) =

∞∨
j=1

(
κmρ̆i
)j
(x1,x2), and

(
κnρ̆i
)∞

(x1,x2) =

∞∧
j=1

(
κnρ̆i
)j
(x1,x2).

(
αρ̆i
)∞

(x1,x2) =

∞∨
j=1

(
αρ̆i
)j
(x1,x2), and

(
βρ̆i
)∞

(x1,x2) =

∞∧
j=1

(
βρ̆i
)j
(x1,x2).


(19)

Here,
(
ρ̆i
)j
(x1,x2) =

(⟨(
κmρ̆i
)j
(x1,x2),

(
κnρ̆i
)j
(x1,x2)

⟩
,
⟨(
αρ̆i
)j
(x1,x2),

(
βρ̆i
)j
(x1,x2)

⟩)
=(

(ρ̆i)
j−1 ◦ ρ̆i

)
(x1,x2), and the composition ◦ among any two LDFRs is provided in Definition 2.10.

Example 3.12. In Example 3.2, we can evaluate the terms as defined in above definition as follows:

(κmρ̆2)
∞(x1,x2) =

∨
z

{
κmρ̆2(x1, z) ∧ κmρ̆2(z,x2)

}
= ∨{κmρ̆2(x1,x4) ∧ κmρ̆2(x4,x2)} = 0.4 ∧ 0.6 = 0.4

(κnρ̆2)
∞(x1,x2) =

∧
z

{κnρ̆2(x1, z) ∨ κnρ̆2(z,x2)} = ∧{κnρ̆2(x1,x4) ∨ κnρ̆2(x4,x2)} = 0.3 ∨ 0.4 = 0.4

(αρ̆2)
∞(x1,x2) =

∨
z

{αρ̆2(x1, z) ∧ αρ̆2(z,x2)} = ∨{αρ̆2(x1,x4) ∧ αρ̆2(x4,x2)} = 0.2 ∧ 0.3 = 0.2

(βρ̆2)
∞(x1,x2) =

∧
z

{βρ̆2(x1, z) ∨ βρ̆2(z,x2)} = ∧{βρ̆2(x1,x4) ∨ βρ̆2(x4,x2)} = 0.3 ∨ 0.4 = 0.4

So,
(
ρ̆2
)∞

(x1,x2) =
(
⟨0.4, 0.4⟩, ⟨0.2, 0.4⟩

)
. Similarly, we can find

(
ρ̆2
)∞

(x1,x3) =
(
⟨0.3, 0.5⟩, ⟨0.2, 0.4⟩

)
and(

ρ̆1
)∞

(x2,x3) =
(
⟨0.3, 0.6⟩, ⟨0.2, 0.3⟩

)
.

Definition 3.13. Let Ğ =
(
L, ρ̆1, ρ̆2, ..., ρ̆n

)
be an LDFGS of G . Then, Ğ is called connected LDFGS, if each

of its two vertices x1,x2 are ρ̆i-connected, that is,
(
ρ̆i
)∞

(x,y) > 0 for any x,y ∈ V , and i = 1, 2, . . . , n.

Example 3.14. In Example 3.12, it can be easily observed that
(
ρ̆i
)∞

(xj ,xk) > 0 for all i = 1, 2, and
j, k = 1, 2, 3, 4. Hence, this LDFGS is connected.

Definition 3.15. Let Ğ =
(
L, ρ̆1, ρ̆2, ..., ρ̆n

)
be an LDFGS with underlying GS G . Then ρ̆i-degree of a vertex

x ∈ V is denoted and defined by

Dρ̆i(x) =
(⟨

κmDρ̆i
(x),κnDρ̆i

(x)
⟩
,
⟨
αDρ̆i

(x), βDρ̆i
(x)
⟩)
, (20)

where

κmDρ̆i
(x) =

k∑
i=1,x̸=y,(x,y)∈Ei

κmρ̆i (x,y),κ
n
Dρ̆i

(x) =
k∑

i=1,x̸=y,(x,y)∈Ei

κnρ̆i(x,y),

αDρ̆i
(x) =

k∑
i=1,x̸=y,(x,y)∈Ei

αρ̆i(x,y), βDρ̆i
(x) =

k∑
i=1,x̸=y,(x,y)∈Ei

βρ̆i(x,y).


(21)

Definition 3.16. Let Ğ =
(
L, ρ̆1, ρ̆2, ..., ρ̆n

)
be an LDFGS with underlying GS G . Then the degree of the

vertex x ∈ V is denoted and characterized as:

D(x) =
k∑
i=1

Dρ̆i(x) =
(⟨

κmD (x),κnD(x)
⟩
,
⟨
αD(x), βD(x)

⟩)
, (22)

where

κmD (x) =
k∑
i=1

κmDρ̆i
(x),κnD(x) =

k∑
i=1

κnDρ̆i
(x), αD(x) =

k∑
i=1

αDρ̆i
(x), βD(x) =

k∑
i=1

βDρ̆i
(x). (23)
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Example 3.17. If we revisit Example 3.2, then according to Definition 3.15, ρ̆i-degrees of vertices can be
calculate as follows:

κmDρ̆1
(x1) =

∑
x1 ̸=y,(x1,y)∈E1

κmρ̆1(x1,y) = κmρ̆1(x1,x3) + κmρ̆1(x1,x2) = 0.3 + 0.4 = 0.7

κnDρ̆1
(x1) =

∑
x1 ̸=y,(x1,y)∈E1

κnρ̆1(x1,y) = κnρ̆1(x1,x3) + κnρ̆1(x1,x2) = 0.6 + 0.4 = 1

αDρ̆1
(x1) =

∑
x1 ̸=y,(x1,y)∈E1

αρ̆1(x1,y) = αρ̆1(x1,x3) + αρ̆1(x1,x2) = 0.2 + 0.2 = 0.4

βDρ̆1
(x1) =

∑
x1 ̸=y,(x1,y)∈E1

βρ̆1(x1,y) = βρ̆1(x1,x3) + βρ̆1(x1,x2) = 0.3 + 0.3 = 0.6

So, Dρ̆1(x1) =
(
⟨0.7, 1⟩, ⟨0.4, 0.6⟩

)
. Similarly, we can evaluate ρ̆1- and ρ̆2-degrees of all x ∈ V which are

displayed in TABLES 4 and 5, respectively.

Table 4: Dρ̆1

V
(⟨

κmDρ̆1
(x),κnDρ̆1

(x)
⟩
,
⟨
αDρ̆1

(x), βDρ̆1
(x)
⟩)

x1

(
⟨0.7, 1⟩, ⟨0.4, 0.6⟩

)
x2

(
⟨0.4, 0.4⟩, ⟨0.2, 0.3⟩

)
x3

(
⟨0.7, 1⟩, ⟨0.6, 0.5⟩

)
x4

(
⟨0.4, 0.5⟩, ⟨0.4, 0.6⟩

)

Table 5: Dρ̆2

V
(⟨

κmDρ̆2
(x),κnDρ̆2

(x)
⟩
,
⟨
αDρ̆2

(x), βDρ̆2
(x)
⟩)

x1

(
⟨0.9, 0.9⟩, ⟨0.5, 0.7⟩

)
x2

(
⟨0.9, 0.9⟩, ⟨0.5, 0.7⟩

)
x3

(
⟨0.3, 0.5⟩, ⟨0.2, 0.3⟩

)
x4

(
⟨1, 0.7⟩, ⟨0.5, 0.7⟩

)
Now, in the light of Definition 3.16, we calculate the degrees D(x) =

∑k
i=1Dρ̆i(x) as follows:

D(x1) = Dρ̆1(x1) + Dρ̆2(x1) =
(
⟨0.7, 1⟩, ⟨0.4, 0.6⟩

)
+
(
⟨0.9, 0.9⟩, ⟨0.5, 0.7⟩

)
=
(
⟨1.6, 1.9⟩, ⟨0.9, 1.3⟩

)
D(x2) = Dρ̆1(x2) + Dρ̆2(x2) =

(
⟨0.4, 0.4⟩, ⟨0.2, 0.3⟩

)
+
(
⟨0.9, 0.9⟩, ⟨0.5, 0.7⟩

)
=
(
⟨1.3, 1.3⟩, ⟨0.7, 1⟩

)
D(x3) = Dρ̆1(x3) + Dρ̆2(x3) =

(
⟨0.7, 1⟩, ⟨0.6, 0.5⟩

)
+
(
⟨0.3, 0.5⟩, ⟨0.2, 0.3⟩

)
=
(
⟨1, 1.6⟩, ⟨0.8, 0.8⟩

)
D(x4) = Dρ̆1(x4) + Dρ̆2(x4) =

(
⟨0.4, 0.5⟩, ⟨0.4, 0.6⟩

)
+
(
⟨1, 0.7⟩, ⟨0.5, 0.7⟩

)
=
(
⟨1.4, 1.2⟩, ⟨0.9, 0.9⟩

)

which can be also be seen in TABLE 6.
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Table 6: D(x)

V
(⟨

κmD (x),κnD(x)
⟩
,
⟨
αD(x), βD(x)

⟩)
x1

(
⟨1.6, 1.9⟩, ⟨0.9, 1.3⟩

)
x2

(
⟨1.3, 1.3⟩, ⟨0.7, 1⟩

)
x3

(
⟨1, 1.6⟩, ⟨0.8, 0.8⟩

)
x4

(
⟨1.4, 1.2⟩, ⟨0.9, 0.9⟩

)
Definition 3.18. Let Ğ =

(
L, ρ̆1, ρ̆2, ..., ρ̆n

)
be an LDFGS with underlying GS G . Then total ρ̆i-degree of a

vertex x ∈ V is denoted and defined as:

TDρ̆i(x) = Dρ̆i(x) + L(x) =
(⟨

κmTDρ̆i
(x),κnTDρ̆i

(x)
⟩
,
⟨
αTDρ̆i

(x), βTDρ̆i
(x)
⟩)
, (24)

where
κmTDρ̆i

(x) = κmDρ̆i
(x) + κmL (x),κnTDρ̆i

(x) = κnDρ̆i
(x) + κnL(x),

αTDρ̆i
(x) = αDρ̆i

(x) + αL(x), βTDρ̆i
(x) = βDρ̆i

(x) + βL(x).

}
(25)

Definition 3.19. Let Ğ =
(
L, ρ̆1, ρ̆2, ..., ρ̆n

)
be an LDFGS with underlying GS G . Then the total degree of

the vertex x ∈ V is denoted and defined as:

TD(x) =
k∑
i=1

TDρ̆i(x) =
(⟨

κmTD(x),κnTD(x)
⟩
,
⟨
αTD(x), βTD(x)

⟩)
, (26)

where

κmTD(x) =
k∑
i=1

κmTDρ̆i
(x),κnTD(x) =

k∑
i=1

κnTDρ̆i
(x), αTD(x) =

k∑
i=1

αTDρ̆i
(x), βTD(x) =

k∑
i=1

βTDρ̆i
(x). (27)

Example 3.20. (Continued from Examples 3.2 and 3.17) We can calculate the ρ̆i-degrees for each vertex
x ∈ V by using Definition 3.18 as follows:

TDρ̆1(x1) = Dρ̆1(x1) + L(x1) =
(
⟨0.7, 1⟩, ⟨0.4, 0.6⟩

)
+
(
⟨0.4, 0.3⟩, ⟨0.2, 0.1⟩

)
=
(
⟨1.1, 1.3⟩, ⟨0.6, 0.7⟩

)
,

TDρ̆1(x2) = Dρ̆1(x2) + L(x2) =
(
⟨0.4, 0.4⟩, ⟨0.2, 0.3⟩

)
+
(
⟨0.6, 0.2⟩, ⟨0.3, 0.2⟩

)
=
(
⟨1, 0.6⟩, ⟨0.5, 0.5⟩

)
,

TDρ̆1(x3) = Dρ̆1(x3) + L(x3) =
(
⟨0.7, 1.1⟩, ⟨0.6, 0.5⟩

)
+
(
⟨0.4, 0.5⟩, ⟨0.4, 0.2⟩

)
=
(
⟨1.1, 1.6⟩, ⟨1, 0.7⟩

)
,

TDρ̆1(x4) = Dρ̆1(x4) + L(x4) =
(
⟨0.4, 0.5⟩, ⟨0.4, 0.2⟩

)
+
(
⟨0.7, 0.3⟩, ⟨0.6, 0.2⟩

)
=
(
⟨1.1, 0.8⟩, ⟨1, 0.4⟩

)
,

which is also demonstrated in TABLE 7. Also, ρ̆2-degrees for each vertex x ∈ V are calculated in
TABLE 8. Now, according of Definition 3.19, TD(x) =

∑k
i=1 TDρ̆i(x) are calculated as follows:

TD(x1) = TDρ̆1(x1) + TDρ̆2(x1) =
(
⟨1.1, 1.3⟩, ⟨0.6, 0.7⟩

)
+
(
⟨1.3, 1.2⟩, ⟨0.7, 0.8⟩

)
=
(
⟨2.4, 2.5⟩, ⟨1.3, 1.5⟩

)
,

TD(x2) = TDρ̆1(x2) + TDρ̆2(x2) =
(
⟨1, 0.6⟩, ⟨0.5, 0.5⟩

)
+
(
⟨1.5, 1.1⟩, ⟨0.8, 0.9⟩

)
=
(
⟨2.5, 1.7⟩, ⟨1.3, 1.4⟩

)
,

TD(x3) = TDρ̆1(x3) + TDρ̆2(x3) =
(
⟨1.1, 1.6⟩, ⟨1, 0.7⟩

)
+
(
⟨0.7, 1⟩, ⟨0.6, 0.5⟩

)
=
(
⟨1.8, 2.6⟩, ⟨1.6, 1.2⟩

)
,

TD(x4) = TDρ̆1(x4) + TDρ̆2(x4) =
(
⟨1.1, 1.6⟩, ⟨1, 0.7⟩

)
+
(
⟨1.7, 1⟩, ⟨1.1, 0.9⟩

)
=
(
⟨2.8, 2.6⟩, ⟨2.1, 1.6⟩

)
,

which is also shown in TABLE 9.
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Table 7: TDρ̆1

V
(⟨

κmTDρ̆1
(x),κnTDρ̆1

(x)
⟩
,
⟨
αTDρ̆1

(x), βTDρ̆1
(x)
⟩)

x1

(
⟨1.1, 1.3⟩, ⟨0.6, 0.7⟩

)
x2

(
⟨1, 0.6⟩, ⟨0.5, 0.5⟩

)
x3

(
⟨1.1, 1.6⟩, ⟨1, 0.7⟩

)
x4

(
⟨1.1, 0.8⟩, ⟨1, 0.4⟩

)
Table 8: TDρ̆2

V
(⟨

κmTDρ̆2
(x),κnTDρ̆2

(x)
⟩
,
⟨
αTDρ̆2

(x), βTDρ̆2
(x)
⟩)

x1

(
⟨1.3, 1.2⟩, ⟨0.7, 0.8⟩

)
x2

(
⟨1.5, 1.1⟩, ⟨0.8, 0.9⟩

)
x3

(
⟨0.7, 1⟩, ⟨0.6, 0.5⟩

)
x4

(
⟨1.7, 1⟩, ⟨1.1, 0.9⟩

)
Table 9: TD

V
(⟨

κmTD(x),κnTD(x)
⟩
,
⟨
αTD(x), βTD(x)

⟩)
x1

(
⟨2.4, 2.5⟩, ⟨1.3, 1.5⟩

)
x2

(
⟨2.5, 1.7⟩, ⟨1.3, 1.4⟩

)
x3

(
⟨1.8, 2.6⟩, ⟨1.6, 1.2⟩

)
x4

(
⟨2.8, 2.6⟩, ⟨2.1, 1.6⟩

)
Definition 3.21. Let Ğ =

(
L, ρ̆1, ρ̆2, ..., ρ̆n

)
be an LDFGS with underlying GS G . Then order of Ğ is denoted

and described as follows:

O(Ğ ) =

(⟨∑
x∈V

κmL (x),
∑
x∈V

κnL(x)
⟩
,
⟨∑

x∈V

αL(x),
∑
x∈V

βL(x)
⟩)

. (28)

Example 3.22. If we consider the Example 3.2, then we can find O(Ğ ) as follows:∑
x∈V

κmL (x) = 0.4 + 0.6 + 0.4 + 0.7 = 2,∑
x∈V

κnL(x) = 0.3 + 0.2 + 0.5 + 0.3 = 1.3,∑
x∈V

αL(x) = 0.2 + 0.3 + 0.4 + 0.6 = 1.5,∑
x∈V

βL(x) = 0.1 + 0.2 + 0.2 + 0.2 = 0.7.
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Hence, O(Ğ ) =
(
⟨2, 1.3⟩, ⟨1.5, 0.7⟩

)
.

Definition 3.23. Let Ğ =
(
L, ρ̆1, ρ̆2, ..., ρ̆n

)
be an LDFGS with underlying GS G . The ρ̆i-size of Ğ is denoted

and postulated as:

Sρ̆i(Ğ ) =
(⟨

κmSρ̆i ,κ
n
Sρ̆i

⟩
,
⟨
αSρ̆i , βSρ̆i

⟩)
, (29)

where

κmSρ̆i =
∑

(x,y)∈Ei

κmρ̆i (x,y),κ
n
Sρ̆i

=
∑

(x,y)∈Ei

κnρ̆i(x,y), αSρ̆i =
∑

(x,y)∈Ei

αρ̆i(x,y), βSρ̆i =
∑

(x,y)∈Ei

βρ̆i(x,y). (30)

Moreover, the size of Ğ is denoted and characterized as:

S(Ğ ) =
n∑
i=1

Sρ̆i(Ğ ). (31)

Example 3.24. If we revisit Example 3.2, we have

κmSρ̆1 =
∑

(x,y)∈E1

κmρ̆1(x,y) = 0.4 + 0.3 + 0.4 = 1.1,

κnSρ̆1 =
∑

(x,y)∈E1

κnρ̆1(x,y) = 0.4 + 0.6 + 0.5 = 1.5,

αSρ̆1 =
∑

(x,y)∈E1

αρ̆1(x,y) = 0.2 + 0.2 + 0.4 = 0.8,

βSρ̆1 =
∑

(x,y)∈E1

βρ̆1(x,y) = 0.3 + 0.3 + 0.2 = 0.8.

Thus, Sρ̆1(Ğ ) =
(
⟨κmSρ̆1 ,κ

n
Sρ̆1

⟩, ⟨αSρ̆1 , βSρ̆1 ⟩
)
=
(
⟨1.1, 1.5⟩, ⟨0.8, 0.8⟩

)
. Similarly, Sρ̆2(Ğ ) =

(
⟨1.3, 1.2⟩, ⟨0.7, 1⟩

)
.

Further, the size of Ğ is calculated as:

S(Ğ ) = Sρ̆1(Ğ ) + Sρ̆2(Ğ ) =
(
⟨1.1, 1.5⟩, ⟨0.8, 0.8⟩

)
+
(
⟨1.3, 1.2⟩, ⟨0.7, 1⟩

)
=
(
⟨2.4, 2.7⟩, ⟨1.8, 1.5⟩

)
.

4 Maximal Product of Two Linear Diophantine Fuzzy Graph Structures

In this section, we introduce the notions of maximal product of two LDFGSs, strong LDFGS, degree and
ρ̆i-degree of a vertex in maximal product. Furthermore, certain consequences related to these concepts are
proved with some useful examples.

Definition 4.1. Let Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′n

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′n

)
be two LDFGSs of the GSs

G1 =
(
V1,E ′

1,E
′
2, · · · ,E ′

n

)
and G2 =

(
V2,E ′′

1 ,E
′′
2 , · · · ,E ′′

n

)
, respectively. Then, Ğ = Ğ1∗Ğ2 =

(
L, ρ̆1, ρ̆2, · · · , ρ̆n

)
is called maximal LDFGS with underlying crisp GS G =

(
V ,E1,E2, · · · ,En

)
, where V = V1 × V2 and

Ei =
{(

(x1,y1), (x2,y2)
)
: x1 = x2, (y1,y2) ∈ E ′′

i or y1 = y2, (x1,x2) ∈ E ′
i

}
. LDF vertex set L and LDFRs

ρ̆i in maximal product Ğ1 ∗ Ğ2 are defined as :
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L = L1 ∗ L2

=
(⟨

κmL1
(x),κnL1

(x)
⟩
,
⟨
αL1(x), βL1(x)

⟩)
∗
(⟨

κmL2
(y),κnL2

(y)
⟩
,
⟨
αL2(y), βL2(y)

⟩)
=
(⟨(

κmL1
∗ κmL2

)
(x,y),

(
κnL1

∗ κnL2
)(x,y)

⟩
,
⟨(
αL1 ∗ αL2

)
(x,y),

(
βL1 ∗ βL2

)
(x,y)

⟩)
=
(⟨

κmL (x,y),κnL(x,y)
⟩
,
⟨
αL(x,y), βL(x,y)

⟩)
, (32)

where
κmL (x,y) = κmL1

(x) ∨ κmL2
(y),

κnL(x,y) = κnL1
(x) ∧ κnL2

(y),

αL(x,y) = αL1(x) ∨ αL2(y),

βL(x,y) = βL1(x) ∧ βL2(y),

 (33)

for all (x,y) ∈ V = V1 × V2 and ρ̆i = ρ̆′i ∗ ρ̆′′i are defined as :

ρ̆i = ρ̆′i ∗ ρ̆′′i
=
(⟨

κmρ̆′i (x1,y1),κnρ̆′i(x1,y1)
⟩
,
⟨
αρ̆′i(x1,y1), βρ̆′i(x1,y1)

⟩)
∗
(⟨

κmρ̆′′i (x2,y2),κnρ̆′′i (x2,y2)
⟩
,
⟨
αρ̆′′i (x2,y2), βρ̆′′i (x2,y2)

⟩)
=
(⟨(

κmρ̆′i ∗ κ
m
ρ̆′′i

)
(x1y1,x2y2),

(
κnρ̆′i ∗ κ

n
ρ̆′′i

)
(x1y1,x2y2)

⟩
,
⟨(
αρ̆′i ∗ αρ̆′′i

)
(x1y1,x2y2),

(
βρ̆′i ∗ βρ̆′′i

)
(x1y1,x2y2)

⟩)
=
(⟨

κmρ̆i (x1y1,x2y2),κnρ̆i(x1y1,x2y2)
⟩
,
⟨
αρ̆i(x1y1,x2y2), βρ̆i(x1y1,x2y2)

⟩)
, (34)

where

κmρ̆i
(
(x1,y1), (x2,y2)

)
=

{
κmL1

(x1) ∨ κmρ̆′′i (y1,y2), if x1 = x2, (y1,y2) ∈ E ′′
i

κmL2
(y1) ∨ κmρ̆′i (x1,x2), if y1 = y2, (x1,x2) ∈ E ′

i

(35)

κnρ̆i
(
(x1,y1), (x2,y2)

)
=

{
κnL1

(x1) ∧ κnρ̆′′i (y1,y2), if x1 = x2, (y1,y2) ∈ E ′′
i

κnL2
(y1) ∧ κnρ̆′i(x1,x2), if y1 = y2, (x1,x2) ∈ E ′

i

(36)

αρ̆i
(
(x1,y1), (x2,y2)

)
=

{
αL1(x1) ∨ αρ̆′′i (y1,y2), if x1 = x2, (y1,y2) ∈ E ′′

i

αL2(y1) ∨ αρ̆′i(x1,x2), if y1 = y2, (x1,x2) ∈ E ′
i

(37)

βρ̆i
(
(x1,y1), (x2,y2)

)
=

{
βL1(x1) ∧ βρ̆′′i (y1,y2), if x1 = x2, (y1,y2) ∈ E ′′

i

βL2(y1) ∧ βρ̆′i(x1,x2), if y1 = y2, (x1,x2) ∈ E ′
i

(38)

i = 1, 2, · · · , n.

Example 4.2. Consider two LDFGSs Ğ1 =
(
L1, ρ̆

′
1, ρ̆

′
2, ρ̆

′
3

)
and Ğ2 =

(
L2, ρ̆

′′
1

)
, which is depicted in Figure

2 with underlying GSs G1 = (V1,E ′
1,E

′
2,E

′
3) and G2 = (V2,E ′′

1 ), respectively, where V1 = {u1,u2,u3} and
V2 = {v1,v2} are two sets of vertices and E ′

1 = {(u1,u3)}, E ′
2 = {(u1,u2)}, and E ′

3 = {(u2,u3)} are the set
of edges on V1, and E ′′

1 = {(v1,v2)} is the edges set on V2 such that E ′
i and E ′′

i are irreflexive and symmetric
binary relations on V1 and V2, respectively. The LDFSs L1 on V1 and L2 on V2 are given in the TABLES
10 and 11, respectively. The LDFRs ρ̆′1, ρ̆

′
2, ρ̆

′
3 over the E ′

1,E
′
2,E

′
3, and ρ̆

′′
1 over E ′′

1 given in TABLES 12, 13,
14 and 15 respectively. By using Definition 4.1, we obtain the following LDFS L = L1 ∗ L2 illustrated in
FIGURE 3 and shown in TABLE 16 and LDFRs ρ̆i = ρ̆′i ∗ ρ̆′′i for i = 1, 2, 3 shown in TABLE 17, 18, 19,
respectively.
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Table 10: LDFS L1

V1

(
⟨κmL1

(x),κnL1
(x)⟩, ⟨αL1(x), βL1(x)⟩

)
u1

(
⟨0.6, 0.5⟩, ⟨0.4, 0.3⟩

)
u2

(
⟨0.4, 0.3⟩, ⟨0.5, 0.4⟩

)
u3

(
⟨0.8, 0.9⟩, ⟨0.6, 0.3⟩

)
Table 11: LDFS L2

V2

(
⟨κmL2

(x),κnL2
(x)⟩, ⟨αL2(x), βL2(x)⟩

)
v1

(
⟨0.7, 0.4⟩, ⟨0.3, 0.2⟩

)
v2

(
⟨0.3, 0.2⟩, ⟨0.4, 0.1⟩

)
Table 12: ρ̆′1

E ′
1

(
⟨κm

ρ̆′1
(x,y),κn

ρ̆′1
(x,y)⟩, ⟨αρ̆′1(x,y), βρ̆′1(x,y)⟩

)
(u1,u3)

(
⟨0.6, 0.9⟩, ⟨0.4, 0.5⟩

)
Table 13: ρ̆′2

E ′
2

(
⟨κm

ρ̆′2
(x,y),κn

ρ̆′2
(x,y)⟩, ⟨αρ̆′2(x,y), βρ̆′2(x,y)⟩

)
(u1,u2)

(
⟨0.4, 0.5⟩, ⟨0.3, 0.4⟩

)
Table 14: ρ̆′3

E ′
3

(
⟨κm

ρ̆′3
(x,y),κn

ρ̆′3
(x,y)⟩, ⟨αρ̆′3(x,y), βρ̆′3(x,y)⟩

)
(u2,u3)

(
⟨0.4, 0.9⟩, ⟨0.5, 0.4⟩

)
Table 15: ρ̆′′1

E ′′
1

(
⟨κm

ρ̆′′1
(x,y),κn

ρ̆′′1
(x,y)⟩, ⟨αρ̆′′1(x,y), βρ̆′′1(x,y)⟩

)
(v1,v2)

(
⟨0.3, 0.5⟩, ⟨0.2, 0.3⟩

)
Definition 4.3. An LDFGS Ğ =

(
L, ρ̆1, ρ̆2, · · · , ρ̆n

)
is called ρ̆i-strong, if

κmρ̆i (x,y) = κmL (x) ∧ κmL (y),

κnρ̆i(x,y) = κnL(x) ∨ κnL(y),
αρ̆i(x,y) = αL(x) ∧ αL(y),

βρ̆i(x,y) = βL(x) ∨ βL(y),

 (39)

for all x,y ∈ V . If Ğ is ρ̆i-strong for all i = 1, 2, · · · , n, then Ğ is called strong LDFGS.

Theorem 4.4. Maximal product of two strong LDFGSs is also a strong LDFGS.
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Table 16: L = L1 ∗ L2

V
(
⟨κmL (x,y),κnL(x,y)⟩, ⟨αL(x,y), βL(x,y)⟩

)
(u1,v1)

(
⟨0.7, 0.4⟩, ⟨0.4, 0.2⟩

)
(u1,v2)

(
⟨0.6, 0.2⟩, ⟨0.4, 0.1⟩

)
(u2,v1)

(
⟨0.7, 0.3⟩, ⟨0.5, 0.2⟩

)
(u2,v2)

(
⟨0.4, 0.2⟩, ⟨0.5, 0.1⟩

)
(u3,v1)

(
⟨0.8, 0.4⟩, ⟨0.6, 0.2⟩

)
(u3,v2)

(
⟨0.8, 0.2⟩, ⟨0.6, 0.1⟩

)

Table 17: ρ̆1

E1

(
⟨κmρ̆1(x1y1,x2y2),κnρ̆1(x1y1,x2y2)⟩, ⟨αρ̆1(x1y1,x2y2), βρ̆1(x1y1,x2y2)⟩

)
(u1v1,u1v2)

(
⟨0.6, 0.5⟩, ⟨0.4, 0.3⟩

)
(u1v1,u2v1)

(
⟨0.7, 0.4⟩, ⟨0.3, 0.2⟩

)
(u2v1,u2v2)

(
⟨0.4, 0.3⟩, ⟨0.5, 0.4⟩

)
(u3v1,u3v2)

(
⟨0.3, 0.5⟩, ⟨0.6, 0.3⟩

)
(u1v2,u2v2)

(
⟨0.6, 0.2⟩, ⟨0.4, 0.1⟩

)

Table 18: ρ̆2

E2

(
⟨κmρ̆2(x1y1,x2y2),κnρ̆2(x1y1,x2y2)⟩, ⟨αρ̆2(x1y1,x2y2), βρ̆2(x1y1,x2y2)⟩

)
(u2v1,u3v1)

(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)
(u2v2,u3v2)

(
⟨0.4, 0.2⟩, ⟨0.5, 0.1⟩

)

Table 19: ρ̆3

E3

(
⟨κmρ̆3(x1y1,x2y2),κnρ̆3(x1y1,x2y2)⟩, ⟨αρ̆3(x1y1,x2y2), βρ̆3(x1y1,x2y2)⟩

)
(u1v1,u3v1)

(
⟨0.7, 0.4⟩, ⟨0.4, 0.2⟩

)
(u1v2,u3v2)

(
⟨0.6, 0.2⟩, ⟨0.4, 0.2⟩

)

Proof. Let Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′n

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′n

)
be two strong LDFGSs. Then,

according to the Definition 4.1, we have the following cases:

Case i: When x1 = x2 and (y1,y2) ∈ E ′′
i . Then,
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...

u1
(
⟨0.6, 0.5⟩, ⟨0.4, 0.3⟩

)

..
u2

(
⟨0.4, 0.3⟩, ⟨0.5, 0.4⟩

) ..
u3

(
⟨0.8, 0.9⟩, ⟨0.6, 0.3⟩

)..

v1
(
⟨0.7, 0.4⟩, ⟨0.3, 0.2⟩

)

..
v2

(
⟨0.3, 0.2⟩, ⟨0.4, 0.1⟩

).
ρ̆
′ 2

( ⟨0
.4
, 0
.5
⟩,
⟨0
.3
, 0
.4
⟩
)

.

ρ̆ ′
1 (
⟨0.6, 0.9⟩, ⟨0.4, 0.5⟩ )

.
ρ̆′3

(
⟨0.4, 0.9⟩, ⟨0.5, 0.4⟩

)
.

ρ̆
′′1 (⟨

0
.3
,
0
.5⟩

,⟨
0
.2
,
0
.3⟩ )

Figure 2: LDFGSs Ğ1 =
(
L1, ρ̆

′
1, ρ̆

′
2, ρ̆

′
3

)
and Ğ2 =

(
L2, ρ̆

′′
1

)

...

(u2,v2)
(
⟨0.4, 0.2⟩, ⟨0.5, 0.1⟩

)

..
(u1,v2)

(
⟨0.6, 0.2⟩, ⟨0.4, 0.1⟩

) ..
(u3,v2)

(
⟨0.8, 0.2⟩, ⟨0.6, 0.1⟩

)..

(u2,v1)
(
⟨0.7, 0.3⟩, ⟨0.5, 0.2⟩

)

..

(u1,v1)
(
⟨0.7, 0.4⟩, ⟨0.4, 0.2⟩

)

..

(u3,v1)
(
⟨0.8, 0.4⟩, ⟨0.6, 0.2⟩

)

.

ρ̆ 1
( ⟨0

.6
, 0
.2
⟩,
⟨0
.4
, 0
.1
⟩
)

.

ρ̆
2 (
⟨0.4, 0.2⟩, ⟨0.5, 0.1⟩ )

.
ρ̆3

(
⟨0.6, 0.2⟩, ⟨0.4, 0.2⟩

)
.

ρ̆ 1
( ⟨0

.7
, 0
.4
⟩,
⟨0
.3
, 0
.2
⟩
)

.

ρ̆
2 (
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩ )

.

ρ̆3
(
⟨0.7, 0.4⟩, ⟨0.4, 0.2⟩

)

.

ρ̆
1 (⟨

0
.4
,
0
.3⟩

,⟨
0
.5
,
0
.4⟩ )

.

ρ̆
1 (⟨

0
.7
,
0
.4⟩

,⟨
0
.3
,
0
.2⟩ )

.

ρ̆
1 (⟨

0
.3
,
0
.5⟩

,⟨
0
.6
,
0
.3⟩ )

Figure 3: Maximal product Ğ = Ğ1 ∗ Ğ2

κmρ̆i
(
(x1,y1), (x2,y2)

)
= κmL1

(x1) ∨ κmρ′′i (y1,y2)

= κmL1
(x1) ∨

[
κmL2

(y1) ∧ κmL2
(y2)

]
=
[
κmL1

(x1) ∨ κmL2
(y1)

]
∧
[
κmL1

(x1) ∨ κmL2
(y2)

]
=
[
κmL1

(x1) ∨ κmL2
(y1)

]
∧
[
κmL1

(x2) ∨ κmL2
(y2)

]
= κmL (x1,y1) ∧ κmL (x2,y2).
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Similarly we can show that κnρ̆i
(
(x1,y1), (x2,y2)

)
= κnL(x1,y1) ∨ κnL(x2,y2), αρ̆i

(
(x1,y1), (x2,y2)

)
=

αL(x1,y1) ∧ αL(x2,y2), and βρ̆i
(
(x1,y1), (x2,y2)

)
= βL(x1,y1) ∨ βL(x2,y2).

Case ii: When y1 = y2 and (x1,x2) ∈ E ′
i . Then,

κmρ̆i
(
(x1,y1), (x2,y2)

)
= κmL2

(y1) ∨ κmρ̆′i (x1,x2)

= κmL2
(y1) ∨

[
κmL1

(x1) ∧ κmL1
(x2)

]
=
[
κmL2

(y1) ∨ κmL1
(x1)

]
∧
[
κmL2

(y1) ∨ κmL1
(x2)

]
=
[
κmL2

(y1) ∨ κmL1
(x1)

]
∧
[
κmL2

(y2) ∨ κmL1
(x2)

]
= κmL (x1,y1) ∧ κmL (x2,y2).

In the same way, we can prove that κnρ̆i
(
(x1,y1), (x2,y2)

)
= κnL(x1,y1)∨κnL(x2,y2), αρ̆i

(
(x1,y1), (x2,y2)

)
=

αL(x1,y1) ∧ αL(x2,y2), and βρ̆i
(
(x1,y1), (x2,y2)

)
= βL(x1,y1) ∨ βL(x2,y2). Thus, Ğ = Ğ1 ∗ Ğ2 is a strong

LDFGS. □

Theorem 4.5. The maximal product of two connected LDFGSs is a connected LDFGS.

Proof. Let Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′n

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′n

)
be two connected LDFGSs with un-

derlying GSs G1 =
(
V1,E ′

1,E
′
2, · · · ,E ′

n

)
and G2 =

(
V2,E ′′

1 ,E
′′
2 , · · · ,E ′′

n

)
, respectively. Let V1 = {x1,x2, · · · ,xm}

and V2 = {y1,y2, · · · ,yq}. Then, according to the Definition 3.13,

(κm
ρ̆′i
)∞(xi,xj) > 0 and (κm

ρ̆′′i
)∞(yi,yj) > 0;

(κn
ρ̆′i
)∞(xi,xj) > 0 and (κn

ρ̆′′i
)∞(yi,yj) > 0;

(αρ̆′i
)∞(xi,xj) > 0 and (αρ̆′′i

)∞(yi,yj) > 0;

(βρ̆′i
)∞(xi,xj) > 0 and (βρ̆′′i

)∞(yi,yj) > 0,

for all xi,xj ∈ V1 and yi,yj ∈ V2. Considerm subgraphs of G with the vertex sets
{
(xi,y1), (xi,y2), · · · , (xi,yq)

}
for i = 1, 2, · · · ,m. Each of these subgraphs of G is connected since xi’s are the same and G2 is connected,
each yi is adjacent to at least one of the vertices in V2. Since G1 is connected, each xi is also adjacent to at
least one of the vertices in V1. Therefore, there exists one edge between any pair of the above m subgraphs.
Thus, we have

(κmρ̆i )
∞((xi,yj), (xk,yl)) > 0, (κnρ̆i)

∞((xi,yj), (xk,yl)) > 0, and

(αρ̆i)
∞((xi,yj), (xk,yl)) > 0, (βρ̆′i

)∞
(
(xi,yj), (xk,yl)

)
> 0,

for all ((xi,yj), (xk,yl)) ∈ Ei. Hence, Ğ is connected LDFGS. □

Definition 4.6. Let Ğ = Ğ1∗Ğ2 =
(
L, ρ̆1, ρ̆2, · · · , ρ̆n

)
be the maximal product of LDFGSs Ğ1 =

(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′n

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′n

)
. Then, the degree of a vertex in Ğ is postulated as follows:

DĞ (xi,yj) =
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
, (40)
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where

κmDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κmρ̆′i (xi,xk) ∨ κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmρ̆′′j (yj ,yl) ∨ κmL1
(xi)

κnDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κnρ̆′i(xi,xk) ∧ κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnρ̆′′j (yj ,yl) ∧ κnL1
(xi)

αDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

αρ̆′i(xi,xk) ∨ αL2(yj) +
∑

(yj ,yl)∈E ′′
j ,xi=xk

αρ̆′′j (yj ,yl) ∨ αL1(xi)

βDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

βρ̆′i(xi,xk) ∧ βL2(yj) +
∑

(yj ,yl)∈E ′′
j ,xi=xk

βρ̆′′j (yj ,yl) ∧ βL1(xi)



(41)

Also, ρ̆i − DĞ (xi,yj) of a vertex (xi,yj) of maximal product Ğ is defined as follows:

ρ̆i − DĞ (xi,yj) =
(⟨

κmi − κmDĞ
(xi,yj),κni − κnDĞ

(xi,yj)
⟩
,
⟨
αi − αDĞ

(xi,yj), βi − βDĞ
(xi,yj)

⟩)
, (42)

where

κmi − κmDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κmρ̆′i (xi,xk) ∨ κmL2
(yj) +

∑
(yj ,yl)∈E ′′

i ,xi=xk

κmρ′′i (yj ,yl) ∨ κmL1
(xi)

κni − κnDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κnρ̆′i(xi,xk) ∧ κnL2
(yj) +

∑
(yj ,yl)∈E ′′

i ,xi=xk

κnρ̆′′i (yj ,yl) ∧ κnL1
(xi)

αi − αDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

αρ̆′i(xi,xk) ∨ αL2(yj) +
∑

(yj ,yl)∈E ′′
i ,xi=xk

αρ̆′′i (yj ,yl) ∨ αL1(xi)

βi − βDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

βρ̆′i(xi,xk) ∧ βL2(yj) +
∑

(yj ,yl)∈E ′′
i ,xi=xk

βE ′′
i
(yj ,yl) ∧ βL1(xi)


(43)

Example 4.7. (Continued from Example 4.2) With the same LDFGSs Ğ1, Ğ2 and their maximal product
Ğ = Ğ1 ∗ Ğ2 with underlying GSs G1, G2 and their maximal product G = G1 ∗ G2. According to Definition
4.6, the degrees of vertices in Ğ are calculated as follows:

κmDĞ
(u1,v1) = κmρ̆′1(u1,u2) ∨ κmL2

(v1) + κmρ̆′3(u1,u3) ∨ κmL2
(v1) + κmρ̆′′1 (v1,v2) ∨ κmL1

(u1)

= 0.4 ∨ 0.7 + 0.6 ∨ 0.7 + 0.3 ∨ 0.6 = 2

κmDĞ
(u1,v2) = κmρ̆′1(u1,u2) ∨ κmL2

(v2) + κmρ̆′3(u1,u3) ∨ κmL2
(v2) + κmρ̆′′1 (v1,v2) ∨ κmL1

(u1)

= 0.4 ∨ 0.3 + 0.6 ∨ 0.3 + 0.3 ∨ 0.6 = 1.6

κmDĞ
(u2,v1) = κmρ̆′1(u2,u1) ∨ κmL2

(v1) + κmρ̆′2(u2,u3) ∨ κmL2
(v1) + κmρ̆′′1 (v1,v2) ∨ κmL1

(u2)

= 0.4 ∨ 0.7 + 0.4 ∨ 0.7 + 0.3 ∨ 0.4 = 1.8

κmDĞ
(u2,v2) = κmρ̆′1(u2,u1) ∨ κmL2

(v2) + κmρ̆′2(u2,u3) ∨ κmL2
(v2) + κmρ̆′′1 (v1,v2) ∨ κmL1

(u2)

= 0.4 ∨ 0.3 + 0.4 ∨ 0.3 + 0.3 ∨ 0.4 = 1.2

κmDĞ
(u3,v1) = κmρ̆′2(u3,u2) ∨ κmL2

(v1) + κmρ̆′3(u3,u1) ∨ κmL2
(v1) + κmρ̆′′1 (v1,v2) ∨ κmL1

(u3)

= 0.4 ∨ 0.7 + 0.6 ∨ 0.7 + 0.3 ∨ 0.8 = 2.2

κmDĞ
(u3,v2) = κmρ̆′2(u3,u2) ∨ κmL2

(v2) + κmρ̆′3(u3,u1) ∨ κmL2
(v2) + κmρ̆′′1 (v1,v2) ∨ κmL1

(u3)

= 0.4 ∨ 0.3 + 0.6 ∨ 0.3 + 0.3 ∨ 0.8 = 1.8
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similarly,

κnDĞ
(u1,v1) = κnρ̆′1(u1,u2) ∧ κnL2

(v1) + κnρ̆′3(u1,u3) ∧ κnL2
(v1) + κnρ̆′′1 (v1,v2) ∧ κnL1

(u1)

= 0.5 ∧ 0.4 + 0.9 ∧ 0.4 + 0.5 ∧ 0.5 = 1.3

κnDĞ
(u1,v2) = κnρ̆′1(u1,u2) ∧ κnL2

(v2) + κnρ̆′3(u1,u3) ∧ κnL2
(v2) + κnρ̆′′1 (v1,v2) ∧ κnL1

(u1)

= 0.5 ∧ 0.2 + 0.9 ∧ 0.2 + 0.5 ∧ 0.5 = 0.9

κnDĞ
(u2,v1) = κnρ̆′1(u2,u1) ∧ κnL2

(v1) + κnρ̆′2(u2,u3) ∧ κnL2
(v1) + κnρ̆′′1 (v1,v2) ∧ κnL1

(u2)

= 0.5 ∧ 0.4 + 0.9 ∧ 0.4 + 0.5 ∧ 0.3 = 1.1

κnDĞ
(u2,v2) = κnρ̆′1(u2,u1) ∧ κnL2

(v2) + κnρ̆′2(u2,u3) ∧ κnL2
(v2) + κnρ̆′′1 (v1,v2) ∧ κnL1

(u2)

= 0.5 ∧ 0.2 + 0.9 ∧ 0.2 + 0.5 ∧ 0.3 = 0.7

κnDĞ
(u3,v1) = κnρ̆′2(u3,u2) ∧ κnL2

(v1) + κnρ̆′3(u3,u1) ∧ κnL2
(v1) + κnρ̆′′1 (v1,v2) ∧ κnL1

(u3)

= 0.9 ∧ 0.4 + 0.9 ∧ 0.4 + 0.5 ∧ 0.9 = 1.3

κnDĞ
(u3,v2) = κnρ̆′2(u3,u2) ∧ κnL2

(v2) + κnρ̆′3(u3,u1) ∧ κnL2
(v2) + κnρ̆′′1 (v1,v2) ∧ κnL1

(u3)

= 0.9 ∧ 0.2 + 0.9 ∧ 0.2 + 0.5 ∧ 0.9 = 0.9

In the similar way, αDĞ
(xi,yj) and βDĞ

(xi,yj) are calculated for all xi ∈ V1 and yj ∈ V2, shown in TABLE
20.

Table 20: DĞ

V
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
(u1,v1)

(
⟨2, 0.9⟩, ⟨1.1, 0.7⟩

)
(u1,v2)

(
⟨1.6, 1.1⟩, ⟨1.2, 0.5⟩

)
(u2,v1)

(
⟨1.8, 0.7⟩, ⟨1.3, 0.7⟩

)
(u2,v2)

(
⟨1.2, 1.3⟩, ⟨1.4, 0.5⟩

)
(u3,v1)

(
⟨2.2, 0.9⟩, ⟨1.5, 0.7⟩

)
(u3,v2)

(
⟨0.8, 1.3⟩, ⟨1.5, 0.5⟩

)
Now, we calculate ρ̆i − DĞ (xi,yj) for all i = 1, 2, 3 as follows:

κm1 − κmDĞ
(u1,v1) = κmρ̆′1(u1,u2) ∨ κmL2

(v1) + κmρ̆′′1 (v1,v2) ∨ κmL1
(u1) = 0.4 ∨ 0.7 + 0.3 ∨ 0.6 = 1.3

κm1 − κmDĞ
(u1,v2) = κmρ̆′1(u1,u2) ∨ κmL2

(v2) + κmρ̆′′1 (v1,v2) ∨ κmL1
(u1) = 0.4 ∨ 0.3 + 0.3 ∨ 0.6 = 1

κm1 − κmDĞ
(u2,v1) = κmρ̆′1(u2,u1) ∨ κmL2

(v1) + κmρ̆′′1 (v1,v2) ∨ κmL1
(u2) = 0.4 ∨ 0.7 + 0.3 ∨ 0.4 = 1.1

κm1 − κmDĞ
(u2,v2) = κmρ̆′1(u2,u1) ∨ κmL2

(v2) + κmρ̆′′1 (v1,v2) ∨ κmL1
(u2) = 0.4 ∨ 0.3 + 0.3 ∨ 0.4 = 0.8

κm1 − κmDĞ
(u3,v1) = κmρ̆′′1 (v1,v2) ∨ κmL1

(u3) = 0.3 ∨ 0.8 = 0.8

κm1 − κmDĞ
(u3,v2) = κmρ̆′′1 (v1,v2) ∨ κmL1

(u3) = 0.3 ∨ 0.8 = 0.8
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Similarly, κn1 − κnDĞ
(xi,yj) can be calculated as:

κn1 − κnDĞ
(u1,v1) = κnρ̆′1(u1,u2) ∧ κnL2

(v1) + κnρ̆′′1 (v1,v2) ∧ κnL1
(u1) = 0.5 ∧ 0.4 + 0.5 ∧ 0.5 = 0.9

κn1 − κnDĞ
(u1,v2) = κnρ̆′1(u1,u2) ∧ κnL2

(v2) + κnρ̆′′1 (v1,v2) ∧ κnL1
(u1) = 0.5 ∧ 0.2 + 0.5 ∧ 0.5 = 0.7

κn1 − κnDĞ
(u2,v1) = κnρ̆′1(u2,u1) ∧ κnL2

(v1) + κnρ̆′′1 (v1,v2) ∧ κnL1
(u2) = 0.5 ∧ 0.4 + 0.5 ∧ 0.3 = 0.7

κn1 − κnDĞ
(u2,v2) = κnρ̆′1(u2,u1) ∧ κnL2

(v2) + κnρ̆′′1 (v1,v2) ∧ κnL1
(u2) = 0.5 ∧ 0.2 + 0.5 ∧ 0.3 = 0.5

κn1 − κnDĞ
(u3,v1) = κnρ̆′′1 (v1,v2) ∧ κnL1

(u3) = 0.9 ∧ 0.4 = 0.4

κn1 − κnDĞ
(u3,v2) = κnρ̆′′1 (v1,v2) ∧ κnL1

(u3) = 0.9 ∧ 0.5 = 0.5

Moreover, α1 − αDĞ
(xi,yj) and β1 − βDĞ

(xi,yj) are evaluated by following the same steps, which are given
in TABLE 21.

Table 21: ρ̆1 − DĞ

V
(⟨

κm1 − κmDĞ
(xi,yj),κn1 − κnDĞ

(xi,yj)
⟩
,
⟨
α1 − αDĞ

(xi,yj), β1 − βDĞ
(xi,yj)

⟩)
(u1,v1)

(
⟨1.3, 0.9⟩, ⟨0.7, 0.5⟩

)
(u1,v2)

(
⟨1, 0.7⟩, ⟨0.8, 0.4⟩

)
(u2,v1)

(
⟨1.1, 0.7⟩, ⟨0.8, 0.5⟩

)
(u2,v2)

(
⟨0.8, 0.5⟩, ⟨0.9, 0.4⟩

)
(u3,v1)

(
⟨0.8, 0.5⟩, ⟨0.6, 0.3⟩

)
(u3,v2)

(
⟨0.8, 0.5⟩, ⟨0.6, 0.3⟩

)
Now, we calculate ρ̆2 − DĞ (xi,yj) as:

κm2 − κmDĞ
(u2,v1) = κmρ̆′2(u2,u3) ∨ κmL2

(v1) = 0.4 ∨ 0.7 = 0.7

κm2 − κmDĞ
(u2,v2) = κmρ̆′2(u2,u3) ∨ κmL2

(v2) = 0.4 ∨ 0.3 = 0.4

κm2 − κmDĞ
(u3,v1) = κmρ̆′2(u2,u3) ∨ κmL2

(v1) = 0.4 ∨ 0.7 = 0.7

κm2 − κmDĞ
(u3,v2) = κmρ̆′2(u2,u3) ∨ κmL2

(v2) = 0.4 ∨ 0.3 = 0.4

κn2 − κmDĞ
(u2,v1) = κnρ̆′2(u2,u3) ∧ κnL2

(v1) = 0.9 ∧ 0.4 = 0.4

κn2 − κnDĞ
(u2,v2) = κnρ̆′2(u2,u3) ∧ κnL2

(v2) = 0.9 ∧ 0.2 = 0.2

κn2 − κnDĞ
(u3,v1) = κnρ̆′2(u2,u3) ∧ κnL2

(v1) = 0.9 ∧ 0.4 = 0.4

κn2 − κnDĞ
(u3,v2) = κnρ′2(u2,u3) ∧ κnL2

(v2) = 0.9 ∧ 0.2 = 0.2

In the similar manners, we have calculated α2 − κnDĞ
(xi,yj) and β2 − κnDĞ

(xi,yj) for all xi ∈ V1, and

yj ∈ V2 which presented in TABLE 22. By following the similar methodology as above, ρ̆3 − DĞ (xi,yj) are
evaluated for all xi ∈ V1, and yj ∈ V2 which are shown in TABLE 23.
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Table 22: ρ̆2 − DĞ

V
(⟨

κm2 − κmDĞ
(xi,yj),κn2 − κnDĞ

(xi,yj)
⟩
,
⟨
α2 − αDĞ

(xi,yj), β2 − βDĞ
(xi,yj)

⟩)
(u2,v1)

(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)
(u2,v2)

(
⟨0.4, 0.2⟩, ⟨0.5, 0.1⟩

)
(u3,v1)

(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)
(u3,v2)

(
⟨0.4, 0.2⟩, ⟨0.5, 0.1⟩

)
Table 23: ρ̆3 − DĞ

V
(⟨

κm3 − κmDĞ
(xi,yj),κn3 − κnDĞ

(xi,yj)
⟩
,
⟨
α3 − αDĞ

(xi,yj), β3 − βDĞ
(xi,yj)

⟩)
(u1,v1)

(
⟨0.7, 0.4⟩, ⟨0.4, 0.2⟩

)
(u1,v2)

(
⟨0.6, 0.2⟩, ⟨0.4, 0.1⟩

)
(u3,v1)

(
⟨0.7, 0.4⟩, ⟨0.4, 0.2⟩

)
(u3,v2)

(
⟨0.7, 0.2⟩, ⟨0.4, 0.1⟩

)

Theorem 4.8. If Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
are two LDFGSs such that

L1 ⊆ ρ̆′′i, i = 1, 2, · · · , k, then the degree of any vertex in maximal product Ğ = Ğ1 ∗ Ğ2 =
(
L, ρ̆1, ρ̆2, · · · , ρ̆k

)
is given by:

DĞ (xi,yj) =
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
, (44)

where

κmDĞ
(xi,yj) = DG1(xi)κ

m
L2
(yj) + κmDĞ2

(yj),

κnDĞ
(xi,yj) = DG1(xi)κ

n
L2
(yj) + κnDĞ2

(yj),

αDĞ
(xi,yj) = DG1(xi)αL2(yj) + αDĞ2

(yj),

βDĞ
(xi,yj) = DG1(xi)βL2(yj) + βDĞ2

(yj).


(45)

Proof. Let Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
be two LDFGSs such that L1 ⊆ ρ̆′′i,

then ρ̆′i ⊆ L2, i = 1, 2, · · · , k. Thus,

κmDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κmρ̆′i (xi,xk) ∨ κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmρ̆′′j (yj ,yl) ∨ κmL1
(xi)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmρ̆′′j (yj ,yl)

= DG1(xi)κ
m
L2
(yj) + κmDĞ2

(yj);
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Also,

κnDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κnρ̆′i(xi,xk) ∧ κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnρ̆′′j (yj ,yl) ∧ κnL1
(xi)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnρ̆′′j (yj ,yl)

= DG1(xi)κ
n
L2
(yj) + κnDĞ2

(yj)

By adopting the procedure, we can show that

DDĞ
(xi,yj) = DG1(xi)αL2(yj) + αDĞ2

(yj) and DDĞ
(xi,yj) = DG1(xi)βL2(yj) + βDĞ2

(yj).

□
Theorem 4.9. If Ğ1 =

(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
are LDFGSs such that L1 ⊆ ρ̆′′i,

i = 1, 2, · · · , k, and L2 is constant LDFS of LDF value
(
⟨a, b⟩, ⟨c, d⟩

)
, where a, b, c, d ∈ [0, 1] are fixed, then

the degree of any vertex in maximal product Ğ = Ğ1 ∗ Ğ2 is given as:

DĞ (xi,yj) =
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
, (46)

where
κmDĞ

(xi,yj) = DG1(xi)a+ κmDĞ2

(yj),

κnDĞ
(xi,yj) = DG1(xi)b+ κnDĞ2

(yj),

αDĞ
(xi,yj) = DG1(xi)c+ αDĞ2

(yj),

βDĞ
(xi,yj) = DG1(xi)d+ βDĞ2

(yj).


(47)

Proof. Let Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
be two LDFGSs such that L1 ⊆ ρ̆′′i,

then ρ̆′i ⊆ L2, i = 1, 2, · · · , k and L2 is a constant LDFS. Therefore,

κmDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κmρ̆′i (xi,xk) ∨ κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmρ̆′′j (yj ,yl) ∨ κmL1
(xi)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmρ̆′′j (yj ,yl)

= DG1(xi)a+ κmDĞ2

(yj).

Also,

κnDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κnρ̆′i(xi,xk) ∧ κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnρ̆′′j (yj ,yl) ∧ κnL1
(xi)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnρ̆′′j (yj ,yl)

= DG1(xi)b+ κnDĞ2

(yj).

Similarly, we can show that

αDĞ
(xi,yj) = DG1(xi)c+ αDĞ2

(yj) and αDĞ
(xi,yj) = DG1(xi)βL2(yj) + βDĞ2

(yj).

□
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Theorem 4.10. If Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
are two LDFGSs such that

L2 ⊆ ρ̆′i, i = 1, 2, · · · , k, then the degree of any vertex in maximal product Ğ = Ğ1 ∗ Ğ2 is given by:

DĞ (xi,yj) =
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
, (48)

where
κmDĞ

(xi,yj) = κmDĞ1

(xi) + DG2(yj)κ
m
L1
(xi),

κnDĞ
(xi,yj) = κnDĞ1

(xi) + DG2(yj)κ
n
L1
(xi),

αDĞ
(xi,yj) = αDĞ1

(xi) + DG1(yj)αL1(xi),

βDĞ
(xi,yj) = βDĞ1

(xi) + DG2(yj)βL1(xi).


(49)

Proof. Let Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
be two LDFGSs such that L2 ⊆ ρ̆′i,

then ρ̆′′i ⊆ L1, i = 1, 2, · · · , k. So,

κmDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κmρ̆′i (xi,xk) ∨ κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmρ̆′′j (yj ,yl) ∨ κmL1
(xi)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κmρ̆′i (xi,xk) +
∑

(yj ,yl)∈E ′′
j ,xi=xk

κmL1
(xi)

= κmDĞ1

(xi) + DG2(yj)κ
m
L1
(xi).

Also,

κnDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κnρ̆′i(xi,xk) ∧ κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnρ̆′′j (yj ,yl) ∧ κnL1
(xi)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κnρ̆′i(xi,xk) +
∑

(yj ,yl)∈E ′′
j ,xi=xk

κnL1
(xi)

= κnDĞ1

(xi) + DG2(yj)κ
n
L1
(xi).

Similarly, we can show that αDĞ
(xi,yj) = αDĞ1

(xi)+DG2(yj)αL1(xi) and βDĞ
(xi,yj) = βDĞ1

(xi)+DG2(yj)

βL1(xi). □

Theorem 4.11. If Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
are two LDFGSs such that

L2 ⊆ ρ̆′i, i = 1, 2, · · · , k, and L1 is constant LDFS of LDF value
(
⟨a, b⟩, ⟨c, d⟩

)
, where a, b, c, d ∈ [0, 1] are

fixed, then the degree of any vertex in maximal product Ğ = Ğ1 ∗ Ğ2 is given by:

DĞ (xi,yj) =
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
, (50)

where
κmDĞ

(xi,yj) = κmDĞ1

(xi) + DG2(yj)a,

κnDĞ
(xi,yj) = κnDĞ1

(xi) + DG2(yj)b,

αDĞ
(xi,yj) = αDĞ1

(xi) + DG2(yj)c,

βDĞ
(xi,yj) = βDĞ1

(xi) + DG2(yj)d.


(51)
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Proof. Let Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
be two LDFGSs such that L2 ⊆ ρ̆′i,

i = 1, 2, · · · , k, and L1 is constant LDFS of LDF value
(
⟨a, b⟩, ⟨c, d⟩

)
. Therefore,

κmDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κmρ̆′i (xi,xk) ∨ κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmρ̆′′j (yj ,yl) ∨ κmL1
(xi)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κmρ̆′i (xi,xk) +
∑

(yj ,yl)∈E ′′
j ,xi=xk

κmL1
(xi)

= κmDĞ1

(xi) + DG2(yj)a.

Also,

κnDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κnρ̆′i(xi,xk) ∧ κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnρ̆′′j (yj ,yl) ∧ κnL1
(xi)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κnρ̆′i(xi,xk) +
∑

(yj ,yl)∈E ′′
j ,xi=xk

κnL1
(xi)

= κnDĞ1

(xi) + DG2(yj)b.

Similarly, it can be shown that αDĞ
(xi,yj) = αDĞ1

(xi) +DG2(yj)c and βDĞ
(xi,yj) = βDĞ1

(xi) +DG2(yj)d.

□
Theorem 4.12. If Ğ1 =

(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
are two LDFGSs such that

ρ̆′′i ⊆ L1 and ρ̆′i ⊆ L2 , i = 1, 2, · · · , k, then the degree of any vertex in maximal product Ğ = Ğ1 ∗ Ğ2 is
characterized as:

DĞ (xi,yj) =
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
, (52)

where
κmDĞ

(xi,yj) = DG1(xi)κ
m
L2
(yj) + DG2(yj)κ

m
L1
(xi),

κnDĞ
(xi,yj) = DG1(xi)κ

n
L2
(yj) + DG2(yj)κ

n
L1
(xi),

αDĞ
(xi,yj) = DG1(xi)αL2(yj) + DG2(yj)αL1(xi),

βDĞ
(xi,yj) = DG1(xi)βL2(yj) + DG2(yj)βL1(xi).


(53)

Proof. Let Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
be two LDFGSs such that such that

ρ̆′′i ⊆ L1 and ρ̆′i ⊆ L2 , i = 1, 2, · · · , k. Then,

κmDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κmρ̆′i (xi,xk) ∨ κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmρ̆′′j (yj ,yl) ∨ κmL1
(xi)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmL1
(xi)

= DG1(xi)κ
m
L2
(yj) + DG2(yj)κ

m
L1
(xi).

Also,

κnDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κnρ̆′i(xi,xk) ∧ κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnρ̆′′j (yj ,yl) ∧ κnL1
(xi)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnL1
(xi)

= DG1(xi)κ
n
L2
(yj) + DG2(yj)κ

n
L1
(xi).
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Similarly, we can show that αDĞ
(xi,yj) = DG1(xi)αL2(yj)+DG2(yj)αL1(xi) and βDĞ

(xi,yj) = DG1(xi)βL2(yj)
+DG2(yj)βL1(xi). □

Example 4.13. Consider two LDFGSs Ğ1 =
(
L1, ρ̆

′
1, ρ̆

′
2, ρ̆

′
3

)
and Ğ2 =

(
L2, ρ̆

′′
1

)
, which is depicted in Figure

4 with underlying GSs G1 = (V1,E ′
1,E

′
2,E

′
3) and G2 = (V2,E ′′

1 ), respectively, same as in Example 4.2. The
LDFSs L1 on V1 and L2 on V2 are given in the TABLES 24 and 25, respectively. The LDFRs ρ̆′1, ρ̆

′
2, ρ̆

′
3 over

the E ′
1,E

′
2,E

′
3, and ρ̆

′′
1 over E ′′

1 given in TABLES 26, 27, 28 and 29 respectively with ρ̆′i ⊆ L2 and ρ̆′′i ⊆ L1, for
i = 1, 2, 3. By using Definition 4.1, the LDFS L = L1 ∗ L2 is shown in TABLE 30 and LDFRs ρ̆i = ρ̆′i ∗ ρ̆′′i
for i = 1, 2, 3 shown in TABLE 31, 32, 33, respectively. The resulting LDFGS Ğ = Ğ1 ∗ Ğ2 =

(
L, ρ̆1, ρ̆2, ρ̆3

)
is illustrated in FIGURE 5.

...

u1
(
⟨0.6, 0.5⟩, ⟨0.4, 0.3⟩

)

..
u2

(
⟨0.4, 0.3⟩, ⟨0.5, 0.4⟩

) ..
u3

(
⟨0.8, 0.9⟩, ⟨0.6, 0.3⟩

)..

v1
(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)

..
v2

(
⟨0.8, 0.2⟩, ⟨0.4, 0.1⟩

).

ρ̆
′ 2

( ⟨0
.4
, 0
.5
⟩,
⟨0
.3
, 0
.4
⟩
)

.
ρ̆ ′

1 (
⟨0.6, 0.9⟩, ⟨0.4, 0.5⟩ )

.
ρ̆′3

(
⟨0.4, 0.9⟩, ⟨0.5, 0.4⟩

)
.

ρ̆
′′1 (⟨

0
.3
,
0
.9⟩

,⟨
0
.2
,
0
.5⟩ )

Figure 4: LDFGSs Ğ1 =
(
L1, ρ̆

′
1, ρ̆

′
2, ρ̆

′
3

)
and Ğ2 =

(
L2, ρ̆

′′
1

)

Table 24: LDFS L1

V1

(
⟨κmL1

(x),κnL1
(x)⟩, ⟨αL1(x), βL1(x)⟩

)
u1

(
⟨0.6, 0.5⟩, ⟨0.4, 0.3⟩

)
u2

(
⟨0.4, 0.3⟩, ⟨0.5, 0.4⟩

)
u3

(
⟨0.8, 0.9⟩, ⟨0.6, 0.3⟩

)
Table 25: LDFS L2

V2

(
⟨κmL2

(x),κnL2
(x)⟩, ⟨αL2(x), βL2(x)⟩

)
v1

(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)
v2

(
⟨0.8, 0.2⟩, ⟨0.4, 0.1⟩

)
Table 26: ρ̆′1

E ′
1

(
⟨κm

ρ̆′1
(x,y),κn

ρ̆′1
(x,y)⟩, ⟨αρ̆′1(x,y), βρ̆′1(x,y)⟩

)
(u1,u3)

(
⟨0.6, 0.9⟩, ⟨0.4, 0.5⟩

)
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...

(u2,v2)
(
⟨0.8, 0.2⟩, ⟨0.5, 0.1⟩

)

..
(u1,v2)

(
⟨0.8, 0.2⟩, ⟨0.4, 0.1⟩

) ..
(u3,v2)

(
⟨0.8, 0.2⟩, ⟨0.6, 0.1⟩

)..

(u2,v1)
(
⟨0.7, 0.3⟩, ⟨0.5, 0.2⟩

)

..

(u1,v1)
(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)

..

(u3,v1)
(
⟨0.8, 0.4⟩, ⟨0.6, 0.2⟩

)

.

ρ̆ 1
( ⟨0

.8
, 0
.2
⟩,
⟨0
.4
, 0
.1
⟩
)

.

ρ̆
2 (
⟨0.8, 0.2⟩, ⟨0.5, 0.1⟩ )

.
ρ̆3

(
⟨0.8, 0.2⟩, ⟨0.4, 0.1⟩

)
.

ρ̆ 1
( ⟨0

.7
, 0
.4
⟩,
⟨0
.5
, 0
.2
⟩
)

.

ρ̆
2 (
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩ )

.

ρ̆3
(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)

.

ρ̆
1 (⟨

0
.4
,
0
.3⟩

,⟨
0
.5
,
0
.4⟩ )

.

ρ̆
1 (⟨

0
.6
,
0
.5⟩

,⟨
0
.4
,
0
.3⟩ )

.

ρ̆
1 (⟨

0
.8
,
0
.9⟩

,⟨
0
.6
,
0
.3⟩ )

Figure 5: Maximal product Ğ = Ğ1 ∗ Ğ2

Table 27: ρ̆′2

E ′
2

(
⟨κm

ρ̆′2
(x,y),κn

ρ̆′2
(x,y)⟩, ⟨αρ̆′2(x,y), βρ̆′2(x,y)⟩

)
(u1,u2)

(
⟨0.4, 0.5⟩, ⟨0.3, 0.4⟩

)
Table 28: ρ̆′3

E ′
3

(
⟨κm

ρ̆′3
(x,y),κn

ρ̆′3
(x,y)⟩, ⟨αρ̆′3(x,y), βρ̆′3(x,y)⟩

)
(u2,u3)

(
⟨0.4, 0.9⟩, ⟨0.5, 0.4⟩

)
Table 29: ρ̆′′1

E ′′
1

(
⟨κm

ρ̆′′1
(x,y),κn

ρ̆′′1
(x,y)⟩, ⟨αρ̆′′1(x,y), βρ̆′′1(x,y)⟩

)
(v1,v2)

(
⟨0.3, 0.9⟩, ⟨0.2, 0.5⟩

)
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Table 30: L = L1 ∗ L2

V
(
⟨κmL (x,y),κnL(x,y)⟩, ⟨αL(x,y), βL(x,y)⟩

)
(u1,v1)

(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)
(u1,v2)

(
⟨0.8, 0.2⟩, ⟨0.4, 0.1⟩

)
(u2,v1)

(
⟨0.7, 0.3⟩, ⟨0.5, 0.2⟩

)
(u2,v2)

(
⟨0.8, 0.2⟩, ⟨0.5, 0.1⟩

)
(u3,v1)

(
⟨0.8, 0.4⟩, ⟨0.6, 0.2⟩

)
(u3,v2)

(
⟨0.8, 0.2⟩, ⟨0.6, 0.1⟩

)

Table 31: ρ̆1

E1

(
⟨κmρ̆1(x1y1,x2y2),κnρ̆1(x1y1,x2y2)⟩, ⟨αρ̆1(x1y1,x2y2), βρ̆1(x1y1,x2y2)⟩

)
(u1v1,u1v2)

(
⟨0.6, 0.5⟩, ⟨0.4, 0.3⟩

)
(u1v1,u2v1)

(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)
(u2v1,u2v2)

(
⟨0.4, 0.3⟩, ⟨0.5, 0.4⟩

)
(u3v1,u3v2)

(
⟨0.8, 0.9⟩, ⟨0.6, 0.3⟩

)
(u1v2,u2v2)

(
⟨0.8, 0.2⟩, ⟨0.4, 0.1⟩

)

Table 32: ρ̆2

E2

(
⟨κmρ̆2(x1y1,x2y2),κnρ̆2(x1y1,x2y2)⟩, ⟨αρ̆2(x1y1,x2y2), βρ̆2(x1y1,x2y2)⟩

)
(u2v1,u3v1)

(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)
(u2v2,u3v2)

(
⟨0.8, 0.2⟩, ⟨0.5, 0.1⟩

)

Table 33: ρ̆3

E3

(
⟨κmρ̆3(x1y1,x2y2),κnρ̆3(x1y1,x2y2)⟩, ⟨αρ̆3(x1y1,x2y2), βρ̆3(x1y1,x2y2)⟩

)
(u1v1,u3v1)

(
⟨0.7, 0.4⟩, ⟨0.5, 0.2⟩

)
(u1v2,u3v2)

(
⟨0.8, 0.2⟩, ⟨0.4, 0.1⟩

)

Then, using the formula given in Theorem 4.12, we calculate the degrees of the vertices in the maximal
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product as follows:

κmDĞ
(u1,v1) = DG1(u1)κmL2

(v1) + DG2(v1)κmL1
(u1) = (2)(0.7) + (1)(0.6) = 2

κmDĞ
(u1,v2) = DG1(u1)κmL2

(v2) + DG2(v2)κmL1
(u1) = (2)(0.8) + (1)(0.6) = 2.2

κmDĞ
(u2,v1) = DG1(u2)κmL2

(v1) + DG2(v1)κmL1
(u2) = (2)(0.7) + (1)(0.4) = 1.8

κmDĞ
(u2,v2) = DG1(u2)κmL2

(v2) + DG2(v2)κmL1
(u2) = (2)(0.8) + (1)(0.4) = 2

κmDĞ
(u3,v1) = DG1(u3)κmL2

(v1) + DG2(v1)κmL1
(u3) = (2)(0.7) + (1)(0.8) = 2.2

κmDĞ
(u3,v2) = DG1(u3)κmL2

(v2) + DG2(v2)κmL1
(u3) = (2)(0.8) + (1)(0.8) = 2.4

And,

κnDĞ
(u1,v1) = DG1(u1)κnL2

(v1) + DG2(v1)κnL1
(u1) = (2)(0.4) + (1)(0.5) = 1.3

κnDĞ
(u1,v2) = DG1(u1)κnL2

(v2) + DG2(v2)κnL1
(u1) = (2)(0.2) + (1)(0.5) = 0.9

κnDĞ
(u2,v1) = DG1(u2)κnL2

(v1) + DG2(v1)κnL1
(u2) = (2)(0.4) + (1)(0.3) = 1.1

κnDĞ
(u2,v2) = DG1(u2)κnL2

(v2) + DG2(v2)κnL1
(u2) = (2)(0.2) + (1)(0.3) = 0.7

κnDĞ
(u3,v1) = DG1(u3)κnL2

(v1) + DG2(v1)κnL1
(u3) = (2)(0.4) + (1)(0.9) = 1.7

κnDĞ
(u3,v2) = DG1(u3)κnL2

(v2) + DG2(v2)κnL1
(u3) = (2)(0.6) + (1)(0.9) = 1.3

In the similar way, we get αDĞ
(xi,yj) and βDĞ

(xi,yj) for all xi ∈ V1 and yi ∈ V2, which are shown in TABLE
34.

Table 34: DĞ

V
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
(u1,v1)

(
⟨2, 1.3⟩, ⟨1.4, 0.7⟩

)
(u1,v2)

(
⟨2.2, 0.9⟩, ⟨1.2, 0.5⟩

)
(u2,v1)

(
⟨1.8, 1.1⟩, ⟨1.5, 0.8⟩

)
(u2,v2)

(
⟨2, 0.7⟩, ⟨1.3, 0.6⟩

)
(u3,v1)

(
⟨2.2, 1.7⟩, ⟨1.6, 0.7⟩

)
(u3,v2)

(
⟨2.4, 1.3⟩, ⟨1.4, 0.5⟩

)

Theorem 4.14. If Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
are two LDFGSs, such that

ρ̆′′i ⊇ L1, i = 1, 2, · · · , k, then the total degree of any vertex in maximal product Ğ = Ğ1 ∗ Ğ2 is described as:

TDĞ (xi,yj) =
(⟨

κmTDĞ
(xi,yj),κnTDĞ

(xi,yj)
⟩
,
⟨
αTDĞ

(xi,yj), βTDĞ
(xi,yj)

⟩)
, (54)
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where
κmTDĞ

(xi,yj) = DG1(xi)κ
m
L2
(yj) + κmTDĞ2

(yj),

κnTDĞ
(xi,yj) = DG1(xi)κ

n
L2
(yj) + κnTDĞ

(yj),

αTDĞ
(xi,yj) = DG1(xi)αL2(yj) + αTDĞ2

(yj),

βTDĞ
(xi,yj) = DG1(xi)βL2(yj) + βTDĞ2

(yj).


(55)

Proof. Let Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
be two LDFGSs such that such that

ρ̆′′i ⊇ L1, then ρ̆′i ⊇ L2 and L1 ⊆ L2 i = 1, 2, · · · , k. We have,

κmTDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κmρ̆′i (xi,xk) ∨ κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmρ̆′′j (yj ,yl) ∨ κmL1
(xi) + κmL (xi,yj)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κmL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κmρ̆′′j (yj ,yl) +
[
κmL1

(xi) ∨ κmL2
(yj)

]
= DG1(xi)κ

m
L2
(yj) +

(
κmDĞ2

(yj) + κmL2
(yj)

)
= DG1(xi)κ

m
L2
(yj) + κmTDĞ2

(yj).

Also,

κnTDĞ
(xi,yj) =

∑
(xi,xk)∈E ′

i ,yj=yl

κnρ̆′i(xi,xk) ∧ κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnρ̆′′j (yj ,yl) ∧ κnL1
(xi) + κnL(xi,yj)

=
∑

(xi,xk)∈E ′
i ,yj=yl

κnL2
(yj) +

∑
(yj ,yl)∈E ′′

j ,xi=xk

κnρ̆′′j (yj ,yl) +
[
κnL1

(xi) ∧ κnL2
(yj)

]
= DG1(xi)κ

n
L2
(yj) +

(
κnDĞ2

(yj) + κnL2
(yj)

)
= DG1(xi)κ

n
L2
(yj) + κnTDĞ2

(yj).

Similarly, we can show that αTDĞ
(xi,yj) = DG1(xi)αL2(yj)+αTDĞ2

(yj) and βTDĞ
(xi,yj) = DG1(xi)βL2(yj)+

βTDĞ2
(yj). □

Example 4.15. Let G1 = (V1,E ′
1) and G2 = (V2,E ′

2) be GSs with V1 = {u1,u2}, V2 = {v1,v2}, E ′
1 =

{(u1,u2)} and E ′′
1 = {(v1,v2)}. The LDFGSs Ğ1 = (L1, ρ̆′1) and Ğ2 = (L2, ρ̆′′1) with underlying GSs G1 and

G2, respectively are shown in FIGURE 6, where L1 on V1 and L2 on V2 are given in TABLES 35 and 36,
respectively, and LDFRs ρ̆′1 and ρ̆′′1 presented in TABLES 37 and 38, respectively with the condition L1 ⊆ ρ̆′′1.

By using the Definition 4.1, we obtain the maximal LDFGS Ğ = Ğ1 ∗ Ğ2 =
(
L, ρ̆

)
is portrayed in FIGURE

7, where L = L1 ∗L2 given in TABLE 39 on V = V1 × V2 =
{
(u1,v1), (u1,v2), (u2,v1), (u2,v2)

}
and LDFR

ρ̆1 = ρ̆′1 ∗ ρ̆′′1 on E1 = E ′
1×E ′′

1 =
{
(u1v1,u1v2), (u1v1,u2v1), (u1v2,u2v2), (u2v1,u2v2)

}
presented in TABLE

40.

Table 35: L1

V1

(
⟨κmL1

(x),κnL1
(x)⟩, ⟨αL1(x), βL1(x)⟩

)
u1

(
⟨0.6, 0.5⟩, ⟨0.4, 0.2⟩

)
u2

(
⟨0.5, 0.7⟩, ⟨0.3, 0.5⟩

)
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...

u1
(
⟨0.6, 0.5⟩, ⟨0.4, 0.2⟩

)

..
u2

(
⟨0.5, 0.7⟩, ⟨0.3, 0.5⟩

)..

v1
(
⟨0.5, 0.6⟩, ⟨0.4, 0.5⟩

)

..
v2

(
⟨0.7, 0.6⟩, ⟨0.6, 0.4⟩

).

ρ̆ ′
1 (
⟨0.9, 0.5⟩, ⟨0.6, 0.3⟩ )

.

ρ̆ ′′1 (
⟨0.8, 0.3⟩, ⟨0.6, 0.2⟩ )

Figure 6: LDFGSs Ğ1 =
(
L1, ρ̆

′
1

)
and Ğ2 =

(
L2, ρ̆

′′
1

)

...(u2,v1)
(
⟨0.5, 0.6⟩, ⟨0.4, 0.5⟩

) ..

(u2,v2)
(
⟨0.7, 0.6⟩, ⟨0.6, 0.4⟩

)

.. (u1,v2)
(
⟨0.7, 0.5⟩, ⟨0.6, 0.2⟩

)..

(u1,v1)
(
⟨0.6, 0.5⟩, ⟨0.4, 0.2⟩

)

.

ρ̆ 1
( ⟨0

.8
, 0
.3
⟩,
⟨0
.6
, 0
.2
⟩
)

.

ρ̆
1 (

⟨0.9, 0.5⟩, ⟨0.6, 0.3⟩ )

.

ρ̆ 1
( ⟨0

.8
, 0
.3
⟩,
⟨0
.6
, 0
.2
⟩
)

.

ρ̆
1 (
⟨0.9, 0.5⟩, ⟨0.6, 0.3⟩ )

Figure 7: The maximal LDFGS Ğ = Ğ1 ∗ Ğ2

Table 36: L2

V2

(
⟨κmL2

(x),κnL2
(x)⟩, ⟨αL2(x), βL2(x)⟩

)
v1

(
⟨0.5, 0.6⟩, ⟨0.4, 0.5⟩

)
v2

(
⟨0.7, 0.6⟩, ⟨0.6, 0.4⟩

)

Using the Formula given Theorem 4.14, we calculate the total degrees of all the vertices of the maximal
product in the sequel:
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Table 37: ρ̆′1

E ′
1

(
⟨κm

ρ̆′1
(x),κn

ρ̆′1
(x)⟩, ⟨αρ̆′1(x), βρ̆′1(x)⟩

)
(u1,u2)

(
⟨0.9, 0.5⟩, ⟨0.6, 0.3⟩

)

Table 38: ρ̆′′1

E ′′
1

(
⟨κm

ρ̆′′1
(x),κn

ρ̆′′1
(x)⟩, ⟨α

ρ̆′′1
(x), β

ρ̆′′1
(x)⟩

)
(v1,v2)

(
⟨0.8, 0.3⟩, ⟨0.6, 0.2⟩

)

Table 39: L = L1 ∗ L2

V
(
⟨κmL (x,y),κnL(x,y)⟩, ⟨αL(x,y), βL(x,y)⟩

)
(u1,v1)

(
⟨0.6, 0.5⟩, ⟨0.4, 0.2⟩

)
(u1,v2)

(
⟨0.7, 0.5⟩, ⟨0.6, 0.2⟩

)
(u2,v1)

(
⟨0.5, 0.6⟩, ⟨0.4, 0.5⟩

)
(u2,v2)

(
⟨0.7, 0.6⟩, ⟨0.6, 0.4⟩

)

Table 40: ρ̆1 = ρ̆′1 × ρ̆′′1

E1

(
⟨κmρ̆1(x1y1,x2y2),κnρ̆1(x1y1,x2y2)⟩, ⟨αρ̆1(x1y1,x2y2), βρ̆1(x1y1,x2y2)⟩

)
(u1v1,u1v2)

(
⟨0.8, 0.3⟩, ⟨0.6, 0.2⟩

)
(u1v1,u2v1)

(
⟨0.9, 0.5⟩, ⟨0.6, 0.3⟩

)
(u1v2,u2v2)

(
⟨0.9, 0.5⟩, ⟨0.6, 0.3⟩

)
(u2v1,u2v2)

(
⟨0.8, 0.3⟩, ⟨0.6, 0.2⟩

)

κmTDĞ
(u1,v1) = DG1(u1)κmL2

(v1) + κmTDĞ2

(v1) = (1)(0.5) + (0.8 + 0.5) = 1.8

κmTDĞ
(u1,v2) = DG1(u1)κmL2

(v2) + κmTDĞ2

(v2) = (1)(0.7) + (0.8 + 0.7) = 2.2

κmTDĞ
(u2,v1) = DG1(u2)κmL2

(v1) + κmTDĞ2

(v1) = (1)(0.5) + (0.8 + 0.5) = 1.8

κmTDĞ
(u2,v2) = DG1(u2)κmL2

(v2) + κmTDĞ2

(v2) = (1)(0.7) + (0.8 + 0.7) = 2.2
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Also,

κnTDĞ
(u1,v1) = DG1(u1)κnL2

(v1) + κnTDĞ2

(v1) = (1)(0.6) + (0.3 + 0.6) = 1.5

κnTDĞ
(u1,v2) = DG1(u1)κnL2

(v2) + κnTDĞ2

(v2) = (1)(0.6) + (0.3 + 0.6) = 1.5

κnTDĞ
(u2,v1) = DG1(u2)κnL2

(v1) + κnTDĞ2

(v1) = (1)(0.6) + (0.3 + 0.6) = 1.5

κnTDĞ
(u2,v2) = DG1(u2)κnL2

(v2) + κnTDĞ2

(v2) = (1)(0.6) + (0.3 + 0.6) = 1.5

In the similar way, we’ve calculated αTDĞ
(xi,yj) = DG1(xi)αL2(yj) + αTDĞ2

(yj), and βTDĞ
(xi,yj) =

DG1(xi)βL2(yj) + βTDĞ2
(yj) for all xi ∈ V1, and yj ∈ V2, which are listed in the TABLE 41.

Table 41: TDĞ (xi,yj)

V
(
⟨κmTDĞ

(xi,yj),κnTDĞ
(xi,yj)⟩, ⟨αTDĞ

(xi,yj), βTDĞ
(xi,yj)⟩

)
(u1,v1)

(
⟨1.8, 1.5⟩, ⟨1.4, 1.2⟩

)
(u1,v2)

(
⟨2.2, 1.5⟩, ⟨1.8, 1.1⟩

)
(u2,v1)

(
⟨1.8, 1.5⟩, ⟨1.4, 1.2⟩

)
(u2,v2)

(
⟨2.2, 1.5⟩, ⟨1.8, 1.1⟩

)
Theorem 4.16. If Ğ1 =

(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
are two LDFGSs, such that

ρ̆′′i ⊇ L1, i = 1, 2, · · · , k, and L2 is constant LDFS of LDF value
(
⟨a, b⟩, ⟨c, d⟩

)
, where a, b, c, d ∈ [0, 1] are

fixed, then the total degree of any vertex in maximal product Ğ = Ğ1 ∗ Ğ2 is characterized as:

TDĞ (xi,yj) =
(⟨

κmTDĞ
(xi,yj),κnTDĞ

(xi,yj)
⟩
,
⟨
αTDĞ

(xi,yj), βTDĞ
(xi,yj)

⟩)
, (56)

where
κmTDĞ

(xi,yj) = κmTDĞ2

(yj) + DG1(xi)a,

κnTDĞ
(xi,yj) = κnTDĞ2

(yj) + DG1(xi)b,

αTDĞ
(xi,yj) = αTDĞ2

(yj) + DG1(xi)c,

βTDĞ
(xi,yj) = αTDĞ2

(yj) + DG1(xi)d.


(57)

Proof. Analogous to the proof of Theorems 4.9 and 4.14. □
Theorem 4.17. If Ğ1 =

(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
are two LDFGSs, such that

ρ̆′i ⊇ L2, i = 1, 2, · · · , k, then the total degree of any vertex in maximal product Ğ = Ğ1 ∗ Ğ2 is postulated as:

TDĞ (xi,yj) =
(⟨

κmTDĞ
(xi,yj),κnTDĞ

(xi,yj)
⟩
,
⟨
αTDĞ

(xi,yj), βTDĞ
(xi,yj)

⟩)
, (58)

where
κmTDĞ

(xi,yj) = DG2(yj)κ
m
L1
(xi) + κmTDĞ1

(xi),

κnTDĞ
(xi,yj) = DG2(yj)κ

n
L1
(xi) + κnTDĞ1

(xi),

αTDĞ
(xi,yj) = DG2(yj)αL1(xi) + αTDĞ1

(xi),

βTDĞ
(xi,yj) = DG2(yj)βL1(xi) + βTDĞ1

(xi).


(59)
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Proof. Identical to the proof of Theorems 4.10 and 4.14. □

Theorem 4.18. If Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, · · · , ρ̆′k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, · · · , ρ̆′′k

)
are two LDFGSs, such that

ρ̆′i ⊇ L2, i = 1, 2, · · · , k, and L1 is constant LDFS of LDF value
(
⟨a, b⟩, ⟨c, d⟩

)
, where a, b, c, d ∈ [0, 1] are

fixed, then the total degree of any vertex in maximal product Ğ = Ğ1 ∗ Ğ2 is given by:

TDĞ (xi,yj) =
(⟨

κmTDĞ
(xi,yj),κnTDĞ

(xi,yj)
⟩
,
⟨
αTDĞ

(xi,yj),κmTDĞ
(xi,yj)

⟩)
, (60)

where
κmTDĞ

(xi,yj) = DG1(yj)a+ κmTDĞ1

(xi),

κnTDĞ
(xi,yj) = DG1(yj)b+ κnTDĞ1

(xi),

αTDĞ
(xi,yj) = DG1(yj)c+ αTDĞ1

(xi),

βTDĞ
(xi,yj) = DG1(yj)d+ βTDĞ1

(xi).


(61)

Proof. Analogous to the proof of Theorems 4.11 and 4.14. □

5 Regular Linear Diophantine Fuzzy Graph Structures

In this section, we have defined the notions of ρ̆i-regular and regular LDFGSs. Some fascinating consequences
are also proved with illustrative examples.

Definition 5.1. An LDFGS Ğ is said to be
(
⟨a,b⟩, ⟨c,d⟩

)
-ρ̆i regular, if Dρ̆i(x) =

(
⟨a,b⟩, ⟨c,d⟩

)
, for all

x ∈ V . Moreover, Ğ is called
(
⟨a,b⟩, ⟨c,d⟩

)
-regular, if D(x) =

(
⟨a,b⟩, ⟨c,d⟩

)
, for all x ∈ V .

Example 5.2. From Example 3.2, we can easily see that Ğ is neither ρ̆1 nor ρ̆2 regular. Also, not regular
LDFGS.

Remark 5.3. The maximal product of two regular LDFGSs may not be regular, which can justified through
Example 5.4.

Example 5.4. Let V1 = {u1,u2}, V2 = {v1,v2}, E ′
1 = {(u1,u2)} and E ′′

1 = {(v1,v2)}. Then, G1 = (V1,E ′
1)

and G2 = (V2,E ′
2) are GSs.

...

u1
(
⟨0.6, 0.5⟩, ⟨0.4, 0.2⟩

)

..
u2

(
⟨0.5, 0.7⟩, ⟨0.3, 0.5⟩

)..

v1
(
⟨0.5, 0.6⟩, ⟨0.4, 0.5⟩

)

..
v2

(
⟨0.7, 0.6⟩, ⟨0.6, 0.4⟩

).

ρ̆ ′
1 (
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩ )

.

ρ̆ ′′1 (
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩ )

Figure 8: LDFGSs Ğ1 =
(
L1, ρ̆

′
1

)
and Ğ2 =

(
L2, ρ̆

′′
1

)
Consider LDFSs L1 on V1 and L2 on V2 which are given in TABLES 42 and 43, respectively.
LDFRs ρ̆′1 and ρ̆′′1 are exhibited in TABLES 44 and 45, respectively.
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Table 42: L1

V1

(
⟨κmL1

(x),κnL1
(x)⟩, ⟨αL1(x), βL1(x)⟩

)
u1

(
⟨0.6, 0.5⟩, ⟨0.4, 0.2⟩

)
u2

(
⟨0.5, 0.7⟩, ⟨0.3, 0.5⟩

)
Table 43: L2

V2

(
⟨κmL2

(x),κnL2
(x)⟩, ⟨αL2(x), βL2(x)⟩

)
v1

(
⟨0.5, 0.6⟩, ⟨0.4, 0.5⟩

)
v2

(
⟨0.7, 0.6⟩, ⟨0.6, 0.4⟩

)
Table 44: ρ̆′1

E ′
1

(
⟨κm

ρ̆′1
(x),κn

ρ̆′1
(x)⟩, ⟨αρ̆′1(x), βρ̆′1(x)⟩

)
(u1,u2)

(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
Table 45: ρ̆′′1

E ′′
1

(
⟨κm

ρ̆′′1
(x),κn

ρ̆′′1
(x)⟩, ⟨α

ρ̆′′1
(x), β

ρ̆′′1
(x)⟩

)
(v1,v2)

(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)

It becomes evident that Ğ1 = (V1, ρ̆′1) and Ğ2 = (V2, ρ̆′′1) are LDFGSs which are depicted in FIGURE 8
and they are

(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
-regular.

By employing Definition 4.1, we obtain the following LDFS L = L1 ∗ L2 given in TABLE 16 on V =
V1 × V2 =

{
(u1,v1), (u1,v2), (u2,v1), (u2,v2)

}
and LDFR ρ̆1 = ρ̆′1 ∗ ρ̆′′1 shown in L on V is calculated in

TABLE 46 on E1 = E ′
1 × E ′′

1 =
{
(u1v1,u1v2), (u1v1,u2v1), (u1v2,u2v2), (u2v1,u2v2)

}
. LDFR ρ̆1 = ρ̆′1 × ρ̆′′1

is calculated in Table 47.

Then the maximal LDFGS Ğ = Ğ1 ∗ Ğ2 =
(
L, ρ̆1

)
is portrayed in FIGURE 9.

Table 46: L = L1 ∗ L2

V
(
⟨κmL (x,y),κnL(x,y)⟩, ⟨αL(x,y), βL(x,y)⟩

)
(u1,v1)

(
⟨0.6, 0.5⟩, ⟨0.4, 0.2⟩

)
(u1,v2)

(
⟨0.7, 0.5⟩, ⟨0.6, 0.2⟩

)
(u2,v1)

(
⟨0.5, 0.6⟩, ⟨0.4, 0.5⟩

)
(u2,v2)

(
⟨0.7, 0.6⟩, ⟨0.6, 0.4⟩

)
From Definition 4.6, we can calculate the ρ̆1-degrees of each vertex of L as follows:
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...(u2,v1)
(
⟨0.5, 0.6⟩, ⟨0.4, 0.5⟩

) ..

(u2,v2, )
(
⟨0.7, 0.6⟩, ⟨0.6, 0.4⟩

)

.. (u1,v2)
(
⟨0.7, 0.5⟩, ⟨0.6, 0.2⟩

)..

(u1,v1)
(
⟨0.6, 0.5⟩, ⟨0.4, 0.2⟩

)

.

ρ̆ 1
( ⟨0

.8
, 0
.4
⟩,
⟨0
.5
, 0
.2
⟩
)

.

ρ̆
1 (

⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩ )

.

ρ̆ 1
( ⟨0

.8
, 0
.4
⟩,
⟨0
.5
, 0
.2
⟩
)

.

ρ̆
1 (
⟨0.8, 0.4⟩, ⟨0.6, 0.5⟩ )

Figure 9: The maximal LDFGS Ğ = Ğ1 ∗ Ğ2

Table 47: ρ̆1 = ρ̆′1 × ρ̆′′1

E1

(
⟨κmρ̆1(x1y1,x2y2),κnρ̆1(x1y1,x2y2)⟩, ⟨αρ̆1(x1y1,x2y2), βρ̆1(x1y1,x2y2)⟩

)
(u1v1,u1v2)

(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
(u1v1,u2v1)

(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
(u1v2,u2v2)

(
⟨0.8, 0.4⟩, ⟨0.6, 0.5⟩

)
(u2v1,u2v2)

(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)

Dρ̆1(u1,v1) =
(
⟨κmρ̆1(u1v1,u1v2) + κmρ̆1(u1v1,u2v1),κnρ̆1(u1v1,u1v2) + κnρ̆1(u1v1,u2v1)⟩,

⟨αρ̆1(u1v1,u1v2) + αρ̆1(u1v1,u2v1), βρ̆1(u1v1,u1v2) + βρ̆1(u1v1,u2v1)⟩
)

=
(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
+
(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
=
(
⟨1.6, 0.8⟩, ⟨1, 0.4⟩

)
Similarly,

Dρ̆1(u1,v2) =
(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
+
(
⟨0.8, 0.4⟩, ⟨0.6, 0.2⟩

)
=
(
⟨1.6, 0.8⟩, ⟨1.1, 0.4⟩

)
Dρ̆1(u2,v1) =

(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
+
(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
=
(
⟨1.6, 0.8⟩, ⟨1, 0.4⟩

)
Dρ̆1(u2,v2) =

(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
+
(
⟨0.8, 0.4⟩, ⟨0.5, 0.2⟩

)
=
(
⟨1.6, 0.8⟩, ⟨1, 0.4⟩

)
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Clearly, Ğ is not regular since Dρ̆1(u1,v1) =
(
⟨1.6, 0.8⟩, ⟨1, 0.4⟩

)
̸=
(
⟨1.6, 0.8⟩, ⟨1.1, 0.4⟩

)
= Dρ̆1(u1,v2).

Theorem 5.5. If Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, ..., ρ̆

′
k

)
is
(
⟨r, s⟩, ⟨s, t⟩

)
-regular LDFGS and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, ..., ρ̆

′′
k

)
is an LDFGS, such that ρ̆′′i ⊇ L1, i = 1, 2, ..., k, and L2 is constant LDFS of LDF value

(
⟨a, b⟩, ⟨c, d⟩

)
, where

a, b, c, d ∈ [0, 1] are fixed, then maximal product Ğ = Ğ1 ∗ Ğ2 is regular if and only if Ğ2 is regular.

Proof. Let Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, ..., ρ̆

′
k

)
be partially regular LDFGS and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, ..., ρ̆

′′
k

)
be an

LDFGS, such that ρ̆′′i ⊇ L1, i = 1, 2, ..., k, and L2 =
(
⟨a, b⟩, ⟨c, d⟩

)
be a constant LDFGS. Then,

DĞ (xi,yj) =
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
where

κmDĞ
(xi,yj) = DG1(xi)a+ κmDĞ2

(yj);

κnDĞ
(xi,yj) = DG1(xi)b+ κnDĞ2

(yj);

αDĞ
(xi,yj) = DG1(xi)c+ αDĞ2

(yj);

βDĞ
(xi,yj) = DG1(xi)d+ βDĞ2

(yj).

This holds for all vertices of V = V1 × V2. Hence, maximal product Ğ = Ğ1 ∗ Ğ2 is regular.
Conversely, suppose that maximal product Ğ = Ğ1 ∗ Ğ2 is regular. Then, for any two vertices of V = V1×V2,

κmDĞ
(x1,y1) = κmDĞ

(x2,y2)

⇒ DG1(x1)a+ κmDĞ2

(y1) = DG1(x2)a+ κmDĞ2

(y2)

⇒ ra+ κmDĞ2

(y1) = ra+ κmDĞ2

(y2)

⇒ κmDĞ2

(y1) = κmDĞ2

(y2)

Similarly, κnDĞ
(x1,y1) = κnDĞ

(x2,y2) implies that κnDĞ2

(y1) = κnDĞ2

(y2); αDĞ
(x1,y1) = αDĞ

(x2,y2) implies

that αDĞ2
(y1) = αDĞ2

(y2); βDĞ
(x1,y1) = βDĞ

(x2,y2) implies that βDĞ2
(y1) = βDĞ2

(y2). This holds for all

vertices of Ğ2. Hence, Ğ2 is regular LDFGS. □

Theorem 5.6. If Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, ..., ρ̆

′
k

)
is partially regular LDFGS and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, ..., ρ̆

′′
k

)
is

an LDFGS, such that ρ̆′i ⊇ L2, i = 1, 2, ..., k, and L2 is constant LDFS of LDF value
(
⟨a, b⟩, ⟨c, d⟩

)
, where

a, b, c, d ∈ [0, 1] are fixed, then maximal product Ğ = Ğ1 ∗ Ğ2 is regular if and only if Ğ1 is regular.

Proof. Suppose with the given assumptions, we have from Theorem 4.11,

DĞ (xi,yj) =
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
,

where

κmDĞ
(xi,yj) = κmDĞ1

(xi) + DG2(yj)a;

κnDĞ
(xi,yj) = κnDĞ1

(xi) + DG2(yj)b;

αDĞ
(xi,yj) = αDĞ1

(xi) + DG2(yj)c;

βDĞ
(xi,yj) = βDĞ1

(xi) + DG2(yj)d.
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which holds for all vertices of V = V1 × V2. Hence, maximal product Ğ = Ğ1 ∗ Ğ2 is regular.
Conversely, assume that maximal product Ğ = Ğ1 ∗ Ğ2 is regular. Then for any two vertices of V = V1 × V2,
we have:

κmDĞ
(x1,y1) = κmDĞ

(x2,y2)

κmDĞ1

(x1) + κmDĞ1

(y1)κmL1
(x1) = κmDĞ1

(x2) + κmDĞ1

(y2)κmL1
(x2)

κmDĞ1

(x1) + r2a = κmDĞ1

(x2) + r2a

κmDĞ1

(x1) = κmDĞ1

(x2)

Similarly, κnDĞ
(x1,y1) = κnDĞ

(x2,y2) implies that κnDĞ1

(x1) = κnDĞ1

(x2); αDĞ
(x1,y1) = αDĞ

(x2,y2) implies

that αDĞ1
(x1) = αDĞ1

(x2); βDĞ
(x1,y1) = βDĞ

(x2,y2) implies that βDĞ1
(x1) = βDĞ1

(x2). This proves that

Ğ1 regular LDFGS. □

Theorem 5.7. If Ğ1 =
(
L1, ρ̆′1, ρ̆

′
2, ..., ρ̆

′
k

)
and Ğ2 =

(
L2, ρ̆′′1, ρ̆

′′
2, ..., ρ̆

′′
k

)
are two

(
⟨r1, s1⟩, ⟨t1, u1⟩

)
-regular

and
(
⟨r2, s2⟩, ⟨t2, u2⟩

)
-regular LDFGSs, respectively, such that ρ̆′′i ⊆ L1 and ρ̆′′i ⊆ L2, i = 1, 2, ..., k and L2 is a

constant LDFS of LDF value
(
⟨a, b⟩, ⟨c, d⟩

)
, where a, b, c, d ∈ [0, 1] are fixed, then maximal product Ğ = Ğ1∗Ğ2

is regular if and only if L1 is a constant LDFS of LDF value
(
⟨a′, b′⟩, ⟨c′, d′⟩

)
, where a′, b′, c′, d′ ∈ [0, 1] are

fixed.

Proof. With the given assumptions, we have from Theorem 4.12,

DĞ (xi,yj) =
(⟨

κmDĞ
(xi,yj),κnDĞ

(xi,yj)
⟩
,
⟨
αDĞ

(xi,yj), βDĞ
(xi,yj)

⟩)
,

where

κmDĞ
(xi,yj) = DG1(xi)κ

m
L2
(yj) + DG2(yj)κ

m
L1
(xi) = r1a+ r2a

′;

κnDĞ
(xi,yj) = DG1(xi)κ

n
L2
(yj) + DG2(yj)κ

n
L1
(xi) = s1b+ s2b

′;

αDĞ
(xi,yj) = DG1(xi)αL2(yj) + DG2(yj)αL1(xi) = t1c+ t2c

′;

βDĞ
(xi,yj) = DG1(xi)βL2(yj) + DG2(yj)βL1(xi) = u1d+ u2d

′;

which holds for all vertices of V = V1 × V2. Hence, Ğ = Ğ1 ∗ Ğ2 is regular.
Conversely, assume that Ğ = Ğ1 ∗ Ğ2 is regular. For any two vertices of V = V1 × V2, we have:

κmDĞ
(x1,y1) = κmDĞ

(x2,y2)

DG1(x1)κmL2
(y1) + DG2(y1)κmL1

(x1) = DG1(x2)κmL2
(y2) + DG2(y2)κmL1

(x2)

r1κmL2
(x1) + r2κmL1

(x1) = r1κmL2
(y1) + r2κmL1

(x1)

κmL2
(x1) = κmL2

(y1)

Similarly, κnDĞ
(x1,y1) = κnDĞ

(x2,y2) implies κnL2
(x1) = κnL2

(y1); αDĞ
(x1,y1) = αDĞ

(x2,y2) implies αL2(x1) =

αL2(y1); βDĞ
(x1,y1) = βDĞ

(x2,y2) implies βL2(x1) = βL2(y1), which holds for all vertices of G1. Hence, L1

is constant LDFS. □

6 Conclusion

Graphs are used in various applications such as social networks, recommendation systems, routing algorithms,
and many more. A GS has n mutually disjoint, symmetric and irreflexive relations. Understanding these
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structures and their properties is key to leveraging graphs effectively in solving real-world problems. However,
in certain scenarios, several features of GT might be uncertain. FGSs have many advantages to cope with
vagueness and uncertainty. FGSs are more advantageous to circumvent uncertainty. In this research study,
we have applied the notion of LDFSs to GSs and introduced a novel concept LDFGS. We have defined ρ̆i-
edge, ρ̆i-path, strength of ρ̆i-path, ρ̆i-strength of connectedness, ρ̆i-degree of a vertex, vertex degree, total
ρ̆i-degree of a vertex, and total vertex degree in an LDFGS. Also, we have introduced the ρ̆i-size, size, and
order of an LDFGS. Moreover, the ideas of the maximal product of two LDFGSs, strong LDFGS, degree and
ρ̆i-degree of the maximal product, ρ̆i-regular and regular LDFGS are introduced, along with examples for
clarification. Certain significant results related to the proposed concepts also demonstrated with explanatory
examples such as the maximal product of two strong LDFGSs is also a strong LDFGS, the maximal product
of two connected LDFGSs is also a connected LDFGS but the maximal product of two regular LDFGS may
not be a regular LDGS. Moreover, many interesting and alternative formulas for calculating ρ̆i-degrees of an
LDFGS in various situations are proved with examples. LDFGSs are highly beneficial for solving numerous
combinatorial problems involving multiple relations than the existing GSs in the context of FS, IFS, PFS and
q-ROFS. LDFGSs as an extension of IFGS and LDFG to GSs deals the graph theoretical aspects in more
appropriate way due to their flexibility in selecting MD and NMD alongside their reference parameters.

In the future, we aim to extend our approach to (1) rough linear Diophantine fuzzy graph structures, (2)
rough linear Diophantine fuzzy soft graph structures, (3) linear Diophantine fuzzy soft graph structures, and
(4) Spherical linear Diophantine fuzzy graph structures.
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Abstract. This work presents a modified Pythagorean fuzzy similarity operator and utilizes its potential in the
analysis of questionnaire. Similarity operator is a formidable methodology for decision-making under uncertain
domains. Pythagorean fuzzy set is an extended form of intuitionistic fuzzy set with a better accuracy in complex
real-world applications. Lots of discussions bordering on the uses of Pythagorean fuzzy sets have been explored based
on Pythagorean fuzzy similarity operators. Among the extant Pythagorean fuzzy similarity operators, the work
of Zhang et al. is significant but it contains some flaws which need to be corrected/modified to enhance reliable
interpretation. To this end, this work explicates the Zhang et al.’s techniques of Pythagorean fuzzy similarity
operator by pinpointing their drawbacks to develop an enhanced Pythagorean fuzzy similarity operator, which
appropriately satisfies the similarity conditions and yields consistent results in comparison to the Zhang et al.’s
techniques. Succinctly speaking, the aim of the work is to correct the flaws in Zhang et al.’s techniques via
modifications. To theoretically validate the enhanced Pythagorean fuzzy similarity operator, we discuss it properties
and find out that the similarity conditions are well satisfied. In addition, the enhanced PFSO and the Zhang et al.’s
PFSOs are compared in the context of precision, and it is verified that the enhanced Pythagorean fuzzy similarity
operator can successfully measure the similarity between vastly related but inconsistent PFSs and as well yields a
very reasonable results. Furthermore, the enhanced Pythagorean fuzzy similarity operator is applied to the analysis
of questionnaire on virtual library to ascertain the extent of awareness and effects of virtual library on students’
academic performance via real data collected from fieldwork. Finally, it is certified that the enhanced Pythagorean
fuzzy similarity operator can handle diverse everyday problems more precisely than the Zhang et al.’s Pythagorean
fuzzy similarity operators.
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1 Introduction

The occurrence of vagueness and uncertainty in decision-making (DM) is a common experience witnessed by
decision-makers. Due to this, fuzzy set (FS) [1] was introduced to curbed uncertainty but imprecision could
not be tackled by FS. To resolve the problem of imprecision, intuitionistic fuzzy set (IFS) was developed [2],
and it has been widely used to discuss practical DM problems. IFS is described by membership degree
(MD) and non-membership degree (ND), where their sum cannot exceeds one. Several practical problems
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have been solved via IFS in real-life problems using distance operators [3–5], aggregation operators [6], and
partial correlation coefficient operator [7]. In addition, other applications of IFSs have been discussed in
medical emergency [8], selection of artificial intelligence [9], admission process [10], and decision-making [11].
The similarity metric is a vital research aspect in FS and its generalizations, and it is useful in determining
the similarity index between two objects. Several techniques of similarity operator between IFS have been
developed and gainfully applied in many fields, like pattern recognition [12], disaster control [13] and medical
diagnostic problems [14]. From the ongoing, it is clear that similarity operators of IFSs have been effectively
used in sundry fields, but there are some cases where IFSs cannot be utilized. For instance, if a decision maker
has MD as 0.7 and ND as 0.5, then the IFS model cannot be applicable.

By extending the spatial scope of IFS, the term “IFS of type 2” or Pythagorean fuzzy set (PFS) was
developed [15, 16]. In PFS, the sum of MD and ND may exceeds one but the square sum of MD and ND is
at most one. PFS has a wider dimension of utilizations compare to IFS. In a way to discuss the usefulness of
PFSs, a number of aggregation operators were discussed like Einstein operators, interactive power averaging
operator, geometric aggregation operators using Einstein t-conorm and t-norm [17–19] to illustrate some DM
problems. In the same vein, PFSs are pretty applicable in DM problems based on correlation coefficient
operators [20–23] and distance operators [24–31]. Moreover, Hemalatha and Venkateswarlu [32] used PFSs to
discuss transportation problem using mean square approach, Li et al. [33] presented an analysis of football
activities using Pythagorean fuzzy approach, and various applications of PFSs have been discussed in decision-
making [34–37].

In a clear term, PFS is a special case of IFS, which is fashioned to deal with some problems in which
IFS is inadmissible. For that reason, the application of similarity operators on PFSs is of great important.
The studies on similarity operators on PFS are carried out by modifying similar studies under IFSs. Zeng
et al. [31] presented some methods of similarity operators between PFSs using some distance operators since
both similarity operator and distance operator are dual in nature. Peng et al. [38] constructed some similarity
operators for PFSs and used same in clustering analysis, medical diagnosis and pattern recognition. To
compute the similarity between PFSs, Zhang [39] developed a similarity operator on PFSs and used it to discuss
multi-criteria decision-making (MCDM) problems. Wei and Wei [40] constructed several similarity operators
on PFSs through cosine function with applications in health science and pattern recognition. Recently, Zhang
et al. [41] developed four methods of Pythagorean fuzzy similarity operator (PFSO), which were utilized to
discuss pattern recognition problems. While the first two methods in [41] discarded the hesitation margins, the
other two took into account the whole parameters of PFSs for e reliable outcomes. Nonetheless, the methods
produce identical value other than one whenever the PFSs are equal, which is a violation of the similarity
axioms and thus render the methods unreliable.

The interest of this work is to provide corrections to the four similarity operators between PFSs constructed
in [41] by providing a new similarity operator between PFSs, which is the product of the hybridization of the
four similarity operators. For emphasis, similarity operators in [41] have the following setbacks: (1) they fail
to fulfill the similarity conditions if the PFSs are equal; (2) they yield similarity values that are not defined
within the similarity value range, and thus lack practical interpretation. To this end, this paper proposes
a hybridized similarity operator that corrects the work of Zhang et al. [41], and proves that the corrected
version can successfully solve the mentioned setbacks observed in [41] via comparative examples using real
collected data. This work contributes to the study of similarity operator under uncertain environments, soft
computing, questionnaire analysis, and decision-making procedures.

The article is structured as follows: Section 2 recaps certain properties of PFSs; Section 3 discusses the
Zhang et al.’s PFSOs and their setbacks; Section 4 provides solution to the setbacks in Zhang et al.’s PFSOs
and discusses the properties of the modified PFSO; Section 5 discusses the application of the corrected Zhang
et al.’s PFSOs in the analysis of questionnaire, and as well as, presents a comparative analysis to express the
advantage of the corrected versions; and Section 6 concludes the paper with suggestions for future inquiries.
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2 Preliminaries

This section discusses properties of PFSs and the Zhang et al’s similarity functions. For clarity sake, assume
A to be the universe of discourse, ℘ as IFS, and ℓ as PFS.

Definition 2.1. [2]An IFS ℘ in A is defined by ℘ = {
(
a,M℘(a), N℘(a)

)
: a ∈ A}, where M℘ : A→ [0, 1] and

N℘ : A→ [0, 1] are MD and NMD of a ∈ A in which

0 ≤M℘(a) +N℘(a) ≤ 1.

In addition, HM of ℘ in A is defined by H℘(a) = 1−M℘(a)−N℘(a).

Definition 2.2. [16] A PFS ℓ in A is defined by ℓ = {
(
a,Mℓ(a), Nℓ(a)

)
: a ∈ A}, where Mℓ : A→ [0, 1] and

Nℓ : A→ [0, 1] are MD and NMD of a ∈ A in which

0 ≤M2
ℓ (a) +N2

ℓ (a) ≤ 1.

In addition, HM of ℓ in A is defined by Hℓ(a) =
√
1−M2

ℓ (a)−N2
ℓ (a).

Now, we present some operations on PFSs as follows:

Definition 2.3. [16] If ℓ, ℓ1 and ℓ2 are PFSs in A, then

(i) ℓ1 ⪯ ℓ2 iff Mℓ1(a) ⪯Mℓ2(a) and Nℓ1(a) ⪯ Nℓ2(a) ∀a ∈ A.

(ii) ℓ1 = ℓ2 iff Mℓ1(a) =Mℓ2(a) and Nℓ1(a) = Nℓ2(a) ∀a ∈ A.

(iii) ℓ1 ⊆ ℓ2 iff Mℓ1(a) ≤Mℓ2(a) and Nℓ1(a) ≥ Nℓ2(a) ∀a ∈ A.

(iv) ℓ = {
(
a,Nℓ(a),Mℓ(a)

)
: a ∈ A}.

(v) ℓ1 ∩ ℓ2 = {
(
a,min{Mℓ1(a),Mℓ2(a)},max{Nℓ1(a), Nℓ2(a)}

)
: a ∈ A}.

(vi) ℓ1 ∪ ℓ2 = {
(
a,max{Mℓ1(a), Nℓ2(a)},min{Nℓ1(a), Nℓ2(a)}

)
: a ∈ A}.

One of the means to estimate the similarity between PFSs is via similarity measure between them.

Definition 2.4. [1] If ℓ, ℓ1 and ℓ2 are PFSs in A = {a1, a2, · · · , aQ}, then the similarity metric between ℓ1
and ℓ2 represented by Γ(ℓ1, ℓ2) is a function, Γ: PFS × PFS → [0, 1] such that:

(i) Γ(ℓ1, ℓ1) = 1, Γ(ℓ2, ℓ2) = 1,

(ii) Γ(ℓ1, ℓ2) = 1 ⇔ ℓ1 = ℓ2,

(iii) 0 ≤ Γ(ℓ1, ℓ2) ≤ 1,

(iv) Γ(ℓ1, ℓ2) = Γ(ℓ2, ℓ1),

(v) Γ(ℓ1, ℓ) ≤ Γ(ℓ1, ℓ2) + Γ(ℓ2, ℓ).

In short, Γ(ℓ1, ℓ2) ≈ 1 implies there is high similarity between ℓ1 and ℓ2, and Γ(ℓ1, ℓ2) ≈ 0 implies there is
a negligible similarity between ℓ1 and ℓ2.
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3 Zhang et al.’s PFSOs and Numerical Illustrations

The exponential-based techniques of similarity operators under PFSs were presented by Zhang et al. [41]
because of the failures of some existing approaches of PFSOs. Zhang et al. developed four exponential
based-similarity operators, enumerated as follows:

Γ1(ℓ1, ℓ2) =
1

Q
ΣQj=1

[
2
1−max{|M2

ℓ1
(aj)−M2

ℓ2
(aj)|,|N2

ℓ1
(aj)−N2

ℓ2
(aj)|

}
− 1
]
, (1)

Γ2(ℓ1, ℓ2) =
1

Q
ΣQj=1

[
21−

|M2
ℓ1

(aj)−M2
ℓ2

(aj)|+|N2
ℓ1

(aj)−N2
ℓ2

(aj)|

2 − 1
]
, (2)

Γ3(ℓ1, ℓ2) =
1

Q
ΣQj=1

[
2
1−max{|M2

ℓ1
(aj)−M2

ℓ2
(aj)|,|N2

ℓ1
(aj)−N2

ℓ2
(aj)|,|H2

ℓ1
(aj)−H2

ℓ2
(aj)|

}
− 1
]
, (3)

Γ3(ℓ1, ℓ2) =
1

Q
ΣQj=1

[
21−

|M2
ℓ1

(aj)−M2
ℓ2

(aj)|+|N2
ℓ1

(aj)−N2
ℓ2

(aj)|+|H2
ℓ1

(aj)−H2
ℓ2

(aj)|

2 − 1
]
, (4)

where ℓ1 and ℓ2 are the PFSs defined in A, aj ∈ A and |A| = Q. The similarity methods in (1) and
(2) excluded the hesitation margins, which makes the approaches defective. Nonetheless, (1) and (2) were
enhanced as (3) and (4), respectively, to yield reliable results. Howbeit, all these methods yield similar results,
most especially, as the hesitation margins become small and for smaller Q. We show the defectiveness of these
methods in the following examples:

Example 3.1. Suppose we have two PFSs ℓ1 and ℓ2 defined in A = {a1, a2, a3} as follows:

ℓ1 = {(a1, 0.5, 0.4), (a2, 0.8, 0.1), (a3, 0.7, 0.2)} = ℓ2

This is a case of equal PFSs, and we are expected to have Γ1(ℓ1, ℓ2) = Γ2(ℓ1, ℓ2) = Γ3(ℓ1, ℓ2) = Γ4(ℓ1, ℓ2) =
1. Then, by applying (1)–(4) we get

Γ1(ℓ1, ℓ2) =
21−0 − 1

3
= 0.3333

Γ2(ℓ1, ℓ2) =
21−0 − 1

3
= 0.3333

Γ3(ℓ1, ℓ2) =
21−0 − 1

3
= 0.3333

Γ4(ℓ1, ℓ2) =
21−0 − 1

3
= 0.3333,


,

which violate a similarity condition, i.e., Γ(ℓ1, ℓ2) = 1 ⇔ ℓ1 = ℓ2. Hence, these approaches need to be cor-
rected to satisfy the condition.

Again, we observe that these approaches sometimes produce results that are not within 0 ≤ Γ(ℓ1, ℓ2) ≤ 1,
as seen in Example 3.2.

Example 3.2. Suppose that
ℓ1 = {(a1, 1, 0), (a2, 0.8, 0), (a3, 0.7, 0.1)},
ℓ2 = {(a1, 0.8, 0.1), (a2, 1, 0), (0.9, 0.1)},
ℓ3 = {(a1, 0.6, 0.2), (a2, 0.8, 0), (1, 0)}

are PFSs in A = {a1, a2, a3}. In case there is another PFS defined by

ℓ = {(a1, 0.5, 0.3), (a2, 0.8, 0.2), (1, 0)}.
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Now, we apply the approaches to find the similarities between ℓ with each of ℓ1, ℓ2, and ℓ3, respectively,
and get the following results:

Γ1(ℓj , ℓ) = −0.0626, 0.0142, 0.2675

Γ2(ℓj , ℓ) = 0.077, 0.1268, 0.2887

Γ3(ℓj , ℓ) = −0.055, 0.0142, 0.2844

Γ4(ℓj , ℓ) = −0.0626, 0.0142, 0.2675

 ,

for j = 1, 2, 3. The negative similarity values proof the failure of the PFSOs. To solve these defectiveness, the
Zhang et al.’s techniques are corrected as follows:

4 Corrections to Zhang et al.’s PFSOs

Because of the problems associated with Zhang et al.’s methods, it is necessary to correct the methods to
enhance reliability, precision, and the satisfication of similarity conditions.

Definition 4.1. Suppose ℓ1 = {(aj ,Mℓ1(aj), Nℓ1(aj)) : aj ∈ A} and ℓ2 = {(aj ,Mℓ2(aj), Nℓ2(aj)) : aj ∈ A}
are PFSs for A = {a1, a2, · · · , aQ}, then the new similarity operator between ℓ1 and ℓ2, which corrects the
Zhang et al.’s PFSOs is defined by:

Γ̃∗(ℓ1, ℓ2) =

Q∑
j=i

[
2
1− 1

3Q

(∣∣M2
ℓ1
(aj)−M2

ℓ2
(aj)
∣∣+∣∣N2

ℓ1
(aj)−N2

ℓ2
(aj)
∣∣+∣∣H2

ℓ1
(aj)−H2

ℓ2
(aj)
∣∣)

− 1
]
. (5)

By incorporating the influence of weight of the elements of A, we have:

Γ̃(ℓ1, ℓ2) =

Q∑
j=i

[
2
1− 1

3
ωj

(∣∣M2
ℓ1
(aj)−M2

ℓ2
(aj)
∣∣+∣∣N2

ℓ1
(aj)−N2

ℓ2
(aj)
∣∣+∣∣H2

ℓ1
(aj)−H2

ℓ2
(aj)
∣∣)

− 1
]
, (6)

where ωj ∈ [0, 1] and
∑Q

j=1 ωj = 1.

If ωj =
(

1
Q ,

1
Q , · · · ,

1
Q

)T
, then (6) becomes (5). The first advantage of this corrected version is that, it

incorporates the complete parameters of the sets. We use (5) and (6) to find the similarity between equal
PFSs in Example 3.1 and get

Γ̃(ℓ1, ℓ2) = Γ̃∗(ℓ1, ℓ2) = 1,

which satisfies Γ(ℓ1, ℓ2) = 1 ⇔ ℓ1 = ℓ2. This is the second advantage of the corrected version over Zhang et
al.’s methods.

In addition, the corrected approaches produce results that are within 0 ≤ Γ(ℓ1, ℓ2) ≤ 1. To see this, we
consider Example 3.2 with ωj = {0.2, 0.4, 0.4}, and get the following results:

Γ̃(ℓj , ℓ) = 0.6857, 0.7427, 0.8251,

Γ̃∗(ℓj , ℓ) = 0.6371, 0.7304, 0.7956,

for j = 1, 2, 3. Clearly, these results are better than the results from Zhang et al.’s approaches. The results
from Zhang et al.’s methods and the corrected form are displayed in Table 1.
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Table 1: Results for Comparison
PFSOs Example 3.1 Example 3.2
Γ1 [41] 0.3333 −0.0626, 0.0142, 0.2675
Γ2 [41] 0.3333 0.0770, 0.1268, 0.2887
Γ3 [41] 0.3333 −0.0550, 0.0142, 0.2844
Γ4 [41] 0.3333 −0.0626, 0.0142, 0.2675

Γ̃∗ 1.0000 0.6371, 0.7304, 0.7956

The results in Table 1 justify the faults with the methods in [41] and the superiority of the corrected form.
While the results of Zhang et al.’s methods (i.e., Example 3.2) show that weak resemblance exist between
the PFSs, the new method shows that the PFSs are well related in agreement to mere observation. Now, we
characterize the corrected similarity operator theoretically.

Theorem 4.2. Suppose ℓ1 and ℓ2 are PFSs in A = {a1, a2, · · · , aQ}, then

(i) Γ̃(ℓ1, ℓ2) = Γ̃(ℓ2, ℓ1),

(ii) Γ̃(ℓ1, ℓ2) = Γ̃(ℓ1, ℓ2),

(iii) 0 ≤ Γ̃(ℓ1, ℓ2) ≤ 1,

(iv) Γ̃(ℓ1, ℓ2) = 1 ⇔ ℓ1 = ℓ2.

Proof. The prove of (i) follows because

Γ̃(ℓ1, ℓ2) =

Q∑
j=i

[
2
1− 1

3
ωj

(∣∣M2
ℓ1
(aj)−M2

ℓ2
(aj)
∣∣+∣∣N2

ℓ1
(aj)−N2

ℓ2
(aj)
∣∣+∣∣H2

ℓ1
(aj)−H2

ℓ2
(aj)
∣∣)

− 1
]

=

Q∑
j=i

[
2
1− 1

3
ωj

(∣∣M2
ℓ2
(aj)−M2

ℓ1
(aj)
∣∣+∣∣N2

ℓ2
(aj)−N2

ℓ1
(aj)
∣∣+∣∣H2

ℓ2
(aj)−H2

ℓ1
(aj)
∣∣)

− 1
]

= Γ̃(ℓ2, ℓ1).

Similarly, (ii) holds.

To prove 0 ≤ Γ̃(ℓ1, ℓ2) ≤ 1, it is sufficient to show that Γ̃(ℓ1, ℓ2) ≤ 1 since Γ̃(ℓ1, ℓ2) ≥ 0 is straightforward.

Assume that y = Γ̃(ℓ1, ℓ2) and x =
1

3

∑Q
j=1 ωj

(∣∣M2
ℓ1
(aj) −M2

ℓ2
(aj)

∣∣ + ∣∣N2
ℓ1
(aj) − N2

ℓ2
(aj)

∣∣ + ∣∣H2
ℓ1
(aj) −

H2
ℓ2
(aj)

∣∣), where x ∈ [0, 1]. Then, we have y = 21−x − 1, which is a curve function with values range from 0

to 1. Thus, 0 ≤ y ≤ 1 and hence, 0 ≤ Γ̃(ℓ1, ℓ2) ≤ 1 as desired, i.e., (iii) holds.
Next, we establish (iv). Suppose Γ̃(ℓ1, ℓ2) = 1. Then, we have

2
1− 1

3
ωj

(∣∣M2
ℓ1
(aj)−M2

ℓ2
(aj)
∣∣+∣∣N2

ℓ1
(aj)−N2

ℓ2
(aj)
∣∣+∣∣H2

ℓ1
(aj)−H2

ℓ2
(aj)
∣∣)

− 1 = 1 =⇒

2
1− 1

3
ωj

(∣∣M2
ℓ1
(aj)−M2

ℓ2
(aj)
∣∣+∣∣N2

ℓ1
(aj)−N2

ℓ2
(aj)
∣∣+∣∣H2

ℓ1
(aj)−H2

ℓ2
(aj)
∣∣)

= 2 =⇒

1− 1

3
ωj
(∣∣M2

ℓ1(aj)−M2
ℓ2(aj)

∣∣+ ∣∣N2
ℓ1(aj)−N2

ℓ2(aj)
∣∣+ ∣∣H2

ℓ1(aj)−H2
ℓ2(aj)

∣∣) = 1 =⇒

1

3
ωj
(∣∣M2

ℓ1(aj)−M2
ℓ2(aj)

∣∣+ ∣∣N2
ℓ1(aj)−N2

ℓ2(aj)
∣∣+ ∣∣H2

ℓ1(aj)−H2
ℓ2(aj)

∣∣) = 0 =⇒
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(∣∣M2
ℓ1(aj)−M2

ℓ2(aj)
∣∣+ ∣∣N2

ℓ1(aj)−N2
ℓ2(aj)

∣∣+ ∣∣H2
ℓ1(aj)−H2

ℓ2(aj)
∣∣) = 0 =⇒

Mℓ1(aj) =Mℓ2(aj), Nℓ1(aj) = Nℓ2(aj),Hℓ1(aj) = Hℓ2(aj).

Hence, ℓ1 = ℓ2.
Conversely, if ℓ1 = ℓ2. Then,

∣∣M2
ℓ1
(aj)−M2

ℓ2
(aj)

∣∣ = 0,
∣∣N2

ℓ1
(aj)−N2

ℓ2
(aj)

∣∣ = 0, and
∣∣H2

ℓ1
(aj)−H2

ℓ2
(aj)

∣∣ = 0.
Thus,

1

3
ωj
(∣∣M2

ℓ1(aj)−M2
ℓ2(aj)

∣∣+ ∣∣N2
ℓ1(aj)−N2

ℓ2(aj)
∣∣+ ∣∣H2

ℓ1(aj)−H2
ℓ2(aj)

∣∣) = 0,

and hence Γ̃(ℓ1, ℓ2) = 1.
□

Theorem 4.3. Suppose ℓ1 and ℓ2 are PFSs in A = {a1, a2, · · · , aQ}, then

(i) Γ̃∗(ℓ1, ℓ2) = Γ̃∗(ℓ2, ℓ1),

(ii) Γ̃∗(ℓ1, ℓ2) = Γ̃∗(ℓ1, ℓ2),

(iii) 0 ≤ Γ̃∗(ℓ1, ℓ2) ≤ 1,

(iv) Γ̃∗(ℓ1, ℓ2) = 1 ⇔ ℓ1 = ℓ2.

Proof. Follow from Theorem 4.2. □

Theorem 4.4. Given that ℓ1, ℓ2, and ℓ3 are PFSs in A = {a1, a2, · · · , aQ} such that ℓ1 ⊆ ℓ2 ⊆ ℓ3. Then

(i) Γ̃(ℓ1, ℓ3) ≤ Γ̃(ℓ1, ℓ2),

(ii) Γ̃(ℓ1, ℓ3) ≤ Γ̃(ℓ2, ℓ3),

(iii) Γ̃∗(ℓ1, ℓ3) ≤ Γ̃∗(ℓ1, ℓ2),

(iv ) Γ̃∗(ℓ1, ℓ3) ≤ Γ̃∗(ℓ2, ℓ3).

Proof. Because ℓ1 ⊆ ℓ2 ⊆ ℓ3, we have Mℓ1(aj) ≤ Mℓ2(aj) ≤ Mℓ3(aj) and Nℓ1(aj) ≤ Nℓ2(aj) ≤ Nℓ3(aj)
∀aj ∈ A. Thus, ∣∣M2

ℓ1(aj)−M2
ℓ3(aj)

∣∣ ≥ ∣∣M2
ℓ1(aj)−M2

ℓ2(aj)
∣∣,∣∣N2

ℓ1(aj)−N2
ℓ3(aj)

∣∣ ≥ ∣∣N2
ℓ1(aj)−N2

ℓ2(aj)
∣∣,∣∣H2

ℓ1(aj)−H2
ℓ3(aj)

∣∣ ≥ ∣∣H2
ℓ1(aj)−H2

ℓ2(aj)
∣∣,

such that ∣∣M2
ℓ1(aj)−M2

ℓ3(aj)
∣∣+ ∣∣N2

ℓ1(aj)−N2
ℓ3(aj)

∣∣
+
∣∣H2

ℓ1(aj)−H2
ℓ3(aj)

∣∣ ≥ ∣∣M2
ℓ1(aj)−M2

ℓ2(aj)
∣∣

+
∣∣N2

ℓ1(aj)−N2
ℓ2(aj)

∣∣+ ∣∣H2
ℓ1(aj)−H2

ℓ2(aj)
∣∣.

Clearly, Γ̃(ℓ1, ℓ3) ≤ Γ̃(ℓ1, ℓ2) which proves (i). By using the same logic, the proofs of (ii), (iii), and (iv) hold.
□

Corollary 4.5. If ℓ1, ℓ2, and ℓ3 are PFSs in A = {a1, a2, · · · , aQ} and ℓ1 ⊆ ℓ2 ⊆ ℓ3. Then Γ̃(ℓ1, ℓ3) ≤
min

{
Γ̃(ℓ2, ℓ3), Γ̃(ℓ1, ℓ2)

}
and Γ̃∗(ℓ1, ℓ3) ≤ min

{
Γ̃∗(ℓ2, ℓ3), Γ̃∗(ℓ1, ℓ2)

}
.
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Proof. From Theorem 4.4, Γ̃(ℓ1, ℓ3) ≤ Γ̃(ℓ1, ℓ2) and Γ̃(ℓ1, ℓ3) ≤ Γ̃(ℓ2, ℓ3). Hence, Γ̃(ℓ1, ℓ3) ≤ min
{
Γ̃(ℓ2, ℓ3), Γ̃(ℓ1, ℓ2)

}
.

Similarly, Γ̃∗(ℓ1, ℓ3) ≤ min
{
Γ̃∗(ℓ2, ℓ3), Γ̃∗(ℓ1, ℓ2)

}
. □

Theorem 4.6. Suppose ℓ1 ⊆ ℓ2 ⊆ ℓ3 are PFSs in A = {a1, a2, · · · , aQ}, then

(i) Γ̃(ℓ1, ℓ2) + Γ̃(ℓ2, ℓ3) ≥ Γ̃(ℓ1, ℓ3),

(ii) Γ̃∗(ℓ1, ℓ2) + Γ̃∗(ℓ2, ℓ3) ≥ Γ̃∗(ℓ1, ℓ3),

(iii) Γ̃(ℓ1, ℓ2) = Γ̃(ℓ1 ∩ ℓ2, ℓ1 ∪ ℓ2),

(iv) Γ̃∗(ℓ1, ℓ2) = Γ̃∗(ℓ1 ∩ ℓ2, ℓ1 ∪ ℓ2).

Proof. Suppose ℓ1 ⊆ ℓ2 ⊆ ℓ3. Then, Γ̃(ℓ1, ℓ3) ≤ Γ̃(ℓ1, ℓ2) and Γ̃(ℓ1, ℓ3) ≤ Γ̃(ℓ2, ℓ3) from Theorem 4.4. Thus,
Γ̃(ℓ1, ℓ3) ≤ Γ̃(ℓ1, ℓ2) + Γ̃(ℓ2, ℓ3), which proves (i). Similarly, (ii) follows from (i).

The proof of (iii) follows by using intersection and union of PFSs in terms of Γ̃. Thus,

Γ̃(ℓ1 ∩ ℓ2, ℓ1 ∪ ℓ2) =
Q∑
j=i

[
2× 2

2
3
ωj

∣∣(min{Mℓ1
(aj),Mℓ2

(aj)}
)2

−
(
max{Mℓ1

(aj),Mℓ2
(aj)}

)2∣∣
× 2

−ωj

(∣∣(max{Nℓ1
(aj),Nℓ2

(aj)}
)2

−
(
min{Nℓ1

(aj),Nℓ2
(aj)}

)2∣∣+∣∣H2
ℓ1∩ℓ2

(aj)−H2
ℓ1∪ℓ2

(aj)
∣∣)

− 1
]

=

Q∑
j=i

[
2× 2

2
3
ωj

∣∣M2
ℓ1
(aj)−M2

ℓ2
(aj)
∣∣
× 2

−ωj

(∣∣N2
ℓ1
(aj)−N2

ℓ2
(aj)
∣∣+∣∣H2

ℓ1
(aj)−H2

ℓ2
(aj)
∣∣)

− 1
]

= Γ̃(ℓ1, ℓ2),

which proves (iii). The proof of (iv) is similar to (iii). □

5 Application in Questionnaire Analysis

This section deliberates on the use of the new PFSO in the analysis of questionnaire due to the fuzziness in
filling questionnaire. The questionnaire is constructed to measure the extents of awareness and use of virtual
library esources (VLR) by undergraduate medical students. Virtual library (VL) is the incorporation of ICT
into library services, and this has brought remarkable progress in the academic performance of students in
universities [42]. The majority of works done on virtual library made used of questionnaire to decide their
aim and objectives. The process of filling questionnaire is characterized with hesitation on the part of the
respondents and equally, some of the questions in the questionnaire could be ambiguous. This is the reason
why PFS is necessary for questionnaire analysis. This work is governed by the following questions, namely:
(i) what is the level of awareness of the VLR in the department by the students? (ii) what are the effects of
VL on the medical students’ academic wellbeing in the department?

5.1 Data description and presentation

The data for the analysis is drawn from 198 students in the Department of Medicine and Surgery, Benue State
University, Makurdi, Nigeria. 198 students out of the 392 students in the department are gotten by using the
Yamane’s sampling technique [43]. The collected data are presented in Tables 2 and 3, where strongly agree
is represented by ℓ1, agree is ℓ2, disagree is ℓ3, strongly disagree is ℓ4, and the questions are Q1, Q2, Q3, Q4

and Q5, respectively.
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Table 2: Level of Awareness on the Availability of VL
Questions/Scales ℓ1 % ℓ2 % ℓ3 % ℓ4 %

Q1 95 48 63 31.8 22 11.1 18 9.1
Q2 68 34.3 51 25.8 49 24.7 30 15.2
Q3 39 19.7 50 25.3 78 39.4 31 15.7
Q4 34 17.2 78 39.4 65 32.8 21 10.6
Q5 105 53 73 36.9 16 8.1 4 2

Table 3: Effects of VL on Academic Performance
Questions/Scales ℓ1 % ℓ2 % ℓ3 % ℓ4 %

Q1 47 23.7 81 40.9 45 22.7 25 12.6
Q2 51 25.8 75 37.9 46 23.2 26 13.1
Q3 34 17.2 83 41.9 50 25.3 31 15.7
Q4 42 21.2 72 36.4 57 28.8 27 13.6
Q5 52 26.3 62 31.3 56 28.3 28 14.1

Due to the fuzziness in filling the questionnaire, we transform the data in Tables 2 and 3 into PFD as
displayed in Tables 4 and 5, by taking the percentages of each of the scales as the MGs while 1−MGs are the
NMGs.

Table 4: Data on Level of Awareness of VL
Scales Q1 Q2 Q3 Q4 Q5

ℓ1 (0.480, 0.520) (0.343, 0.657) (0.197, 0.803) (0.172, 0.828) (0.53, 0.47)
ℓ2 (0.318, 0.682) (0.258, 0.742) (0.253, 0.747) (0.394, 0.606) (0.369, 0.631)
ℓ3 (0.111, 0.889) (0.247, 0.753) (0.394, 0.606) (0.328, 0.672) (0.081, 0.919)
ℓ4 (0.091, 0.909) (0.152, 0.848) (0.157, 0.843) (0.106, 0.894) (0.02, 0.98)

Table 5: Data on Effects of Virtual Library
Scales Q1 Q2 Q3 Q4 Q5

ℓ1 (0.237, 0.763) (0.258, 0.742) (0.172, 0.828) (0.212, 0.788) (0.263, 0.737)
ℓ2 (0.409, 0.591) (0.379, 0.621) (0.419, 0.581) (0.364, 0.636) (0.313, 0.687)
ℓ3 (0.227, 0.773) (0.232, 0.768) (0.253, 0.747) (0.288, 0.712) (0.283, 0.717)
ℓ4 (0.126, 0.874) (0.131, 0.869) (0.157, 0.843) (0.136, 0.864) (0.141, 0.859)

Now, we find the similarity between the scales in Tables 4 and 5 using the new similarity operator (5) and
get the outcomes in Table 6, which are presented in Figure 1.

Table 6: Results for Analysis
Awareness/Effects Γ̃∗(ℓ1, ℓ2) Γ̃∗(ℓ1, ℓ3) Γ̃∗(ℓ1, ℓ4) Γ̃∗(ℓ2, ℓ3) Γ̃∗(ℓ2, ℓ4) Γ̃∗(ℓ3, ℓ4)

Awareness 0.8410 0.6950 0.6994 0.8128 0.7129 0.8243
Effects 0.8178 0.9408 0.8692 0.8545 0.6990 0.8323
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Figure 1: Plot of Results

From these results, for the case of level of awareness of VL, we see that the similarity between SA and A
(i.e., SAA) is the greatest, which implies that the undergraduate medical students are aware of the virtual
library resources in their department. Similarly, for the case of effects of virtual library, it is observed that
the similarity between SA and D (i.e., SAD) is the closest, which implies that the effect of virtual library on
the academic performance of the students is not satisfactory.

5.2 Comparison I

To determine the effectiveness of the corrected similarity method, we show its results side by side with the
results from the methods in [41]. The comparative results are expressed in Tables 7 and 8.

Table 7: Level of Awareness of VL
Methods (ℓ1, ℓ2) (ℓ1, ℓ3) (ℓ1, ℓ4) (ℓ2, ℓ3) (ℓ2, ℓ4) (ℓ3, ℓ4)

Γ̃∗ 0.8410 0.6950 0.6994 0.8128 0.7129 0.8243
Γ1 0.0486 −0.0338 −0.0254 0.0440 −0.0089 0.0576
Γ2 0.0149 −0.0844 −0.0821 −0.0086 −0.0749 0.0007
Γ3 0.0149 −0.0844 −0.0821 −0.0086 −0.0749 0.0007
Γ4 0.0149 −0.0844 −0.0821 −0.0086 −0.0749 0.0007

From Table 7, we see that the similarity between SA and A, and D and SD are very close using the
corrected similarity operator. Among the relations, the similarity between scales SA and A is the greatest.
This implies that the medical students are aware of the existent of VL on their campus. It is observed that
the methods in [41] fail a similarity condition by giving negative results. Therefore, the methods are not
appropriate PFSOs, which justifies the effected correction.
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Table 8: Effects of VL
Methods (ℓ1, ℓ2) (ℓ1, ℓ3) (ℓ1, ℓ4) (ℓ2, ℓ3) (ℓ2, ℓ4) (ℓ3, ℓ4)

Γ̃∗ 0.8178 0.9408 0.8692 0.8545 0.6990 0.8323
Γ1 0.0392 0.1451 0.0926 0.0637 −0.0250 0.0654
Γ2 −0.0046 0.1193 0.0409 0.0270 −0.0823 0.0074
Γ3 −0.0046 0.1193 0.0409 0.0270 −0.0823 0.0074
Γ4 −0.0046 0.1193 0.0409 0.0270 −0.0823 0.0074

The information in Table 8 shows that the similarity between the scales SA and D is the closest based
on the corrected PFSO. The implication of this is that, VL has not effect on the academic wellbeing of the
medical students because awareness does not translates into effectiveness if the VLR are not put into use. We
observe that the defective methods in [41] produce outcomes that are undefined in the range of the similarity
values. Throughout the study, we see that Γ2, Γ3, and Γ4 in [41] yield the same results.

5.3 PFSO based-MCDM Approach of Analyzing Questionnaire

MCDM is a process of choice making in social sciences, medicine, engineering, etc. MCDM determines the
best option by assessing more than one criteria for the purpose of selection. Due to the present of imprecision
in choice making, MCDM has been studied under PFSs using various information measures. Here, we present
the MCDM approach of analyzing questionnaire of VL based on the corrected similarity operator because it
has been proven to be effective, consistent and reliable with the most precise results compare to the methods
in [41].

5.3.1 Algorithm for the MCDM

The algorithm are as follows:
Step 1. Obtain the Pythagorean fuzzy decision matrix (PFDM) denoted by ℓ̃j = {Qi(ℓ̃j)}(m×n) for i =
1, 2, · · · ,m, j = 1, 2, · · · , n, where Qi are the questions.
Step 2. Formulate the normalized PFDM ℓ̃ = ⟨Mℓ̃∗j

(Qi), Nℓ̃∗j
(Qi)⟩m×n, where ⟨Mℓ̃∗j

(Qi), Nℓ̃∗j
(Qi)⟩ are the

PFD, and ℓ̃ is defined as:

⟨Mℓ̃∗j
(Qi), Nℓ̃∗j

(Qi)⟩ =

{
⟨Mℓ̃j

(Qi), Nℓ̃j
(Qi)⟩, for benefit criterion of ℓ̃

⟨Nℓ̃j
(Qi),Mℓ̃j

(Qi)⟩, for cost criterion of ℓ̃
(7)

Step 3. Compute PIS (positive ideal solution) and NIS (negative ideal solution) given by

ℓ̃+ = {ℓ̃+1 , · · · , ℓ̃
+
n }

ℓ̃− = {ℓ̃−1 , · · · , ℓ̃
−
n }

(8)

where

ℓ̃+ =

{
⟨max{Mℓ̃j

(Qi)},min{Nℓ̃j
(Qi)}⟩, if Qi is the BC

⟨min{Mℓ̃j
(Qi)},max{Nℓ̃j

(Qi)}⟩, if Qi is the CC, (9)

ℓ̃− =

{
⟨min{Mℓ̃j

(Qi)},max{Nℓ̃j
(Qi)}⟩, if Qi is the BC

⟨max{Mℓ̃j
(Qi)},min{Nℓ̃j

(Qi)}⟩, if Qi is the CC, (10)
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where BC is benefit criterion and CC is cost criterion.
Step 4. Compute the similarities Γ̃∗(ℓ̃j , ℓ̃

−) and Γ̃∗(ℓ̃j , ℓ̃
+).

Step 5. Find the closeness coefficients ∇∗(ℓ̃j) by

∇∗(ℓ̃j) =
Γ̃∗(ℓ̃j , ℓ̃

+)

Γ̃∗(ℓ̃j , ℓ̃+) + Γ̃∗(ℓ̃j , ℓ̃−)
, (11)

for j = 1, 2, · · · , n.
Step 6. Determine the greatest closeness coefficient for the interpretation.

In case either Γ̃∗(ℓ̃j , ℓ̃
−) or Γ̃∗(ℓ̃j , ℓ̃

+) is negative (which ought not to happen except the similarity operator
is defective), we find ∇+(ℓ̃j) and ∇−(ℓ̃j) thus:

∇+(ℓ̃j) =
Γ̃∗(ℓ̃j , ℓ̃

+)− Γ̃min(ℓ̃j , ℓ̃
+)

Γ̃max(ℓ̃j , ℓ̃+)− Γ̃min(ℓ̃j , ℓ̃+)
, (12)

∇−(ℓ̃j) =
Γ̃∗(ℓ̃j , ℓ̃

−)− Γ̃min(ℓ̃j , ℓ̃
−)min

Γ̃max(ℓ̃j , ℓ̃−)− Γ̃min(ℓ̃j , ℓ̃−)
(13)

before Step 5. Then (11) becomes:

∇∗(ℓ̃j) =
∇+(ℓ̃j)

∇+(ℓ̃j) +∇−(ℓ̃j)
, (14)

for j = 1, 2, · · · , n.
Note that

Γ̃max(ℓ̃j , ℓ̃
+) = max

1≤j≤n
{Γ̃∗(ℓ̃j , ℓ̃

+)},

Γ̃min(ℓ̃j , ℓ̃
+) = min

1≤j≤n
{Γ̃∗(ℓ̃j , ℓ̃

+)},

Γ̃max(ℓ̃j , ℓ̃
−) = max

1≤j≤n
{Γ̃∗(ℓ̃j , ℓ̃

−)},

Γ̃min(ℓ̃j , ℓ̃
−) = min

1≤j≤n
{Γ̃∗(ℓ̃j , ℓ̃

−)}.

The algorithm is captured in Figure 2.
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Figure 2: Flowchart for Implementation

5.3.2 Case I

Here, we discuss the questionnaire on the level of awareness of VL as presented in Table 4 via MCDM
technique, where Q5 is cost criterion since the question gives the least MDs. By Step 2, we get Table 9.

Table 9: Normalized PFDM for Level of Awareness
Scales ℓ̃1 ℓ̃2 ℓ̃3 ℓ̃4
Q1 (0.48, 0.52) (0.318, 0.682) (0.111, 0.889) (0.091, 0.909)
Q2 (0.343, 0.657) (0.258, 0.742) (0.247, 0.753) (0.152, 0.848)
Q3 (0.197, 0.803) (0.253, 0.747) (0.394, 0.606) (0.157, 0.843)
Q4 (0.172, 0.828) (0.394, 0.606) (0.328, 0.672) (0.106, 0.894)
Q5 (0.47, 0.53) (0.631, 0.369) (0.919, 0.081) (0.98, 0.02)

Using Step 3, we obtain the PIS and NIS in Table 10.
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Table 10: PIS and NIS for Level of Awareness
Scales ℓ̃− ℓ̃+

Q1 (0.091, 0.909) (0.48, 0.52)
Q2 (0.152, 0.848) (0.343, 0.657)
Q3 (0.157, 0.843) (0.394, 0.606)
Q4 (0.106, 0.894) (0.394, 0.606)
Q5 (0.98, 0.02) (0.47, 0.53)

By Step 4, we compute the similarities between ℓ̃j and ℓ̃−, and ℓ̃j and ℓ̃+ using (5) to obtain the results
in Table 11.

Table 11: Similarities of (ℓ̃j , ℓ̃−) and (ℓ̃j , ℓ̃
+)

Scales Γ̃∗(ℓ̃j , ℓ̃
−) Γ̃∗(ℓ̃j , ℓ̃

+)

ℓ̃1 0.7088 0.8824
ℓ̃2 0.6719 0.8883
ℓ̃3 0.6883 0.7730
ℓ̃4 0.8302 0.6173

Next, by using (11) in Step 6, we obtain the closeness coefficients in Table 12.

Table 12: Closeness Coefficients for Level of Awareness
Scales ∇∗(ℓ̃j) Ranking
ℓ̃1 0.5546 2nd

ℓ̃2 0.5694 1st

ℓ̃3 0.5290 3rd

ℓ̃4 0.4265 4th

From Table 12, we see that the medical students are aware of the existent of VLR because the scale ℓ̃2
(i.e., A) is ranked first, which tallies with the finding in Table 7.

5.3.3 Case II

Now, we consider the questionnaire on the effects of VLR on the academic wellbeing via MCDM method using
the PFDM in Table 5, where Q3 is taken as the cost criterion. By Step 2, we get Table 13.

Table 13: Normalized PFDM for Effects of VL
Scales ℓ̃1 ℓ̃2 ℓ̃3 ℓ̃4
Q1 (0.237, 0.763) (0.409, 0.591) (0.227, 0.773) (0.126, 0.874)
Q2 (0.258, 0.742) (0.379, 0.621) (0.232, 0.768) (0.131, 0.869)
Q3 (0.828, 0.172) (0.581, 0.419) (0.747, 0.253) (0.843, 0.157)
Q4 (0.212, 0.788) (0.364, 0.636) (0.288, 0.712) (0.136, 0.864)
Q5 (0.263, 0.737) (0.313, 0.687) (0.283, 0.717) (0.141, 0.859)

Using Step 3, we obtain the PIS and NIS in Table 14.
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Table 14: PIS and NIS for Effects of VL
Scales ℓ̃− ℓ̃+

Q1 (0.126, 0.874) (0.409, 0.591)
Q2 (0.131, 0.869) (0.379, 0.621)
Q3 (0.843, 0.157) (0.581, 0.419)
Q4 (0.136, 0.864) (0.364, 0.636)
Q5 (0.141, 0.859) (0.313, 0.687)

By Step 4 via (5), we get Table 15.

Table 15: Similarities between (ℓ̃j , ℓ̃
−) and (ℓ̃j , ℓ̃

+)

Scales Γ̃∗(ℓ̃j , ℓ̃
−) Γ̃∗(ℓ̃j , ℓ̃

+)

ℓ̃1 0.7593 0.7908
ℓ̃2 0.6737 0.9703
ℓ̃3 0.7505 0.8269
ℓ̃4 0.8771 0.6737

Next, we find the closeness coefficients for the similarity values using (11) and get Table 16.

Table 16: Closeness Coefficients for Effects of Virtual Library
Scales ∇∗(ℓ̃j) Ranking
ℓ̃1 0.5102 3rd

ℓ̃2 0.5902 1st

ℓ̃3 0.5242 2nd

ℓ̃4 0.4344 4th

The values of the closeness coefficient indicate that ℓ̃2 ⪰ ℓ̃3 ⪰ ℓ̃1 ⪰ ℓ̃4. The interpretation of the ranking
is somehow confusing because it oscillates between agree and disagree, which infers that the medical students
agree to a minimal effect of VLR on their academic wellbeing possibly due to a very poor use of the VLR,
which may be caused by technological barriers, user interface issues, and competing academic commitments.

5.4 Comparison II

Again, we show the effectiveness of the corrected similarity method via MCDM in comparison with the
defective methods in [41]. The comparative results are shown in Tables 17 and 18, and Figures 3 and 4.

Table 17: MCDM Comparative Results for Case 1
Methods ∇∗(ℓ̃1) ∇∗(ℓ̃2) ∇∗(ℓ̃3) ∇∗(ℓ̃4) Ordering Verdict

Γ̃∗ 0.5546 0.5694 0.5290 0.4265 ℓ̃2 ≻ ℓ̃1 ≻ ℓ̃3 ≻ ℓ̃4 ℓ̃2
Γ1 [41] 0.8403 1 0.8513 0 ℓ̃2 ≻ ℓ̃3 ≻ ℓ̃1 ≻ ℓ̃4 ℓ̃2
Γ2 [41] 0.6187 0.7997 1 0 ℓ̃3 ≻ ℓ̃2 ≻ ℓ̃1 ≻ ℓ̃4 ℓ̃3
Γ3 [41] 0.8491 0.9359 0.4522 0 ℓ̃2 ≻ ℓ̃1 ≻ ℓ̃3 ≻ ℓ̃4 ℓ̃2
Γ4 [41] 0.8403 1 0.8513 0 ℓ̃2 ≻ ℓ̃3 ≻ ℓ̃1 ≻ ℓ̃4 ℓ̃2
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Figure 3: Plot for Comparison

From Table 17, we see that the medical students agree that they are aware of the existent of VLR in
their department. While all the methods give the same interpretation, Γ2 gives different interpretation. The
existing methods give zero and one closeness coefficients due to their defectiveness. From Figure 3, it is only
the corrected similarity operator that shows consistency.

Table 18: MCDM Comparative Results for Case 2
Methods ∇∗(ℓ̃1) ∇∗(ℓ̃2) ∇∗(ℓ̃3) ∇∗(ℓ̃4) Ordering Verdict

Γ̃∗ 0.5102 0.5902 0.5242 0.4344 ℓ̃2 ≻ ℓ̃3 ≻ ℓ̃1 ≻ ℓ̃4 ℓ̃2
Γ1 [41] 0.4531 1 0.5687 0 ℓ̃2 ≻ ℓ̃3 ≻ ℓ̃1 ≻ ℓ̃4 ℓ̃2
Γ2 [41] 0.4731 1 0.5318 0 ℓ̃2 ≻ ℓ̃3 ≻ ℓ̃1 ≻ ℓ̃4 ℓ̃2
Γ3 [41] 0.5881 1 0.7151 0 ℓ̃2 ≻ ℓ̃3 ≻ ℓ̃1 ≻ ℓ̃4 ℓ̃2
Γ4 [41] 0.4531 1 0.5687 0 ℓ̃2 ≻ ℓ̃3 ≻ ℓ̃1 ≻ ℓ̃4 ℓ̃2
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Figure 4: Plot for Comparison

From Table 18, it follows that the medical students agree that the use of VLR has effect on their academic
wellbeing. We observe that the closeness coefficients based on the existing PFSOs [41] for ℓ̃2 and ℓ̃4 give
zero and one, respectively due to their defectiveness unlike the corrected PFSO. From Figure 4, we see the
consistency of the corrected PFSO.

6 Conclusion

In this paper, a new PFSO was developed to ease decision-making in imprecise environments. The new PFSO
is the corrected form of the PFSOs in [41], where four PFSOs were constructed which we have demonstrated
to be defective. The new PFSO can be used with or without weight vector. Some numerical illustrations
were used to showcase the defectiveness of the PFSOs in [41] and to demonstrate the overriding significant
of the new PFSO. While the PFSOs in [41] violated the axioms of similarity function, the new PFSO yields
reliable and precise results which are consistent with the axioms of similarity function. In addition, some
theoretic results of the new PFSO were considered and proved. Furthermore, the new PFSO was used to
analyze questionnaire on VL where the collected data were transformed to Pythagorean fuzzy data (PFD).
The questionnaire was designed and distributed to 198 undergraduate medical students for the purpose of
data collection, after which the data were converted to PFD. It is observed that the corrected version of PFSO
could be helpful in decision-making under indeterminate domains since the PFSO is well equipped to control
hesitations that may constitute bottleneck for decision-makers. Exploring the potential real-world applications
of the new PFSO in different imprecise domains is an interesting research direction for future endeavor. The
construction of the modified PFSO limits its application to only Pythagorean fuzzy environment. Thus,
the modified PFSO cannot be used to model decision-making problems under picture fuzzy sets [44], q-rung
orthopair fuzzy sets [45], Fermatean fuzzy sets [46], etc. because the distinct properties of these sets are not
represented in the modified PFSO. However, with some alterations, the modified PFSO could be stretched to
the aforementioned domains and use to solve real-world applications.
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Abstract. Alzheimers disease is an unpredictable and progressive neurodegenerative disorder that initially affects
memory thinking and behavior. Some key features of Alzheimers disease are memory loss, cognitive decline,
behavioral changes, disorientation, and physical symptoms. In this article, we design the procedure of a multi-
attributive border approximation area comparison deep learning algorithm for the diagnosis of Alzheimers Disease.
For this, first, we goal to design the model of complex propositional linear Diophantine fuzzy information with
their basic operational laws. In addition, we analyze the model of complex propositional linear Diophantine fuzzy
power average operator, complex propositional linear Diophantine fuzzy weighted power average operator, complex
propositional linear Diophantine fuzzy power geometric operator, complex propositional linear Diophantine fuzzy
weighted power geometric operator, and also initiate their major properties. Additionally, the key role of this
paper is to arrange relevant from different sources for diagnosing Alzheimers disease under the consideration of
the designed technique. Finally, we compare both (proposed and existing) ranking information to address the
supremacy and strength of the designed models.
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1 Introduction

Diagnosing Alzheimers disease is very ambiguous and uncertain, connected with memory loss and changing
behavior because of progressive neurodegenerative disorder [1]. The analysis of Alzheimers disease has been
done by different scholars according to consider the information of crisp data [2], but to analyze the best
one among the collection of data, we needed a soft and valuable technique that can help us in the evaluation
of the procedure of decision-making models [3]. A lot of data has been lost in numerous decision-making
procedures because of limited information and due to this, various problems are unsolved [4]. For this, Zadeh
[5] prepared the fuzzy sets (FSs). FSs theory developed with just a function, called truth degree, defined from
fixed sets to unit intervals. In addition, it is quite complex to deal with genuine life problems in the presence
of just FS theory, because truth and falsity, yes and no, supporting and supporting against information are
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the key parts of various real-life scenarios. For this, the model of FSs is not suitable, therefore, Atanassov
[6, 7] designed the intuitionistic FSs (IFSs). IFSs designed with two different functions but with the same
range, called truth degree and falsity degree with a characteristic that is the sum of both functions belonging
to a unit interval.

In genuine life situations, all experts are independent and they are not restricted to following the condition
of IFSs, because the provided information of experts will exceed form unit interval. For this, the model of
Pythagorean FSs (PFSs) was designed by Yager [8]. PFSs are constructed with truth and falsity degrees with
a characteristic that is the sum of the squares of both functions belonging to a unit interval. In addition,
Yager [9] designed the q-rung orthopair FSs (q-ROFSs) in 2016. The model of q-ROFSs has also developed
with truth and falsity information with a model that is the sum of the q-power of both functions belonging
to the unit interval. These techniques are very useful and dominant because of their characteristics and
due to this reason, many scholars have utilized them in various fields. Riaz and Hashmi [10] organized
the linear Diophantine FSs (LDFSs) with a truth and falsity function

(
Fω
rp(τ),

Fω
rp(τ)

)
with parameters(

ζωrp(τ),Γ
ω
rp(τ)

)
.The prominent characteristics of LDFSs, such as ζωrp(τ) ∗ Fω

rp(τ) + Γωrp(τ) ∗

Fω
rp(τ) ∈ [0, 1],

where ζωrp(τ) + Γωrp(τ) ∈ [0, 1]. The model of LDFSs is more powerful and more dominant because of their
features, the condition of LDFSs is developed based on linear Diophantine equation ax+ by = c.

Ramot et al. [11] designed the complex FSs (CFSs), the function in CFSs is developed in the form of
complex-valued information, where the real and unreal parts of the truth function are limited to unit interval.
In various situations, we will cope with complex problems with the help of two-dimensional information, called
the complex-valued truth function. Further, Alkouri and Salleh [12] designed the complex IFSs (CIFSs) with
complex-valued functions, the condition of CIFSs is that the sum of both functions (for both functions, real
and unreal) belongs to the unit interval. Ullah et al. [13] derived the complex PFSs (CPFSs), the projecting
condition of CPFSs is the sum of the square of both functions (for both functions, real and unreal) belonging
to the unit interval. In 2019, Liu et al. [14] invented the complex q-ROFSs (Cq-ROFSs), the projecting
condition of Cq-ROFSs is the sum of the q-power of both functions (for both functions, real and unreal)
belonging to the unit interval. In 2020, Ali and Mahmood [15] evaluated the Maclaurin Symmetric mean
operators for Cq-ROFSs. In 2022, Kamaci [16] designed the invented the complex LDFSs (CLDFSs), such as

H̃ =
{(

τ,
(
Fω
rp(τ),Fω

ip(τ)
)
,
( Fω

rp(τ),

Fω
ip(τ)

)
,
(
ζωrp(τ), ζ

ω
ip(τ)

)
,
(
Γωrp(τ),Γ

ω
ip(τ)

))
: τ ∈ X

}
, where the model of

complex-valued membership (non-membership) function is defined by:
(
Fω
rp,Fω

ip

)
: X → [0, 1] ,

(( Fω
rp,

Fω
ip

)
:

X → [0, 1]) with ζωrp(t)∗Fω
rp(t)+Γωrp(τ)∗

Fω
rp(τ) ∈ [0, 1] ,

(
ζωip(τ) ∗ Fω

ip(τ) + Γωip(τ) ∗

Fω
ip(τ) ∈ [0, 1]

)
and ζωrp(τ)+

Γωrp(τ) ∈ [0, 1] ,
(
ζωip(τ) + Γωip(τ) ∈ [0, 1]

)
, where, the model of complex-valued parameters is defined by:

ζωrp, ζ
ω
ip,Γ

ω
rp,Γ

ω
ip : X → [0, 1] where εωrp(τ) = 1−

(
ζωrp(τ) ∗ Fω

rp(τ) + Γωrp(τ) ∗

Fω
rp(τ)

)
, εωip(τ) = 1−

(
ζωip(τ) ∗ Fω

ip(τ)

+Γωip(τ) ∗

Fω
ip(τ)

)
, called the refusal function.

In 1980, Gottwald [17] designed the fuzzy propositional logic, a modified version of the FSs theory. In
1988, Atanassov [18] derived the intuitionistic fuzzy propositional calculus with two variants. In 2020, Wang
et al. [19] presented the intuitionistic fuzzy propositional logic with novel plausible reasoning-based decision-
making models. In 2024, Kahraman [20] introduced propositional PFSs with analytical hierarchal process
extensions. In addition, Pamucar and Cirovic [21] invented the (multi-attributive border approximation area
comparison) MABAC technique for classical set theory. Further, Yager [22] evaluated the power averaging
(PoA) technique. In 2009, Xu and Yager [23] introduced the power geometric (PoG) technique for classical
set theory. Jiang et al. [24] derived the power operators for IFSs. Wei and Lu [25] examined the power
operators for PFSs. Garg et al. [26] initiated the power operators for Cq-ROFSs. Liu et al. [27] derived the
power Dombi operators for CPFSs. Rani and Garg [28] evaluated the power operators for CIFSs. Ali [29]
presented the power interaction operator for CIFSs. Ali et al. [30] described the power operators for complex
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intuitionistic fuzzy soft sets. Moslem [31] designed the parsimonious spherical fuzzy AHP models. Moslem
et al. [32] evaluated the fuzzy analytical hierarchy model. Moslem and Pilla [33] invented the spherical fuzzy
group decision-making techniques. Acharya et al. [34] designed the stability analysis for neutrosophic fuzzy
information. Singh et al. [35] evaluated the malaria disease model in crisp and fuzzy information. Momena
et al. [36] initiated the generalized dual hesitant hexagonal fuzzy decision-making techniques. Acharya
et al. [37] constructed the neutrosophic differential equation with decision-making techniques. During the
assessment of the existing models, we noticed or missed that the technique of complex propositional linear
Diophantine fuzzy sets (CPLDFS) needed to be introduced because the above techniques are special cases of
proposed models. In addition, we also noticed that to propose the technique of power operators and MABAC
for CPLDFSs. The key and major contributions of the designed techniques are listed below:

1. To design the procedure of a MABAC deep learning algorithm for the diagnosis of Alzheimers Disease.

2. To design the model of complex propositional linear Diophantine fuzzy (CPLDF) information with their
basic operational laws.

3. To analyze the model of CPLDF power average (CPLDFPoA) operator, CPLDF weighted power average
(CPLDFWPoA) operator, CPLDF power geometric (CPLDFPoG) operator, CPLDF weighted power
geometric (CPLDFWPoG) operator, and also initiate their major properties.

4. To arrange relevant from different sources for diagnosing Alzheimers disease under the consideration of
the designed technique.

5. To compare both (proposed and existing) ranking information to address the supremacy and strength
of the designed models. The graphical interpretation of the designed technique is derived in the form
of Figure 1.

abstract of the proposed theory..png abstract of the proposed theory.bb

Figure 1: Graphical abstract of the proposed theory
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This article is organized in the following ways: In Section 2, we explained the revised techniques of CLDFSs
with basic definitions. In addition, we also reviewed the PA operator, and PG operator for the group of any
positive integers. In Section 3, we designed the model of CPLDF information with their basic operational
laws. In Section 4, we analyzed the model of CPLDFPoA, CPLDFWPoA, CPLDFPoG, and CPLDFWPoG
operators, and also initiated their major properties. In Section 5, we designed the procedure of a MABAC
deep learning algorithm for the diagnosis of Alzheimers Disease. In Section 6, we arranged relevant from
different sources for diagnosing Alzheimers disease under the consideration of the designed technique. In
Section 7, we compared both (proposed and existing) ranking information to address the supremacy and
strength of the designed models. Some concluding remarks are described in Section 8.

2 Preliminaries

The model of complex linear Diophantine fuzzy information is the reformed version of numerous techniques
and very reliable ideas for controlling imprecise and inexact data. This section goals to explain the revised
techniques of CLDFSs with basic definitions. In addition, we also reviewed the PA operator, and PG operator
for the group of any positive integers.

Definition 2.1. [16] A methodology of CLDFSs for X (universal set), is designed and deliberated by:
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Where the model of complex-valued membership (non-membership) function is defined by:(
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called the refusal function. The simple version of CLDFN is mentioned in the following form, such as:
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In addition, we goal to describe numerous operational laws for the above existing models, such as algebraic
operational laws, briefly discussed below.

Definition 2.2. [16] Let H̃& =
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Fω2
rp ,

Fω1
ip

Fω2
ip

)
,(

ζω1
rp + ζω2

rp − ζω1
rp ζ

ω2
rp , ζ

ω1
ip + ζω2

ip − ζω1
ip ζ

ω2
ip

)
,
(
Γω1
rpΓ

ω2
rp ,Γ

ω1
ip Γ

ω2
ip

) 

H̃1 ⊗ H̃2 =

(Fω1
rp Fω2

rp ,F
ω1
ip F

ω2
ip

)
,
( Fω1

rp +

Fω2
rp − Fω1

rp

Fω2
rp ,

Fω1
ip +

Fω2
ip − Fω1

ip

Fω2
ip

)
,(

ζω1
rp ζ

ω2
rp , ζ

ω1
ip ζ

ω2
ip

)
,
(
Γω1
rp + Γω2

rp − Γω1
rpΓ

ω2
rp ,Γ

ω1
ip + Γω2

ip − Γω1
ip Γ

ω2
ip

) 
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η̃ΘH̃& =


(
1−

(
1−Fω&

rp

)η̃Θ , 1− (1−Fω&
ip

)η̃Θ)
,

(( Fω&
rp

)η̃Θ ,( Fω&
ip

)η̃Θ)
,(

1−
(
1− ζω&

rp

)η̃Θ , 1− (1− ζω&
ip

)η̃Θ)
,

((
Γω&
rp

)η̃Θ ,(Γω&
ip

)η̃Θ)


(
H̃&

)η̃Θ
=


((

Fω&
rp

)η̃Θ ,(Fω&
ip

)η̃Θ)
,

(
1−

(
1−

Fω&
rp

)η̃Θ , 1− (1− Fω&
ip

)η̃Θ)
,((

ζω&
rp

)η̃Θ ,(ζω&
ip

)η̃Θ)
,

(
1−

(
1− Γω&

rp

)η̃Θ , 1− (1− Γω&
ip

)η̃Θ)


Moreover, we target to revise the information of score value and accuracy value, for evaluating the relationship
among any two complex linear Diophantine fuzzy numbers.

Definition 2.3. [16] Let H̃& =
((

Fω&
rp ,F

ω&
ip

)
,
( Fω&

rp ,

Fω&
ip

)
,
(
ζω&
rp , ζ

ω&
ip

)
,
(
Γω&
rp ,Γ

ω&
ip

))
,& = 1 be a CLDFN.

Thus

SC
(
H̃&

)
=

1

4

((
Fω&
rp + Fω&

ip

)
−
( Fω&

rp +

Fω&
ip

)
+
(
ζω&
rp + ζω&

ip

)
−
(
Γω&
rp + Γω&

ip

))
∈ [−1, 1]

AC
(
H̃&

)
=

1

4

((
Fω&
rp + Fω&

ip

)
+
( Fω&

rp +

Fω&
ip

)
+
(
ζω&
rp + ζω&

ip

)
+
(
Γω&
rp + Γω&

ip

))
∈ [0, 1]

Thus, if SC
(
H̃1

)
> SC

(
H̃2

)
⇒ H̃1 > H̃2, then if AC

(
H̃1

)
> AC

(
H̃2

)
⇒ H̃1 > H̃2. Further, we goal to

discuss the technique of PoA and PoG techniques.

Definition 2.4. [22, 23] Let H̃&,& = 1, 2, · · · , ϵ, be a group of non-negative information. Then

PoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
=

(
1 + η̃

(
H̃1

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃1 ⊕

(
1 + η̃

(
H̃2

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃2 ⊕ · · · ⊕

(
1 + η̃

(
H̃ ϵ
))

∑ ϵ
&=1

(
1 + η̃

(
H̃&

))H̃ ϵ

=

ϵ∑
&=1

(
1 + η̃

(
H̃&

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃&

signified the PoA operators, and the technique

PoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
=
(
H̃1

) (1+η̃(H̃1))∑ ϵ
&=1(1+η̃(H̃&)) ⊗

(
H̃2

) (1+η̃(H̃2))∑ ϵ
&=1(1+η̃(H̃&)) ⊗ · · · ⊗

(
H̃ ϵ
) (1+η̃(H̃ ϵ))∑ ϵ

&=1(1+η̃(H̃&))

=
ϵ∏

&=1

(
H̃&

) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

called PoG operator with η̃
(
H̃&

)
=
∑ ϵ

i̸=&=1 S
(
H̃i, H̃&

)
, and S

(
H̃i, H̃&

)
= 1−D

(
H̃i, H̃&

)
, thus

1. S
(
H̃i, H̃&

)
∈ [0, 1].

2. S
(
H̃i, H̃&

)
= S

(
H̃&, H̃i

)
.

3. When S
(
H̃i, H̃&

)
≥ S

(
H̃k, H̃l

)
, then D

(
H̃i, H̃&

)
≤ D

(
H̃k, H̃l

)
.
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3 CPLDFSs: Complex Propositional Linear Diophantine Fuzzy Sets

This section goals to explain the new techniques of CPLDFSs with basic definitions. Further, we designed
some algebraic operational laws for CPLDFSs.

Definition 3.1. A methodology of CPLDFSs for X (universal set), is designed and deliberated by:

H̃ =
{(

τ,
(
Fω
rp(τ),Fω

ip(τ)
)
,
( Fω

rp(τ),

Fω
ip(τ)

)
,
(
ζωrp(τ), ζ

ω
ip(τ)

)
,
(
Γωrp(τ),Γ

ω
ip(τ)

))
: τ ∈ X

}
In addition, we define the truth and parameter function according to their real and imaginary parts, such as

Fω
rp(τ) = L1

rp

( Fω
rp (τ)

)
,
(
Fω
ip(τ) = L1

ip

( Fω
ip (τ)

))
and

ζωrp(τ) = L2
rp

(
Γωrp (τ)

)
,
(
ζωip(τ) = L2

ip

(
Γωip (τ)

))
Then

L2
rp

(
Γωrp (τ)

)
∗ L1

rp

( Fω
rp (τ)

)
+ Γωrp (τ) ∗

Fω
rp (τ) ≤ 1

⇒ Γωrp (τ) ∗

Fω
rp (τ)

(
1 + L1

rpL2
rp

)
≤ 1 ⇒ Γωrp (τ) ∗

Fω
rp (τ) ≤

1

1 + L1
rpL2

rp

Similarly, we have imaginary parts, such as

Γωip (τ) ∗

Fω
ip (τ) ≤

1

1 + L1
ipL2

ip

thus

εωrp(τ) = 1−
(
ζωrp(τ) ∗ Fω

rp(τ) + Γωrp(τ) ∗

Fω
rp(τ)

)
= 1−

(
L2
rp

(
Γωrp(τ)

)
∗ L1

rp

( Fω
rp(τ)

)
+ Γωrp(τ) ∗

Fω
rp(τ)

)
⇒ 1−

(
Γωrp(τ) ∗

Fω
rp(τ)

(
1 + L1

rpL2
rp

))
then

1− εωrp(τ) = Γωrp(τ) ∗

Fω
rp(τ)

(
1 + L1

rpL2
rp

)
and

Γωrp(τ) ∗

Fω
rp(τ) =

1− εωrp(τ)(
1 + L1

rpL2
rp

)
Similarly, we have

Γωip(τ) ∗

Fω
ip(τ) =

1− εωip(τ)(
1 + L1

ipL2
ip

)
But if we use the condition of IFSs, thus we have

L1
rp

( Fω
rp(τ)

)
+

Fω
rp(τ) ≤ 1

⇒

Fω
rp(τ)

(
1 + L1

rp

)
≤ 1 ⇒

Fω
rp(τ) ≤

1

1 + L1
rp
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Similarly, we have imaginary parts, such as

Fω
ip(τ) ≤

1

1 + L1
ip

Thus, we have the condition of refusal function in IFSs, such as

εωrp(τ) = 1−
(
Fω
rp(τ) +

Fω
rp(τ)

)
= 1−

(
L1
rp

( Fω
rp(τ)

)
+

Fω
rp(τ)

)
= 1−

( Fω
rp(τ)

(
1 + L1

rp

))
then

1− εωrp(τ) =

Fω
rp(τ)

(
1 + L1

rp

)
and

Fω
rp(τ) =

1− εωrp(τ)(
1 + L1

rp

) ,(ζωrp(τ) = 1− εωrp(τ)(
1 + L2

rp

) )

Similarly, we have

Fω
ip(τ) =

1− εωip(τ)(
1 + L1

rp

) ,
ζωip(τ) = 1− εωip(τ)(

1 + L2
ip

)


if εωrp(τ) = εωip(τ) = 0, thus

Fω
rp(τ) =

1

(1+L1
rp)

and

Fω
ip(τ) =

1

(1+L1
ip)

. Then

Fω
rp(τ) = L1

rp

(
1(

1 + L1
rp

)) ,
Fω

ip(τ) = L1
ip

 1(
1 + L1

ip

)


and

ζωrp(τ) = L2
rp

(
1(

1 + L2
rp

)) ,
ζωip(τ) = L2

ip

 1(
1 + L2

ip

)


Then

H̃ =


τ,

((
L1
rp

(
1

1+L1
rp

)
,L1

ip

(
1

1+L1
ip

))
,
(

1
1+L1

rp
, 1
1+L1

rp

))
,((

L2
rp

(
1

1+L2
rp

)
,L2

ip

(
1

1+L2
ip

))
,
(

1
1+L2

rp
, 1
1+L2

rp

))
 : τ ∈ X


Thus, we have the following final shape, such as

H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.



136 Zeeshan A. Trans. Fuzzy Sets Syst. 2025; 4(1)

Definition 3.2. For any H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& =

1, 2, we have

H̃1 ⊕ H̃2 =



L11
rp

(
1−εrpω1
1+L11

rp

)
+ L12

rp

(
1−εrpω2
1+L12

rp

)
− L11

rp

(
1−εrpω1
1+L11

rp

)
L12
rp

(
1−εrp
1+L12

rp

)
,

L11
ip

(
1−εipω1
1+L11

ip

)
+ L12

ip

(
1−εipω2
1+L12

ip

)
− L11

ip

(
1−εipω1
1+L11

ip

)
L12
ip

(
1−εipω2
1+L12

ip

)
 ,

((
1−εrpω1
1+L11

rp

)(
1−εrpω2
1+L12

rp

)
,

(
1−εipω1
1+L11

ip

)(
1−εipω2
1+L12

ip

))
,L21

rp

(
1−εrpω1
1+L2

rp

)
+ L22

rp

(
1−εrpω2
1+L22

rp

)
− L21

rp

(
1−εrpω1
1+L21

rp

)
L22
rp

(
1−εrp
1+L22

rp

)
,

L21
ip

(
1−εipω1
1+L21

ip

)
+ L22

ip

(
1−εipω2
1+L22

ip

)
− L21

ip

(
1−εipω1
1+L21

ip

)
L22
ip

(
1−εipω2
1+L22

ip

)
 ,

((
1−εrpω1
1+L21

rp

)(
1−εrpω2
1+L22

rp

)
,

(
1−εipω1
1+L21

ip

)(
1−εipω2
1+L22

ip

))



H̃1 ⊗ H̃2 =



(
L11
rp

(
1−εrpω1
1+L11

rp

)
L12
rp

(
1−εrp
1+L12

rp

)
,L11

ip

(
1−εipω1
1+L11

ip

)
L12
ip

(
1−εipω2
1+L12

ip

))
,

(
1−εrpω1
1+L11

rp

)
+

(
1−εrpω2
1+L12

rp

)
−
(

1−εrpω1
1+L11

rp

)(
1−εrpω2
1+L12

rp

)
,(

1−εipω1
1+L11

ip

)
+

(
1−εipω2
1+L12

ip

)
−
(

1−εipω1
1+L11

ip

)(
1−εipω2
1+L12

ip

)
 ,

(
L21
rp

(
1−εrpω1
1+L21

rp

)
L22
rp

(
1−εrp
1+L22

rp

)
,L21

ip

(
1−εipω1
1+L21

ip

)
L22
ip

(
1−εipω2
1+L22

ip

))
,

(
1−εrpω1
1+L21

rp

)
+

(
1−εrpω2
1+L22

rp

)
−
(

1−εrpω1
1+L21

rp

)(
1−εrpω2
1+L22

rp

)
,(

1−εipω1
1+L21

ip

)
+

(
1−εipω2
1+L22

ip

)
−
(

1−εipω1
1+L21

ip

)(
1−εipω2
1+L22

ip

)




η̃ΘH̃&

=


((

1−
(
1− L1&

rp

(
1−εrpω&
1+L1&

rp

))η̃Θ
, 1−

(
1− L1&

rp

(
1−εipω&
1+L1&

rp

))η̃Θ)
,

(((
1−εrpω&
1+L1&

rp

))η̃Θ
,

((
1−εipω&
1+L1&

rp

))η̃Θ))
,((

1−
(
1− L2&

rp

(
1−εrpω&
1+L2&

rp

))η̃Θ
, 1−

(
1− L2&

rp

(
1−εipω&
1+L2&

rp

))η̃Θ)
,

(((
1−εrpω&
1+L2&

rp

))η̃Θ
,

((
1−εipω&
1+L2&

rp

))η̃Θ))


(
H̃&

)η̃Θ

=


(((

L1&
rp

(
1−εrpω&
1+L1&

rp

))η̃Θ
,

(
L1&
rp

(
1−εipω&
1+L1&

rp

))η̃Θ)
,

(
1−

(
1−

(
1−εrpω&
1+L1&

rp

))η̃Θ
, 1−

(
1−

(
1−εipω&
1+L1&

rp

))η̃Θ))
,(((

L2&
rp

(
1−εrpω&
1+L2&

rp

))η̃Θ
,

(
L2&
rp

(
1−εipω&
1+L2&

rp

))η̃Θ)
,

(
1−

(
1−

(
1−εrpω&
1+L2&

rp

))η̃Θ
, 1−

(
1−

(
1−εipω&
1+L2&

rp

))η̃Θ))
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Definition 3.3. For any H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1,

we have

S
(
H̃&

)
=

1

4


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
+ L1&

ip

(
1−εipω&
1+L1&

ip

))
−
((

1−εrpω&
1+L1&

rp

)
+

(
1−εipω&
1+L1&

ip

)))
+((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
+ L2&

ip

(
1−εipω&
1+L2&

ip

))
−
((

1−εrpω&
1+L2&

rp

)
+

(
1−εipω&
1+L2&

ip

)))
 ∈ [−1, 1]

A
(
H̃&

)
=

1

4


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
+ L1&

ip

(
1−εipω&
1+L1&

ip

))
+

((
1−εrpω&
1+L1&

rp

)
+

(
1−εipω&
1+L1&

ip

)))
+((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
+ L2&

ip

(
1−εipω&
1+L2&

ip

))
+

((
1−εrpω&
1+L2&

rp

)
+

(
1−εipω&
1+L2&

ip

)))
 ∈ [−1, 1]

Thus, if SC
(
H̃1

)
> SC

(
H̃2

)
⇒ H̃1 > H̃2, if SC

(
H̃1

)
= SC

(
H̃2

)
, then if AC

(
H̃1

)
> AC

(
H̃2

)
⇒ H̃1 >

H̃2.

4 CPLDF Power Aggregation Insights

This section is famous for the analysis of the power operators for CPLDFSs, called the CPLDFPoA operator,
CPLDFWPoA operator, CPLDFPoG operator, CPLDFWPoG operator, and their genuine properties.

Definition 4.1. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ,

be a group of CPLDF information. Then

CPLDFPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
=

(
1 + η̃

(
H̃1

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃1 ⊕

(
1 + η̃

(
H̃2

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃2 ⊕ · · ·

⊕

(
1 + η̃

(
H̃ ϵ
))

∑ ϵ
&=1

(
1 + η̃

(
H̃&

))H̃ ϵ= ⊕ ϵ
&=1

(
1 + η̃

(
H̃&

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃&

Signified the CPLDFPoA operators with η̃
(
H̃&

)
=
∑ ϵ

i ̸=&=1 S
(
H̃i, H̃&

)
, and S

(
H̃i, H̃&

)
= 1−D

(
H̃i, H̃&

)
,

thus

1. S
(
H̃i, H̃&

)
∈ [0, 1].

2. S
(
H̃i, H̃&

)
= S

(
H̃&, H̃i

)
.

3. When S
(
H̃i, H̃&

)
≥ S

(
H̃k, H̃l

)
, then D

(
H̃i, H̃&

)
≤ D

(
H̃k, H̃l

)
.
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Theorem 4.2. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in
Def. (8), such as

CPLDFPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





1−
ϵ∏

&=1

(
1− L1&

rp

(
1−εrpω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1− L1&

rp

(
1−εipω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

((
1−εipω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))



 ,



1−
ϵ∏

&=1

(
1− L2&

rp

(
1−εrpω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1− L2&

rp

(
1−εipω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

((
1−εipω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))







Property 4.3. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information.

1. If H̃& = H̃,& = 1, 2, · · · , ϵ, thus CPLDFPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃, called the idempotency.

2. If H̃& ≤ H̃ ′
&,& = 1, 2, · · · , ϵ, thus CPLDFPoA

(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ CPLDFPoA

(
H̃ ′

1, H̃
′
2, · · · , H̃ ′

ϵ

)
,

called the monotonicity.

3. If H̃− = min
(
H̃1, H̃2, · · · , H̃ ϵ

)
, and H̃+ = max

(
H̃1, H̃2, · · · , H̃ ϵ

)
,& = 1, 2, · · · , ϵ, thus H̃− ≤

CPLDFPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ H̃+, called the boundedness.

Definition 4.4. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then

CPLDFWPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
=

ℵ1

(
1 + η̃

(
H̃1

))
∑ ϵ

&=1 ℵ&

(
1 + η̃

(
H̃&

))H̃1 ⊕
ℵ2

(
1 + η̃

(
H̃2

))
∑ ϵ

&=1 ℵ&

(
1 + η̃

(
H̃&

))H̃2 ⊕ · · ·

⊕
ℵ ϵ
(
1 + η̃

(
H̃ ϵ
))

∑ ϵ
&=1 ℵ&

(
1 + η̃

(
H̃&

))H̃ ϵ= ⊕ ϵ
&=1

ℵ&

(
1 + η̃

(
H̃&

))
∑ ϵ

&=1 ℵ&

(
1 + η̃

(
H̃&

))H̃&
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Signified the CPLDFWPoA operators with η̃
(
H̃&

)
=
∑ ϵ

i̸=&=1 S
(
H̃i, H̃&

)
, and S

(
H̃i, H̃&

)
= 1−D

(
H̃i, H̃&

)
,

thus

4. S
(
H̃i, H̃&

)
∈ [0, 1].

5. S
(
H̃i, H̃&

)
= S

(
H̃&, H̃i

)
.

6. When S
(
H̃i, H̃&

)
≥ S

(
H̃k, H̃l

)
, then D

(
H̃i, H̃&

)
≤ D

(
H̃k, H̃l

)
.

Where
∑ ϵ

&=1 ℵ& = 1, called weight vector.

Theorem 4.5. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in
Def. (9), such as

CPLDFWPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





1−
ϵ∏

&=1

(
1− L1&

rp

(
1−εrpω&
1+L1&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
, 1−

ϵ∏
&=1

(
1− L1&

rp

(
1−εipω&
1+L1&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&
1+L1&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
,

ϵ∏
&=1

((
1−εipω&
1+L1&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))



 ,



1−
ϵ∏

&=1

(
1− L2&

rp

(
1−εrpω&
1+L2&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
, 1−

ϵ∏
&=1

(
1− L2&

rp

(
1−εipω&
1+L2&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&
1+L2&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
,

ϵ∏
&=1

((
1−εipω&
1+L2&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))







Property 4.6. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information.

1. If H̃& = H̃,& = 1, 2, · · · , ϵ, thus CPLDFWPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃, called the idempotency.

2. If H̃& ≤ H̃ ′
&,& = 1, 2, · · · , ϵ, thus CPLDFWPoA

(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ CPLDFWPoA

(
H̃ ′

1, H̃
′
2, · · · , H̃ ′

ϵ

)
,

called the monotonicity.

3. If H̃− = min
(
H̃1, H̃2, · · · , H̃ ϵ

)
, and H̃+ = max

(
H̃1, H̃2, · · · , H̃ ϵ

)
,& = 1, 2, · · · , ϵ, thus H̃− ≤

CPLDFWPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ H̃+, called the boundedness.
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Definition 4.7. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then

CPLDFPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃

(1+η̃(H̃1))∑ ϵ
&=1(1+η̃(H̃&))

1 ⊗ H̃

(1+η̃(H̃2))∑ ϵ
&=1(1+η̃(H̃&))

2 ⊗ · · · ⊗ H̃

(1+η̃(H̃ ϵ))∑ ϵ
&=1(1+η̃(H̃&))
ϵ = ⊗ ϵ

&=1H̃

(1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

&

Signified the CPLDFPoG operators with η̃
(
H̃&

)
=
∑ ϵ

i̸=&=1 S
(
H̃i, H̃&

)
, and S

(
H̃i, H̃&

)
= 1−D

(
H̃i, H̃&

)
,

thus

1. S
(
H̃i, H̃&

)
∈ [0, 1].

2. S
(
H̃i, H̃&

)
= S

(
H̃&, H̃i

)
.

3. When S
(
H̃i, H̃&

)
≥ S

(
H̃k, H̃l

)
, then D

(
H̃i, H̃&

)
≤ D

(
H̃k, H̃l

)
.

Theorem 4.8. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in
Def. (10), such as

CPLDFPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





 ϵ∏
&=1

(
L1&
rp

(
1−εrpω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

(
L1&
rp

(
1−εipω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1−

(
1−εipω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))



 ,



 ϵ∏
&=1

(
L2&
rp

(
1−εrpω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

(
L2&
rp

(
1−εipω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1−

(
1−εipω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))







Property 4.9. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information.

1. If H̃& = H̃,& = 1, 2, · · · , ϵ, thus CPLDFPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃, called the idempotency.

2. If H̃& ≤ H̃ ′
&,& = 1, 2, · · · , ϵ, thus CPLDFPoG

(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ CPLDFPoG

(
H̃ ′

1, H̃
′
2, · · · , H̃ ′

ϵ

)
,

called the monotonicity.
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3. If H̃− = min
(
H̃1, H̃2, · · · , H̃ ϵ

)
, and H̃+ = max

(
H̃1, H̃2, · · · , H̃ ϵ

)
,& = 1, 2, · · · , ϵ, thus H̃− ≤

CPLDFPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ H̃+, called the boundedness.

Definition 4.10. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then

CPLDFWPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃

ℵ1(1+η̃(H̃1))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
1 ⊗ H̃

ℵ2(1+η̃(H̃2))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
2 ⊗ · · · ⊗ H̃

ℵ ϵ(1+η̃(H̃ ϵ))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
ϵ

= ⊗ ϵ
&=1H̃

ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))

&

Signified the CPLDFWPoG operators with η̃
(
H̃&

)
=
∑ ϵ

i̸=&=1 S
(
H̃i, H̃&

)
, and S

(
H̃i, H̃&

)
= 1−D

(
H̃i, H̃&

)
,

thus

4. S
(
H̃i, H̃&

)
∈ [0, 1].

5. S
(
H̃i, H̃&

)
= S

(
H̃&, H̃i

)
.

6. When S
(
H̃i, H̃&

)
≥ S

(
H̃k, H̃l

)
, then D

(
H̃i, H̃&

)
≤ D

(
H̃k, H̃l

)
.

Where
∑ ϵ

&=1 ℵ& = 1, called weight vector.

Theorem 4.11. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in
Def. (11), such as

CPLDFWPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





 ϵ∏
&=1

(
L1&
rp

(
1−εrpω&
1+L1&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
,
ϵ∏

&=1

(
L1&
rp

(
1−εipω&
1+L1&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&
1+L1&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
, 1−

ϵ∏
&=1

(
1−

(
1−εipω&
1+L1&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))



 ,



 ϵ∏
&=1

(
L2&
rp

(
1−εrpω&
1+L2&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
,
ϵ∏

&=1

(
L2&
rp

(
1−εipω&
1+L2&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&
1+L2&

rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
, 1−

ϵ∏
&=1

(
1−

(
1−εipω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))
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Property 4.12. Let H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information.

1. If H̃& = H̃,& = 1, 2, · · · , ϵ, thus CPLDFWPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃, called the idempotency.

2. If H̃& ≤ H̃ ′
&,& = 1, 2, · · · , ϵ, thus CPLDFWPoG

(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ CPLDFWPoG

(
H̃ ′

1, H̃
′
2, · · · , H̃ ′

ϵ

)
,

called the monotonicity.

3. If H̃− = min
(
H̃1, H̃2, · · · , H̃ ϵ

)
, and H̃+ = max

(
H̃1, H̃2, · · · , H̃ ϵ

)
,& = 1, 2, · · · , ϵ, thus H̃− ≤

CPLDFWPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ H̃+, called the boundedness.

5 CPLDF MABAC Techniques

In this section, we analyze the MABAC technique for designed operators, called CPLDFPoA operator and
CPLDFPoG operator to deliberate the consistency of the suggested theory. The graphical interpretation of
the proposed application is given in the form of Figure 2.

For this, we have a group of alternatives H̃1, H̃2, ..., H̃ ϵwith A1, A2, ..., An, called attributes for each alterna-
tive with the same order of weighted information, such as ℵ& ∈ [0, 1] with

∑ ϵ
&=1 ℵ& = 1, thus, we design a

matrix by putting their information in the form of CPLDFSs, such as

H̃ =
{(

τ,
(
Fω
rp(τ),Fω

ip(τ)
)
,
( Fω

rp(τ),

Fω
ip(τ)

)
,
(
ζωrp(τ), ζ

ω
ip(τ)

)
,
(
Γωrp(τ),Γ

ω
ip(τ)

))
: τ ∈ X

}
In addition, we define the truth and parameter function according to their real and imaginary parts, such as

Fω
rp (τ) = L1

rp

( Fω
rp (τ)

)
,
(
Fω
ip (τ) = L1

ip

( Fω
ip (τ)

))
and

ζωrp (τ) = L2
rp

(
Γωrp (τ)

)
,
(
ζωip (τ) = L2

ip

(
Γωip (τ)

))
Then

L2
rp

(
Γωrp (τ)

)
∗ L1

rp

( Fω
rp (τ)

)
+ Γωrp (τ) ∗

Fω
rp (τ) ≤ 1

⇒ Γωrp (τ) ∗

Fω
rp (τ)

(
1 + L1

rpL2
rp

)
≤ 1 ⇒ Γωrp (τ) ∗

Fω
rp (τ) ≤

1

1 + L1
rpL2

rp
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form of the proposed technique..png form of the proposed technique.bb

Figure 2: Graphical form of the proposed technique.

Thus, we have the following final shape, such as

H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 ,& = 1, 2, · · · , ϵ

After constructing the decision matrix, we goal to design the procedure of the decision-making model for
evaluating numerous genuine life problems. Therefore, we will follow the following technique for evaluating
any type of problem, such as

Step 1: Construction of matrix: We focus on designing a matrix, where the value of the matrix must be the
form of CPLDFNs, such as

DM =
[
H̃i×&

]
n× ϵ

=


H̃11 H̃12 · · · H̃1 ϵ
H̃21 H̃22 · · · H̃2 ϵ
...

... · · ·
...

H̃n1 H̃n2 · · · H̃n ϵ



After the construction of the complex propositional linear Diophantine fuzzy matrix, we goal to normalize
the data.
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Step 2: Unvarying the matrix: We goal to normalize the data, if Cost types of data occurrences, such as

H̃ =




((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

)))
 benefit


(((

1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

ip

))
,

(
L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

)))
,(((

1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

ip

))
,

(
L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

)))
 cost

In another case, we goal to go to the next step.

Step 3: Weighted matrix construction: We goal to develop the weighted matrix, such as

η̃ΘH̃&

=


((

1−
(
1− L1&

rp

(
1−εrpω&
1+L1&

rp

))η̃Θ
, 1−

(
1− L1&

rp

(
1−εipω&
1+L1&

rp

))η̃Θ)
,

(((
1−εrpω&
1+L1&

rp

))η̃Θ
,

((
1−εipω&
1+L1&

rp

))η̃Θ))
,((

1−
(
1− L2&

rp

(
1−εrpω&
1+L2&

rp

))η̃Θ
, 1−

(
1− L2&

rp

(
1−εipω&
1+L2&

rp

))η̃Θ)
,

(((
1−εrpω&
1+L2&

rp

))η̃Θ
,

((
1−εipω&
1+L2&

rp

))η̃Θ))


(
H̃&

)η̃Θ

=


(((

L1&
rp

(
1−εrpω&
1+L1&

rp

))η̃Θ
,

(
L1&
rp

(
1−εipω&
1+L1&

rp

))η̃Θ)
,

(
1−

(
1−

(
1−εrpω&
1+L1&

rp

))η̃Θ
, 1−

(
1−

(
1−εipω&
1+L1&

rp

))η̃Θ))
,(((

L2&
rp

(
1−εrpω&
1+L2&

rp

))η̃Θ
,

(
L2&
rp

(
1−εipω&
1+L2&

rp

))η̃Θ)
,

(
1−

(
1−

(
1−εrpω&
1+L2&

rp

))η̃Θ
, 1−

(
1−

(
1−εipω&
1+L2&

rp

))η̃Θ))


After evaluating the weighted decision matrix, we goal to address the aggregated matrix.

Step 4: Aggregation matrix construction: We goal to construct the aggregated values matrix by using the
CPLDFPoA operator and CPLDFPoG operator, such as

CPLDFPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





1−
ϵ∏

&=1

(
1− L1&

rp

(
1−εrpω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1− L1&

rp

(
1−εipω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

((
1−εipω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))



 ,



1−
ϵ∏

&=1

(
1− L2&

rp

(
1−εrpω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1− L2&

rp

(
1−εipω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

((
1−εipω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))
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and

CPLDFPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





 ϵ∏
&=1

(
L1&
rp

(
1−εrpω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

(
L1&
rp

(
1−εipω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1−

(
1−εipω&
1+L1&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))



 ,



 ϵ∏
&=1

(
L2&
rp

(
1−εrpω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

(
L2&
rp

(
1−εipω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1−

(
1−εipω&
1+L2&

rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))






To assess the values of the aggregated matrix, we will find the distance values among the information of
weighted value and aggregated values.
Step 5: Distance matrix construction: We goal to design the values by distance function, such as

H̃&k =


D
(
H̃&, H̃k

)
ifH̃& > H̃k

0 ifH̃& = H̃k

−D
(
H̃&, H̃k

)
ifH̃& < H̃k

where

D
(
H̃&, H̃k

)
=
1

8

( ∣∣∣∣∣L1&
rp

(
1− εrp

ω
&

1 + L1&
rp

)
− L1k

rp

(
1− εrp

ω
k

1 + L1k
rp

)∣∣∣∣∣+
∣∣∣∣∣L1&
ip

(
1− εip

ω
&

1 + L1&
ip

)
− L1k

ip

(
1− εip

ω
k

1 + L1k
ip

)∣∣∣∣∣
+

∣∣∣∣∣
(
1− εrp

ω
&

1 + L1&
rp

)
−

(
1− εrp

ω
k

1 + L1k
rp

)∣∣∣∣∣+
∣∣∣∣∣
(
1− εip

ω
&

1 + L1&
ip

)
−

(
1− εip

ω
k

1 + L1k
ip

)∣∣∣∣∣
+

∣∣∣∣∣L2&
rp

(
1− εrp

ω
&

1 + L2&
rp

)
− L2k

rp

(
1− εrp

ω
k

1 + L2k
rp

)∣∣∣∣∣+
∣∣∣∣∣L2&
ip

(
1− εip

ω
&

1 + L2&
ip

)
− L2k

ip

(
1− εip

ω
k

1 + L2k
ip

)∣∣∣∣∣
+

∣∣∣∣∣
(
1− εrp

ω
&

1 + L2&
rp

)
−

(
1− εrp

ω
k

1 + L2k
rp

)∣∣∣∣∣+
∣∣∣∣∣
(
1− εip

ω
&

1 + L2&
ip

)
−

(
1− εip

ω
k

1 + L2k
ip

)∣∣∣∣∣
)

Step 6: Appraisal matrix: We goal to address the appraisal information, such as

S& =
1

ϵ

ϵ∑
k=1

D
(
H̃&, H̃k

)
Step 8: Ranking matrix: Calculate the ranking data according to the appraisal function for addressing the
best one amid the group of a finite number of values.

6 CPLDF MABAC Deep Learning for Diagnosis of Alzheimers Disease

In this section, we goal to address the problem of the CPLDF MABAC deep learning model for diagnosis of
Alzheimers disease for initiated techniques. Alzheimers disease is an unpredictable and progressive neurode-
generative disorder that initially affects memory thinking and behavior. The analysis of Alzheimers disease
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has been done by different scholars according to the information of crisp data, but to analyze the best one
among the collection of data, we needed a soft and valuable technique that can help us in the evaluation of
the procedure of decision-making models. Some key features of Alzheimers disease are memory loss, cognitive
decline, behavioral changes, disorientation, and physical symptoms. In this article, we design the procedure
of a multi-attributive border approximation area comparison deep learning algorithm for the diagnosis of
Alzheimers Disease. Application point of view, we target data collection for diagnosing Alzheimers disease
involves collecting a brief set of data from different sources, thus with the help of the above model, we aim
to select the major means the best and worst ones among the collecting five, such as

1. Cognitive Assessments.

2. Neuroimaging Results.

3. Genetic Information.

4. Biomarkers.

5. Clinical History and Physical Examination.

Once selected, this information can be integrated into machine learning or deep learning models to analyze
patterns and support diagnostic decision-making. Further, we have some attributes for the above alternatives,
such as

1. Memory Loss.

2. Cognitive Decline.

3. Behavioral Changes.

4. Disorientation.

5. Physical symptom.

Therefore, to evaluate the above problems, we have a group of alternatives H̃1, H̃2, · · · , H̃ ϵwithA1, A2, · · · , An,
called attributes for each alternative with the same order of weighted information, such as ℵ& =∈ [0, 1] with∑ ϵ

&=1 ℵ& = 1, thus, we design a matrix by putting their information in the form of CPLDFSs, such as

H̃ =
{(

τ,
(
Fω
rp(τ),Fω

ip(τ)
)
,
( Fω

rp(τ),

Fω
ip(τ)

)
,
(
ζωrp(τ), ζ

ω
ip(τ)

)
,
(
Γωrp(τ),Γ

ω
ip(τ)

))
: τ ∈ X

}
In addition, we define the truth and parameter function according to their real and imaginary parts, such as

Fω
rp(τ) = L1

rp

( Fω
rp(τ)

)
,
(
Fω
ip(τ) = L1

ip

( Fω
ip(τ)

))
and

ζωrp(τ) = L2
rp

(
Γωrp(τ)

)
,
(
ζωip(τ) = L2

ip

(
Γωip(τ)

))
Then

L2
rp

(
Γωrp(τ)

)
∗ L1

rp

( Fω
rp(τ)

)
+ Γωrp(τ) ∗

Fω
rp(τ) ≤ 1

⇒ Γωrp(τ) ∗

Fω
rp(τ)

(
1 + L1

rpL2
rp

)
≤ 1 ⇒ Γωrp(τ) ∗

Fω
rp(τ) ≤

1

1 + L1
rpL2

rp
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Similarly, we have imaginary parts, such as

Γωip(τ) ∗

Fω
ip(τ) ≤

1

1 + L1
ipL2

ip

thus

εωrp(τ) = 1−
(
ζωrp(τ) ∗ Fω

rp(τ) ∗+Γωrp(τ) ∗

Fω
rp(τ)

)
= 1−

(
L2
rp

(
Γωrp(τ)

)
∗ L1

rp

( Fω
rp(τ)

)
+ Γωrp(τ) ∗

Fω
rp(τ)

)
= 1−

(
Γωrp(τ) ∗

Fω
rp(τ)

(
1 + L1

rpL2
rp

))
then

1− εωrp(τ) = Γωrp(τ) ∗

Fω
rp(τ)

(
1 + L1

rpL2
rp

)
and

Γωrp(τ) ∗

Fω
rp(τ) =

1− εωrp(τ)(
1 + L1

rpL2
rp

)
Similarly, we have

Γωip(τ) ∗

Fω
ip(τ) =

1− εωip(τ)(
1 + L1

ipL2
ip

)
But if we use the condition of IFSs, thus we have

L1
rp

( Fω
rp(τ)

)
+

Fω
rp(τ) ≤ 1

⇒ Fω
rp(τ)

(
1 + L1

rp

)
≤ 1 ⇒ Fω

rp(τ) ≤
1(

1 + L1
rp

)
Similarly, we have imaginary parts, such as

Fω
ip(τ) ≤

1(
1 + L1

ip

)
Thus, we have the condition of refusal function in IFSs, such as

εωrp(τ) = 1−
(
Fω
rp(τ) +

Fω
rp(τ)

)
= 1−

(
L1
rp

( Fω
rp(τ)

)
+

Fω
rp(τ)

)
= 1−

( Fω
rp(τ)

(
1 + L1

rp

))
then

1− εωrp(τ) =

Fω
rp(τ)

(
1 + L1

rp

)
and

Fω
rp(τ) =

1− εωrp(τ)(
1 + L1

rp

) ,(ζωrp(τ) = 1− εωrp(τ)(
1 + L2

rp

) )
Similarly, we have

Fω
ip(τ) =

1− εωip(τ)(
1 + L1

rp

) ,
ζωip(τ) = 1− εωip(τ)(

1 + L2
ip

)
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If εωrp(τ) = εωip(τ) = 0, thus

Fω
rp(τ) =

1

(1+L1
rp)

and

Fω
ip(τ) =

1

(1+L1
ip)

. Then

Fω
rp(τ) = L1

rp

(
1(

1 + L1
rp

)) ,
Fω

ip(τ) = L1
ip

 1(
1 + L1

ip

)


and

ζωrp(τ) = L2
rp

(
1(

1 + L2
rp

)) ,
ζωip(τ) = L2

ip

 1(
1 + L2

ip

)


Then

H̃ =


τ,

((
L1
rp

(
1

1+L1
rp

)
,L1

ip

(
1

1+L1
ip

))
,
(

1
1+L1

rp
, 1
1+L1

rp

))
,((

L2
rp

(
1

1+L2
rp

)
,L2

ip

(
1

1+L2
ip

))
,
(

1
1+L2

rp
, 1
1+L2

rp

))
 : τ ∈ X


Thus, we have the following final shape, such as

H̃& =


((

L1&
rp

(
1−εrpω&
1+L1&

rp

)
,L1&

ip

(
1−εipω&
1+L1&

ip

))
,

((
1−εrpω&
1+L1&

rp

)
,

(
1−εipω&
1+L1&

rp

)))
,((

L2&
rp

(
1−εrpω&
1+L2&

rp

)
,L2&

ip

(
1−εipω&
1+L2&

ip

))
,

((
1−εrpω&
1+L2&

rp

)
,

(
1−εipω&
1+L2&

rp

)))
 ,& = 1, 2, · · · , ϵ.

Therefore, we will follow the following technique for evaluating any type of problem, such as
Step 1: Construction of matrix: We focus on designing a matrix, where the value of the matrix must be the
form of CPLDFNs, see Table 1.

Table 1: CPLDF information decision matrix.

A1 A2 A3 A4 A5

H̃1 ((4, 3), (4, 2)) ((5, 1), (5, 3)) ((6, 2), (6, 3)) ((7, 4), (7, 4)) ((1, 3), (8, 5))

H̃2 ((1, 3), (2, 6)) ((2, 2), (3, 5)) ((3, 4), (4, 4)) ((4, 4), (5, 3)) ((1, 1), (8, 5))

H̃3 ((3, 3), (1, 5)) ((4, 2), (4, 4)) ((5, 3), (3, 3)) ((7, 4), (5, 2)) ((1, 3), (6, 1))

H̃4 ((6, 4), (1, 2)) ((5, 1), (2, 1)) ((4, 2), (3, 2)) ((3, 3), (1, 2)) ((1, 3), (2, 1))

H̃5 ((1, 5), (2, 5)) ((2, 4), (3, 4)) ((3, 3), (4, 3)) ((1, 2), (1, 2)) ((1, 3), (2, 1))

Step 2: Unvarying the matrix: We goal to normalize the data, if Cost types of data occurrences, such as
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 cost
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In another case, we goal to go to the next step. So here we have benefit types of data in Table 1, so we will
go to the next step.

Step 3: Weighted matrix construction: We goal to develop the weighted matrix, where η̃Θ = 2, see Table 2.

Table 2: CPLDF weighted information matrix.

A1 A2 A3 A4 A5

H̃1

(
(0.96,0.9375),
(0.36,0.4375),
(0.64,0.4444),
(0.04.0.111)

) (
(0.9722,0.75),
(0.3056,0.75),

(0.6944,0.5625),
(0.0278,0.0625)

) (
(0.9796,0.8889),
(0.2653,0.5556),
(0.7347,0.5625),
(0.0204,0.0625)

) (
(0.9844,0.96),
(0.2344,0.36),
(0.7656,0.64),
(0.0156,0.04)

) (
(0.75,0.9375),
(0.75,0.4375),

(0.7901,0.6944),
(0.0123,0.0278)

)

H̃2

(
(0.75,0.9375),
(0.75,0.4375),

(0.4444,0.7347),
(0.1111,0.0204)

) (
(0.8889,0.8889),
(0.5556,0.5556),
(0.5625,0.6944),
(0.0625,0.0278)

) (
(0.9375,0.96),
(0.4375,0.36),
(0.64,0.64),
(0.04,0.04)

) (
(0.96,0.96),
(0.36,0.36),

(0.6944,0.5625),
(0.0278,0.0625)

) (
(0.75,0.75),
(0.75,0.75),

(0.7901,0.6944),
(0.0123,0.0278)

)

H̃3

(
(0.9375,0.9375),
(0.4375,0.4375),
(0.25,0.6944),
(0.25,0.0278)

) (
(0.96,0.8889),
(0.36,0.5556),
(0.64,0.64),
(0.04,0.04)

) (
(0.9722,0.9375),
(0.3056,0.4375),
(0.5625,0.5625),
(0.0625,0.0625)

) (
(0.9844,0.96),
(0.2344,0.36),

(0.6944,0.4444),
(0.0278,0.1111)

) (
(0.75,0.9375),
(0.75,0.4375),
(0.7347,0.25),
(0.0204,0.25)

)

H̃4

(
(0.9796,0.96),
(0.2653,0.36),
(0.25,0.4444),
(0.25,0.1111)

) (
(0.9722,0.75),
(0.3056,0.75),
(0.4444,0.25),
(0.111,0.25)

) (
(0.96,0.8889),
(0.36,0.5556),

(0.5625,0.4444),
(0.0625,0.1111)

) (
(0.9375,0.9375),
(0.4375,0.4375),
(0.25,0.4444),
(0.25,0.1111)

) (
(0.75,0.9375),
(0.75,0.4375),
(0.4444,0.25),
(0.1111,0.25)

)

H̃5

(
(0.75,0.9722),
(0.75,0.3056),

(0.4444,0.6944),
(0.111,0.0278)

) (
(0.8889,0.96),
(0.5556,0.36),
(0.5625,0.64),
(0.0625,0.04)

) (
(0.9375,0.9375),
(0.4375,0.4375),
(0.64,0.5625),
(0.04,0.0625)

) (
(0.75,0.8889),
(0.75,0.5556),
(0.25,0.4444),
(0.25,0.1111)

) (
(0.75,0.9375),
(0.75,0.4375),
(0.4444,0.25),
(0.1111,0.25)

)

Step 4: Aggregation matrix construction: We goal to construct the aggregated values matrix by using the
CPLDFPoA operator and CPLDFPoG operator, see Table 3.

Table 3: CPLDF aggregated information matrix.

CPLDFPoA CPLDFPoG Weighted vector obtained with the help of power operators

H̃1

(
(0.9618,0.9154),
(0.4214,0.5317),
(0.7226,0.5735),
(0.0214,0.0548)

) (
(0.9261,0.8913),
(0.3458,0.4916),
(0.7296,0.5883),
(0.0233,0.0615)

)
0.2011,0.199,0.2044,0.2024,0.1931

H̃2

(
(0.8891,0.9231),
(0.6002,0.5177),
(0.6139,0.6623),
(0.0397,0.0331)

) (
(0.8534,0.8965),
(0.5462,0.4716),
(0.6442,0.67),
(0.0515,0.0358)

)
0.1991,0.2036,0.2932,0.1995,0.1946

H̃3

(
(0.9525,0.9358),
(0.4499,0.4497),
(0.5409,0.4916),
(0.0513,0.0712)

) (
(0.9186,0.9618),
(0.3813,0.4416),
(0.605,0.5442),
(0.084,0.1005)

)
0.1962,0.204,0.2065,0.2026,0.1907

H̃4

(
(0.9491,0.9156),
(0.4579,0.531),
(0.3692,0.3546),
(0.1374,0.1528)

) (
(0.9164,0.8918),
(0.3936,0.491),
(0.4022,0.375),
(0.1612,0.1685)

)
0.2014,0.1973,0.2024,0.2037,0.1953

H̃5

(
(0.8389,0.9457),
(0.67,0.4247),

(0.4475,0.4893),
(0.0947,0.0716)

) (
(0.8114,0.9391),
(0.6341,0.4099),
(0.4848,0.5436),
(0.1176,0.1018)

)
0.2027,0.2022,0.1988,0.1968,0.1996

Step 5: Distance matrix construction: We goal to design the values by distance function, see Table 4.
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Table 4: CPLDF distance values.

CPLDFPoA CPLDFPoG

H̃1 0.0583,0.0704,0.032,0.0695,0.1102 0.056,0.0691,0.0294,0.0609,0.115

H̃2 0.0887,0.0286,0.0577,0.0909,0.1169 0.0902,0.0327,0.0522,0.0845,0.1187

H̃3 0.0972,0.0675,0.0363,0.0782,0.1452 0.1036,0.0569,0.0324,0.0723,0.148

H̃4 0.1002,0.1079,0.07,0.0638,0.1137 0.0948,0.1054,0.0663,0.0665,0.1151

H̃5 0.0729,0.0716,0.0852,0.0992,0.0784 0.0733,0.0647,0.0804,0.1061,0.0869

Step 6: Appraisal matrix: We goal to address the appraisal information, see Table 5.

Table 5: CPLDF ranking values.

CPLDFPoA CPLDFPoG

H̃1 0.0681 0.0654

H̃2 0.0765 0.0757

H̃3 0.0849 0.0826

H̃4 0.0911 0.0896

H̃5 0.0815 0.0823

Step 8: Ranking matrix: Calculate the ranking data according to the appraisal function for addressing the
best one amid the group of a finite number of values, see Table 6.

Table 6: CPLDF ranking values.

Methods Ranking values Best idea

CPLDFPoA operator H̃4 > H̃5 > H̃3 > H̃2 > H̃1 H̃4

CPLDFPoG operator H̃4 > H̃5 > H̃3 > H̃2 > H̃1 H̃4

According to the data in Table 6, the most preferable decision is H̃4, called the Biomarkers for the MABAC
model based on both operators. The simple representation of the data in Table 5 is available in the form of
Figure 3.
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Figure 3: Graphical form of data in Table 5.

In addition, we will consider the data in Table 1 and, will evaluate it with the help of operators without the
MABAC technique. Thus, the aggregated values matrix by using the CPLDFPoA operator and CPLDFPoG
operator, see Table 7

Table 7: CPLDF aggregated matrix.

CPLDFPoA CPLDFPoG

H̃1

(
(0.8046,0.7091),
(0.2393,0.3157),
(0.8501,0.7573),
(0.1462,0.2341)

) (
(0.7607,0.6843),
(0.1954,0.2909),
(0.8538,0.7659),
(0.1499,0.2427)

)

H̃2

(
(0.6669,0.7227),
(0.3677,0.3055),
(0.7835,0.8138),
(0.1993,0.1819)

) (
(0.6323,0.6945),
(0.3331,0.2773),
(0.8007,0.8181),
(0.2165,0.1862)

)

H̃3

(
(0.7821,0.7466),
(0.2583,0.2582),
(0.7355,0.7011),
(0.2266,0.2669)

) (
(0.7417,0.7418),
(0.2179,0.2534),
(0.7734,0.7331),
(0.2645,0.2989)

)

H̃4

(
(0.7744,0.7095),
(0.2637,0.3151),
(0.6077,0.5955),
(0.3706,0.3909)

) (
(0.7363,0.6849),
(0.2256,0.2905),
(0.6294,0.6091),
(0.3923,0.4045)

)

H̃5

(
(0.5986,0.7671),
(0.4256,0.2415),
(0.669,0.6995),
(0.3077,0.2675)

) (
(0.5744,0.7585),
(0.4014,0.2329),
(0.6923,0.7325),
(0.331,0.3005)

)

Score value matrix: We goal to address the Score information, see Table 8.
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Table 8: CPLDF ranking values.

CPLDFPoA CPLDFPoG

H̃1 0.5464 0.5464

H̃2 0.4832 0.4832

H̃3 0.4888 0.4888

H̃4 0.3367 0.3367

H̃5 0.373 0.373

Ranking matrix: Calculate the ranking data according to the Score function for addressing the best one amid
the group of a finite number of values, see Table 9.

Table 9: CPLDF ranking values.

Methods Ranking values Best idea

CPLDFPoA operator H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

CPLDFPoG operator H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

According to the data in Table 9, the most preferable decision is H̃3, called the Genetic Information for both
operators. The sensitivity of the proposed information for different values of parameters η̃Θ is described in
Table 10.

Table 10: Representation of the sensitive analysis.

η̃Θ Ranking values Best idea

2 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

4 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

6 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

8 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

10 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

12 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

According to the data in Table 10, the most preferable decision is H̃3, called the Genetic Information for both
operators for different values of parameters, anyhow, the proposed model is stable for all possible values of
parameters, and the best value is H̃3 for all values of the parameter. The simple representation of the data
in Table 8 is available in the form of Figure 4.
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Figure 4: Graphical form of data in Table 8.

Additionally, we will compare the proposed ranking data with the ranking information of various existing
techniques to discuss the efficiency of the invented theory.

7 Comparative Analysis

In this section, we scrutinize and deliberate the supremacy and validity of the designed technique and models
by comparing their ranking values with the ranking values of various models. For this, we goal to collect
various necessary techniques based on fuzzy models and their extensions, then we will evaluate the data
in Table 1 with the help of considered information, such as Pamucar and Cirovic [21] invented the (multi-
attributive border approximation area comparison) MABAC technique for classical set theory. Further,
Yager [22] evaluated the power averaging (PoA) technique. In 2009, Xu and Yager [23] introduced the power
geometric (PoG) technique for classical set theory. Jiang et al. [24] derived the power operators for IFSs.
Wei and Lu [25] examined the power operators for PFSs. Garg et al. [26] initiated the power operators for
Cq-ROFSs. Liu et al. [27] derived the power Dombi operators for CPFSs. Rani and Garg [28] evaluated
the power operators for CIFSs. Ali [29] presented the power interaction operator for CIFSs. Ali et al. [30]
described the power operators for complex intuitionistic fuzzy soft sets. Thus, the final ranking values are
illustrated in Table 11.
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Table 11: CPLDF comparative model.

Methods Score values Ranking values

Pamucar and Cirovic [21] 0.0,0.0,0.0,0.0,0.0 No

Yager [22] 0.0,0.0,0.0,0.0,0.0 No

Xu and Yager [23] 0.0,0.0,0.0,0.0,0.0 No

Jiang et al. [24] 0.0,0.0,0.0,0.0,0.0 No

Wei and Lu [25] 0.0,0.0,0.0,0.0,0.0 No

Garg et al. [26] 0.0,0.0,0.0,0.0,0.0 No

Liu et al. [27] 0.0,0.0,0.0,0.0,0.0 No

Rani and Garg [28] 0.0,0.0,0.0,0.0,0.0 No

Ali [29] 0.0,0.0,0.0,0.0,0.0 No

Ali et al. [30] 0.0,0.0,0.0,0.0,0.0 No

CPLDFPoA-MABAC 0.0681,0.0765,0.0849,0.0911,0.0815 H̃4 > H̃3 > H̃5 > H̃2 > H̃1

CPLDFPoG-MABAC 0.0654,0.0757,0.0826,0.0896,0.0823 H̃4 > H̃3 > H̃5 > H̃2 > H̃1

CPLDFPoA 0.5464,0.4832,0.4888,0.3367,0.373 H̃3 > H̃2 > H̃1 > H̃5 > H̃4

CPLDFPoG 0.5464,0.4832,0.4888,0.3367,0.373 H̃3 > H̃2 > H̃1 > H̃5 > H̃4

According to the data in Table 6, the most preferable decision is H̃4, called the Biomarkers for the MABAC
model based on both operators. But, according to the data in Table 11, the most preferable decision is
H̃3, called the Genetic Information for both operators. In addition, the limitation of the existing models is
described in Table 12.

Table 12: CPLDF theoretical comparison.

Methods Truth value Falsity value Crisp function Parameters for both function Aggregation operators Techniques/methods Strong condition/not failed Periodic function

Pamucar and Cirovic [21] no no yes no Yes yes no no

Yager [22] no no yes no Yes no no no

Xu and Yager [23] yes yes yes no Yes no no no

Jiang et al. [24] yes yes yes no Yes no no no

Wei and Lu [25] yes yes yes no yes no no no

Garg et al. [26] yes yes yes no yes no no yes

Liu et al. [27] yes yes yes no yes no no yes

Rani and Garg [28] yes yes yes no yes no Yes yes

Ali [29] yes yes yes no yes no no yes

Ali et al. [30] yes yes yes no yes no no yes

Proposed models yes yes yes Yes yes yes Yes yes

Finally, from the information in Table 12, we analyze that the existing techniques and models contain various
limitations because of their features. Every point of view, we have discussed in Table 12, and from the data
in Table 12, and Table 11, we concluded that the existing models are the special cases of the proposed theory.
Hence, the designed techniques are more powerful and more reliable compared to existing models.

8 Conclusion

The complex propositional linear Diophantine fuzzy technique is a very powerful model for handling vague
and uncertain data. The technique of complex propositional linear Diophantine fuzzy sets is the combination
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of numerous valuable ideas, where the key and major contributions of the designed techniques are followed,
such as designing the procedure of a MABAC deep learning algorithm for the diagnosis of Alzheimers Disease.
Further, we design the model of CPLDF information with their basic operational laws. In addition, we analyze
the model of the CPLDFPoA operator, CPLDFWPoA operator, CPLDFPoG operator, and CPLDFWPoG
operator, and also initiate their major properties. Moreover, we arrange relevant from different sources for
diagnosing Alzheimers disease under the consideration of the designed technique. Lastly, we compare both
(proposed and existing) ranking information to address the supremacy and strength of the designed models.

In the future, we will begin the model of complex propositional (p, q) Diophantine fuzzy sets with some
new extensions. In addition, we will evaluate the model of operator, measures, and methods for designed
models and discuss their application in decision-making, artificial intelligence, and data mining to improve
the worth of fuzzy set theory.
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Abstract.  The n,m‐rung orthopair fuzzy set theory is a robust model for managing uncertainty, particularly in multi‐attribute 
decision‐making. Meanwhile, the hesitant fuzzy model is a well‐established tool in decision‐making processes. Recognizing the 
similarities between these models, we propose a new framework called "c,d‐rung orthopair hesitant fuzzy sets," which integrates 
both approaches. We examine key operations such as union, intersection, complement, subset, and equality, and introduce 
aggregation operators like the c,d‐RHFPA, c,d‐RHFWA, c,d‐RHFPG, and c,d‐RHFWPG operators. Additionally, an algorithm for 
multi‐attribute decision‐making is developed, which is applied to determine optimal business strategies for sustainable supply 
chain management. A comparative analysis with existing methods demonstrates the model's effectiveness, offering insights into 
its strengths and limitations. This paper introduces a novel approach to decision‐making, outlining its real‐world application and 
future research directions. 

AMS Subject Classification 2020: 03E72; 94D05 
Keywords and Phrases: Hesitant fuzzy sets, c,d‐rung orthopair fuzzy sets, Decision making, MADM, Sustainable supply chain . 
 

1 Introduction  
1.1 Sustainable supply chain (SSC)  

A  sustainable  supply  chain,  often  referred  to  as  an  environmentally  friendly  or  eco‐conscious  supply  chain,  is  a 
business  strategy  that  significantly  focuses  on  incorporating  environmentally  and  socially  responsible  practices 
throughout all phases of the supply chain process. This model has gained prominence in recent years due to growing 
concerns  about  climate  change,  natural  resource  depletion,  social  responsibility,  and  the  need  to  mitigate  the 
environmental and social impacts of business operations. Various re‐searchers have explored this field from different 
perspecƟves. In 2015, Eskandarpour et al. [1] developed a supply chain network, and [2] outlined mulƟ‐objective 
opƟmizaƟon for sustainable supply chain. Linton et al. [3], in 2007, introduced the standard model for a sustainable 
supply chain, as well as decision models for its design and management in [4]. Resat et al. [5] developed an innovaƟve 
model for multi‐objective optimization approaches to sustainable supply chain management. Zhao et al. [6] applied 
a supply chain opƟmizaƟon model to conƟnuous process industries with sustainability consideraƟons. Eskandari [7] 
formulated  and  optimized  a  sustainable  supply  chain  network  for  a  blood  platelet  bank  under  conditions  of 
uncertainty. Zhang et al. [8] introduced a novel  
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multi‐objective optimization model for sustainable supply chain network design, considering multiple distribution 
channels. Yu et al. [9] proposed two disƟnct frameworks for managing supply chain uncertainty by integrating a fuzzy 
structure  with  supply  chain  network  opƟmizaƟon.  Kazancoglu  et  al.  [10]  focused  on  leveraging  emerging 
technologies to enhance the sustainability and resilience of supply chains in a fuzzy environment, particularly in the 
context of the COVID‐19 pandemic. Goodarzian et al. [11] defined a new bi‐objective green medicine supply chain 
network design under a fuzzy environment.  

Liu  et  al.  [12]  demonstrated  the  applicaƟon  of  a  supply  chain  system  in  agriculture  with  a  Crop  Harvest  Time 
Prediction Model for Better Sustainability, Integrating Feature Selection and Artificial Intelligence Methods. Yadav et 
al. [13] developed a sustainable supply chain model for multi‐stage manufacturing with partial backlogging under a 
fuzzy environment, considering the effect of  learning in the screening process.  In 2020, Poujavad [14] designed a 
hybrid model for analyzing the risks of green supply chains in a fuzzy environment. Alsaed et al. [15] established a 
sustainable green        A Novel Generalization of Hesitant Fuzzy Model with Application in Sustainable Supply Chain 
Optimization  [16, 17] worked on a green Supply Chain Member SelecƟon Method Considering Green  InnovaƟon 
Capability  in  a Hesitant Fuzzy Environment. Mistarihi et al.  [18] developed a  Strategic Framework  for DisrupƟon 
Management under a Fuzzy Environment. Liu [19] uƟlized q‐rung interval‐valued orthopair fuzzy data in a large‐scale 
green supplier selecƟon approach. Chang et al. [20] introduced a fuzzy opƟmizaƟon model for decision‐making in 
supply chain management. Rehman et al.  [21] constructed  the applicaƟon of a supply chain model  in enhancing 
healthcare supply chain resilience by fuzzy decision‐making. 

1.2 Fuzzy Sets and their Generalizations  
In 1965, Zadeh introduced the concept of Fuzzy sets [22] as a tool to address uncertainty. Fuzzy sets are ordered pairs 
where elements from a universal set are assigned member‐ship values ranging from 0 to 1. Dubois et al. [23] authored 
a book on the fundamentals of fuzzy sets, discussing applicaƟons in detail. AƩansove et al. [24] designed an extension 
of fuzzy sets called intuiƟonisƟc fuzzy sets, and Fermatean fuzzy sets were introduced by SenapaƟ et al. [25]. Picture 
fuzzy sets and generalized orthopair fuzzy sets were introduced in [26, 27]. Torra [28] extended the FS model into a 
Hesitant fuzzy structure and discussed the generalized membership grade. Numerous researchers have contributed to 
the field of fuzzy sets and its generalizaƟons [29‐35]. Recently, Shahzadi et al. [36] introduced the latest extension of 
q‐rung orthopair fuzzy sets, known as p,q‐rung orthopair fuzzy sets, applied in multi‐criteria decision‐making. Ibrahim 
et  al.  [37]  defined  a  topological  approach  for  n, m‐Rung orthopair  fuzzy  sets with  applications  to  the diagnosis  of 
learning disabiliƟes. ConƟnuously, Ibrahim et al. [38] combined two fuzzy frame‐works—bipolar fuzzy sets and n,m‐
rung orthopair fuzzy sets—and defined an approach for multi‐attribute group decision‐making based on bipolar n, m‐
rung orthopair fuzzy sets. Furthermore, Ibrahim et al. [39] worked on an innovaƟve method for group decision‐making 
using n, m‐rung orthopair fuzzy soŌ expert set knowledge. Mahmood at al [40] combined intuiƟonisƟc fuzzy sets and 
hesitant fuzzy sets and called intuitionistic hesitant fuzzy sets with their application in decision‐making. Qahtan et al. 
[41] used Pythagorean hesitant fuzzy sets for supply chain systems and mulƟple‐attribute decision‐making in [42]. Krisci 
et  al.  [43]  developed  Fermatean  hesitant  fuzzy  sets  with  medical  decision‐making  applicaƟons.  Liu  et  al.  [44] 
constructed  q‐rung  hesitant  fuzzy  sets  and  their  application  in  multi‐criteria  decision‐making.  Sarwar  et  al.  [45] 
established a decision‐making model for failure modes and effects analysis based on rough fuzzy integrated clouds. 
Punnam et al. [46] explored a Linear DiophanƟne Fuzzy SoŌ Set‐Based Decision‐Making Approach Using a Revised Max‐
Min Average Composition Method. Recently, some novel extensions and generalizations of fuzzy models have been 
developed with their applicaƟons [47‐49]. AggregaƟon operators play  
a crucial  role  in  information calculation,  leading to  the development of several aggregation operators  in  literature. 
Yager [50] introduced power average operators in 2001, and Xu et al. [51] developed pow‐er geometric operators and 
their application in group decision‐making. Yager and Ronald [52] designed generalized OWA aggregaƟon operators. 
Dhankhar  et  al.  [53]  discussed  mulƟ‐attribute  decision‐making  based  on  the  q‐rung  orthopair  fuzzy  Yager  power 
weighted geometric  aggregation operator of  q‐rung orthopair  fuzzy  values. Ali  et  al.  [54] developed an  InnovaƟve 
Decision Model Utilizing Intuitionistic Hesitant Fuzzy Aczel‐Alsina Aggregation Operators and Its Application. Haq et al. 
[55] designed a novel Fermatean Fuzzy Aczel–Alsina Model for Investment Strategy Selection. 
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1.3 Motivation and Contribution  

In our comprehensive literature review, we have identified key areas of interest and gaps in current research. This 
review underscores the significance of fuzzy sets and their extensions, as well as highlighting the burgeoning field of 
'Sustainable  Supply Chain with Multi‐Objective Decision‐Making'  and  its applications. Addressing a notable gap  in 
existing  literature,  our  research  primarily  focuses  on  bridging  the  disconnect  between  the  advanced  "n,m‐rung 
orthopair fuzzy model" and its application in sustainable supply chain systems. We have recognized the absence of 
methodologies based on "n,m‐rung orthopair hesitant fuzzy sets" that facilitate multiple‐attribute decision‐making 
within  sustainable  supply  chain  contexts.  In  this  paper,  we  have  made  several  groundbreaking  contributions  to 
address these existing gaps as follows: 

i.  We  successfully  designed  and  developed  an  innovative  combination  of  n,m‐rung  orthopair  fuzzy  sets  and 
hesitant  fuzzy  sets, which we have named c,d‐rung orthopair hesitant  fuzzy  sets.  This pioneering work utilizes  the 
synergies between the n,m and c,d models to propel the field forward. 

ii.  We have introduced and validated a comprehensive series of theorems and properties specific to our proposed 
model. This effort has significantly strengthened the theoretical underpinnings of our research. 

iii.  We have completed the development of an extensive series of aggregation operators for the c,d‐rung orthopair 
hesitant fuzzy sets. This series includes the c,d‐rung orthopair hesitant fuzzy power averaging (c,d‐RHFPA) operator, 
the  c,d‐rung  orthopair  hesitant  fuzzy  power  weighted  averaging  (c,d‐RHFPWA)  operator,  the  c,d‐rung  orthopair 
hesitant  fuzzy  power  geometric  (c,d‐RHFPG)  operator,  and  the  c,d‐rung  orthopair  hesitant  fuzzy  power  weighted 
geometric (c,d‐RHFWPG) operator.  

iv.  We have established a detailed algorithm for multiple criteria decision‐making using c,d‐RHF information. This 
robust framework is tailored for navigating com‐plex decision processes efficiently. 

v.  Our  research  has  successfully  applied  the  developed  multiple  criteria  decision‐making  model  to  identify 
optimal  strategies  for  maintaining  sustainable  supply  chain  systems  under  c,d‐rung  orthopair  hesitant  fuzzy 
information. 

vi.  We conducted a thorough comparison of our model with existing techniques, demonstrating its consistency 
and superiority in the field. 

vii.  Finally,  we  have  clearly  articulated  the  benefits  and  advantages  of  our  proposed  model,  emphasizing  its 
significant impact and practical applications in the realm of sustainable supply chain management. 

The arƟcle is structured as follows: SecƟon 2 introduces the fundamental concepts relevant to our proposed approach. 
SecƟon  3  develops  the  novel  concept  of  "c,d‐rung  orthopair  hesitant  fuzzy  Sets,"  including  their  operations  and 
properƟes. SecƟon 4 details the creation of aggregation operators for c,d‐rung orthopair hesitant fuzzy sets, along with 
essenƟal results and proofs. SecƟon 5 elucidates the MCDM algorithm using c,d‐rung orthopair hesitant fuzzy power 
averaging  and  geometric  operators.  Section  6  applies  these  concepts  to  a  sustainable  supply  chain  (SSC)  model, 
providing a comprehensive exploraƟon of MCDM. SecƟon 7 presents a comparaƟve analysis with exisƟng techniques, 
highlighting the strengths and limitations of our approach. Finally, SecƟon 8 concludes the paper and outlines future 
research direcƟons. Figure 1 illustrates the manuscript's workflow.  
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Figure 1: Flow chart of the sequence of research 
 

2 Preliminaries  

In this section, we recall the basic concepts such as intuitionistic hesitant fuzzy sets, Pythagorean hesitant fuzzy sets, 
Q‐ROHFSs and c,d‐rung rung orthopair fuzzy sets. Table 1 shows the symbols, and their descripƟons used in the arƟcle. 

DefiniƟon 2.1. let 𝜕 be a universal set. Then, 𝐿 ൌ ሼ𝑢, 𝜋ሺ𝑢ሻ, 𝜓ሺ𝑢ሻ: 𝑢 ∈ 𝜕ሽ is called.  

1. an intuiƟonisƟc hesitant fuzzy set (IHFS) [40] if 0  max൫𝜋ሺ𝑢ሻ൯  max൫𝜓ሺ𝑢ሻ൯  1 where   𝜋ሺ𝑢ሻ and  𝜓ሺ𝑢ሻ 
is a collecƟon of disƟnct elements from [0,1] 

2. a  Pythagorean  hesitant  fuzzy  set  (PHFS)  [42]  if 0  max൫𝜋ሺ𝑢ሻ൯
ଶ

 max൫𝜓ሺ𝑢ሻ൯
ଶ

 1  where     𝜋ሺ𝑢ሻ  and 
 𝜓ሺ𝑢ሻ is a collecƟon of disƟnct elements from [0,1] 

3. a Fermatean hesitant fuzzy set (FHFS) [43] if 0  max൫𝜋ሺ𝑢ሻ൯
ଷ

 max൫𝜓ሺ𝑢ሻ൯
ଷ

 1 where   𝜋ሺ𝑢ሻ and  𝜓ሺ𝑢ሻ 
is a collecƟon of disƟnct elements from [0,1]. 

4. a Q‐ROFS [44] if 0  max൫𝜋ሺ𝑢ሻ൯


 max൫𝜓ሺ𝑢ሻ൯


 1, for 𝑞  1. where   𝜋ሺ𝑢ሻ and  𝜓ሺ𝑢ሻ is a collection of 
disƟnct elements from [0,1]. 

Where 𝜋ሺ𝑢ሻ, 𝜓ሺ𝑢ሻ: 𝜕 → ሾ0,1ሿ are MG and NMG, respectively. 

DefiniƟon 2.2. [38] let 𝜕 be a universal set. Then, 𝐿 ൌ ሼ𝑢, 𝜋ሺ𝑢ሻ, 𝜓ሺ𝑢ሻ: 𝑢 ∈ 𝜕ሽ is called a c,d‐rung orthopair fuzzy set 
if  0  ൫𝜋ሺ𝑢ሻ൯


 ൫𝜓ሺ𝑢ሻ൯

ௗ
 1  such  that  𝑐, 𝑑 ∈ 𝑁.  The  degree  of  indeterminacy  for  𝑢 ∈ 𝜕  to  L  is  given  as, 

𝛾ሺ𝑢ሻ ൌ ට1 െ ቂ൫𝜋ሺ𝑢ሻ൯


 ൫𝜓ሺ𝑢ሻ൯
ௗ

ቃ
శ

 ,    𝛾ሺ𝑢ሻ ∈ ሾ0,1ሿ 

 

DefiniƟon 2.3. For a c,d‐rung orthopair fuzzy set 𝐿 ൌ ൫𝜋ሺ𝑢ሻ, 𝜓ሺ𝑢ሻ൯, The score (SF) and accuracy functions (AF) are 
defined as 

𝑆ሺ𝐿ሻ ൌ ൫𝜋ሺ𝑢ሻ൯


െ ൫𝜓ሺ𝑢ሻ൯
ௗ

,   𝐴ሺ𝐿ሻ ൌ ൫𝜋ሺ𝑢ሻ൯


 ൫𝜓ሺ𝑢ሻ൯
ௗ
  

 

Wherever, 𝑆ሺ𝐿ሻ ∈ ሾെ1,1ሿ and 𝐴ሺ𝐿ሻ ∈ ሾ0,1ሿ. 
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3 An idea of c,d‐rung orthopair hesitant fuzzy sets (c,d RHFSs)  

The concept of the novel model called c,d‐RHFSs with their basic properties and operators are briefly discussed in this 
section. 

Table 1: Symbols and their descriptions 

Symbols  Descriptions  Symbols  Descriptions 

Q‐ROFSS  q‐rung orthopair fuzzy sets  c,d RHFSs  c,d‐rung hesitant fuzzy sets 

MG  Membership grade  c,d RHFPA  c,d‐rung hesitant fuzzy power average 

NMG  Non‐membership grade  c,d RHFPG  c,d‐rung hesitant fuzzy power geometric 

SSC  Sustainable supply chain  MCDM  Multi criteria decision making 

SF  Score function  AF  Accuracy function 

DefiniƟon 3.1.  let 𝜕 be a universal set. A c,d rung orthopair hesitant fuzzy sets(c,d‐RHFSs) L  in 𝜕  is stated as, 𝐿 ൌ
ሼ𝑢, 𝜋ሺ𝑢ሻ, 𝜓ሺ𝑢ሻ: 𝑢 ∈ 𝜕ሽ  where  𝜋ሺ𝑢ሻ  and  𝜓ሺ𝑢ሻ  is  a  set  of  elements  from  the  [0,1]  and    0  𝑚𝑎𝑥൫𝜋ሺ𝑢ሻ൯




𝑚𝑎𝑥൫𝜓ሺ𝑢ሻ൯
ௗ

 1 such that 𝑐, 𝑑 ∈ 𝑁. The degree of indeterminacy for 𝑢 ∈ 𝜕 to L is given as, 

𝛾ሺ𝑢ሻ ൌ ራ ට1 െ ቂ൫𝑒ሺ𝑢ሻ൯


 ൫𝑓ሺ𝑢ሻ൯
ௗ

ቃ
శ

∈గಽሺ௨ሻ
∈టಽሺ௨ሻ

 

and 𝛾ሺ𝑢ሻ ∈ ሾ0,1ሿ 

Throughout the paper, for our easiness a c,d‐RHFS is represented as 𝐿 ൌ ሺ𝜋, 𝜓ሻ. 

Remark 3.2. If c=d for a c,d‐RHFS 𝐿 ൌ ሺ𝜋, 𝜓ሻ, then we call 𝐿 ൌ ሺ𝜋, 𝜓ሻ is a Q‐RHFS where q=c=d. 

DefiniƟon 3.3. let 𝐿 ൌ ሺ𝜋, 𝜓ሻ, 𝐿ଵ ൌ ൫𝜋భ, 𝜓భ൯ and 𝐿ଶ ൌ ൫𝜋మ, 𝜓మ൯  be three c,d‐rung orthopair hesitant fuzzy sets 
then, 

1. 𝐿ଵ ∧ 𝐿ଶ 

ൌ ራ ሺminሼ𝑒ଵ, 𝑒ଶሽ , maxሼ𝑓ଵ, 𝑓ଶሽሻ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

2. 𝐿ଵ ∨ 𝐿ଶ 

ൌ ራ ሺmaxሼ𝑒ଵ, 𝑒ଶሽ , minሼ𝑓ଵ, 𝑓ଶሽሻ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

3. 𝐿ᇱ 

ൌ ራ ൬𝑓
ௗ
 , 𝑒


ௗ൰

∈గಽ
∈టಽ

 

Theorem 3.4. If  𝐿 ൌ ሺ𝜋, 𝜓ሻ is a c,d‐rung orthopair hesitant fuzzy sets then 𝐿ᇱ is also (c,d‐RHFSs) and ሺ𝐿ᇱሻᇱ ൌ 𝐿.  
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Proof. Let 0  𝜋
  𝜓

ௗ  1, then. 

0  ൬𝑓

൰



 ቀ𝑒

ቁ

ௗ
ൌ ሺ𝑒ሻ  ሺ𝒇ሻௗ  1  where  𝑒 ∈ 𝜋,  𝑓 ∈ 𝜓.  Thus,  𝐿ᇱ  is  also  (c,d‐RHFS)  and  it  is  obvious 

ሺ𝐿ᇱሻᇱ ൌ ራ ቆ൬𝑓
ௗ
 , 𝑒


ௗ൰ቇ

∈గಽ
∈టಽ

ᇱ

ൌ ራ ൭ቀ𝑒

ௗቁ

ௗ


, ൬𝑓
ௗ
 ൰


ௗ

൱
∈గಽ
∈టಽ

 

Which is again 𝐿.     ◻ 

Remark 3.5. If  𝐿ଵ ൌ ൫𝜋భ, 𝜓భ൯ and 𝐿ଶ ൌ ൫𝜋మ, 𝜓మ൯are two  c,d‐rung orthopair hesitant fuzzy sets then 𝐿ଵ ∧ 𝐿ଶ and 

𝐿ଵ ∨ 𝐿ଶ are also (c,d‐RHFSs). 

Theorem 3.6. let 𝐿ଵ ൌ ൫𝜋భ, 𝜓భ൯ and 𝐿ଶ ൌ ൫𝜋మ, 𝜓మ൯  be two c,d‐rung orthopair hesitant fuzzy sets then, 

1. 𝐿ଵ ∧ 𝐿ଶ ൌ 𝐿ଶ ∧ 𝐿ଵ 

2. 𝐿ଵ ∨ 𝐿ଶ ൌ 𝐿ଶ ∨ 𝐿ଵ 

3. ሺ𝐿ଵ ∧ 𝐿ଶሻ ∨ 𝐿ଶ ൌ 𝐿ଶ 

4. ሺ𝐿ଵ ∨ 𝐿ଶሻ ∧ 𝐿ଶ ൌ 𝐿ଶ 

Proof. From DefiniƟon 3.3, we have: 

1. 𝐿ଵ ∧ 𝐿ଶ 

ൌ ራ ሺminሼ𝑒ଵ, 𝑒ଶሽ , maxሼ𝑓ଵ, 𝑓ଶሽሻ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

ൌ ራ ሺminሼ𝑒ଶ, 𝑒ଵሽ , maxሼ𝑓ଶ, 𝑓ଵሽሻ ൌ 𝐿ଶ ∧ 𝐿ଵ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

2. 𝐿ଵ ∨ 𝐿ଶ 

ൌ ራ ሺmaxሼ𝑒ଵ, 𝑒ଶሽ , minሼ𝑓ଵ, 𝑓ଶሽሻ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

ൌ ራ ሺmaxሼ𝑒ଶ, 𝑒ଵሽ , minሼ𝑓ଶ, 𝑓ଵሽሻ ൌ 𝐿ଶ ∨ 𝐿ଵ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

3. ሺ𝐿ଵ ∧ 𝐿ଶሻ ∨ 𝐿ଶ 

ൌ ራ ሺminሼ𝑒ଵ, 𝑒ଶሽ , maxሼ𝑓ଵ, 𝑓ଶሽሻ ∨

⎝

⎜
⎛

ራ ሺ𝑒ଶ, 𝑓ଶሻ
మ∈గಽమ
మ∈టಽమ ⎠

⎟
⎞

భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

ൌ ራ ൫maxሺminሼ𝑒ଶ, 𝑒ଵሽ, 𝑒ଶሻ , min൫max൛𝑓ଶ, 𝑓ଵൟ , 𝑓ଶ൯൯ ൌ 𝐿ଶ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

4. ሺ𝐿ଵ ∨ 𝐿ଶሻ ∧ 𝐿ଶ 

ൌ ራ ሺmaxሼ𝑒ଵ, 𝑒ଶሽ , minሼ𝑓ଵ, 𝑓ଶሽሻ ∧

⎝

⎜
⎛

ራ ሺ𝑒ଶ, 𝑓ଶሻ
మ∈గಽమ
మ∈టಽమ ⎠

⎟
⎞

భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

ൌ ራ ሺminሺmaxሼ𝑒ଶ, 𝑒ଵሽ, 𝑒ଶሻ , maxሺminሼ𝑓ଶ, 𝑓ଵሽ , 𝑓ଶሻሻ ൌ 𝐿ଶ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

 ◻ 
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Theorem 3.7. let 𝐿ଵ ൌ ൫𝜋భ, 𝜓భ൯ and 𝐿ଶ ൌ ൫𝜋మ, 𝜓మ൯  be two c,d‐rung orthopair hesitant fuzzy sets then, 

1. ሺ𝐿ଵ ∧ 𝐿ଶሻᇱ ൌ 𝐿ଵ
ᇱ ∨ 𝐿ଶ

ᇱ  

2. ሺ𝐿ଵ ∨ 𝐿ଶሻᇱ ൌ 𝐿ଵ
ᇱ ∧ 𝐿ଶ

ᇱ  

Proof. For the c,d‐RHFSs 𝐿ଵ and 𝐿ଶ, we have: 

1. ሺ𝐿ଵ ∧ 𝐿ଶሻᇱ 

ൌ ራ ሺminሼ𝑒ଵ, 𝑒ଶሽ , maxሼ𝑓ଵ, 𝑓ଶሽሻᇱ

భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

ൌ ራ ቆmax ቊ𝑒ଵ

ௗ
 , 𝑒ଶ

ௗ
 ቋ , min ቊ𝑓ଵ


ௗ, 𝑓ଶ


ௗቋቇ

భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

ൌ ራ ቆ𝑒ଵ

ௗ
 , 𝑓ଵ


ௗቇ

భ∈గಽభ
భ∈టಽభ

∨ ራ ቆ𝑒ଶ

ௗ
 , 𝑓ଶ


ௗቇ

మ∈గಽమ
మ∈టಽమ

 

ൌ 𝐿ଵ
ᇱ ∨ 𝐿ଶ

ᇱ  

2. Similar to (1).     ◻ 

DefiniƟon 3.8. let 𝐿 ൌ ሺ𝜋, 𝜓ሻ, 𝐿ଵ ൌ ൫𝜋భ, 𝜓భ൯ and 𝐿ଶ ൌ ൫𝜋మ, 𝜓మ൯  be three c,d‐rung orthopair hesitant fuzzy sets, 
and ∆  is a positive real number ሺ∆  0ሻ,then 

1. 𝐿ଵ ⊕ 𝐿ଶ 

ൌ ራ ቀඥ𝑒ଵ
  𝑒ଶ

 െ 𝑒ଵ
𝑒ଶ

 , 𝑓ଵ𝑓ଶቁ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

2. 𝐿ଵ ⊗ 𝐿ଶ 

ൌ ራ ቆ𝑒ଵ𝑒ଶ, ට𝑓ଵ
ௗ  𝑓ଶ

ௗ െ 𝑓ଵ
ௗ𝑓ଶ

ௗ
ቇ

భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

3. ∆𝐿 

ൌ ራ ቀඥ1 െ ሺ1 െ 𝑒ሻ∆  , ሺ𝑓ሻ∆ቁ
∈గಽ
∈టಽ

 

4. 𝐿∆ 

ൌ ራ ቀ𝑒∆ , ඥ1 െ ሺ1 െ 𝑓ௗሻ∆ ቁ
∈గಽ
∈టಽ

 

Theorem 3.9. let 𝐿ଵ ൌ ൫𝜋భ, 𝜓భ൯, 𝐿ଶ ൌ ൫𝜋మ, 𝜓మ൯ and 𝐿ଷ ൌ ൫𝜋య, 𝜓య൯  be three c,d‐RHFSs, and ∆  is a positive real 
number ሺ∆  0ሻ,then 

1. 𝐿ଵ ⊕ 𝐿ଶ ൌ 𝐿ଶ ⊕ 𝐿ଵ 

2. 𝐿ଵ ⊗ 𝐿ଶ ൌ 𝐿ଶ ⊗ 𝐿ଵ 

3. 𝐿ଵ ⊕ 𝐿ଶ ⊕ 𝐿ଷ ൌ 𝐿ଵ ⊕ 𝐿ଷ ⊕ 𝐿ଶ 

4. 𝐿ଵ ⊗ 𝐿ଶ ⊗ 𝐿ଷ ൌ 𝐿ଵ ⊗ 𝐿ଷ ⊗ 𝐿ଶ 
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Proof. From DefiniƟon 3.8 we have: 

1. 𝐿ଵ ⊕ 𝐿ଶ 

ൌ ራ ቀඥ𝑒ଵ
  𝑒ଶ

 െ 𝑒ଵ
𝑒ଶ

 , 𝑓ଵ𝑓ଶቁ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

ൌ ራ ቀඥ𝑒ଶ
  𝑒ଵ

 െ 𝑒ଶ
𝑒ଵ

 , 𝑓ଶ𝑓ଵቁ ൌ 𝐿ଶ ⊕ 𝐿ଵ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

 

2. 𝐿ଵ ⊗ 𝐿ଶ 

 

ൌ ራ ቆ𝑒ଵ𝑒ଶ, ට𝑓ଵ
ௗ  𝑓ଶ

ௗ െ 𝑓ଵ
ௗ𝑓ଶ

ௗ
ቇ

భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

ൌ ራ ቆ𝑒ଶ𝑒ଵ, ට𝑓ଶ
ௗ  𝑓ଵ

ௗ െ 𝑓ଶ
ௗ𝑓ଵ

ௗ
ቇ ൌ 𝐿ଶ ⊗ 𝐿ଵ

భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

 

3. It is similar to 1. 

4. It is similar to 2.    ◻ 

Theorem 3.10. let 𝐿 ൌ ሺ𝜋, 𝜓ሻ, 𝐿ଵ ൌ ൫𝜋భ, 𝜓భ൯ and 𝐿ଶ ൌ ൫𝜋మ, 𝜓మ൯  be three c,d‐rung orthopair hesitant fuzzy sets, 
and ∆  is a positive real number ሺ∆  0ሻ,then 

1. ሺ𝐿ଵ ⊕ 𝐿ଶሻᇱ ൌ 𝐿ଵ
ᇱ ⊗ 𝐿ଶ

ᇱ  

2. ሺ𝐿ଵ ⊗ 𝐿ଶሻᇱ ൌ 𝐿ଵ
ᇱ ⊕ 𝐿ଶ

ᇱ  

3. ሺ𝐿ᇱሻ∆ ൌ ሺ∆𝐿ሻᇱ 

4. ∆ሺ𝐿ሻᇱ ൌ ሺ𝐿∆ሻᇱ 

Proof. For the c,d‐RHFSs 𝐿, 𝐿ଵ and 𝐿ଷ, we have 

1. ሺ𝐿ଵ ⊕ 𝐿ଶሻᇱ 

ൌ ራ ቀඥ𝑒ଵ
  𝑒ଶ

 െ 𝑒ଵ
𝑒ଶ

 , 𝑓ଵ𝑓ଶቁ
ᇱ

ൌ
భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

ራ ቆሺ𝑓ଵ𝑓ଶሻ
ௗ
 , ቀඥ𝑒ଵ

  𝑒ଶ
 െ 𝑒ଵ

𝑒ଶ
 ቁ


ௗቇ

భ∈గಽభ
మ∈గಽమ
భ∈టಽభ
మ∈టಽమ

 

ൌ ራ ቆ𝑓ଵ

ௗ
 , 𝑒ଵ


ௗቇ

భ∈గಽభ
భ∈టಽభ

⊗ ራ ቆ𝑓ଶ

ௗ
 , 𝑒ଶ


ௗቇ

మ∈గಽమ
మ∈టಽమ

ൌ 𝐿ଵ
ᇱ ⊗ 𝐿ଶ

ᇱ  

2. It is similar to 1. 
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3. ሺ𝐿ᇱሻ∆ 

ൌ ራ ൬𝑓
ௗ
 , 𝑒


ௗ൰

∆

∈గಽ
∈టಽ

ൌ ራ ቌ൬𝑓
ௗ
 ൰

∆

, ቆ1 െ ൬1 െ ቀ𝑒

ௗቁ

ௗ
൰

∆

ቇ

ଵ
ௗ

ቍ
∈గಽ
∈టಽ

ൌ ራ ൭ሺ𝑓∆ሻ
ௗ
 , ൬1 െ ሺ1 െ ሺ𝑒ሻ∆ሻ

ଵ
ௗ൰


ௗ

൱
∈గಽ
∈టಽ

ൌ ራ ൬ሺ1 െ ሺ1 െ 𝑒ሻ∆ሻ
ଵ
    , 𝑓∆൰ ൌ

∈గಽ
∈టಽ

ሺ∆𝐿ሻᇱ 

4. ∆ሺ𝐿ሻᇱ 

ൌ ∆ ራ ൬𝑓
ௗ
 , 𝑒


ௗ൰

∈గಽ
∈టಽ

ൌ ራ ቌቆሺ1 െ ൬1 െ ൬𝑓
ௗ
 ൰



൰
∆

ቇ

ଵ


, ቀሺ𝑒ሻ

ௗቁ

∆
 ቍ

∈గಽ
∈టಽ

 

ൌ ⋃ ቆ𝑒∆, ቀሺ1 െ ൫1 െ ሺ𝑓ௗሻ൯
∆

ቁ
భ
ቇ∈గಽ

∈టಽ

ൌ ሺ𝐿∆ሻᇱ         ◻ 

 

4 c,d‐rung orthopair hesitant fuzzy aggregation operators  
Here,  a  series  of  average  and  geometric  operators  for  c,d‐RHFSs  is  briefly  discussed. Moreover,  their  basic 

properties are also explained. 

DefiniƟon 4.1. let 𝐿 ൌ ൫𝜋
, 𝜓

൯, ሺ𝑖 ൌ 1,2, … , 𝑘ሻ be a set of c,d‐RHFNs and 𝜏 ൌ ሺ𝜏ሻ் be weight vector of 𝐿 with 𝜏  0 

such that ∑ 𝜏 ൌ 1
ୀଵ  then, the  

1. c,d‐rung orthopair hesitant fuzzy weighted averaging (c,d‐RHFWA) operator is a mapping 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴: 𝐿 → 𝐿 
such that 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ ൌ⊕ୀଵ

 𝜏𝐿 ൌ 𝜏ଵ𝐿ଵ ⊕ 𝜏ଶ𝐿ଶ … .⊕ 𝜏𝐿 

2. c,d‐rung orthopair hesitant fuzzy weighted geometric (c,d‐RHFWG) operator is a mapping 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐺: 𝐿 → 𝐿 
such that 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ ൌ⊗ୀଵ

 𝐿
ఛ ൌ 𝐿ଵ

ఛభ ⊗ 𝐿ଶ
ఛమ … .⊗ 𝐿

ఛೖ. 

Theorem 4.2.  let 𝐿 ൌ ൫𝜋
, 𝜓

൯, ሺ𝑖 ൌ 1,2, … , 𝑘ሻ be a set of c,d‐RHFNs and 𝜏 ൌ ሺ𝜏ሻ் be weight vector of 𝐿 with 𝜏  0 

such that ∑ 𝜏 ൌ 1
ୀଵ  then,  

1. The aggregation value of c,d‐RHFNs 𝐿ሺ𝑖 ൌ 1,2, … , 𝑘ሻ by using 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴 operator is also c,d‐RHFN. And 

𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ ൌ ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ


ୀଵ

൱

ଵ


, ෑ൫𝑓൯
ఛ



ୀଵ

〉 
ಽ∈గಽ
ಽ∈టಽ

 

2. The aggregation value of c,d‐RHFNs 𝐿ሺ𝑖 ൌ 1,2, … , 𝑘ሻ by using 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐺 operator is also c,d‐RHFN. And 

𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐺ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ ൌ ራ 〈ෑ൫𝑒൯
ఛ



ୀଵ

, ൭1 െ ෑ൫1 െ ൫𝑓
൯


൯

ఛ


ୀଵ

൱

ଵ


〉 
ಽ∈గಽ
ಽ∈టಽ

 

Proof. 

1. We can provide proof of the abovementioned results by using mathematical induction. Therefore, we follow as, 

       ሺ𝑖).   For 𝑖 ൌ 2 since  

𝜏ଵ𝐿ଵ ൌ ራ 〈ቀ1 െ ൫1 െ ൫𝑒భ൯

൯

ఛభ
ቁ

ଵ
 , ൫𝑓ଵ൯

ఛభ〉 
ಽభ∈గಽభ
ಽభ∈టಽభ
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         and 

 𝜏ଶ𝐿ଶ ൌ ራ 〈ቀ1 െ ൫1 െ ൫𝑒మ൯

൯

ఛమ
ቁ

ଵ
 , ൫𝑓ଶ൯

ఛమ〉 
ಽమ∈గಽమ
ಽమ∈టಽమ

 

  then 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶሻ ൌ 𝜏ଵ𝐿ଵ ⊕ 𝜏ଶ𝐿ଶ= 

ራ 〈ቀ1 െ ൫1 െ ൫𝑒భ൯

൯

ఛభ
ቁ

ଵ
 , ൫𝑓ଵ൯

ఛభ〉 
ಽభ∈గಽభ
ಽభ∈టಽభ

⊕ ራ 〈ቀ1 െ ൫1 െ ൫𝑒మ൯

൯

ఛమ
ቁ

ଵ
 , ൫𝑓ଶ൯

ఛమ〉 
ಽమ∈గಽమ
ಽమ∈టಽమ

ൌ ራ 〈ቀ1 െ ൫1 െ ൫𝑒భ൯

൯

ఛభ
 1 െ ൫1 െ ൫𝑒మ൯


൯

ఛమ
ቁ

ଵ
 , ൫𝑓ଵ൯

ఛభ൫𝑓ଶ൯
ఛమ〉 

ಽభ∈గಽభ
ಽమ∈గಽమ
ಽభ∈టಽభ
ಽమ∈టಽమ

ൌ ራ 〈ቀ1 െ ൫1 െ ൫𝑒భ൯

൯

ఛభ
൫1 െ ൫𝑒మ൯


൯

ఛమ
ቁ

ଵ
 , ൫𝑓ଵ൯

ఛభ൫𝑓ଶ൯
ఛమ〉 

ಽభ∈గಽభ
ಽమ∈గಽమ
ಽభ∈టಽభ
ಽమ∈టಽమ

ൌ ራ 〈ቀ1 െ ൫1 െ ൫𝑒భ൯

൯

ఛభ
൫1 െ ൫𝑒మ൯


൯

ఛమ
ቁ

ଵ
 , ൫𝑓ଵ൯

ఛభ൫𝑓ଶ൯
ఛమ〉

ಽభ∈గಽభ
ಽమ∈గಽమ
ಽభ∈టಽభ
ಽమ∈టಽమ

ൌ ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ
ଶ

ୀଵ

൱

ଵ


, ෑ൫𝑓൯
ఛ

ଶ

ୀଵ

 〉
ಽభ∈గಽభ
ಽమ∈గಽమ
ಽభ∈టಽభ
ಽమ∈టಽమ

 

(𝑖𝑖).  Suppose that this result is satisfied for 𝑖 ൌ 𝑟 which is, 

𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ ൌ 𝜏ଵ𝐿ଵ ⊕ 𝜏ଶ𝐿ଶ … .⊕ 𝜏𝐿 ൌ ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ


ୀଵ

൱

ଵ


, ෑ൫𝑓൯
ఛ



ୀଵ

 〉
ಽ∈గಽ
ಽ∈టಽ

 

Now, we will prove that the result is true for 𝑖 ൌ 𝑟  1 by using ሺ𝑖ሻ and ሺ𝑖𝑖ሻ we have.  
𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ାଵሻ ൌ 𝜏ଵ𝐿ଵ ⊕ 𝜏ଶ𝐿ଶ … .⊕ 𝜏ାଵ𝐿ାଵ ൌ 

ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ


ୀଵ

൱

ଵ


, ෑ൫𝑓൯
ఛ



ୀଵ

 〉
ಽ∈గಽ
ಽ∈టಽ

⊕ ራ 〈ቀ1 െ ൫1 െ ൫𝑒ೝశభ൯

൯

ఛೝశభ
ቁ

ଵ
 , ൫𝑓ାଵ൯

ఛೝశభ 〉
ಽೝశభ∈గಽೝశభ
ಽೝశభ∈టಽೝశభ

ൌ ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ
 1 െ ൫1 െ ൫𝑒ೝశభ൯


൯

ఛೝశభ
െ



ୀଵ

൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ


ୀଵ

൱ ሺ1
ಽ∈గಽ
ಽ∈టಽ

െ ൫1 െ ൫𝑒ೝశభ൯

൯

ఛೝశభ
൱

ଵ


, ෑ൫𝑓൯
ఛ൫𝑓ାଵ൯

ఛೝశభ



ୀଵ

〉 

 

ൌ ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ
൫1 െ ൫𝑒ೝశభ൯


൯

ఛೝశభ


ୀଵ

൱

ଵ


, ෑ൫𝑓൯
ఛ൫𝑓ାଵ൯

ఛೝశభ



ୀଵ

 〉
ಽ∈గಽ
ಽ∈టಽ
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ൌ ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ
ାଵ

ୀଵ

൱

ଵ


, ෑ൫𝑓൯
ఛ

ାଵ

ୀଵ

 〉
ಽ∈గಽ
ಽ∈టಽ

 

The theorem is meeting for 𝑖 ൌ 𝑟  1. Thus, theorem is fulfilled for whole 𝑖. 
2. The proof is same as part 1.      ◻ 

Theorem 4.3. (Idempotence) let 𝐿 ൌ ൫𝜋
, 𝜓

൯, ሺ𝑖 ൌ 1,2, … , 𝑘ሻ be a set of c,d‐rung orthopair hesitant fuzzy numbers and 

𝜏 ൌ ሺ𝜏ሻ் be weight vector of 𝐿 with 𝜏  0 such that ∑ 𝜏 ൌ 1
ୀଵ .If  all of 𝐿 ൌ ൫𝜋

, 𝜓
൯, ሺ𝑖 ൌ 1,2, … , 𝑘ሻ are identical to 

𝐿 ൌ ሺ𝜋, 𝜓ሻ then 
1. 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ ൌ 𝐿 
2. 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐺ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ ൌ 𝐿 

Proof. 

1. Since 𝐿 ൌ 𝐿 ൌ ሺ𝜋, 𝜓ሻሺ𝑖 ൌ 1,2, … . , 𝑘ሻ then𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐺ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ 

ൌ ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ


ୀଵ

൱

ଵ


, ෑ൫𝑓൯
ఛ



ୀଵ

〉 
ಽ∈గಽ
ಽ∈టಽ

 

ൌ ራ 〈൭1 െ ෑሺ1 െ ሺ𝑒ሻሻఛ



ୀଵ

൱

ଵ


, ෑሺ𝑓ሻఛ



ୀଵ

〉 
ಽ∈గಽ
ಽ∈టಽ

ൌ ራ 〈ቀ1 െ ሺ1 െ ሺ𝑒ሻሻ∑ ఛ
ೖ
సభ  ቁ

ଵ
 , ෑሺ𝑓ሻ∑ ఛ

ೖ
సభ  



ୀଵ

〉 ൌ ራ 〈൫1 െ ሺ1 െ ሺ𝑒ሻሻ൯
ଵ
, ෑሺ𝑓ሻ



ୀଵ

〉 ൌ 𝐿 
ಽ∈గಽ
ಽ∈టಽ

 
ಽ∈గಽ
ಽ∈టಽ

 

2. The proof is same as 1.     ◻ 

Theorem 4.4. (Boundedness) let 𝐿 ൌ ൫𝜋
, 𝜓

൯, ሺ𝑖 ൌ 1,2, … , 𝑘ሻ be a set of c,d‐rung orthopair hesitant fuzzy numbers and 

𝜏 ൌ ሺ𝜏ሻ்  be  weight  vector  of  𝐿  with  𝜏  0  such  that  ∑ 𝜏 ൌ 1
ୀଵ .  Suppose  that  𝑒

ି ൌ min
ଵஸஸ

ሼ𝑒ሽ∈గಽ
  and  𝑒

ା ൌ

max
ଵஸஸ

ሼ𝑒ሽ∈గಽ
 𝑓

ା ൌ max
ଵஸஸ

ሼ𝑓ሽ∈టಽ
, and 𝑓

ି ൌ min
ଵஸஸ

ሼ𝑓ሽ∈టಽ
. Then, 

1. ሺ𝑒
ି, 𝑓

ିሻ  𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ  ሺ𝑒
ା, 𝑓

ାሻ 

2. ሺ𝑒
ି, 𝑓

ିሻ  𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐺ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ  ሺ𝑒
ା, 𝑓

ାሻ 
Proof. 

1. For  any  𝐿 ൌ ൫𝜋
, 𝜓

൯, ሺ𝑖 ൌ 1,2, … . , 𝑘ሻ  we  can  get  𝑒
ି  𝑒  𝑒

ା  and  𝑓
ି  𝑓  𝑓

ା..Then  we  have 

𝑒
ି ൌ ቀ1 െ ሺ1 െ ሺ𝑒

ିሻሻ∑ ఛ
ೖ
సభ ቁ

ଵ
 ൌ ൭1 െ ෑሺ1 െ ሺ𝑒

ିሻሻఛ



ୀଵ

൱

ଵ


 ൭1 െ ෑ൫1 െ ൫𝑒൯

൯

ఛ


ୀଵ

൱

ଵ


 ൭1 െ ෑሺ1 െ ሺ𝑒
ାሻሻఛ



ୀଵ

൱

ଵ


ൌ ቀ1 െ ሺ1 െ ሺ𝑒
ାሻሻ∑ ఛ

ೖ
సభ ቁ

ଵ
 ൌ 𝑒

ା 

and  

𝑓
ି ൌ ቀ1 െ ሺ1 െ ሺ𝑓

ିሻሻ∑ ఛ
ೖ
సభ ቁ

ଵ
 ൌ ൭1 െ ෑሺ1 െ ሺ𝑓

ିሻሻఛ



ୀଵ

൱

ଵ


 ൭1 െ ෑ൫1 െ ൫𝑓൯

൯

ఛ


ୀଵ

൱

ଵ


 ൭1 െ ෑሺ1 െ ሺ𝑓
ାሻሻఛ



ୀଵ

൱

ଵ


ൌ ቀ1 െ ሺ1 െ ሺ𝑓
ାሻሻ∑ ఛ

ೖ
సభ ቁ

ଵ
 ൌ 𝑓

ା 

Therefore, 

ሺ𝑒
ି, 𝑓

ିሻ  𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ  ሺ𝑒
ା, 𝑓

ାሻ 
2. The proof is same as part 1.      ◻ 
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Theorem 4.5.  (Monotonicity)  let 𝐿 ൌ ൫𝜋
, 𝜓

൯and 𝑀 ൌ ൫𝜋ெ
, 𝜓ெ

൯ሺ𝑖 ൌ 1,2, … , 𝑘ሻ  be  two  sets  of  c,d‐rung  orthopair 
hesitant fuzzy numbers. If 𝐿 ⊆ 𝑀, ∀𝑖,then 

1. 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ  𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝑀ଵ, 𝑀ଶ, … , 𝑀ሻ 

2. 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐺ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ  𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐺ሺ𝑀ଵ, 𝑀ଶ, … , 𝑀ሻ 
Proof. 

1. Since  for  all  𝑖,  we  have  𝑒
 𝑒ெ

, 𝑓
 𝑓ெ

then 

ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ


ୀଵ

൱

ଵ


〉  ራ 〈൭1 െ ෑ൫1 െ ൫𝑒ெ
൯


൯

ఛ


ୀଵ

൱

ଵ


〉 
ಾ∈గಾ
ಾ∈టಾ

, ෑ൫𝑓൯
ఛ



ୀଵ

 ෑ൫𝑓ெ൯
ఛ



ୀଵಽ∈గಽ
ಽ∈టಽ

 

Therefore, 

𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ሻ ൌ ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ


ୀଵ

൱

ଵ


, ෑ൫𝑓൯
ఛ



ୀଵ

〉 
ಽ∈గಽ
ಽ∈టಽ

 ራ 〈൭1 െ ෑ൫1 െ ൫𝑒ெ
൯


൯

ఛ


ୀଵ

൱

ଵ


, ෑ൫𝑓ெ൯
ఛ



ୀଵ

〉 
ಾ∈గಾ
∈టಾ

ൌ 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴ሺ𝑀ଵ, 𝑀ଶ, … , 𝑀ሻ 

2. The proof is similar to (1).     ◻ 

The  important  function for ranking two c,d‐rung hesitant  fuzzy sets  is known as score function and accuracy function. 

Here, we will introduce these functions. 

DefiniƟon 4.6.  Let 𝐿 ൌ ሺ𝜋, 𝜓ሻ a c,d‐rung orthopair hesitant fuzzy numbers. Then 

1. SF of 𝐿 is defined as follows: 

𝐻ሺ𝐿ሻ ൌ
𝑆ሺ𝜋ሻ െ 𝑆ሺ𝜓ሻ

2
 

2. AF of 𝐿 is defined as follows: 

𝐴ሺ𝐿ሻ ൌ
𝑆ሺ𝜋ሻ  𝑆ሺ𝜓ሻ

2
 

Where  

𝑆ሺ𝜋ሻ ൌ
∑ 𝑒





ୀଵ

𝑘
 

and 

𝑆ሺ𝜓ሻ ൌ
∑ 𝑓





ୀଵ

𝑘
 

Remark 4.7.  Let 𝐿 ൌ ሺ𝜋, 𝜓ሻ a c,d‐rung orthopair hesitant fuzzy number. Then it is suggested that, 

1. SF 𝐻ሺ𝐿ሻ ∈ ሾെ1,1ሿ 
2. AF 𝐴ሺ𝐿ሻ ∈ ሾ0,1ሿ 

Note 4.8.  Let 𝐿ଵ ൌ ൫𝜋భ, 𝜓భ൯and 𝐿ଶ ൌ ൫𝜋మ, 𝜓మ൯ be two c,d‐rung orthopair hesitant fuzzy numbers. Then comparison 

techniques supposed as, 

1. If 𝐻ሺ𝐿ଵሻ ൏ 𝐻ሺ𝐿ଶሻ, then 𝐿ଵ ≺ 𝐿ଶ, 
2. If 𝐻ሺ𝐿ଵሻ  𝐻ሺ𝐿ଶሻ, then 𝐿ଵ ≻ 𝐿ଶ, 
3. If 𝐻ሺ𝐿ଵሻ ൌ 𝐻ሺ𝐿ଶሻ, then 
(a) If 𝐴ሺ𝐿ଵሻ ൏ 𝐻ሺ𝐿ଶሻ, then 𝐿ଵ ≺ 𝐿ଶ, 
(b) If 𝐴ሺ𝐿ଵሻ  𝐴ሺ𝐿ଶሻ, then 𝐿ଵ ≻ 𝐿ଶ, 
(c) If 𝐴ሺ𝐿ଵሻ ൌ 𝐴ሺ𝐿ଶሻ, then 𝐿ଵ ൎ 𝐿ଶ. 

 

5 Decision making on c,d‐rung orthopair hesitant fuzzy sets 
This section includes the establishment of a model to use the proposed operators for MCDM under c,d‐RHFNs. For a MCDM 

problem, assume that 𝐿 ൌ ሼ𝐿ଵ, 𝐿ଶ, … , 𝐿ሽ is a finite set of alternatives and 𝑄 ൌ ሼ𝑄ଵ, 𝑄ଶ, … , 𝑄ሽ is a set of  
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criteria. Let 𝐵 ൌ ൣ𝐿൧ ൌ ቂ𝜋ೕ
, 𝜓ೕ

ቃ
ൈ

 be a decision matrix be provided by decision makers. A set of weight vector 𝜏 ൌ

ሺ𝜏ଵ, 𝜏ଶ, … , 𝜏ሻ் with 𝜏  0 such that ∑ 𝜏 ൌ 1
ୀଵ  then, the model (Algorithm 1) of managing the MCDM troubles as follows: 

Algorithm 1 

1. We will  establish  a  decision matrix  based  on  c,d‐rung  orthopair  hesitant  fuzzy  numbers 𝑩 ൌ ൣ𝑳𝒊𝒋൧  for 
MCDM. 

2. Create a normalized c,d‐rung orthopair hesitant  fuzzy numbers decision matrix 𝑩 ൌ ൣ𝑳𝒊𝒋൧  from c,d‐rung 

orthopair hesitant fuzzy numbers 

3. Calculate the alternaƟves values 𝑳𝒊𝒋 by using the set of weight vector 𝝉 ൌ ሺ𝝉𝟏, 𝝉𝟐, … , 𝝉𝒌ሻ𝑻 and the averaging 

and geometric aggregaƟon operaotrs discussed in SecƟon 4. 

𝑳𝒋 ൌ 𝒄, 𝒅 െ 𝑹𝑯𝑭𝑾𝑨൫𝑳𝒋𝟏, 𝑳𝒋𝟐, … , 𝑳𝒋𝒌൯ ൌ ራ 〈ቌ𝟏 െ ෑ൫𝟏 െ ൫𝒆𝑳𝒊
൯

𝒄
൯

𝝉𝒊
𝒌

𝒊ୀ𝟏

ቍ

𝟏
𝒄

, ෑ൫𝒇𝑳𝒊൯
𝝉𝒊

𝒌

𝒊ୀ𝟏

〉 
𝒆𝑳𝒊∈𝝅𝑳𝒊
𝒇𝑳𝒊∈𝝍𝑳𝒊

 

or 

𝑳𝒋 ൌ 𝒄, 𝒅 െ 𝑹𝑯𝑭𝑾𝑮൫𝑳𝒋𝟏, 𝑳𝒋𝟐, … , 𝑳𝒋𝒌൯ ൌ ራ 〈ෑ൫𝒆𝑳𝒊൯
𝝉𝒊

𝒌

𝒊ୀ𝟏

, ቌ𝟏 െ ෑ൫𝟏 െ ൫𝒇𝑳𝒊
൯

𝒄
൯

𝝉𝒊
𝒌

𝒊ୀ𝟏

ቍ

𝟏
𝒄

〉 
𝒆𝑳𝒊∈𝝅𝑳𝒊
𝒇𝑳𝒊∈𝝍𝑳𝒊

 

For all 𝒋 ൌ 𝟏, 𝟐, … . , 𝒎. 

4.Calculate the score results for all c,d‐rung orthopair hesitant fuzzy numbers of 𝑳𝒋 obtained from Step 3. 

5. The best opƟon can be found by obtaining from the comparing techniques using score values and accuracy 

values.  

 

6  Case Study via c,d‐rung orthopair hesitant aggregation operators  
In a rapidly evolving global marketplace, a multinational manufacturing company, NB sons Ltd, is committed to enhancing 

its sustainability practices throughout its supply chain. The company recognizes that achieving sustainability goals requires 

making strategic decisions that balance economic, environmental, and social factors. NB Sons Ltd has adopted a c,d‐rung 

orthopair hesitant Information System to evaluate potential solutions for optimizing its supply chain sustainability. 

Background:  

NB Sons Ltd operates  in the electronics  industry, producing consumer devices. Their supply chain consists of numerous 

suppliers, transportation networks, and manufacturing facilities distributed across various countries. They aim to reduce 

their environmental  footprint,  improve working  conditions,  and maintain  cost‐effectiveness.  Four alternative  strategies 

have been identified for supply chain optimization, each with four attributes: 

Alternatives and Criteria for MCDM:  

A  set  of  alternatives 𝐿 ൌ ሼ𝐿ଵ, 𝐿ଶ, 𝐿ଷ, 𝐿ସሽ  and 𝑄 ൌ ሼ𝑄ଵ, 𝑄ଶ, 𝑄ଷ, 𝑄ସሽ  are  described  in  our  scenario  is, 𝑳𝟏  (Local  Sourcing): 

Emphasizing  local suppliers and shortening transportation distances. 𝑸𝟏 Cost Efficiency: Lower transportation costs. 𝑸𝟐 

Environmental  Impact:  Reduced  carbon  emissions  due  to  shorter  distances. 𝑸𝟑 Social  Responsibility:  Support  for  local 

economies and labor conditions. 𝑸𝟒 Product Quality: Product Quality should be attractive. 𝑳𝟐 (Global Sourcing): Seeking 

suppliers from low‐cost regions for cost savings.𝑸𝟏 Cost Efficiency: Lower procurement costs. 𝑸𝟐 Environmental Impact: 

Increased transportation‐related emissions. 𝑸𝟑Social Responsibility: Ethical concerns related to labor practices abroad. 𝑸𝟒 

Product Quality: Product Quality  should be attractive. 𝑳𝟑 (Green Logistics):  Investing  in eco‐friendly  transportation and 
warehousing.𝑸𝟏  Cost  Efficiency:  Higher  initial  investment  but  potential  long‐term  savings.  𝑸𝟐Environmental  Impact: 

Reduced emissions from sustainable logistics. 𝑸𝟑Social Responsibility: Improved supply chain sustainability practices. 𝑸𝟒 

Product Quality: Product Quality should be attractive. 
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 𝑳𝟒 Supplier Collaboration: Partnering closely with suppliers for sustainable practices. 𝑸𝟏Cost Efficiency: Potential for cost 

savings through collaborative efforts. 𝑸𝟐Environmental Impact: Reduction in the overall supply chain's carbon footprint. 

𝑸𝟑Social Responsibility: Enhanced  labor conditions and ethical sourcing. 𝑸𝟒 Product Quality: Product Quality should be 

attractive. 

Objective: NB  Sons  Ltd  aims  to  select  the  supply  chain  strategy  that  best  aligns with  its  sustainability  objectives.  The 

decision‐making  process  involves  evaluating  the  four  alternatives  based  on  the  three  attributes:  Cost  Efficiency, 

Environmental Impact, and Social Responsibility. However, the decision‐makers recognize that they have bipolar hesitant 

information,  meaning  they  may  have  conflicting  feelings  or  uncertainties  regarding  each  attribute's  importance  and 

performance for each alternative. 

The MCDM matrix is given in the form of Table 2 based on the c,d‐rung orthopair hesitant information. 

 

Table 2: c,d‐RHF information 

AlternaƟves  Q1  Q2  Q3  Q4 

𝑳𝟏  ሼ0.7,0.3ሽ, ሼ0.6,0.5ሽ  ሼ0.5,0.4ሽ, ሼ0.8,0.4ሽ  ሼ0.6,0.5ሽ, ሼ0.7,0.4ሽ  ሼ0.2,0.1ሽ, ሼ0.6,0.2ሽ 
𝑳𝟐  ሼ0.5,0.2ሽ, ሼ0.7,0.6ሽ  ሼ0.3,0.1ሽ, ሼ0.6,0.4ሽ  ሼ0.6,0.3ሽ, ሼ0.7,0.1ሽ  ሼ0.3,0.2ሽ, ሼ0.8,0.3ሽ 
𝑳𝟑  ሼ0.6,0.3ሽ, ሼ0.6,0.4ሽ  ሼ0.7,0.1ሽ, ሼ0.7,0.2ሽ  ሼ0.5,0.2ሽ, ሼ0.8,0.3ሽ  ሼ0.4,0.4ሽ, ሼ0.9,0.4ሽ 
𝑳𝟒  ሼ0.8,0.5ሽ, ሼ0.6,0.3ሽ  ሼ0.5,0.4ሽ, ሼ0.8,0.5ሽ  ሼ0.4,0.1ሽ, ሼ0.7,0.4ሽ  ሼ0.6,0.2ሽ, ሼ0.5,0.3ሽ 

 

To aggregate  the  informaƟon given  in Table 2, proposed aggregaƟon operators are used where 𝑐 ൌ 3 𝑎𝑛𝑑 𝑑 ൌ 1  and 
weights for each attribute is taken as 𝜏ଵ ൌ 0.1, 𝜏ଵ ൌ 0.2, 𝜏ଵ ൌ 0.2 and 𝜏ଵ ൌ 0.5  

𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐴൫𝐿ଵ, 𝐿ଶ, … , 𝐿ସ൯ ൌ ራ 〈൭1 െ ෑ൫1 െ ൫𝑒
൯


൯

ఛ
ସ

ୀଵ

൱

ଵ


, ෑ൫𝑓൯
ఛ

ସ

ୀଵ

〉 
ಽ∈గಽ
ಽ∈టಽ

 

or 

𝐿 ൌ 𝑐, 𝑑 െ 𝑅𝐻𝐹𝑊𝐺൫𝐿ଵ, 𝐿ଶ, … , 𝐿ସ൯ ൌ ራ 〈ෑ൫𝑒൯
ఛ

ସ

ୀଵ

, ൭1 െ ෑ൫1 െ ൫𝑓
൯


൯

ఛ
ସ

ୀଵ

൱

ଵ


〉 
ಽ∈గಽ
ಽ∈టಽ

 

AŌer applying these aggregaƟon operators, we obtain the calculated values shown in Table 3 

 

Table 3: Aggregated results of c,d‐RHF information 

AlternaƟves  c,d‐RFWA  c,d‐RHFWG 

𝑳𝟏  ሼ0.0432,0.0106ሽ, ሼ0.6454,0.2957ሽ  ሼ0.3444,0.1930ሽ, ሼ0.2211,0.0610ሽ 
𝑳𝟐  ሼ0.0225,0.0028ሽ, ሼ0.7256,0.3270ሽ  ሼ0.3561,0.1813ሽ, ሼ0.2758,0.0791ሽ 
𝑳𝟑  ሼ0.0546,0.0129ሽ, ሼ0.7799,0.3383ሽ  ሼ0.4961,0.2670ሽ, ሼ0.3427,0.0651ሽ 
𝑳𝟒  ሼ0.0860,0.0143ሽ, ሼ0.5891,0.3419ሽ  ሼ0.5874,0.2574ሽ, ሼ0.1981,0.0657ሽ 

 

By applying the score function for c,d‐RHF informaƟon, we have results in Table 4 

 

Table 4: Score values on different c,d parameters 

AlternaƟves  Score (3,2‐

RFWA) 

Score (3,2‐

RHFWG) 

Score(1,1‐

RFWA) 

Score(1,1‐

RFWG) 

𝑳𝟏  െ0.1259  െ0.0011  െ0.1771  0.0101 
𝑳𝟐  െ0.1583  െ0.0078  െ0.2154  െ0.00542 
𝑳𝟑  െ0.1806  0.0048  െ0.2098  0.0434 
𝑳𝟒  െ0.1158  0.0443  െ0.1556  0.0893 

 

Ranking results based on the score values presented in Table 4 are displayed in Table 5 
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Table 5: Ranking of alternatives derived from score values 

AlternaƟves  Ranking  Best 

3,2‐RHFWA  𝐿4  L1  L3  L2  𝐿4 
3,2‐RHFWG  𝐿4  L3  L1  L2  𝐿4 
1,1‐RHFWA  𝐿4  L1  L3  L2  𝐿4 
1,1‐RHFWG  𝐿4  L3  L1  L2  𝐿4 

 

This  ranking  shows  that  the  alternative  𝑳𝟒  Supplier  Collaboration:  Partnering  closely  with  suppliers  for  sustainable 

practices is the best strategy identified for supply chain optimization. 

 

7 Comparative analysis  
In this section, we will compare the established approach with existing techniques and analyze the difference between 

these models. The comparison outcomes are presented in Table 6. 

Table 6: Comparative analysis 

Approaches  AlternaƟves  Ranking  Best 

Proposed  2,3‐RHFWA  𝐿4  L2  L1  L3  L5  𝐿4 
3,2‐RHFWA  𝐿4  L2  L1  L3  L5  𝐿4 

Ibrahim et 

al [38] 

2,3‐RFWA  𝐿4  L2  L1  L3  L5  𝐿4 
3,2‐RFWA  𝐿4  L2  L1  L3  L5  𝐿4 

Mahmood 

et al [40] 

1,1‐RFWA(IFWA)  𝐿4  L2  L1  L3  L5  𝐿4 

Khan et al 

[42] 

2,2‐

RFWA(PFWA) 

𝐿4  L2  L1  L3  L5  𝐿4 

Krisci [43]  3,3‐

RFWA(FFWA) 

𝐿4  L2  L1  L3  L5  𝐿4 

 

It  is  evident  that when we modified  the  c,d parameters of  the proposed c,d‐RHFS model,  the  results  consistently 

aligned with those of existing approaches. The proposed model demonstrated compatibility with the outcomes achieved 

using n,m‐rung orthopair fuzzy sets as presented by Ibrahim [38]. Similarly, our method exhibited promising results when 

compared to IntuiƟonisƟc hesitant fuzzy sets [40], Pythagorean hesitant fuzzy sets [42], and Fermatean hesitant fuzzy sets 

[43]. Through  this  comparison, we have discovered some significant  characteristics of our  suggested approach.  In  the 

subsequent section, we will examine in a detailed discussion the advantages of this methodology. 

7.1 Benefits and limitations of the proposed technique  
The benefits of the proposed approach are discussed as follows, 

i. The proposed approach is a more generalized structure, Figure 2 shows this generic structure. 

ii. By taking singleton elements in MG and NMG in c,d‐RHFS then this is converted into n,m‐rung orthopair fuzzy 

sets [38]. 

iii. By taking c=d, c,d‐RHFS is converted into Q‐RHFS [44]. 

iv. By taking c=d=3, c,d‐RHFS is converted into Fermatean hesitant fuzzy set[43]. 

v. By taking c=d=2, c,d‐RHFS is converted into Pythagorean hesitant fuzzy set[42]. 

vi. By taking c=d=1, c,d‐RHFS is converted into intuiƟonisƟc hesitant fuzzy set[40]. 

vii. The proposed approach facilitates the selection process within a multi‐attribute decision‐making model. 

viii. This  approach  can  be  expanded  to  accommodate  other  decision‐making  processes  such  as MULTIMORA, 

TOPSIS, and VIKOR models. 
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Figure 2: Generalizations of Fuzzy Sets 

8 Conclusion 
In  this  research  article,  we  have  explored  the  dimensions  of  Q‐RHFSs,  which  encapsulate  membership  and  non‐

membership grades within the [0,1] interval for each element in a given universe. The evoluƟon of Q‐RHFSs has led to the 

development of n,m‐rung orthopair fuzzy sets, delineating a more expansive version of the original concept. Our research 

progresses this idea by amalgamating it with a hesitant fuzzy model, thereby forging the innovative concept of the c,d‐

rung orthopair hesitant fuzzy model. This innovative model is particularly suited for effectively managing scenarios laden 

with uncertainty. 

Our study rigorously confirms that the proposed c,d‐rung orthopair hesitant fuzzy model aligns seamlessly with the core 

principles and operational mechanisms fundamental to fuzzy set theory. We have innovatively designed a series of power 

averaging and geometric aggregation operators, offering an exhaustive elucidation of their roles in the calculation of fuzzy 

information. Further, we have applied  this model  to  tackle a critical global challenge:  the development of  sustainable 

supply chain systems. This application focuses on the strategic selection process for corporations, considering a multitude 

of attributes. To facilitate this complex decision‐making process, we have devised a tailored multiple‐attribute decision‐

making model, which is attuned to the nuances of the c,d‐rung orthopair hesitant fuzzy information. 

Our contribution to the academic field is twofold. Firstly, we conduct a comprehensive comparative analysis with existing 

models, thereby underscoring the distinctive advantages of our innovative approach. Secondly, the integration of hesitant 

fuzzy  modeling  into  the  c,d‐orthopair  fuzzy  sets  framework  markedly  improves  our  capacity  to  make  well‐informed 

decisions in environments characterized by significant uncertainty. 

Looking  forward, we are poised  to  implement our methodology within  the dynamic  spheres of machine  learning and 

artificial  intelligence. We will  further refine and elaborate on existing models by incorporating a variety of aggregation 

operators  and  undertaking  comparative  analyses.  Additionally,  we  anticipate  expanding  our  model  to  include  the 

methodologies discussed in references [56‐58]. This expansion will enable us to thoroughly assess the applicability and 

efficacy of our methods across an array of techniques and domains, thereby enriching the landscape of fuzzy set theory 

and its applications. 
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Abstract. In this work, we define a new sequence denominated by fuzzy Leonardo numbers. Some algebraic
properties of this new sequence are studied and several identities are established. Moreover, the relations between
the fuzzy Fibonacci and fuzzy Lucas numbers are explored, and several results are given. In addition, some sums
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1 Introduction

Recently, several researchers have worked enthusiastically with numerical sequences. Their studies cover a
wide range of fascinating aspects, including exploring unique properties, revealing previously known identities,
and even unlocking the secrets behind generating functions and matrices. One of these interesting sequences
is the Fibonacci sequence of numbers. The sequence of Fibonacci {Fn}n≥0 is defined by a recurrence relation
of order two, given by

Fn = Fn−1 + Fn−2, (n ≥ 2), (1)

with initial conditions F0 = 0 and F1 = 1. Other classical sequence is the sequence of Lucas numbers {Ln}n≥0,
defined by the same recurrence relation of Fibonacci sequence,

Ln = Ln−1 + Ln−2, (n ≥ 2), (2)

but with different initial conditions, L0 = 2 and L1 = 1. The Fibonacci sequence has motivated the study of
many other numerical sequences. We can find not only properties of the sequences of Fibonacci but also the
correlated sequences such as Lucas, Pell, and Pell-Lucas and their applications in the following works [1], [2]
and [3].

One of these correlated sequences is the sequence of Leonardo, introduced by Catarino and Borges in [4],
and defined by the recurrence relation

Len = Len−1 + Len−2 + 1, (n ≥ 2), (3)
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with initial conditions Le0 = Le1 = 1. This recurrence relation can have the equivalent form

Len+1 = 2Len − Len−2, (n ≥ 2).

The relation between Leonardo and Fibonacci numbers is given by

Len = 2Fn+1 − 1, (4)

according to Proposition 2.2 in [4].
The Leonardo sequence has given rise to many related research studies, which are, for example, those of

Alp and Koçer in [5], Alves and Vieira in [6], Catarino and Borges in [7], Gokbas in [8], Kara and Yilmaz in
[9], Kuhapatanakul and Chobsorn in [10], and Tan and Leung in [11], among others.

On the other hand, since fuzzy set theory has a lot of applications in real life, the interest in workings
and researching has increased in recent years [12, 13, 14]. To face the challenges of ambiguity in various
areas, Zadeh, in the article [15], introduced the fuzzy set theory. The fuzzy set theory is based on the fuzzy
membership function. Given a set A, the membership function denoted by µA is a function that associates an
element of a set A to an element in the interval [0, 1]. A fuzzy set A is described by its membership function µA,
and by the fuzzy membership function, we can determine the membership grade of an element concerning
a set (see more details in [16, 17, 18, 19]). Following Duman, in [20], there are many fuzzy membership
function types, which most commonly used are the triangular, trapezoidal, Gaussian, and generalized Bell.
Fuzzy operations on fuzzy sets are defined as crisp operations performed on crisp sets. Operations on fuzzy
sets are done using fuzzy membership functions. Operations such as addition, subtraction, multiplication,
and division are defined in a fuzzy set, [16, 21]. When fuzzy set operations are applied to a set, the result is
a fuzzy set. But these sets need to be converted to a real number, that is, an inference must be made. This
process is called defuzzyfication, which means inversion of fuzzyfication [22].

Recently, a bridge between fuzzy sets and number theory was built when fuzzy Fibonacci and Lucas
number sequences were defined using the triangular membership function by [23], and also several identities
were provided. In addition, other properties are investigated in [20].

We aim to introduce the fuzzy Leonardo numbers using the triangular membership function and give
some new properties of this new sequence. The article is organized as follows. In Section 2, we present the
triangular fuzzy numbers with their operations. Also, the definitions of fuzzy Fibonacci numbers and fuzzy
Lucas numbers are given as identities related to these sequences, which will be useful for the next sections.
Section 3 introduces the fuzzy Leonardo numbers and establishes some properties and identities of this new
set of numbers. In Section 4, some sums involving fuzzy Leonardo numbers are provided. Finally, some
conclusions are stated.

2 Preliminaries concepts

In this section, we will present the definition of triangular fuzzy numbers, such as their arithmetic operations
of the α-cut, α ∈ [0, 1]. In addition, the definitions of fuzzy Fibonacci and fuzzy Lucas numbers are given,
and some properties of these numbers are presented.

First, consider the definition of the triangular fuzzy number given by Irmak and Demirtas in [23]. A
triangular fuzzy number, denoted by Ã = (a1, a2, a3) is represented by three points, two of which are left
and right of the interval, such that a1, a2, a3 are real numbers. The triangular membership function with
Ã = (a1, a2, a3) is given by

µÃ(x) =


0, x ≤ a1

x−a1
a2−a1 , a1 < x ≤ a2
a3−x
a3−a2 , a2 < x ≤ a3
0, x ≥ a3

.
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A triangular fuzzy number can be represented by α-cut operation, which denotes Aα. To convert a
triangular fuzzy number to α−cut interval, we follow that

Aα = [aα1 , a
α
3 ] = [a1 + α(a2 − a1), a3 − α(a3 − a2)], (5)

where α ∈ [0, 1] and aj for j = 1, 2, 3 are real numbers.
Let Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) be the triangular fuzzy numbers and Aα = [aα1 , a

α
3 ] and Bα =

[bα1 , b
α
3 ] be the α−cut obtained from these numbers. The arithmetic operations of the α−cut are given in [23]

as follows

Aα +Bα = [aα1 + bα1 , a
α
3 + bα3 ], (6)

Aα −Bα = [aα1 − bα1 , a
α
3 − bα3 ],

AαBα = [min{aα1 bα1 , aα3 bα1 , aα1 bα3 , aα3 bα3 },max{aα1 bα1 , aα3 bα1 , aα1 bα3 , aα3 bα3 }], (7)

Aα/Bα = [min{aα1 /bα1 , aα3 /bα1 , aα1 /bα3 , aα3 /bα3 },max{aα1 /bα1 , aα3 /bα1 , aα1 /bα3 , aα3 /bα3 }],
kAα = [min{kaα1 , kaα3 },max{kaα1 , kaα3 }],

with k real number. Note that, if a1, b1, a2, b2, a3 and b3 are positive real numbers with a1 ≤ a2 ≤ a3, and
b1 ≤ b2 ≤ b3, then AαBα = [aα1 b

α
1 , a

α
3 b
α
3 ]. Moreover, if k is a positive real number then we have kAα =

[min{kaα1 , kaα3 },max{kaα1 , kaα3 }] = [kaα1 , ka
α
3 ], (see more details in [16, 21]).

In [23], the author introduced the fuzzy Fibonacci numbers and the fuzzy Lucas numbers, which will be
very useful for this article. Let {Fn}n≥0 be the Fibonacci sequence (1). The triangular fuzzy number of
Fibonacci is given by F̃n = (Fn−1, Fn, Fn+1). Then, we have the following definition.

Definition 2.1. Let {Fn}n≥0 be the Fibonacci sequence (1). The fuzzy Fibonacci numbers are defined by the
expression

Fαn = [Fαn−1, F
α
n+1] = [Fn−1 + αFn−2, Fn+1 − αFn−1], (8)

for n ≥ 2, where α ∈ [0, 1] and initial conditions are Fα0 = [1− α, 1 + α] and Fα1 = [α, 1].

Similarly, the definition of fuzzy Lucas numbers, as proposed by Irmak and Demirtas in [23], is as follows:

Definition 2.2. Let {Ln}n≥0 be the Lucas sequence (2). The fuzzy Lucas numbers are defined by the expres-
sion

Lαn = [Lαn−1, L
α
n+1] = [Ln−1 + αLn−2, Ln+1 − αLn−1], (9)

for n ≥ 2, where α ∈ [0, 1] and initial conditions are Lα0 = [−1− 3α, 1 + α], and Lα1 = [2− α, 3− 2α].

Motivated by the previous definitions, we will introduce the fuzzy Leonardo numbers and study some
properties of this new fuzzy sequence of numbers in the next section. Moreover, this article will explore the
connection between the fuzzy Leonardo numbers, the fuzzy Fibonacci numbers, and the fuzzy Lucas numbers
by considering the following identities for non-negative integers n,

[20,Theorem 3.1] Fαn+4 + Fαn = 3Fαn+2 , (10)

[20,Theorem 3.2] Fαn+10 = 11Fαn+5 + Fαn , (11)

[20,Theorem 3.3] Fαn+2 − Fαn+1 = (−Fn, Fn, 2Fn+1) , (12)

[23,Theorem 3.1] Fαn+2 − Fαn−2 = Lαn , (13)

[23,Theorem 3.2(a)] 2Fαn+2 − 3Fαn = Lαn , (14)

[23,Theorem 3.2(d)] 2Fαn+1 − Fαn = Lαn , (15)

[23,Theorem 3.2(g)] Fαn+1 + Fαn−1 = Lαn (16)

[23,Theorem 3.2(b), (c) and (e)] 5Fαn = 2Lαn+2 − 3Lαn = Lαn+1 + Lαn−1 = 2Lαn+1 − Lαn . (17)
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For the reason to establish identities involving the fuzzy Leonardo numbers, in this article, we will consider
the following classical identities for Leonardo numbers {Len}n≥0 established in Proposition 2.3 [4],

Len = 2

(
Ln + Ln+2

5

)
− 1, (18)

Len+3 =

(
Ln+1 + Ln+7

5

)
− 1, (19)

Len = Ln+2 − Fn+2 − 1, (20)

for all non-negative integer n, where Fn is the n-th Fibonacci number given by (1) and Ln is the n-th Lucas
number given by (2).

3 The fuzzy Leonardo numbers, properties and identities

In this section, we will introduce the fuzzy Leonardo numbers and provide some properties of this new
sequence. Moreover, some identities are established.

3.1 The fuzzy Leonardo numbers and properties

Let {Len}n≥0 be the Leonardo sequence of numbers defined by Equation (3) and the triangular fuzzy number
of Leonardo given by ˜Len = (Len−1, Len, Len+1). Then, it is natural to consider the α−cut of the triangular
fuzzy numbers given in the following definition.

Definition 3.1. Let {Len}n≥0 be Leonardo sequence given by (3). The fuzzy Leonardo numbers are defined
by the following expression

Leαn = [Leαn−1, Le
α
n+1] = [Len−1 + α(Len−2 + 1), Len+1 − α(Len−1 + 1)], (21)

for n ≥ 2, where α ∈ [0, 1] and initial conditions are Leα0 = [1− α, 1 + α], and Leα1 = [α, 1].

By Definition 3.1, the elements of the sequence {Leαn}n≥0 are the α−cut obtained from the triangular
fuzzy number of Leonardo ˜Len, and can be operated by using the α−cut operations.

Observe that by considering the triangular fuzzy number 1̃ = (1, 1, 1), and by applying the α−cut, we
obtain Iα = [1α, 1α] = [1 + α(1− 1), 1− α(1− 1)] = [1, 1].

Then, by using the rule of summation (6), we describe a recurrence relation for the fuzzy Leonardo
numbers in the next proposition.

Proposition 3.2. Consider α ∈ [0, 1]. Let {Leαn}n≥0 be the sequence of fuzzy Leonardo numbers. Then, it is
verified

Leαn = Leαn−1 + Leαn−2 + Iα, (22)

where Iα = [1, 1].

Proof. By considering the sum operation and Expression (21), we have

Leαn−1 + Leαn−2 + Iα = [Leαn−2, Le
α
n] + [Leαn−3, Le

α
n−1] + [1α, 1α]

= [Leαn−2 + Leαn−3 + 1α, Leαn + Leαn−1 + 1α]

= [Len−2 + α(Len−3 + 1) + Len−3 + α(Len−4 + 1) + 1,

Len − α(Len−2 + 1) + Len−1 − α(Len−3 + 1) + 1]

= [Len−1 + α(Len−2 + 1), Len+1 − α(Len−1 + 1)]

= Leαn,
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which verifies the result. □
In addition, observe that the Leonardo sequence {Len}n≥0 is an increasing sequence of positive integers,

then it is verified the scalar operation kAα = [kaα1 , ka
α
3 ], for k positive real number. Moreover, since it is

verified the recurrence relation for the Leonardo numbers, Len+1 = 2Len − Len−2, (n ≥ 2), with the same
proceedings done in the proof of Proposition 22 and the scalar product, we can obtain a new equation for
the fuzzy Leonardo numbers given by

Leαn = 2Leαn − Leαn−2.

3.2 Some Identities

This subsection will provide some new identities for the fuzzy Leonardo numbers. In addition, we will
establish new identities involving the fuzzy Leonardo numbers, the fuzzy Fibonacci numbers, and the fuzzy
Lucas numbers.

Recall the relation between the Leonardo and Fibonacci numbers given by (4), namely, Len = 2Fn+1− 1.
Therefore, by using the scalar product, Definition 3.1, and Equation (4), we establish the following result.

Proposition 3.3. Consider α ∈ [0, 1]. Let {Leαn}n≥0 be the sequence of fuzzy Leonardo numbers and {Fαn }n≥0

be the sequence of fuzzy Fibonacci numbers. Then, it is verified

Leαn = 2Fαn+1 − Iα. (23)

Proof. Equation (21) shows us that Leαn = [Len−1+α(Len−2+1), Len+1−α(Len−1+1)]. Since it is verified
Len = 2Fn+1 − 1, then

Leαn = [Len−1 + α(Len−2 + 1), Len+1 − α(Len−1 + 1)]

= [2Fn + 2α(Fn−1)− 1, 2Fn+2 − 2α(Fn)− 1]

= 2[Fn + αFn−1, Fn+2 − αFn]− [1α, 1α]

= 2Fαn+1 − Iα,

by Equation (8). □
Similarly, recall the identities of the sequence of Leonardo numbers stated in Proposition 2.3 [4], and the

operations in α-cut. Then, the next proposition is stated.

Proposition 3.4. For all non-negative integers n, the following identities hold:

Leαn =
2

5

(
Lαn + Lαn+2

)
− Iα, (24)

Leαn+3 =
1

5

(
Lαn+1 + Lαn+7

)
− Iα, (25)

Leαn = Lαn+2 − Fαn+2 − Iα, (26)

where Iα = [1, 1], Leαn is the n-th fuzzy Leonardo numbers, Fαn is the n-th fuzzy Fibonacci number given by
(8), and Lαn is the n-th fuzzy Lucas number given by (9).



186 Spreafico E, Costa E, Catarino P. Trans. Fuzzy Sets Syst. 2025; 4(1)

Proof. By combining Definition 3.1 and Identity (18) we obtain

Leαn

= [Len−1 + α(Len−2 + 1), Len+1 − α(Len−1 + 1)]

= 2

[(
Ln−1 + Ln+1

5

)
− 1 + α

(
Ln−2 + Ln

5

)
,

(
Ln+1 + Ln+3

5

)
− 1− α

(
Ln−1 + Ln+1

5

)]
= 2

[(
Ln−1 + Ln+1

5

)
+ α

(
Ln−2 + Ln

5

)
,

(
Ln+1 + Ln+3

5

)
− α

(
Ln−1 + Ln+1

5

)]
− 1α

=
2

5
[(Ln−1 + Ln+1) + α (Ln−2 + Ln) , (Ln+1 + Ln+3)− α (Ln−1 + Ln+1)]− 1α

=
2

5

(
Lαn + Lαn+2

)
− Iα

Similarly, by using Definition 3.1 and Identity (19), we obtain Equation (25), as well as, by using Definition
3.1 and Identity (20) we obtain (26) □

Next, we will provide an identity related to the product of fuzzy Leonardo numbers. To do this, we need
to observe the product rule (7) and the fact of the Leonardo sequence {Len}n≥0 is an increasing sequence of
positive integers. Then we have LeαmLe

α
k = [Leαm−1Le

α
k−1, Le

α
m+1Le

α
k−1].

Theorem 3.5. Consider m and n non-negative integers and let Leαn be the n-th fuzzy Leonardo numbers.
Then

LeαmLe
α
n−m+1 + Leαm+1Le

α
n−m = [8(−1)n−m(Le2m−n−1 + 1)− Lem−1 − Len−m + Lem + Len−m−1

+α(8(−1)n−m(Le2m−n−2 + 1) + 8(−1)m−1(Len−2m−2 + 1) + Len−m + 2Len−1)

+α2(8(−1)n−m−1(Le2m−n−1 + 1) + Lem−1 + Len−m−2),

8(−1)n−m+2(Le2m−n + 1)− Lem+1 − Len−m+2 + Lem+2 + Len−m+1

−α(12(−1)n−m+3(Le2m−n−2 + 1)− Len−m+2

+12(−1)n−m+2(Le2m−n + 1) + Lem+3 − 1)

+α2(8(−1)n−m−1(Le2m−n−1 + 1) + 2Len−m−2 + Lem−1 − Lem + 1)].

Proof. Using the Definition 21 we obtain

LeαmLe
α
n−m+1 + Leαm+1Le

α
n−m = [Lem−1 + α(Lem−2 + 1), Lem+1 − α(Lem−1 + 1)]

×[Len−m + α(Len−m−1 + 1), Len−m+2 − α(Len−m + 1)]

+[Lem + α(Lem−1 + 1), Lem+2 − α(Lem + 1)]

×[Len−m−1 + α(Len−m−2 + 1), Len−m+1 − α(Len−m−1 + 1)]

= [(Lem−1 + α(Lem−2 + 1))(Len−m + α(Len−m−1 + 1)),

(Lem+1 − α(Lem−1 + 1))(Len−m+2 − α(Len−m + 1))]

+[(Lem + α(Lem−1 + 1))(Len−m−1 + α(Len−m−2 + 1)),

(Lem+2 − α(Lem + 1))(Len−m+1 − α(Len−m−1 + 1))]

= [(Lem−1 + α(Lem−2 + 1))(Len−m + α(Len−m−1 + 1))

+(Lem + α(Lem−1 + 1))(Len−m−1 + α(Len−m−2 + 1)),

(Lem+1 − α(Lem−1 + 1))(Len−m+2 − α(Len−m + 1))

+(Lem+2 − α(Lem + 1))(Len−m+1 − α(Len−m−1 + 1))].

Denote An = Len−1 + αLen−2 and Bn = Len+1 − αLen−1, then we have
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(Lem−1 + α(Lem−2 + 1))(Len−m + α(Len−m−1 + 1) (27)

= (Lem−1 + αLem−2)(Len−m + αLen−m−1) + α(Lem−1 + αLem−2 + Len−m + αLen−m−1)

= AmAn−m+1 + α(Lem−1 + Len−m) + α2(Lem−2 + Len−m−1),

(Lem+1 − α(Lem−1 + 1))(Len−m+2 − α(Len−m + 1)) (28)

= (Lem+1 − αLem−1)(Len−m+2 − αLen−m)− α(Lem+1 − αLem−1 + Len−m+2 − αLen−m)

= BmBn−m+1 − α(Lem+1 + Len−m+2) + α2(Lem−1 + Len−m),

(Lem + α(Lem−1 + 1))(Len−m−1 + α(Len−m−2 + 1)) (29)

= (Lem + αLem−1)(Len−m−1 + αLen−m−2) + α(Lem + αLem−1 + Len−m−1 + αLen−m−2)

= Am+1An−m + α(Lem + Len−m−1) + α2(Lem−1 + Len−m−2),

and

(Lem+2 − α(Lem + 1))(Len−m+1 − α(Len−m−1 + 1)) (30)

= (Lem+2 − αLem)(Len−m+1 − αLen−m−1) + α(Lem+2 − αLem + Len−m+1 − αLen−m−1)

= Bm+1Bn−m − α(Lem+2 + Len−m+1) + α2(Lem + Len−m−1).

Now, since

AmAn−m+1 = Lem−1Len−m + α(Len−mLem−2 + Lem−1Len−m−1) + α2Lem−2Len−m−1,

Am+1An−m = LemLen−m−1 + α(Len−m−1Lem−1 + LemLen−m−2) + α2Lem−1Len−m−2,

BmBn−m+1 = Lem+1Len−m+2 − α(Lem−1Len−m+2 + Lem+1Len−m) + α2Lem−1Len−m,

Bm+1Bn−m = Lem+2Len−m+1 − α(LemLen−m+1 + Lem+2Len−m−1) + α2LemLen−m−1,

then, by summing Equations (27) and (29), we obtain the first component given by

AmAn−m+1 + α(Lem−1 + Len−m) + α2(Lem−2 + Len−m−1) (31)

+Am+1An−m + α(Lem + Len−m−1) + α2(Lem−1 + Len−m−2)

= Lem−1Len−m + LemLen−m−1

+α(Len−mLem−2 + Lem−1Len−m−1 + Len−m−1Lem−1 + LemLen−m−2 + Lem−1 + Len−m + Lem + Len−m−1)

+α2(Lem−2Len−m−1 + Lem−1Len−m−2 + Lem−2 + Len−m−1).

Similarly, by summing Equations (27) and (29), we obtain the second component given by

BmBn−m+1 − α(Lem+1 + Len−m+2) + α2(Lem−1 + Len−m) (32)

+Bm+1Bn−m − α(Lem+2 + Len−m+1) + α2(Lem + Len−m−1)

= Lem+1Len−m+2 + Lem+2Len−m+1

−α(Lem−1Len−m+2 + Lem+1Len−m + LemLen−m+1 + Lem+2Len−m−1 + Lem+1 + Len−m+2)

+α2(Lem−1Len−m + LemLen−m−1 + Lem−1 + Len−m).
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Theorems 2.1 and 2.14 in [5] established

Le−n = (−1)n(Len−2 + 1)− 1,

LekLem + LesLet = 4(−1)m(Lek−s−1 + 1)(Lek−t−1 + 1)− Lek − Lem + Les + Let,

for positive integers n, k,m, s and t with k +m = s+ t, then holds:

Lem−1Len−m + LemLen−m−1 = 4(−1)n−m(Le−2 + 1)(Le2m−n−1 + 1)− Lem−1 − Len−m + Lem + Len−m−1

= 8(−1)n−m(Le2m−n−1 + 1)− Lem−1 − Len−m + Lem + Len−m−1,

Lem−2Len−m + Lem−1Len−m−1 = 8(−1)n−m(Le2m−n−2 + 1)− Lem−2 − Len−m + Lem−1 + Len−m−1,

Len−m−1Lem−1 + LemLen−m−2 = 8(−1)m−1(Len−2m−2 + 1)− Len−m−1 − Lem−1 + Lem + Len−m−2,

and

Lem−1Len−m + LemLen−m−1 = 8(−1)n−m(Le2m−n−1 + 1)− Lem−1 − Len−m + Lem + Len−m−1.

Therefore, we can rewrite Equation (31) in the form

AmAn−m+1 + α(Lem−1 + Len−m) + α2(Lem−2 + Len−m−1) (33)

+Am+1An−m + α(Lem + Len−m−1) + α2(Lem−1 + Len−m−2)

= 8(−1)n−m(Le2m−n−1 + 1)− Lem−1 − Len−m + Lem + Len−m−1

+α(8(−1)n−m(Le2m−n−2 + 1) + 8(−1)m−1(Len−2m−2 + 1) + Len−m + 2Len−1)

+α2(8(−1)n−m−1(Le2m−n−1 + 1) + Lem−1 + Len−m−2).

Similarly, we have,

Lem+1Len−m+2 + Lem+2Len−m+1 = 8(−1)n−m+2(Le2m−n + 1)− Lem+1 − Len−m+2 + Lem+2 + Len−m+1,

Lem−1Len−m+2 + Lem+1Len−m = 12(−1)n−m+3(Le2m−n−2 + 1)− Lem−1 − Len−m+2 + Lem+1 + Len−m,

LemLen−m+1 + Lem+2Len−m−1 = 12(−1)n−m+2(Le2m−n + 1)− Lem − Len−m+1 + Lem+2 + Len−m−1,

and

Lem−2Len−m−1 + Lem−1Len−m−2 = 8(−1)n−m−1(Le2m−n−1 + 1)− Lem−2 − Len−m−1 + Lem−1 + Len−m−2.
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Therefore

BmBn−m+1 − α(Lem+1 + Len−m+2) + α2(Lem−1 + Len−m)

+Bm+1Bn−m − α(Lem+2 + Len−m+1) + α2(Lem + Len−m−1)

= 8(−1)n−m+2(Le2m−n + 1)− Lem+1 − Len−m+2 + Lem+2 + Len−m+1

−α(12(−1)n−m+3(Le2m−n−2 + 1)− Len−m+2 + 12(−1)n−m+2(Le2m−n + 1) + Lem+3 − 1)

+α2(8(−1)n−m−1(Le2m−n−1 + 1) + 2Len−m−2 + Lem−1 − Lem + 1).

which proves the theorem. □
Next, we will provide identities involving the fuzzy Leonardo numbers and the fuzzy Fibonacci numbers.

Proposition 3.6. Consider α ∈ [0, 1]. Let {Leαn}n≥0 be the sequence of fuzzy Leonardo numbers and {Fαn }n≥0

be the sequence of fuzzy Fibonacci numbers. Then, the following identities hold:

Leαn+9 − Leαn−1 = 22Fαn+5, n ≥ 1; (34)

Leαn+3 + Leαn−1 + 2Iα = 6Fαn+2, n ≥ 1; (35)

Leαn+1 − Leαn = (−2Fn, 2Fn, 4Fn+1), n ≥ 0; (36)

Leαn+1 − Leαn−3 = 2Lαn, n ≥ 3; (37)

Leαn+1 = 3Leαn−1 + 2Iα + 2Lαn, n ≥ 1; (38)

2Leαn − Leαn−1 + Iα = 2Lαn, n ≥ 1; (39)

Leαn + Leαn−2 + 2Iα = 2Lαn, n ≥ 2, (40)

5Leαn−1 + 5Iα = 2(Lαn+1 + Lαn−1) = 2(2Lαn+1 − Lαn), n ≥ 1, (41)

where Fαn in the n-the fuzzy Fibonacci number, and where Lαn in the n-the fuzzy Lucas number.

Proof. First, by combining Equations (23) and (11), we have

Leαn+9 = 2Fα10 − Iα

= 2(11Fαn+5 + Fαn )− Iα

= 22Fαn+5 + 2Fαn − Iα

= 22Fαn+5 + Leαn−1,

which proves Equation (34). Similarly, by combining Equations (23) and (10), we obtain Equation (35). By
combining Equations (23) and (12) we get Equation (36). Finally, for to prove Equations (37), (38), (39),
(40), and (41), we combine Equations (23) and (13), Equations (23) and (14), Equations (23) and (15),
Equations (23) and (16), and using Equations (23) and (17), respectively. □

4 Some sums involving fuzzy Leonardo numbers

In this section, we will provide some identities involving the sums of fuzzy Leonardo numbers. First, recall
Iα = [1α, 1α] = [1, 1]. By definition of the fuzzy number, we obtain AαIα = IαAα = Aα for all Aα. Therefore,
we have the following lemma.
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Lemma 4.1. Consider the fuzzy number Iα = [1, 1]. Then

n∑
j=1

Iα =

[
n(n+ 1)

2

]α
.

Proof. Note that, by summation rule (6),

n∑
j=1

Iα =

n∑
j=1

[1α, 1α] =

n∑
j=1

[1, 1] =

 n∑
j=1

1,

n∑
j=1

1


=

[
n(n+ 1)

2
,
n(n+ 1)

2

]
=

[
n(n+ 1)

2

]α
,

as required. □
Theorem 4.2. Let {Leαj }j≥0 be the sequence of fuzzy Leonardo numbers. Then the sum of the n first terms
of the sequence consisting of these fuzzy numbers is given by

n∑
j=0

Leαj = 2(Fαn+1 − Fα1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α].

Proof. Combining Theorem 3.5 in [5], Lemma 4.1 and Proposition 3.3, we get

n∑
j=0

Leαj =

n∑
j=1

(
2Fαj−1 − Iα

)
+ Leα0

=

n−1∑
j=0

2Fαj −
n∑
j=1

Iα

+ Leα0

= 2
n−1∑
j=0

Fαj −
n−1∑
j=1

Iα − Fα−1

= 2(Fαn+1 − Fα1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α],

as required. □
Proposition 4.3. Let {Leαj }j≥0 be the sequence of fuzzy Leonardo numbers. Then the sum of n first even
terms of the sequence is:

n∑
j=0

Leα2j = 2(Fα2n − Fα1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α].

Proof. Note that
n∑
j=0

Leα2j =
n∑
j=1

(
2Fα2j−1 − Iα

)
+ Leα0

=

n−1∑
j=0

2Fα2j−1 −
n∑
j=1

Iα

+ Leα0

= 2

n−1∑
j=0

Fα2j−1 −
n−1∑
j=1

Iα + [1− α, 1 + α] .
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According Theorem 3.5 in [5], and Lemma 4.1, we have that

n∑
j=0

Leα2j = 2(Fα2n − Fα1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α],

as required. □

Proposition 4.4. Let {Leαj }j≥0 be the sequence of fuzzy Leonardo numbers. Then the sum of n first odd
terms of the sequence is:

n∑
j=0

Leα2j+1 = 2(Fα2n+1 − Fα1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α].

Proof. Observe that

n∑
j=0

Leα2j+1 =
n∑
j=1

(
2Fα2j − Iα

)
+ Leα0

=

n−1∑
j=0

2Fα2j −
n∑
j=1

Iα

+ Leα0

= 2

n∑
j=0

Fα2j −
n−1∑
j=1

Iα + [1− α, 1 + α] .

Therefore, by Theorem 3.5 in [5] we obtain

n∑
j=0

Leα2j+1 = 2(Fα2n+1 − Fα1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α],

as desired. □
A direct and immediate consequence of Proposition 4.3 and Proposition 4.4 is the result we now present,

which arises naturally from the established relationships and further reinforces the conclusions derived from
the propositions.

Proposition 4.5. Let {Leαn}jn≥0 be the sequence of fuzzy Leonardo numbers. For all non-negative integers
n, we have the following formulas:

n∑
j=0

(−1)kLeαk = 2Fα2n − 2Fα2n+1;

if the last term is negative and

n∑
j=0

(−1)kLeαk = 2Fα2n+2 − 2Fα2n+1 + [2n+ 1]α;

if the last term is positive.
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Proof. First, consider that the last term is negative, then

2n+1∑
k=0

(−1)kLeαk

= Leα0 − Leα1 + Leα2 − Leα3 + · · ·+ Leα2n − Leα2n+1

= (Leα0 + Leα2 + · · ·+ Leα2n)− (Leα1 + Leα3 + · · ·+ Leα2n+1)

=
n∑
k=0

Leα2k −
n∑
k=0

Leα(2k+1)

=

(
2(Fα2n − Fα1 )−

[
(n− 1)n

2

]α
+ [1− α, 1 + α]

)
−
(
2(Fα2n+1 − Fα1 )−

[
(n− 1)n

2

]α
+ [1− α, 1 + α]

)
= 2Fα2n − 2Fα2n+1.

In which case that last term is positive, then

2(n+1)∑
k=0

(−1)kLeαk

= Leα0 − Leα1 + Leα2 − Leα3 + · · ·+ Leα2n − Leα2n+1 + Leα2n+2

=
n+1∑
k=0

Leα2k −
n∑
k=0

Leα2k+1

=

(
2(Fα2n+2 − Fα1 )−

[
(n+ 1)(n+ 2)

2

]α
+ [1− α, 1 + α]

)
−
(
2(Fα2n+1 − Fα1 )−

[
(n− 1)n

2

]α
+ [1− α, 1 + α]

)
= 2Fα2n+2 − 2Fα2n+1 + [2n+ 1]α,

which verifies the result. □

5 Conclusion

In this study, we introduced a new sequence of fuzzy numbers, namely, the sequence of fuzzy Leonardo
numbers. We established the recurrence relation to this new sequence, some properties, as well as some
identities. In addition, we explored the relation between fuzzy Leonardo, fuzzy Fibonacci, and fuzzy Lucas
numbers, and some identities were given. Moreover, we provided some sums identities for the fuzzy Leonardo
numbers.

It seems to us that all results given here are new in the literature.
Number sequences, especially recurring ones, establish patterns in the real world and are therefore used

as discrete growth models. Discrete models are easy to solve and, in some cases, can describe solutions with
predictions that are as good as continuous models. On the other hand, in some real problems, we have a
certain degree of uncertainty about the solution, and that is why we use a fuzzy number to give us flexibility
in finding the best solution for that problem. The construction presented in this article, a priori, is simply
the immersion of a recurring integer sequence over the fuzzy number structure. However, generally, the
combination of both theories can be the premise for establishing discrete growth models that combine the
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flexibility of fuzzy logic with the structural properties of the discrete models, and then the models can be
discussed closer to the real world.

Acknowledgements: ”The first author expresses their sincere thanks to the Brazilian National Council for
Scientific and Technological Development- CNPq- Brazil and the Federal University of Mato Grosso do Sul
UFMS/MEC Brazil for their valuable support. The second author was partially supported by PROPESQ-
UFT. The last author is member of the Research Centre CMAT-UTAD (Polo of Research Centre CMAT
- Centre of Mathematics of University of Minho) and she thanks the Portuguese Funds through FCT –
Fundação para a Ciência e a Tecnologia, within the Projects UIDB/ 00013/2020 and UIDP/00013/2020.”

Conflict of Interest: The authors declare no conflict of interest.

References

[1] Koshy T. Pell and Pell-Lucas numbers with applications. Springer, New York, 2014.
https://link.springer.com/book/10.1007/978-1-4614-8489-9

[2] Koshy T. Fibonacci and Lucas Numbers with Applications, Springer, Volume 1, John Wiley and Sons,
New Jersey, 2018.

[3] Koshy T. Fibonacci and Lucas Numbers with Applications, Springer, Volume 2, John Wiley and Sons,
New Jersey, 2019.

[4] Catarino P, Borges A. On Leonardo numbers. Acta Mathematica Universitatis Comenianae. 2020; 89(1):
75-86. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1005/799
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Abstract. A hybrid method for the numerical solution of the system of delayed linear fuzzy mixed Volterra-
Fredholm integral equations (FMDVFIES) is introduced. Using the hybrid of Bernstein polynomials and block-
pulse functions (HBBFs), an approximate solution for the equations system is provided. Firstly, the HBBFs and
their operational matrices are introduced, and some of their characteristics are described. Then by applying the
operational matrices on FMDVFIES convert it to the algebraic equations system. The numerical solution is obtained
by solving this algebraic system. Then the convergence is investigated and some numerical examples are presented
to show the effectiveness of the method.

AMS Subject Classification 2020: 03E72; 45F99; 65R10
Keywords and Phrases: Fuzzy integral equation, Block pulse function, Bernstein polynomials.

1 Introduction

Some decisions are uncertain or imprecise because they are based on imprecise data. And the dynamics
governing these data cannot be stated definitively. This area of imprecise logic was first described by Zadeh
in [1]. For the role of fuzzy concepts in real life, I refer the reader to the text of Lotfizadeh’s letter in [2]: “The
first significant real life applications of fuzzy set theory and fuzzy logic began to appear in the late seventies
and early eighties. Among such applications were fuzzy logic controlled cement kilns and production of steel.
The first consumer product was Matsushitas shower head, 1986. Soon, many others followed, among them
home appliances, photo-graphic equipment, and automobile transmissions. A major real life application was
Sendais fuzzy logic control system which began to operate in 1987 and was and is a striking success. In the
realm of medical instrumentation, a notable real life application is Omrons fuzzy logic based and widely used
blood pressure meter.”

This concept of fuzzy quickly spread in most fields of science and engineering. Especially the role of fuzzy
mathematics in this expansion has been very significant. It can be claimed that it is used in all branches
of classical mathematics. Including mathematical analysis, which has a wide expansion in all its concepts
such as derivatives [3, 4] differential equations, [5, 6, 7, 8], the concept of fuzzy integral [9, 10]. Differential
and integral equations [11, 12], and various exact and approximate methods for solving them have been
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presented. Abbasbandy et al. [13] applied Rung-Kutta method for fuzzy differential equations, Araghi et
al. [14] introduced the Lagrange interpolation based on the extension principle for fuzzy Fredholm integral
equations, Ezzati et al. [15] presented numerical solution of two-dimensional fuzzy Fredholm integral equation
of the second kind using fuzzy bivariate Bernstein polynomials, Shafiee et al. [16] applied predictor corrector
method for nonlinear fuzzy Volterra integral equations, and Amin et al. [17] used Haar wavelet for solution
of delay Volterra-Fredholm integral equations.

Many researchers have demonstrated the efficiency and error reduction of the combined Bernstein and
Block Pulse methods for various fuzzy and non-fuzzy problems, such as [18] and [19] for fuzzy Fredholm
integral equations, and [20] for fractional differential equations, and [21] for a system of linear Fredholm
integral equations.

Delayed integral equations are a very important area in mathematics, where many phenomena in physics,
biology and economics are modeled by such equations. Therefore, finding an exact or approximate solution
for them is very important. Considering that many parameters in these models can have an uncertain nature.
Therefore, their solution can be considered based on fuzzy concepts.

A numerical approximation method is proposed using the combination of Bernstein and block-pulse
functions (HBBF) to FMDVFIES.

y(t) = f(t)⊕
σ ∗∑
j=1

Aj ⊙ y(t− τj)⊕
∫ t

0

∫ 1

0
k(s, t)⊙ y(t)dtds, τj , t ∈ [0, 1], (1)

where 0 ≤ τj ≤ 1, Aj ∈Mp×p, the set of real p× p matrices, for j = 1, ..., σ, and y(t) = y0(t), t ≤ 0, and

y(t) = [y1(t), y2(t), ..., yp(t)]
T

is unknown function for every t ∈ (0, 1]. While f(t) and k(s, t) are known vector and matrix functions
respectively,

f(t) = [f1(t), f2(t), ..., fp(t)]
T ,

and
k(s, t) = [kij(s, t)], i, j = 1, 2, ..., p.

The main outlines of the hybrid method to FMDVFIES can be expressed as follows:
• The non-zero coefficients of Bernstein polynomials are natural numbers. Therefore, there is no coefficient
error in the computations, a property that some polynomials, such as the Legendre and Bernoulli polynomials,
do not have it.
• Presenting the transformation matrix of Bernstein polynomials to block pulse functions.
• Determined operational matrices.
• By substituting these matrices into the fuzzy integral equations system with time delay, we arrive at a
system of algebraic equations.
• By solving this system of linear equations, we obtain a numerical solution to the problem.

The structure of the article is as follows: In Section 2, some basic results from Bernstein polynomial,
hybrid functions and an overview of fuzzy concepts are given. The main idea are presented in Section 3.
In Section 4, uniqueness of the solution and convergence analysis are investigated. The proposed method is
tested through two numerical examples in Section 5. The conclusions are given in the last section.

2 Preliminaries

2.1 Bernstein polynomials

The M order of Bernstein polynomials on [0, 1] are defined as [22]:
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Bm,M (t) =

(
M

m

)
tm(1− t)M−m, m = 0, 1, ...,M. (2)

Hybrid functions ψnm(t), for n = 1, 2, ..., N and m = 0, 1, 2, ...,M − 1 on [0, 1] are defined as

ψnm(t) =
{ Bm,M−1(Nt− n+ 1), n−1

N ≤ t < n
N

0, otherwise
(3)

where n and M are the number of BPFs and the order of Bernstein polynomials respectively.
A function f ∈ L2[0, 1] can be expanded in terms of HBBFs as follows:

f(t) ≃
N∑
n=1

M−1∑
m=0

cnmψnm(t) = CTΨ(t), (4)

where
C = [c10, ... , c1M−1, c20, ... , c2M−1, cN0, ... , cNM−1, ]

T

Ψ = [ψ10, ... , ψ1M−1, ψ20, ... , ψ2M−1, ψN0, ... , ψNM−1]
T ,

and cnm = ⟨f(t),ψnm(t)⟩
⟨ψnm(t),ψnm(t)⟩ where ⟨·, ·⟩ denote the inner product on L2[0, 1].

2.2 An overview of fuzzy concepts

A pair y = (y(r), y(r)) for r ∈ [0, 1] is called a parametric form of y if
1. y(r) is a bounded left continuous monotonic increasing function on [0, 1],
2. y(r) is a bounded left continuous monotonic decreasing function on [0, 1],
3. ∀r ∈ [0, 1], y(r) ≤ y(r).
A number a ∈ R can be represented as y(r) = y(r) = a, ∀r ∈ [0, 1].
Suppose E1 be the set of all upper semi-continuous normal convex fuzzy numbers with bounded r−level
intervals. It means that if v ∈ E1 then the r−level set

[v]r = {s|v(s) ≥ r}, 0 < r ≤ 1,

is a closed bounded interval which is denoted by [v]r = [v1(r), v2(r)].

Lemma 2.1. Let v, w ∈ E1 and s be scalar. Then for r ∈ (0, 1]

[v + w]r = [v1(r) + w1(r), v2(r) + w2(r)],

[v − w]r = [v1(r)− w2(r), v2(r)− w1(r)],

[v · w]r = [min{v1(r) · w1(r), v1(r) · w2(r), v2(r) · w1(r), v2(r) · w2(r)},
max{v1(r) · w1(r), v1(r) · w2(r), v2(r) · w1(r), v2(r) · w2(r)}],

[sv]r = s[v]r.

So, the set of all fuzzy numbers E1 with addition and multiplication which is a convex cone and can be
embedded into the Banach space B = C[0, 1]× C[0, 1], (B, ∥ . ∥) where

∥ (u, v) ∥= sup{max
0≤r≤1

|u(r)|, max
0≤r≤1

|v(r)|}. (5)
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The distance between u and v can be denoted as:

D(u, v) = sup
0≤r≤1

{max [|u(r)− v(r)|, |u(r)− v(r)|]}, (6)

If f̃(t) is continuous in the metric D, then its definite integral exists [23], and∫ b

a
f̃(t; r)dt =

∫ b

a
f(t; r)dt,

∫ b

a
f̃(t; r)dt =

∫ b

a
f(t; r)dt.

2.3 Block Pulse Functions and transformation matrix

The block-pulse functions (BPFs) and some well-known properties are introduced.

bi(t) =

{
1, (i−1)T

n ≤ t < iT
n

0, otherwise
(7)

for i = 1, 2, · · ·n are defined as a set of BPFs that have the following properties:

bi(t)bj(t) =

{
bi(t), i = j,

0, i ̸= j,
(8)

∫ T

0
bi(t)bj(t)dt =

{
T
n , i = j,

0, i ̸= j.
(9)

The set of BPFs is complete.

The BPFs expansion:

The expansion of f ∈ L[0, T ), with respect to BPFs B(t) = (b1(t), b2(t), ..., bn(t))
T is defined as [24]:

f(t) ≃ (f1, f2, ..., fn)B(t) = F TB(t) = BT (t)F,

where F = (f1, f2, ..., fn)
T is given by F = 1

h

∫ T
0 f(t)B(t)dt and fi is the block pulse coefficient with respect

to bi(t) for i = 1, 2, · · · , n.
Now, assume that K(s, τ) belongs to L2([0, T ]× [0, T ]) we can write

K(s, τ) ≃ BT (s)KB(τ), with K =
1

h2

∫ T

0

∫ T

0
BT (s)K(s, τ)B(τ)dτds,

and h = T
n .

And also, from [24], can be found that ∫ T

0
B(t)BT (t)dt = hI, (10)

and
∫ t
0 B(t)dt ≃ PB(t) where

P =
h

2


1 2 2 · · · 2
0 1 2 · · · 2

0 0 1 · · ·
...

...
...

...
. . . 2

0 0 0 · · · 1
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Therefore, ∫ T

0
f(t)dt ≃

∫ T

0
F TB(t)dt ≃ F TPB(t). (11)

For time delay τ = qh with a non-negative integer q, we have

B(t− τ) = HqB(t), (12)

where

(q+1)th-column
↓

Hq =



0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0
... ...

...
...

...
. . .

...
0 . . . 0 0 0 . . . 1
0 . . . 0 0 0 . . . 0
... . . .

...
...

... . . .
...

0 . . . 0 0 0 . . . 0


.

2.4 Transformation matrix

The HBBFs can be expanded into NM−terms of BPFs [25] as

ΨNM×1(t) = ΦNM×NMBNM×1(t) (13)

where

Φ =


A O O · · · O
0 A O · · · O
...

...
...

. . .
...

O O · · · O A


and A = (am+1,i)M×M whit

am+1,i =M

M−1−m∑
k=0

(−1)k
(
M − 1
m

)(
M − 1−m

k

)
1

k +m+ 1[(
i+ 1

M

)k+m+1

−
(
i

M

)k+m+1
]
, (14)

i = 0, 1, · · · , NM − 1.

For example, with N = 2 and M = 3,

Ψ(t) = [ψ10(t), ψ11(t), ψ12(t), ψ20(t), ψ21(t), ψ22(t)]
T

and

B = [b1(t), b2(t), ..., b6(t)]
T .
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Such that

ψ10(t) = 4t2 − 4t+ 1
ψ11(t) = −8t2 + 4t
ψ12(t) = 4t2

 , when 0 ≤ t <
1

2
, (15)

ψ20(t) = 4t2 − 8t+ 4
ψ21(t) = −8t2 + 12t− 4
ψ22(t) = 4t2 − 4t+ 1

 , when
1

2
≤ t < 1, (16)

and

Φ6×6 =

[
A O
0 A

]
,

with

A =

19
27

7
27

1
27

7
27

13
27

7
27

1
27

7
27

19
27

 .

For more details, see [25].

3 The Main idea

Consider the parametric form of LFMDVFIES as follows:

ỹ(t) = f̃(t)⊕
σ ∗∑
j=1

Aj ⊙ ỹ(t− τj)⊕
∫ t

0

∫ 1

0
k(s, t)⊙ ỹ(t)dtds, τj , t ∈ [0, 1], (17)

where ỹ(t) and f̃(t) are parametric form of y(t) and f(t) in Eq. (1),

ỹi(t) = (yi(t, r), yi(t, r), ỹi(t− τj) = (yi(t− τj , r), yi(t− τj , r)),

f̃i(t) = (fi(t, r), fi(t, r)), i = 1, 2, ..., p, j = 1, 2, ..., σ.

The expansion of functions ỹi(t), f̃i(t) and kij(s, τ) can be written as follows:

ỹi(t) ≃ Y T
i ⊙Ψ(t), f̃i(t) ≃ F Ti ⊙Ψ(t), kij(s, τ) ≃ ΨT (s)Ki,jΨ(τ), (18)

where Yi, Fi are vectors of NM × 1 and Kij is a matrix of NM ×NM.
h = 1/(NM), τj = qjh, j = 1, 2, ..., σ.

yi(t− τj) ≃ Y T
i ⊙Ψ(t− τj) = Y T

i ⊙ ΦB(t− τj)

= Y T
i ⊙ ΦHqjB(t) = Y T

i ⊙ ΦHqjΦ−1Ψ(t),

HBqj = ΦHqjΦ−1, and also, we have

yi(t− τj) ≃ Y T
i HB

qj ⊙Ψ(t), if t− τj > 0,

yi(t− τj) = y0i(t), if t− τj ≤ 0, (19)

where y0i(t) denotes the i−th element of the y0(t). The integration of vector Ψ(t) can be approximated as

(IΨ)(t) ≃ PΨ(t), (20)
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where the NM ×NM matrix P is called the HBBfs operational matrix of integration.

(IΨ)(t) ≃ (IΦB)(t) = Φ(IB)(t) ≃ ΦPB(t) = ΦPΦ−1Ψ(t), (21)

so
P = ΦPΦ−1.

And also ∫ T

0
Ψ(t)ΨTdt =

∫ T

0
ΦB(t)BT (t)ΦTdt = hΦΦT = Dh,

hence

Dh =
T

NM


AAT O O · · · O
0 AAT O · · · O
...

...
...

. . .
...

O O · · · O AAT

 .
By substituting Eqs (18)–(21) into (17), we have

Y T ⊙Ψ = F T ⊙Ψ⊕
σ∑
j=1

A(j) ⊙ Y T ⊙HBqj ⊙Ψ

⊕
∫ t

0

∫ 1

0
ΨTKΨ⊙ ψTY dtds. (22)

And hence

Y T = F T ⊕
σ∑
j=1

Y T ⊙DA(j) ⊙HBqj ⊕ Y T ⊙DT
hK

TP,

where

DA(j) =


A(j) O O · · · O

0 A(j) O · · · O
...

...
...

. . .
...

O O · · · O A(j)

 ,
then

Y T ⊙

I ⊖ σ∑
j=1

DA(j) ⊙HBqj ⊖DT
hK

TP

 = F T .

The approximate solution of Eq.(17) can be found by solving these linear equations and taking ỹ(t) =
Y T ⊙Ψ(t).

4 Uniqueness of the solution and Convergence analysis

Consider the equation

ỹ(t) = f̃(t)⊕ ỹ(t− τ)⊕
∫ t

0

∫ 1

0
k(s, t)⊙ ỹ(t)dtds, τ, t ∈ [0, 1], (23)

or of even more general form:

ỹ(t) = f̃(t)⊕
σ ∗∑
j=1

Aj ⊙ ỹ(t− τj)⊕
∫ t

0

∫ 1

0
k(s, t)⊙ ỹ(t)dtds, τj , t ∈ [0, 1]. (24)
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4.1 Uniqueness

For Eqs.(23) and (24), the delays t − τ and t − τj are bounded and ỹ(t) = ỹ0(t), t ≤ 0. Then ỹ(t − τ) is a
known function of t for 0 ≤ t ≤ τ. We then show that Eq.(23) has a unique solution ỹ(t) for −τ ≤ t ≤ τ and
then can be compute the solution for −τ ≤ t ≤ 2τ and so on. By continuing this process, the existence and
uniqueness of the solution for all −τ ≤ t ≤ 1 is obtained. For any 0 ≤ τ ≤ 1, consider C0 = C([−τ, 0], Ep).
Suppose that ỹ ∈ C(J0, E

p) where J0 = [−τ, τ ] and also f̃ ∈ C([0, 1], Ep), and

k = [kij ]p×p, kij ∈ C([0, 1]× [0, 1],R),

such that
max

1≤i,j≤p
max

0≤s,t≤1
| kij(s, t) |= K.

Theorem 4.1. Suppose that ỹ(t) = ỹ0(t), t ≤ 0, and ỹ0(t) ∈ C0. If

∥ k ∥∞= max
1≤i≤p

p∑
j=1

| kij(s, t) |= pK < 1, 0 ≤ s, t ≤ 1

then Eq.(23) has a unique solution ỹ(t) on J0.

Proof. Define the metric on C(J0, E
p) by

D(u(t),v(t)) =


D(u1(t), v1(t))
D(u2(t), v2(t))

...
D(up(t), vp(t))

 .

We define the operator T on C(J0, E
p) by

T ũ(t) = ỹ0(t), − τ ≤ t ≤ 0,

T ũ(t) = f̃(t)⊕ ỹ0(t)⊕
∫ t

0

∫ 1

0
k(s, z)⊙ ũ(z)dzds, t ∈ [0, τ ], τ > 0.

We find that D(T ũ(t), T ṽ(t)) = 0, − τ ≤ t ≤ 0, and for 0 ≤ t ≤ τ,

D(T ũ(t), T ṽ(t)) =

D

(
f̃(t)⊕ ỹ0(t)⊕

∫ t

0

∫ 1

0
k(s, z)⊙ ũ(z)dzds,

f̃(t)⊕ ỹ0(t)⊕
∫ t

0

∫ 1

0
k(s, z)⊙ ṽ(z)dzds,

)
≤
∫ t

0

∫ 1

0
pKD(ũ(z), ṽ(z))dzds

∥ D(T ũ(t), T ṽ(t)) ∥∞≤ pK

∫ t

0

∫ 1

0
∥ D(ũ(z), ṽ(z)) ∥∞ dzds

Hence we have
∥ D(T ũ(t), T ṽ(t)) ∥∞<∥ D(ũ(z), ṽ(z)) ∥∞ .

So, the operator T is a contraction on C(J0, E
p). Therefore T has a unique fixed point ỹ ∈ C(J0, E

p), and
consequently this ỹ = ỹ(t) is the unique solution of Eq.(23) on J0. □
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Theorem 4.2. Suppose that ỹi(t)M,N and ỹi(t) are the approximate solution by HBBFs and exact solution
of i− th component of ỹ(t) in Eq. (17) respectively. If kij(s, t) for all s, t ∈ [0, 1] is continuous and bounded,
then ỹi(t)M,N −→ ỹi(t) as M,N −→ ∞, for any i = 1, 2, ..., p.

Proof.

D(ỹi(t), ỹi(t)M,N ) ≤
σ ∗∑
j=1

p ∗∑
l=1

D(a
(j)
il ⊙ ỹl(t− τj), a

(j)
il ⊙ ỹl(t− τj)M,N )+

p ∗∑
l=1

D

(∫ t

0

∫ 1

0
kil(s, τ)ỹl(τ)dτds,

∫ t

0

∫ 1

0
kil(s, τ)ỹl(τ)M,Ndτds

)

=

σ ∗∑
j=1

p ∗∑
l=1

| a(j)il | D(ỹl(t− τi), ỹl(t− τi)M,N )+

p ∗∑
l=1

D

(∫ t

0

∫ 1

0
kil(s, τ)ỹl(τ)dτds,

∫ t

0

∫ 1

0
kil(s, τ)

N∑
n=1

M−1∑
m=0

cl,nmψn,m(τ)dτds

)

≤
σ ∗∑
j=1

p ∗∑
l=1

| a(j)il | D(ỹl(t− τi), ỹl(t− τi)M,N )+

K

p ∗∑
l=1

D

(∫ t

0

∫ 1

0
ỹl(τ)dτds,

∫ t

0

∫ 1

0

N∑
n=1

M−1∑
m=0

cl,nmψn,m(τ)dτds

)
,

where

max
1≤i,j≤p

max
0≤s,t≤1

| kij(s, t) |= K.

lim
M,N→∞

D (ỹi(t), ỹi(t)M,N )

≤ lim
M,N→∞

σ ∗∑
j=1

p ∗∑
l=1

| a(j)il | D(ỹl(t− τj), ỹl(t− τj)M,N )+

K lim
M,N→∞

p ∗∑
l=1

D

(∫ t

0

∫ 1

0
ỹl(τ)dτds,

∫ t

0

∫ 1

0

N∑
n=1

M−1∑
m=0

cl,nmψn,m(τ)dτds

)

≤ lim
M,N→∞

σ ∗∑
j=1

p ∗∑
l=1

| a(j)il | D(ỹl(t− τj), ỹl(t− τj)M,N )+

K

p ∗∑
l=1

D

(∫ t

0

∫ 1

0
ỹl(τ)dτds,

∫ t

0

∫ 1

0
lim

M,N→∞

N∑
n=1

M−1∑
m=0

cl,nmψn,m(τ)dτds

)

≤ lim
M,N→∞

σ ∗∑
j=1

p ∗∑
l=1

| a(j)il | D(ỹl(t− τj), ỹl(t− τj)M,N )+

K

∫ t

0

∫ 1

0

p ∗∑
l=1

D

(
ỹl(τ), lim

M,N→∞

N∑
n=1

M−1∑
m=0

cl,nmψn,m(τ)

)
dτds.
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Since

ỹl(t) = lim
M,N→∞

N∑
n=1

M−1∑
m=0

cl,nmψn,m(t),

and for any t− τj > 0

lim
M,N→∞

ỹl(t− τj)M,N = lim
M,N→∞

N∑
n=1

M−1∑
m=0

cl,nmψn,m(t− τj) = ỹl(t− τj),

and for t− τj ≤ 0
ỹl(t− τj)M,N = ϕ0l(t) = ỹl(t− τj).

Hence,

lim
M,N→∞

p ∗∑
l=1

| a(j)il | ỹl(t− τj) = lim
M,N→∞

p ∗∑
l=1

| a(j)il | ⊙ỹl(t− τj)M,N .

Therefore, for every i = 1, 2, ..., p,

lim
M,N→∞

D

(
ỹi(t), lim

M,N→∞

N∑
n=1

M−1∑
m=0

ci,nmψn,m(t)

)
= 0.

□

5 Examples

Example 5.1. Consider the following FMDVFIES:

ỹ1(t) = f̃1(t)⊕ (1/2)ỹ1(t− 1/3)⊕
∫ t

0

∫ 1

0
k11 ⊙ ỹ1(t)dtds

⊕
∫ t

0

∫ 1

0
k12 ⊙ ỹ2(t)dtds, t ∈ [0, 1],

ỹ2(t) = f̃2(t)⊕ ỹ1(t− 2/3)⊕ 2ỹ2(t− 1)⊕
∫ t

0

∫ 1

0
k21 ⊙ ỹ1(t)dtds

⊕
∫ t

0

∫ 1

0
k22 ⊙ ỹ2(t)dtds,

where ỹ1(t) = ỹ2(t) = 0̃, t ≤ 0, and

f1(t, r) = (
r + 1

8
)
(
e−t − (2− 5/e)(t− t2/2)− (1/4)(t− t3/3)

−(1/2)e−(t−1/3)H(t− 1/3)
)
,

f1(t, r) = (
3− r

8
)
(
e−t − (2− 5/e)(t− t2/2)− (1/4)(t− t3/3)

−(1/2)e−(t−1/3)H(t− 1/3)
)
,
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f2(t, r) = (
r + 1

8
)
(
t− (4/e− 1)t2/2− (1/5)(t− t2/2)

−e−(t−2/3)H(t− 2/3)− (t− 1)H(t− 1)
)
,

f2(t, r) = (
3− r

8
)
(
t− (4/e− 1)t2/2− (1/5)(t− t2/2)

−e−(t−2/3)H(t− 2/3)− (t− 1)H(t− 1)
)
,

H is the Heaviside function as:

H(t) =

{
1, t ≥ 0,

0, otherwise,

and

k11 = t2(1− s), k12 = t2(1− s2),

k21 = (1− t2)s, k22 = t3(1− s).

The exact solutions are as follows:

y1(t, r) =
(1 + r)e−t

8
, y1(t, r) =

(3− r)e−t

8
,

y2(t, r) =
(1 + r)t

8
, y2(t, r) =

(3− r)t

8
.

The errors are shown in Figs. 1 and 2 and the numerical values and error values are given in Tables 1, 2, 3
and 4.

Example 5.2. Consider the following FMDVFIES:

ỹ1(t) = f̃1(t)⊕ ỹ1(t− 1)⊕
∫ t

0

∫ 1

0
k11 ⊙ ỹ1(t)dtds

⊕
∫ t

0

∫ 1

0
k12 ⊙ ỹ2(t)dtds,

ỹ2(t) = f̃2(t)⊕ (1/2)ỹ2(t− 5/6)⊕
∫ t

0

∫ 1

0
k21 ⊙ ỹ1(t)dtds

⊕
∫ t

0

∫ 1

0
k22 ⊙ ỹ2(t)dtds, t ∈ [0, 1],

where

f1(t, r) =(r/4)
(
e−t − (6− 16/e)(t− t3/3)− (1/4)(t− t4/4)

−e−(t−1)H(t− 1)
)
,

f1(t, r) =(1/2− r/4)
(
e−t − (6− 16/e)(t− t3/3)− (1/4)(t− t4/4)

−e−(t−1)H(t− 1)
)
,
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f2(t, r) =(r/4)
(
t− (1/4)(t+ t2/2)− (1/2)(t− 5/6)H(t− 5/6)

)
+ (1/2− r/4)t3/e,

f2(t, r) =(1/2− r/4)
(
t− (1/4)(t+ t2/2)− (1/2)(t− 5/6)H(t− 5/6)

)
+ (r/4)t3/e.

H is the Heaviside function, and

k11 = t3(1− s2), k12 = t2(1− s3),

k21 = (1 + t2)s2, k22 = t2(1 + s).

The exact solutions are as follows:

y1(t, r) =
re−t

4
, y1(t, r) =

(2− r)e−t

4
.

y2(t, r) =
rt

4
, y2(t, r) =

(2− r)t

4
.

The errors are shown in Figs. 3 and 4 and the numerical values and error values are given in Tables 5, 6, 7
and 8.
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Figure 1: The errors for M = 3, N = 2 in Example 5.1.
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Figure 2: The errors for M = 3, N = 4 in Example 5.1.

Table 1: Aproximate and exact solutions and errors for M = 3 and N = 2 in Example 5.1.

t = 0.333 App. Exact App. Exact Max
r y1(t, r) y1(t, r) Error y1(t, r) y1(t, r) Error Error

0.00000 0.01575 0.02986 0.01410 0.04656 0.08957 0.04300 0.04300
0.16667 0.01832 0.03483 0.01651 0.04400 0.08459 0.04060 0.04060
0.33333 0.02089 0.03981 0.01892 0.04143 0.07961 0.03819 0.03819
0.50000 0.02346 0.04478 0.02133 0.03886 0.07464 0.03578 0.03578
0.66667 0.02602 0.04976 0.02374 0.03629 0.06966 0.03337 0.03337
0.83333 0.02859 0.05474 0.02614 0.03373 0.06469 0.03096 0.03096
1.00000 0.03116 0.05971 0.02855 0.03116 0.05971 0.02855 0.02855

Table 2: Aproximate and exact solutions and errors for M = 3 and N = 2 in Example 5.1.

t = 0.333 App. Exact App. Exact Max
r y2(t, r) y2(t, r) Error y2(t, r) y2(t, r) Error Error

0.00000 0.03373 0.04167 0.00793 0.10164 0.12500 0.02336 0.02336
0.16667 0.03939 0.04861 0.00922 0.09599 0.11806 0.02207 0.02207
0.33333 0.04505 0.05556 0.01050 0.09033 0.11111 0.02078 0.02078
0.50000 0.05071 0.06250 0.01179 0.08467 0.10417 0.01950 0.01950
0.66667 0.05637 0.06944 0.01307 0.07901 0.09722 0.01821 0.01821
0.83333 0.06203 0.07639 0.01436 0.07335 0.09028 0.01693 0.01693
1.00000 0.06769 0.08333 0.01564 0.06769 0.08333 0.01564 0.01564

Table 3: Aproximate and exact solutions and errors for M = 3 and N = 4 in Example 5.1.

t = 0.333 App. Exact App. Exact Max
r y1(t, r) y1(t, r) Error y1(t, r) y1(t, r) Error Error

0.00000 0.01411 0.02986 0.01574 0.04888 0.08957 0.04069 0.04069
0.16667 0.01701 0.03483 0.01782 0.04598 0.08459 0.03861 0.03861
0.33333 0.01991 0.03981 0.01990 0.04308 0.07961 0.03653 0.03653
0.50000 0.02281 0.04478 0.02198 0.04019 0.07464 0.03445 0.03445
0.66667 0.02570 0.04976 0.02406 0.03729 0.06966 0.03237 0.03237
0.83333 0.02860 0.05474 0.02614 0.03439 0.06469 0.03029 0.03029
1.00000 0.03150 0.05971 0.02822 0.03150 0.05971 0.02822 0.02822
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Table 4: Aproximate and exact solutions and errors for M = 3 and N = 4 in Example 5.1.

t = 0.333 App. Exact App. Exact Max
r y2(t, r) y2(t, r) Error y2(t, r) y2(t, r) Error Error

0.00000 0.03381 0.04167 0.00785 0.10144 0.12500 0.02356 0.02356
0.16667 0.03945 0.04861 0.00916 0.09580 0.11806 0.02225 0.02225
0.33333 0.04508 0.05556 0.01047 0.09017 0.11111 0.02094 0.02094
0.50000 0.05072 0.06250 0.01178 0.08453 0.10417 0.01964 0.01964
0.66667 0.05635 0.06944 0.01309 0.07890 0.09722 0.01833 0.01833
0.83333 0.06199 0.07639 0.01440 0.07326 0.09028 0.01702 0.01702
1.00000 0.06762 0.08333 0.01571 0.06762 0.08333 0.01571 0.01571
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Figure 3: The errors for M = 3, N = 2 in Example 5.2.
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Figure 4: The errors for M = 3, N = 4 in Example 5.2.
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Table 5: Aproximate and exact solutions and errors for M = 3 and N = 2 in Example 5.2.

t = 0.333 App. Exact App. Exact Max
r y1(t, r) y1(t, r) Error y1(t, r) y1(t, r) Error Error

0.00000 0.00000 0.00000 0.00000 0.33627 0.35827 0.02199 0.02199
0.16667 0.02539 0.02986 0.00447 0.30825 0.32841 0.02016 0.02016
0.33333 0.05077 0.05971 0.00894 0.28023 0.29855 0.01833 0.01833
0.50000 0.07616 0.08957 0.01341 0.25220 0.26870 0.01650 0.01650
0.66667 0.10154 0.11942 0.01788 0.22418 0.23884 0.01466 0.01788
0.83333 0.12693 0.14928 0.02235 0.19616 0.20899 0.01283 0.02235
1.00000 0.15231 0.17913 0.02682 0.16814 0.17913 0.01100 0.02682

Table 6: Aproximate and exact solutions and errors for M = 3 and N = 2 in Example 5.2.

t = 0.333 App. Exact App. Exact Max
r y2(t, r) y2(t, r) Error y2(t, r) y2(t, r) Error Error

0.00000 0.00747 0.00000 0.00747 0.16343 0.16667 0.00324 0.00747
0.16667 0.01721 0.01389 0.00332 0.15048 0.15278 0.00230 0.00332
0.33333 0.02694 0.02778 0.00083 0.13753 0.13889 0.00136 0.00136
0.50000 0.03668 0.04167 0.00499 0.12458 0.12500 0.00042 0.00499
0.66667 0.04642 0.05556 0.00914 0.11163 0.11111 0.00052 0.00914
0.83333 0.05616 0.06944 0.01329 0.09868 0.09722 0.00146 0.01329
1.00000 0.06589 0.08333 0.01744 0.08573 0.08333 0.00240 0.01744

Table 7: Aproximate and exact solutions and errors for M = 3 and N = 4 in Example 5.2.

t = 0.333 App. Exact App. Exact Max
r y1(t, r) y1(t, r) Error y1(t, r) y1(t, r) Error Error

0.00000 0.00000 0.00000 0.00000 0.33595 0.35827 0.02231 0.02231
0.16667 0.02536 0.02986 0.00450 0.30796 0.32841 0.02045 0.02045
0.33333 0.05071 0.05971 0.00900 0.27996 0.29855 0.01859 0.01859
0.50000 0.07607 0.08957 0.01349 0.25197 0.26870 0.01673 0.01673
0.66667 0.10143 0.11942 0.01799 0.22397 0.23884 0.01487 0.01799
0.83333 0.12679 0.14928 0.02249 0.19597 0.20899 0.01301 0.02249
1.00000 0.15214 0.17913 0.02699 0.16798 0.17913 0.01116 0.02699

Table 8: Aproximate and exact solutions and errors for M = 3 and N = 4 in Example 5.2.

t = 0.333 App. Exact App. Exact Max
r y2(t, r) y2(t, r) Error y2(t, r) y2(t, r) Error Error

0.00000 0.00817 0.00000 0.00817 0.16091 0.16667 0.00576 0.00817
0.16667 0.01771 0.01389 0.00382 0.14818 0.15278 0.00460 0.00460
0.33333 0.02725 0.02778 0.00052 0.13545 0.13889 0.00344 0.00344
0.50000 0.03679 0.04167 0.00487 0.12272 0.12500 0.00228 0.00487
0.66667 0.04633 0.05556 0.00922 0.11000 0.11111 0.00111 0.00922
0.83333 0.05587 0.06944 0.01357 0.09727 0.09722 0.00005 0.01357
1.00000 0.06541 0.08333 0.01792 0.08454 0.08333 0.00121 0.01792
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6 Conclusion

First, the properties of Bernstein polynomials and their combination with block pulse functions are presented.
Then, the important transformation matrix is introduced, which is one of the advantages of this work,
because it can be generalized to other polynomials and its combination with block pulse functions, where
the operational matrices are more easily calculated. We applied the method of combining functions to mixed
fuzzy integral equations system with time delay. Then, by using the transformation matrix, we determined
other operational, delay, and Fredholm and Volterra integrals matrices. By substituting these matrices into
the fuzzy integral equations system with time delay, we arrive at a system of algebraic equations. By solving
this system of linear equations, we obtain a solution to the problem. Then, we proved the uniqueness and
convergence of the method. And some numerical examples are presented to show the effectiveness of the
method. The results showed that the hybrid methods are very useful for these types of systems. For future
research, this method can be used for such equations with nonlinear or nonlinear delay functions. And also,
it can be applied to other polynomials and its combination with block pulse functions.
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Abstract. The focus of this work is to study sequences of interactive fuzzy numbers. The interactivity relation is
associated with the concept of joint possibility distribution. In this case, the type of interactivity studied is linked
to a family of joint possibility distributions (Jγ), in which the parameter γ intrinsically models levels of interactivity
between the fuzzy numbers involved. Each element of the sequence of interactive fuzzy numbers is obtained through
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1 Introduction

Real number sequences have been a subject of study within Mathematics, particularly in the field of Analysis.
In this context, the domain of the function that generates the sequence is the set of natural numbers (N) and
the image is defined as the set of real numbers (R). In addition, one can define a sequence of real numbers
by writing the current value in terms of its predecessors. This type of sequence is also known as a recursive
sequence, which must be started from one or more initial conditions, as occurs, for instance, in the Fibonacci
and plant growth sequences [1].

There are several well-known real sequences, such as the Lucas sequence, in which the real sequence is
the same as in the Fibonacci sequence, but the initial values differ. Also, there is the arithmetic sequence
(each term is the sum of the previous term and a constant difference), geometric sequence (each term is the
product of the previous term and a constant ratio), triangular number sequence (each term can be arranged
in an equilateral triangle), and many others.

This work focuses on the study of an extension of recursive sequences, in the following sense: the domain
of the function that generates the sequence remains the set of natural numbers, but its values lie in the set of
fuzzy numbers (RF ). Such sequences are known as fuzzy sequences, and the motivation for working with this
approach is based on the uncertainty in determining an exact value for the initial conditions of a recursive
sequence, as seen in population dynamics [2].

..

∗Corresponding Author: Vincius Francisco Wasques, Email: vwasques@outlook.com, ORCID: 0000-0002-0965-0654
Received: 31 October 2024; Revised: 20 January 2025; Accepted: 28 January 2025; Available Online: 11 February 2025;
Published Online: 7 May 2025.

How to cite: Wasques VF, Pinto NJB. Comparison between fuzzy number sequences via interactive arithmetic J0 and standard
arithmetic. Transactions on Fuzzy Sets and Systems. 2025; 4(1): 213-224. DOI: https://doi.org/10.71602/tfss.2025.1189025

213

https://sanad.iau.ir/journal/tfss/
https://doi.org/10.71602/tfss.2025.1189025
https://orcid.org/0000-0002-0965-0654
https://orcid.org/0000-0003-0442-9536


214 Wasques VF, Pinto NJB. Trans. Fuzzy Sets Syst. 2025; 4(1)

In this particular work, the fuzzy sequences, considered here, are given in the form of

Xn = f(X0, X1, . . . , Xn−1),

where f : RnF → RF is a linear fuzzy function. An example of this type of fuzzy sequence is given by
Xn = 3Xn−1+2Xn−2. An example of a fuzzy sequence that is not of this type is given by Xn = Xn−1 ∗Xn−2.

For this purpose, the initial conditions of the recursive sequence must be given by fuzzy numbers, conse-
quently, the operations involved in obtaining the n-th value of the sequence, in terms of the previous n − 1
values, must be appropriated for fuzzy numbers. In the literature, there are various arithmetics for fuzzy
numbers. This work will explore only two: the standard arithmetic and the interactive arithmetic.

The standard arithmetic is considered because it is the most common arithmetic operation used in the
literature. Moreover, several properties of this arithmetic are well known. For example, it is always possible
to compute the standard sum between fuzzy numbers; it is a commutative and associative operation, but
it does not satisfy the opposite element; it always produces a fuzzy number with a bigger width than each
width of the operands; and so on [2].

On the other hand, the choice of interactive arithmetic arises from the fact that the n-th term of the
sequence depends on its predecessors. This dependence is intrinsically modeled by the concept of interac-
tivity [3]. Interactivity is a fuzzy relation that emerges from a joint possibility distribution between fuzzy
numbers. This relation is similar, but not equivalent, to the concept of dependence for random variables.

In the context of interactivity, there are several arithmetic operations proposed in the literature, all of
which incorporate this relation. Carlsson and Fuller [4] proposed an addition (subtraction) for fuzzy numbers
that assumes a linear correlation between the fuzzy numbers. Barros and Santo Pedro [5] explored these
operations by proposing a fuzzy derivative. Wasques et al. [6] showed that Hukuara difference and its
generalizations incorporate the relation of interactivity, which means that several papers in the literature use
the relation of interactivity implicitly or explicitly since these fuzzy differences are widely considered in the
fuzzy set theory.

This work addresses fuzzy number sequences that incorporate the interactivity relation, illustrating their
advantages over using usual arithmetic for fuzzy numbers. The paper is organized as follows. Section 2
provides the mathematical background for the fuzzy sets theory and the construction of the interactive sum
J0. Section 3 explores fuzzy number sequences with different types of arithmetic operations. Section 4
presents the conclusion of the paper.

2 Mathematical Background

A fuzzy subset A of a universe X is characterized by a membership function µA : X → [0, 1], where µA(x),
or simply A(x), indicates the degree to which x ∈ X belongs to A. Every classical subset A of X is, in
particular, a fuzzy set, as it can be described by the characteristic function χA : X → {0, 1}, which is a
particular case of a membership function. One way to handle fuzzy sets computationally is through α-cuts,
defined by [A]α = {x ∈ X : A(x) ≥ α} if 0 < α ≤ 1 and [A]α = {x ∈ X : A(x) > 0} if α = 0, where Y
represents the closure of the set Y ⊆ X.

The set of fuzzy numbers, denoted by RF , is formed by fuzzy subsets of R whose α-cuts are non-empty,
bounded, closed, and nested intervals for all α ∈ [0, 1]. These α-cuts are denoted by [A]α = [a−α , a

+
α ], ∀α ∈

[0, 1] [2]. The set of fuzzy numbers with continuous endpoints a−(·), a
+
(·) : [0, 1] → R is denoted by RFC

. An

example of this type of fuzzy number is the triangular fuzzy number, denoted by triple (a; b; c), with a ≤ b ≤ c,
and characterized by the α-cuts [a + α(b − a), c + α(b − c)]. The width of a fuzzy number A is defined by
width(A) = |a+0 − a−0 | [2].
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Let A and B be fuzzy numbers. The Pompeiu-Hausdorff distance D∞ : RF × RF → [0,+∞) is given by

D∞(A,B) = sup
α∈[0,1]

(max{|a−α − b−α |, |a+α − b+α |}), ∀A,B ∈ RF .

A sequence of fuzzy numbers is defined by a function F : N → RF . This sequence is denoted by Xn, where
Xn represents the value F (n) and Xn is referred to as the n-th term of the sequence, that is, F (n) = Xn, for
all n ∈ N. A sequence Xn converges to Xp if for every ϵ > 0, there exists n0 such that D∞(Xn, Xp) < ϵ, for
all n > n0.

A fuzzy relation J ∈ F(R2) is said to be a joint possibility distribution between the fuzzy numbers
A1, A2 ∈ RF if

Ai(y) = sup
{(x1,x2)∈R2 : xi=y}

J(x1, x2),

for all y ∈ R and ∀i = 1, 2.

This means that A1 and A2 can be obtained by the projection of J in x and y direction, respectively.
The fuzzy numbers A1 and A2 are also called be the marginals of J .

Let A1, A2 ∈ RF and let J be a joint possibility distribution between them. The fuzzy numbers A1 and
A2 are said to be non-interactive if

J(x1, x2) = Jmin(x1, x2) = min{A1(x1), A2(x2)}, ∀(x1, x2) ∈ R2.

Otherwise, that is, if J ̸= Jmin, then A1 and A2 are said to be interactive fuzzy numbers.

The above definition states that the concept of interactivity between fuzzy numbers arises from the notion
of joint possibility distribution. This idea is similar (but not equivalent) to the definition of dependence in
the case of random variables, that is, the relation of dependence is similar to interactivity and independence
is similar to non-interactivity.

There are different types of interactivity associated with various joint possibility distributions, such as
interactivity via JL [4, 5, 7]. This joint possibility distribution establishes a linear correlation between the
membership functions of the involved fuzzy numbers, which restricts the applicability of JL [8, 9]. For example,
the joint possibility distribution JL can not be applied for the pair of fuzzy numbers A1 and A2, where A1

is a triangular symmetric fuzzy number (for example A1 = (1; 2; 3)) and A2 is a triangular non-symmetric
fuzzy number (for example A1 = (1; 2; 4)).

The following joint possibility distribution does not have such restrictions. Specifically, it can be applied
to any pair of fuzzy numbers in RFC . Given A1, A2 ∈ RFC , for each z ∈ R and α ∈ [0, 1], consider the
functions [10]:

g1(z, α) = min
w∈[A2]α

|w + z|, and g2(z, α) = max
w∈[A1]α

|w + z|. (1)

Also consider the sets Riα and Li(z, α) defined as follows:

Riα =

{
{a−iα , a

+
iα
} if α ∈ [0, 1)

[Ai]
1 if α = 1

,

and Li(z, α) = [A3−i]
α ∩ [−gi(z, α)− z, gi(z, α)− z], with i = {1, 2}.

The joint possibility distribution J0 is defined by the following membership function [10]

J0(x1, x2) =

{
min{A1(x1), A2(x2)}, if (x1, x2) ∈ P

0 , otherwise
, (2)
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where

P =

2∪
i=1

∪
α∈[0,1]

P i(α) with P i(α) = {(x1, x2) : xi ∈ Riα e x3−i ∈ Li(xi, α)}.

The following definition is a generalization of Zadeh’s extension principle [11], which aims to extend
real functions to fuzzy functions. Let J ∈ F(Rn) be a joint possibility distribution of A1, ..., An ∈ RF and
f : Rn → R. The sup-J extension of the function f applied to (A1, ..., An) is defined by

fJ(A1, ..., An)(y) = sup
(x1,...,xn)∈f−1(y)

J(x1, ..., xn),

where f−1(y) = {(x1, ..., xn) ∈ Rn : f(x1, ..., xn) = y}.
Through the sup-J extension principle, the arithmetic between interactive fuzzy numbers is obtained. For

example, the interactive sum and difference between A1 and A2 is defined as follows:

(A1 +J A2)(y) = sup
x1+x2=y

J(x1, x2) and (A1 −J A2)(y) = sup
x1−x2=y

J(x1, x2),

where J is an arbitrary joint possibility distribution.

Definition 2.1. [6] Let A,B ∈ RFC
. The interactive fuzzy sum defined by

(A1 +0 A2)(y) = sup
x1+x2=y

J0(x1, x2) (3)

is called the J0-sum.

The J0-sum for triangular fuzzy numbers can be easily computed according to the following theorem.

Theorem 2.2. [12] Let A = (a; b; c) and B = (d; e; f) be triangular fuzzy numbers. Let J0 be the joint
possibility distribution between A and B, given by (2). Thus

A+0 B =

{
((a+ f) ∧ (b+ e); b+ e; (b+ e) ∨ (c+ d)), if width(A) ≥ width(B)

((c+ d) ∧ (b+ e); b+ e; (b+ e) ∨ (a+ f)), if width(A) ≤ width(B)
. (4)

For example, the J0-sum between A = (1; 2; 3) and B = (0; 2; 4) is equal to

A+0 B = (min{3 + 0, 2 + 2}; 2 + 2;max{1 + 4, 2 + 2}) = (3; 4; 5).

On the other hand, the usual sum is given by

A+B = (1 + 0; 2 + 2; 3 + 4) = (1; 4; 7),

which has a bigger width than (3; 4; 5).
Also, the subtraction operator can be defined in a similar way.

Definition 2.3. Let A,B ∈ RF . The usual fuzzy difference is defined by

(A1 −A2)(y) = sup
x1−x2=y

min{A1(x1), A(x2)}. (5)

Definition 2.4. [6] Let A,B ∈ RFC
. The interactive fuzzy difference defined by

(A1 −I A2)(y) = sup
x1−x2=y

J0(x1, x2) (6)

is called the I-difference.
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For example, the I-difference between A = (1; 3; 4) and B = (1; 2; 3) is equal to

A−I B = A+0 (−B) = (min{1 + (−1), 3 + (−2)}; 3 + (−2);max{4 + (−3), 3 + (−2)}) = (0; 1; 1).

On the other hand, the usual sum is given by

A−B = A+ (−B) = (1− 3; 3− 2; 4− 1) = (−2; 1; 3),

which has bigger width than (0; 1; 1). Also, note that

A−I A = A+0 (−A) = (a; b; c) +0 (−c;−b;−a) = (0; 0; 0),

for all triangular fuzzy numbers A. Indeed, this result holds for any fuzzy number, that is, A −I A = 0 for
all A ∈ RFC [6].

The next section discusses sequences that are obtained through a discrete equation, where the arithmetic
operations involved in the equation are given by interactive arithmetic operations.

3 Fuzzy Number Sequence

The sequences that will be considered here are obtained recurrently, that is, each term xn ∈ R of the sequence
is given as a function of the previous terms x1, . . . , xn−1 from one or more initial conditions. For example,
the sequence defined by the Equation (7)

xn = xn−1 − rxn−2, (7)

where r ∈ R, with initial conditions x1 and x2.
Taking the value of r = 0.25 and initial conditions x1 = x2 = 1, this sequence assumes the following

values {1; 1; 0.75; 0.5; 0.3125; 0.1875; . . .}, converging to 0.
Considering that the initial conditions are uncertain and given by fuzzy numbers, the sequence given

in (7) is extended by the following fuzzy numbers sequence

Xn = Xn−1 ⊖ rXn−2, (8)

where r ∈ R, with X1 and X2 being fuzzy numbers, and the operation ⊖ is a difference between fuzzy
numbers.

Two cases will be analyzed here. The first one is when the fuzzy initial conditions are non-interactive,
in this case, the usual difference must be considered. In the second case the fuzzy initial conditions are
interactive, and thus, an interactive difference must be taken into account.

3.1 Usual Arithmetic Sequence

For the usual difference, we have the following sequence

Xn = Xn−1 − rXn−2. (9)

Taking the initial conditions X1 = X2 = (0; 1; 2) and r = 0.25, we obtain the following sequence of fuzzy
numbers represented in Figure 1. Figure 2 shows the 16-th term X16 computed in this sequence.

Each element of the sequence Xn given in (9) can be found in Table 1. Note that the width of Xn, that
is, the size of the 0-cut of Xn, is increasing with n. This implies that the uncertainty about the elements
increases as n increases, this behavior is connected to the usual arithmetic.
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Figure 1: Fuzzy number sequence given by Equation (9) for n = 16. Each element of the sequence Xn is
represented in shades of gray, with X1 described by the lightest shade, and X16 by the darkest shade.

Figure 2: X16 = (−14.080791; 0.00048828; 14.0818).

Note that, if the initial conditions are given by triangular fuzzy numbers, then the (n − 1)-ary term of
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Table 1: Sequence of fuzzy numbers obtained from Equation (8) from the initial conditions X1 = X2 =
(0; 1; 2), r = 0.25 and n = 16.

Usual Arithmetic

n Xn

1 (0; 1; 2)

2 (0; 1; 2)

3 (−0.475; 0.75; 1.975)

4 (−0.97; 0.5; 1.97)

5 (−1.46375; 3.125; 2.0888)

6 (−1.95625; 0.1875; 2.3313)

7 (−2.478438; 0.10938; 2.6972)

8 (−3.06125; 0.0625; 3.1863)

9 (−3.735547; 0.035156; 3.8059)

10 (−4.532109; 0.019531; 4.5712)

11 (−5.483574; 0.010742; 5.5051)

12 (−6.626367; 0.0058594; 6.6381)

13 (−8.002632; 0.0031738; 8.009)

14 (−9.662153; 0.001709; 9.6656)

15 (−11.664398; 0.0091553; 11.6662)

16 (−14.080791; 0.00048828; 14.0818)

Interactive Arithmetic

n Xn

1 (0; 1; 2)

2 (0; 1; 2)

3 (−0.15; 0.75; 1.485)

4 (−0.01; 0.5; 0.99)

5 (−0.00625; 0.3125; 0.61875)

6 (−0.00375; 0.1875; 0.37125)

7 (−0.0021875; 0.10938; 0.21656)

8 (−0.00125; 0.0625; 0.12375)

9 (−0.00070312; 0.035156; 0.069609)

10 (−0.00039062; 0.019531; 0.038672)

11 (−0.00021484; 0.010742; 0.02127)

12 (−0.00011719; 0.0058594; 0.011602)

13 (−0.00063477; 0.0031738; 0.0062842)

14 (−0.00003418; 0.0017090; 0.0033838)

15 (−0.000018311; 0.00091553; 0.0018127)

16 (−0.000009765; 0.00048828; 0.0009668)

this sequence is given by

Xn−1 = (an−2 − rcn−3; bn−2 − rbn−3; cn−2 − ran−3),

whose α-cuts are given by

[Xn−1]
α = [an−2 − rcn−3 + α(bn−2 − rbn−3 − (an−2 − rcn−3)),

cn−2 − ran−3 + α(bn−2 − rbn−3 − (cn−2 − ran−3))]

= [(an−2 − rcn−3)(1− α) + α(bn−2 − rbn−3),

(cn−2 − ran−3)(1− α) + α(bn−2 − rbn−3)]

and the n-ary term of this sequence is given by

Xn = (an−1 − rcn−2; bn−1 − rbn−2; cn−1 − ran−2),

whose α-cuts are given by

[Xn]
α = [(an−1 − rcn−2)(1− α) + α(bn−1 − rbn−2),

(cn−1 − ran−2)(1− α) + α(bn−1 − rbn−2)].

For all r > 0, it follows that

D∞(Xn, Xn−1) = sup
α∈[0,1]

(max{|a−α − b−α |, |a+α − b+α |})

= max{|an−1 − rcn−2 − (an−2 − rcn−3)|, |cn−1 − ran−2 − (cn−2 − ran−3)|}
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or

D∞(Xn, Xn−1) = max{|bn−1 − rbn−2 − (bn−2 − rbn−3)|, |bn−1 − rbn−2 − (bn−2 − rbn−3)|}
= |bn−1 − rbn−2 − (bn−2 − rbn−3)|.

Since width(Xn−1) ≤ width(Xn), it follows that for r > 1 the above sequences do not converge. This
comment gives raise to the following proposition.

Proposition 3.1. Let be the fuzzy sequence given by

Xn = Xn−1 − rXn−2,

where the subtraction operation − is given by the usual difference for fuzzy numbers. Thus, the fuzzy sequence
Xn diverges, for r > 1.

3.2 Sequence via Interactive Arithmetic

For interactive arithmetic, several differences can be used, for example, gH-difference [13], L-difference [5]
and I-difference [6]. In the simulations performed here, only the I-difference will be considered, since it
exists for any pair of fuzzy numbers, in contrast to the gH-difference (which can not be computed for any
triangular fuzzy numbers) and L-difference (which can not be computed for triangular fuzzy numbers with
different shapes). For the I-difference, the following fuzzy sequence

Xn = Xn−1 −I rXn−2, (10)

is illustrated in Figure 3.
Figure 4 depicts the 16-th term X16 computed from the sequence (10). It is possible to observe that the

output produced by this sequence is indeed a fuzzy number. Moreover, the operation −I preserves the shape
of the triangular fuzzy number.

As in usual arithmetic, the elements of [Xn]
1 are the same as in the classical sequence. Now, due to the

interactive arithmetic obtained by the set J0, the width of each Xn ∈ RFC
is decreasing with n. Therefore,

the uncertainty about such elements decreases over time.
The right tabular of Table 1 illustrates the values of each element of the sequence (10). Analyzing the

table, it is possible to quantitatively compare each Xn given by (9) and (10). It can be observed that the
width of the fuzzy numbers produced by the sequence (10) is smaller or equal than the width of the fuzzy
numbers produced by the sequence (9), for all n ∈ N. Consequently, the uncertainty about the fuzzy sequence
given in (8) is smaller using the I-difference than the usual difference.

Moreover, if the initial conditions are given by triangular fuzzy numbers, then the (n−1)-ary term of this
sequence is given by

Xn−1 = (min{an−2 − ran−3, bn−2 − rbn−3}; bn−2 − rbn−3;max{bn−2 − rbn−3, cn−2 − rcn−3}),

if width(Xn−2) ≥ width(rXn−3) or

Xn−1 = (min{cn−2 − rcn−3, bn−2 − rbn−3}; bn−2 − rbn−3;max{bn−2 − rbn−3, an−2 − ran−3}),

if width(Xn−2) ≤ width(rXn−3) and the n-ary term of this sequence is given by

Xn = (min{an−1 − ran−2, bn−1 − rbn−2}; bn−1 − rbn−2;max{bn−1 − rbn−2, cn−1 − rcn−2}),

if width(Xn−1) ≤ width(rXn−2) or

Xn = (min{cn−1 − rcn−2, bn−1 − rbn−2}; bn−1 − rbn−2;max{bn−1 − rbn−2, an−1 − ran−2}).
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Figure 3: Fuzzy number sequence given by Equation (10) for n = 16. Each element of the sequence Xn is
represented in shades of gray, with X1 described by the lightest shade, and X16 by the darkest shade.

Figure 4: X16 = (0.00009; 0.00488; 0.00966)

If 0 < r < 1, then D∞(Xn, Xn−1) is a lower bounded and decreasing function with respect to n, since
width(Xn) ≤ width(Xn−1), where an−2 − ran−3, bn−1 − rbn−2 and cn−1 − rcn−2 are decreasing sequences.
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Such reasoning is summarized in the following proposition.

Proposition 3.2. Let be the fuzzy sequence given by

Xn = Xn−1 −I rXn−2,

where the subtraction operation −I is given by the interactive difference (2.4). Thus, the fuzzy sequence Xn

converges, for any 0 < r < 1.

Similar results would be obtained using the gH-difference and the L-difference, if it were possible to
calculate Xn−1 ⊖ rXn−2 for each n. This comment is attributed to the fact that every arithmetic operation
coming from a joint possibility distribution J ̸= Jmin produces fuzzy numbers with a smaller width than the
usual arithmetic [14].

4 Conclusion

This work studied sequences of fuzzy numbers that assume values in RFC
. Each element of this sequence is

obtained by recurrence according to the equation (8), with fuzzy initial conditions.

Through some simulations, using the I-difference, it was noticed that the interactive arithmetic produces
a sequence of elements with a smaller width than the width of the elements obtained by the usual arithmetic.
This result is valid for all interactive arithmetic. It is worth mentioning that other interactive arithmetic
could have been used, such as the differences gH and L, however, it is not always possible to compute them.
The I-difference, on the other hand, does not have such restrictions.

From the point of view of applications, a smaller width implies less uncertainty about the elements of
the sequence {Xn}. The sequence provided by usual arithmetic has an increasing width, and therefore,
it propagates uncertainty over its elements. On the other hand, using the I-difference, the width of the
sequence decreases, which is better for controlling uncertainty over time. This makes interactive arithmetic
more suitable for modeling than the usual one.

It is worth noting that in several applications the usual sum and the gH-difference are used in the same
equation. This is not consistent with joint possibility distributions, since the gH-difference is an interactive
arithmetic operation [6], and the usual sum is not.
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