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Abstract. In this manuscript, the concept of an orthogonal intuitionistic fuzzy b-metric space is initiated as a
generalization of an intuitionistic fuzzy b-metric space. We presented some fixed point results in this setting. For the
validity of the obtained results, some non-trivial examples are given. In the last part, we established an application
on the existence of a unique solution of a Fredholm-type integral equation.
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1 Introduction

A publication showing there are solutions to differential equations established fixed-point theory in the sec-
ond quarter of the eighteenth century (Joseph Liouville, 1837). This approach was further improved as a
sequential approximation technique (Charles Emile Picard, 1890), and in the setting of complete normed
space, it was generalized as a fixed-point theorem (Stefan Banach, 1922). It presents the a priori and a
posteriori approximations for the convergence rate as well as a general way to actually determine the fixed
point. Additionally, it ensures that a fixed point exists and is distinct. This information is helpful for study-
ing metric spaces. Stefan Banach is acknowledged for developing fixed-point theory after that. Fixed-point
theorems allow us to guarantee that the main problem has been resolved, as has the existence of a fixed point
for a given function. In a large variety of scientific problems that are derive from many different branches
of mathematics, the existence of a solution is equivalent to the existence of a fixed point for a suitable mapping.

In 1989, Bakhtin [1] established the notion of quasi-metric spaces and established some results for con-
traction mappings. In 1993, Czerwik [2] established the concept of b-metric spaces and discussed several
fixed-point results. Eshaghi et al. [3] introduced the notion of orthogonal metric spaces and derived well-
known Banach fixed point theorem. Uddin et al. [4] established orthogonal m-metric spaces and solve the
integral equation. Eshaghi and Habibia [5] derived several fixed point results in the context of generalized
orthogonal metric space. Senapati et al. [6] established some new fixed point theorems in the context of
orthogonal metric spaces. In 1965, Zadeh [7] established the notion of fuzzy sets (FSs) to deal with those
problems that do have not any clear boundaries.

..
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In 1960, Schweizer [8] introduced the notion of continuous t-norm and worked on statistical metric spaces.
In 1975, the combination of metric spaces and FSs, named fuzzy metric spaces (FMSs), have been introduced
by Kramosil and Michlek [9]. In 1994, George and Veeramani [10] modified the notion of FMSs and gave
an interesting analysis of FMSs in 1997 in a research paper [11]. Deng [12] established the notion of fuzzy
pseudo-metric spaces and proved neumours results in the existence and uniqueness of a solution. Shukla
and Abbas [13] established the notion of fuzzy metric-like spaces as a generalization of FMSs. Hezarjaribi
[14] established the notion of orthogonal FMSs as a generalization of FMSs. Ndban [15] established the
concept of fuzzy b-metric spaces (FBMSs) and Jeved et al. [16] introduced fuzzy b-metric like spaces as a
generalization of FBMSs. The authors [17, 18, 19, 20] derived several fixed points results under some circum-
stances in the context of FBMSs. In 2004, Park [21] introduced the notion of intuitionistic fuzzy metric spaces
(IFMSs), in which he combined the notions of continuous t-norm, continuous t-conorm, FSs and metric space.

Rafi and Noorani [22], Sintunavarat and Kumam [23], Alaca et al. [24] and Mohamad [25] derived some
fixed point results for contraction mappings in the context of IFMSs. Konwar [26] introduced the notion of
intuitionistic fuzzy b-metric spaces (IFBMSs) as a generalization of IFMSs and derived fixed point results.
Baleanu and Rezapour [27] and Sudsutad and Tariboon [28] worked on fractional differential equations. In
this manuscript, we aim to toss the notion of orthogonal Intuitionistic fuzzy b-metric spaces (OIFBMSs) as
a generalization of IFBMSs. We provide some related fixed point theorems, including non-trivial examples
and an application. Some of the following notions are used throughout this paper, as CTN for a continuous
t-norm, CTCN for a continuous t-conorm and FP for fixed point.

2 preliminaries

In this section, we will discuss some important definitions that support our main result.

Definition 2.1. [1] Suppose Ξ ̸= ϕ. Given a five tuple (Ξ, G,H, ∗,∆) where ∗ is a CTN, ∆ is a CTCN,
θ ≥ 1 and G,H are FSs on Ξ× Ξ× (0,∞). If (Ξ, G,H, ∗,∆) meets the below conditions for all w, k ∈ Ξ and
π, τ > 0:

(B1) G(w, k, τ) +H(w, k, τ) ≤ 1;

(B2) G(w, k, τ) > 0;

(B3) G(w, k, τ) = 1 ⇔ w = k;

(B4) G(w, k, τ) = G(k,w, τ);

(B5) G(w, e, θ(τ + π)) ≥ G(w, k, τ) ∗G(k, e,Π);

(B6) G(w, k, ·) is a non decreasing function of R+ and limτ→∞G(w, k, τ) = 1;

(B7) H(w, k, τ) > 0;

(B8) H(w, k, τ) = 0 ⇔ w = k;

(B9) H(w, k, τ) = H(k,w, τ);

(B10) H(w, e, θ(τ + π)) ≤ H(w, k, τ)∆H(k, e,Π);

(B11) H(w, k, ·) is a non increasing function of R+ and limτ→∞H(w, k, τ) = 1;

Then (Ξ, G,H, ∗,∆) is an IFBMS.
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Definition 2.2. Assume Ξ ̸= ϕ. Let ⊥∈ Ξ× Ξ be a binary relation. Suppose there exists w0 ∈ Ξ such that
w0 ⊥ w or w ⊥ w0 for all w ∈ Ξ. Thus, Ξ is known as orthogonal set (OS) and denoted by (Ξ,⊥)

Definition 2.3. Assume that (Ξ,⊥) is an OS. A sequence {wn} for n ∈ N is known to be an O-sequence if
(∀n,wn ⊥ wn+1) or (∀n,wn+1 ⊥ wn)

3 Orthogonal Intuitionistic Fuzzy b-metric Spaces

Now, we establish the notion of OIFBMSs and derive several FP results with non-trivial examples.

Definition 3.1. (Ξ, G,H, ∗,∆) is known to be an OIFBMS if Ξ is a (non empty) OS, ∗ is a CTN, ∆ is a
CTCN, and G,H are FSs on Ξ× Ξ× (0,∞) verifying the below conditions for a given real number θ ≥ 1:

(B⊥1) G(w, k, τ) +H(w, k, τ) ≤ 1 for all w, k ∈ Ξ, τ > 0 such that w ⊥ k and k ⊥ w;

(B⊥2) G(w, k, τ) > 0 for all w, k ∈ Ξ, τ > 0 such that w ⊥ k and k ⊥ w;

(B⊥3) G(w, k, τ) = 1 ⇔ w = k; for all w, k ∈ Ξ, τ > 0 such that w ⊥ k and k ⊥ w;

(B⊥4) G(w, k, τ) = G(k,w, τ) for all w, k ∈ Ξ, τ > 0 such that w ⊥ k and k ⊥ w;

(B⊥5) G(w, e, θ(τ + π)) ≥ G(w, k, τ) ∗G(k, e,Π) for all w, k ∈ Ξ, τ > 0 such that w ⊥ k and k ⊥ w;

(B⊥6) G(w, k, ·) is a non decreasing function of R+ and limτ→∞G(w, k, τ) = 1 for all w, k ∈ Ξ, τ > 0 such
that w ⊥ k and k ⊥ w;

(B⊥7) H(w, k, τ) > 0for all w, k ∈ Ξ, τ > 0 such that w ⊥ k and k ⊥ w;

(B⊥8) H(w, k, τ) = 0 ⇔ w = k for all w, k ∈ Ξ, τ > 0 such that w ⊥ k and k ⊥ w;

(B⊥9) H(w, k, τ) = H(k,w, τ) for all w, k ∈ Ξ, τ > 0 such that w ⊥ k and k ⊥ w;

(B⊥10) H(w, e, θ(τ + π)) ≤ H(w, k, τ)∆H(k, e,Π) for all w, k ∈ Ξ, τ > 0 such that w ⊥ k and k ⊥ w;

(B⊥11) H(w, k, ·) is a non increasing function of R+ and limτ→∞H(w, k, τ) = 1 for all w, k ∈ Ξ, τ > 0 such
that w ⊥ k and k ⊥ w;

Then (Ξ, G,H, ∗,∆) is an IFBMS.

Example 3.2. Let Ξ = R and define σ ∗ θ = σθ, σ∆θ = min{σ, θ} and ⊥ by w ⊥ k iff w + k ≥ 0. Let

G(w, k, τ) =

{
1 if w = k,

τ
τ+max{w,k}α otherwise.

(1)

and

H(w, k, τ) =

{
0 if w = k,
max{w,k}α

τ+max{w,k}α otherwise.
(2)

for all w, k ∈ Ξ, τ > 0 with α belong to odd natural numbers.
Proof. (B⊥1)− (B⊥3), (B⊥5)− (B⊥9) and (B⊥11) are obvious. Here, we prove (B⊥4) and (B⊥10). (B⊥4):
for a random number θ ≥ 1, one writes

max{w, e}α ≤ θ[max{w, k}α +max{k, e}α]
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Thus,

τπmax{w, e}α ≤ θ(τ + π)πmax{w, k}α + θ(τ + π)τ max{k, e}α.

Consequently,

τπmax{w, e}α ≤ θ(τ + π)πmax{w, k}α + θ(τ + π)τ max{k, e}α + θ(τ + π)max{k, e}α.

Thus,

τπmax{w, e}α ≤ θ(τ + π)[πmax{w, k}α + τ max{k, e}α +max{w, k}αmax{k, e}α].

one write

θ(τ +π)τπ+ τπmax{w, e}α ≤ θ(τ +π)τπ+ θ(τ +π)[πmax{w, k}α+ τ max{k, e}α+max{w, k}αmax{k, e}α].

Therefore,

θ(τ + π)τπ + τπmax{w, e}α ≤ θ(τ + π)[τπ + πmax{w, k}α + τ max{k, e}α +max{w, k}αmax{k, e}α].

That is,

τπ[θ(τ + π) + max{w, e}α] ≤ θ(τ + π)[τ +max{w, k}α][π +max{k, e}α]

Hence,
θ(τ + π)

θ(τ + π) + max{w, e}α
≥ τπ

[τ +max{w, k}α][π +max{k, e}α]
.

θ(τ + π)

θ(τ + π) + max{w, e}α
≥ τ

τ +max{w, k}α
.

That is,

G(w, e, θ(τ + π)) ≥ G(w, kτ) ∗G(k, e, π).

(B⊥10): One writes

max{w, e}α = max{w, e}αmax

{
max{w, k}α

max{w, k}α
,
max{k, e}α

max{k, e}α

}
.

Then

max{w, e}α ≤ [θ(τ + π) + max{w, e}α]max

{
max{w, k}α

max{w, k}α
,
max{k, e}α

max{k, e}α

}
.

That is,
max{w, e}α

θ(τ + π) + max{w, e}α
≤ max

{
max{w, k}α

τ +max{w, k}α
,

max{k, e}α

π +max{k, e}α

}
.

Hence,

H(w, e, θ(τ + π)) ≤ H(w, k, τ)∆H(k, e, π).

Now, we show it’s not an IFBM. Indeed, for π = τ = 1,w = −1, k = −1
2 and α = 3, (B4) and (B10) fail. □

Example 3.3. Let Ξ = R and define σ ∗ θ = σθ, σ∆θ = min{σ, θ} and ⊥ by w ⊥ k iff w + k ≥ 0. Let

G(w, k, τ) =

1 if w = k,[
e

max{w,k}α
τ

]−1

otherwise.
(3)
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and

H(w, k, τ) =

0 if w = k,

1−
[
e

max{w,k}α
τ

]−1

otherwise.
(4)

for all w, k ∈ Ξ, τ > 0 with α belong to odd natural numbers.
Proof. (B⊥1)− (B⊥3), (B⊥5)− (B⊥9) and (B⊥11) are obvious. Here, we prove (B⊥4) and (B⊥10).
(B⊥4): for a random number θ ≥ 1, one writes

max{w, e}α ≤ θ [max{w, k}α +max{k, e}α] .

Therefore,

max{w, e}α ≤ θ

[
τ + π

τ
max{w, k}α +

τ + π

π
max{k, e}α

]
Then

max{w, e}α

θ(τ + π)
≤ max{w, k}α

τ
+

max{k, e}α

π

Since, ew is an increasing function, one gets

e
max{w,e}α

θ(τ+π) ≤ e
max{w,k}α

τ · e
max{k,e}α

π .

That is [
e

max{w,e}α
θ(τ+π)

]−1

≥
[
e

max{w,k}α
τ

]−1

·
[
e

max{k,e}α
π

]−1

.

Hence,

G(w, e, θ(τ + π)) ≥ G(w, kτ) ∗G(k, e, π).

(B⊥10): For a random θ ≥ 1, we write

max{w, e}α

θ(τ + π)
≤ max

{
max{w, k}α

τ
,
max{k, e}α

π

}
.

That is,

e
max{w,e}α

θ(τ+π) ≤ max
{
e

max{w,k}α
τ , e

max{k,e}α
π

}
.

Then, [
e

max{w,e}α
θ(τ+π)

]−1

≥ max

{[
e

max{w,k}α
τ

]−1

,
[
e

max{k,e}α
π

]−1
}
.

That is,

1−
[
e

max{w,e}α
θ(τ+π)

]−1

≤ max

{
1−

[
e

max{w,k}α
τ

]−1

, 1−
[
e

max{k,e}α
π

]−1
}
.

Hence,

H(w, e, θ(τ + π)) ≤ H(w, k, τ)∆H(k, e, π).∀w, k, e ∈ Ξ, ∀τ, π > 0.

Now, we show it’s not an IFBM. Indeed, for π = τ = 1,w = −1, k = −1
2 , e = −2 and α = 3, (B4) and (B10)

is not satisfy. □
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Example 3.4. Let Ξ = R and define σ ∗ θ = σθ, σ∆θ = max{σ, θ} and ⊥ by w ⊥ k iff w + k ≥ 0. Suppose

G(w, k, τ) =
τ +min{w, k}α

τ +max{w, k}α
(5)

and

H(w, k, τ) = 1− τ +min{w, k}α

τ +max{w, k}α
(6)

for all w, k ∈ Ξ, τ > 0 with α belong to odd natural numbers. Here, (Ξ, G,H, ∗,∆,⊥) is an OIFBMS. It is
not an IFBMS. Indeed, if it is the case, from (B4),

θ(τ + π) + min{w, k}α

θ(τ + π) + max{w, k}α
≥ τ +min{w, k}α

τ +max{w, k}α
· π +min{w, k}α

π +max{w, k}α

and from case (B10)

1− θ(τ + π) + min{w, k}α

θ(τ + π) + max{w, k}α
≤ max

[
1− τ +min{w, k}α

τ +max{w, k}α
· 1− π +min{w, k}α

π +max{w, k}α

]
.

Then by taking w = k, e = −2 and α = 1
2 , the above inequalities are not satisfied.

Remark 3.5. Every IFBMS is an OIFBMS, but the converse is not true. The above examples confirm this
reverse statement.

Definition 3.6. An O-sequence {wn} is an OIFBMS (Ξ, G,H, ∗,∆,⊥) is called an orthogonal convergent
(O-convergent) to w ∈ Ξ, if

lim
n→∞

G(wn,w, τ) = 1, ∀τ > 0,

and

lim
n→∞

H(wn,w, τ) = 0, ∀τ > 0,

Definition 3.7. An O-sequence {wn} is an OIFBMS (Ξ, G,H, ∗,∆,⊥) is known to be an orthogonal Cauchy
(O-Cauchy) if

lim
n→∞

G(wn,w, τ) = 1,

and

lim
n→∞

H(wn,w, τ) = 0,

for all τ > 0, p ≥ 1.

Definition 3.8. Let ξ : Ξ → Ξ is ⊥-continuous at w ∈ Ξ is an OIFBMS (Ξ, G,H, ∗,∆,⊥), whenever for each
O-sequence wn for all n ∈ N in Ξ if limn→∞G(wn,w, τ) = 1 and limn→∞H(wn,w, τ) = 0 for all τ > 0, then
limn→∞G(ξwn, ξw, τ) = 1 and limn→∞H(ξwn, ξw, τ) = 0 for all τ > 0. Furthermore, ξ is ⊥-continuous on Ξ
if ξ ⊥-continuous at each w ∈ Ξ. Also, ξ is ⊥- preserving if ξw ⊥ ξk, whence w ⊥ k.

Definition 3.9. An OIFBMS (Ξ, G,H, ∗,∆,⊥) is known to be orthogonally complete (O-complete) if every
O-Cauchy O-sequence is O- convergent.

Remark 3.10. It is necessary that the limit of an O-convergent O-sequence is unique in an OIFBMS.

Remark 3.11. It is necessary that the limit of an O-convergent O-sequence is O-Cauchy in an OIFBMS.
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Lemma 3.12. If for some v ∈ (0, 1) and w, k ∈ Ξ,

G(w, k, τ) ≥ G
(
w, k,

τ

v

)
, τ > 0,

and

H(w, k, τ) ≤ H
(
w, k,

τ

v

)
, τ > 0,

then w = k.
Proof. The proof is follows from [8]. □

Definition 3.13. Suppose (Ξ, G,H, ∗,∆,⊥) be an OIFBMS. A mapping ξ : Ξ → Ξ is an orthogonal con-
traction (⊥-contraction) if there exists ϱ ∈ (0, 1) such that for every τ > 0 and w, k ∈ Ξ with w ⊥ k, we
have

G(ξw, ξk, ϱτ) ≥ G(w, k, τ), (7)

H(ξw, ξk, ϱτ) ≤ H(w, k, τ). (8)

Theorem 3.14. Let (Ξ, G,H, ∗,∆,⊥) be an O-complete IFBMS such that

lim
τ→∞

G(w, k, τ) = 1,

and

lim
τ→∞

H(w, k, τ) = 0.

for all w, k ∈ Ξ. Suppose ξ : Ξ → Ξ be an ⊥-continuous and ⊥-preserving mapping. Thus, ξ has a unique
FP, say w∗ ∈ Ξ. Furthermore,

lim
τ→∞

G(ξnw, k, τ) = 1,

and

lim
τ→∞

H(ξnw, k, τ) = 0.

for all w, k ∈ Ξ.
Proof. Let (Ξ, G,H, ∗,∆,⊥) be an O-complete IFBMS, there exists w0 ∈ Ξ such that w0 ⊥ k for all k ∈ Ξ,
that is, w0 ⊥ ξw0. Take wn = ξnw0 = ξwn−1 for all n ∈ N. Since ξ is ⊥-preserving, {wn} is an O-sequence.
From assumption that ξ is an ⊥-contraction, we have

G(wn+1,wn, ϱτ) = G(ξwn, ξwn−1, ϱτ) ≥ G(wn,wn−1, τ)

for all n ∈ N and τ > 0. Note that G is non-decreasing on (0,∞). By utilizing above inequality, we have

G(wn+1,wn, τ) ≥ G(wn+1,wn, ϱτ) = G(ξwn+1, ξwn, ϱτ) ≥ G(wn,wn−1, τ)

= G(ξwn−1, ξwn−2, τ) ≥ G

(
wn−1,wn−2,

τ

ϱ

)
≥ · · · ≥ G

(
w1,w0,

τ

ϱn

)
(9)

for all n ∈ N and τ > 0. Thus, from (9) and (B4), we deduce

G(wn,wn+m, τ) ≥ G
(
wn,wn+1,

τ

θ

)
∗G

(
wn+1,wn+m,

τ

θ

)
≥ G

(
wn,wn+1,

τ

θ

)
∗G

(
wn+1,wn+2,

τ

θ2

)
∗G

(
wn+2,wn+3,

τ

θ3

)
∗ · · · ∗G

(
wn+m−1,wn+m,

τ

θn+m

)
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≥ G

(
w1,w0,

τ

θϱn

)
∗G

(
wn+1,wn+2,

τ

θ2ϱn

)
∗G

(
wn+2,wn+3,

τ

θ3ϱn

)
∗ · · · ∗G

(
wn+m−1,wn+m,

τ

θn+mϱn

)
(10)

We know that limτ→∞G(w, k, τ) = 1, for all w, k ∈ Ξ and τ > 0. So, from (10), we have

lim
τ→∞

G(wn,wn+m, τ) ≥ 1 ∗ 1 ∗ · · · ∗ 1 = 1. (11)

Similarly,

H(wn+1,wn, ϱτ) = H(ξwn, ξwn−1, ϱτ) ≤ H(wn,wn−1, τ)

for all n ∈ N and τ > 0. By utilizing above inequality, we have

H(wn+1,wn, τ) ≤ H(wn+1,wn, ϱτ) = H(ξwn+1, ξwn, ϱτ) ≤ H(wn,wn−1, τ)

= H(ξwn−1, ξwn−2, τ) ≤ H

(
wn−1,wn−2,

τ

ϱ

)
≤ · · · ≤ H

(
w1,w0,

τ

ϱn

)
(12)

for all n ∈ N and τ > 0. Thus, from (12) and (B10), we deduce

H(wn,wn+m, τ) ≤ H
(
wn,wn+1,

τ

θ

)
∆H

(
wn+1,wn+m,

τ

θ

)
≤ H

(
wn,wn+1,

τ

θ

)
∆H

(
wn+1,wn+2,

τ

θ2

)
∆H

(
wn+2,wn+3,

τ

θ3

)
∆ · · ·∆H

(
wn+m−1,wn+m,

τ

θn+m

)
≤ H

(
w1,w0,

τ

θϱn

)
∆H

(
wn+1,wn+2,

τ

θ2ϱn

)
∆H

(
wn+2,wn+3,

τ

θ3ϱn

)
∆ · · ·∆H

(
wn+m−1,wn+m,

τ

θn+mϱn

)
(13)

We know that limτ→∞H(w, k, τ) = 0, for all w, k ∈ Ξ and τ > 0. So, from (13), we have

lim
τ→∞

H(wn,wn+m, τ) ≤ 0∆0∆ · · ·∆0 = 0. (14)

So, {wn} is an O-sequence. The O-sequence. The O-completeness of the IFBMS (Ξ,w, k, ∗,∆,⊥) ensure
that there exists w∗ ∈ Ξ such that G(wn,w∗, τ) → 1, and H(wn,w∗, τ) → 0, as n → +∞ for all τ > 0.
Now, since ξ is an ⊥-continuous mapping, G(wn+1, ξw∗, τ) = G(ξwn+, ξw∗, τ) → 1 and H(wn+1, ξw∗, τ) =
H(ξwn+, ξw∗, τ) → 0 as n→ +∞. Now, we have

G(w∗, ξw∗, τ) ≥ G
(
w∗,wn+1,

τ

2θ

)
∗G

(
wn+1, ξw∗,

τ

2θ

)
,

H(w∗, ξw∗, τ) ≤ H
(
w∗,wn+1,

τ

2θ

)
∆H

(
wn+1, ξw∗,

τ

2θ

)
.

Taking limit as n→ ∞, we get G(w∗, ξw∗, τ) = 1 ∗ 1 = 1 and H(w∗, ξw∗, τ) = 0∆0 = 0and hence ξw∗ = w∗.
Uniqueness:
Let w∗ and k∗ be two FPs of ξ such that w∗ ̸= k∗. We have w0 ⊥ w∗ and w0 ⊥ k∗. Since T is ⊥-preserving,
we have ξw0 ⊥ ξnw∗ and ξnw0 ⊥ k∗ for all n ∈ N. So from (7), we can drive

G(ξnw0, ξ
nw∗, τ) ≥ G(ξnw0, ξ

nw∗, ϱτ) ≥ G

(
w0,w∗,

τ

ϱn

)
and

G(ξnw0, ξ
nk∗, τ) ≥ G(ξnw0, ξ

nk∗, ϱτ) ≥ G

(
w0, k∗,

τ

ϱn

)
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Therefore,

G(w∗, k∗, τ) = G(ξnw∗, ξ
nk∗, τ) ≥ G

(
ξnw0, ξ

nw∗,
τ

2θ

)
∗G

(
ξnw0, ξ

nk∗,
τ

2θ

)
≥ G

(
w0,w∗,

τ

2θϱn

)
∗G

(
w0, k∗,

τ

2θϱn

)
→ 1

as n→ ∞ So from (8), we can derive

H(ξnw0, ξ
nw∗, τ) ≤ H(ξnw0, ξ

nw∗, ϱτ) ≤ H

(
w0,w∗,

τ

ϱn

)
and

H(ξnw0, ξ
nk∗, τ) ≤ H(ξnw0, ξ

nk∗, ϱτ) ≤ H

(
w0, k∗,

τ

ϱn

)
Therefore,

H(w∗, k∗, τ) = H(ξnw∗, ξ
nk∗, τ) ≤ H

(
ξnw0, ξ

nw∗,
τ

2θ

)
∗H

(
ξnw0, ξ

nk∗,
τ

2θ

)
≤ H

(
w0,w∗,

τ

2θϱn

)
∆H

(
w0, k∗,

τ

2θϱn

)
→ 0

as n→ ∞ So, w∗ = k∗, hence w∗ is the unique FP. □

Corollary 3.15. Suppose (Ξ, G,H, ∗,∆,⊥) be an O-complete IFBMS. Assume ξ : Ξ → Ξ be ⊥-contraction
and ⊥-preserving. Assume that if {w} is an O-sequence with wn → w ∈ Ξ, Then w ⊥ wn for all n ∈ N.
Then ξ has a unique FP, say w∗ ∈ Ξ, Moreover, limn→∞G(ξnw,w∗, τ) = 1 and limn→∞H(ξn,w,w∗, τ) = 0,
for all w ∈ Ξ and τ > 0.
Proof. Follows from Theorem 2.1 that wn is a O-Cauchy O-sequence and so it O-converges to w∗ ∈ Ξ.
Hence w∗ ⊥ wn for all n ∈ N from (7), we have

G(ξw∗,wn+1, τ) = G(ξw∗, ξwn, τ) ≥ G(ξw∗, ξwn, τϱ) ≥ G(w∗,wn, τ)

and

lim
n→∞

G(ξw∗,wn+1, τ) = 1.

Then, we can write

G(w∗, ξw∗, τ) ≥ G
(
w∗, ξwn+1,

τ

2θ

)
∗G

(
wn+1, ξw∗,

τ

2θ

)
Taking limit as n→ +∞, We get G(w∗, ξw∗, τ) = 1 ∗ 1 = 1
and from (8)

H(ξw∗,wn+1, τ) = H(ξw∗, ξwn, τ) ≤ H(ξw∗, ξwn, τϱ) ≤ H(w∗,wn, τ)

and

lim
n→∞

H(ξw∗,wn+1, τ) = 0.

Then, we can write

H(w∗, ξw∗, τ) ≤ H
(
w∗, ξwn+1,

τ

2θ

)
∆H

(
wn+1, ξw∗,

τ

2θ

)
Taking limit as n → +∞, We get H(w∗, ξw∗, τ) = 0∆0 = 0, So ξw∗ = w∗. Next follows from Theorem 3.13.
□
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Example 3.16. Let Ξ = [−2, 2]. We define ⊥ by

w ⊥ k ⇔ w+ k ∈ {| w |, | k | (15)

G(w, k, τ) =

1 if w = k,[
e

max{w,k}α
τ

]−1

otherwise.
(16)

and

H(w, k, τ) =

0 if w = k,

1−
[
e

max{w,k}α
τ

]−1

otherwise.
(17)

for all w, k ∈ Ξ, τ > 0 with σ×θ = σ ·θ and σ∆θ = max{σ, θ}. Then (Ξ, G, ∗,∆,⊥) is an O-complete IFBMS.
Define ξ : Ξ → Ξ by

ξ(w) =

{
w
4 , if w ∈ [−2, 0]

0, if w ∈ (0, 2].
(18)

Then the below cases fulfilled:

1. if w ∈ [−2, 0] and k ∈ (0, 2], then ξ(w) = w
4 and ξ(k) = 0,

2. if w, k ∈ [−2, 0], then ξ(w) = w
4 and ξ(k) = k

4 ,

3. if w, k ∈ (0, 2], then ξ(w) = 0 and ξ(k) = 0,

4. if w ∈ (0, 2] and k ∈ [−2, 0], then ξ(w) = 0 and ξ(k) = k
4 ,

This is easy to see that ξ((w))+ξ(k) ∈ {| ξ(w) |, | ξ(k) |}. Hence, ξ is ⊥-preserving. Let {wn} be an arbitrary
O-sequence in Ξ that {wn} O-converges to w ∈ Ξ. That is

lim
n→∞

G(wn,w, τ) = lim
n→∞

[
e

max{wn,w}α
τ

]−1

= 1,

lim
n→∞

H(wn,w, τ) = 1− lim
n→∞

[
e

max{wn,w}α
τ

]−1

= 0.

We can easily see that if limn→∞G(wn,w, τ) = 1, then limn→∞G(ξwn, ξw, τ) = 1, and if limn→∞H(wn,w, τ) =
0, then limn→∞H(ξwn, ξw, τ) = 0, for all w ∈ Ξ and τ > 0. That is, ξ is ⊥-continuous. if w = k, then it is
obvious. Suppose w ̸= k, then there are following four cases for ϱ ∈ [12 , 1):
Case 1) if w ∈ [−2, 0] and k ∈ (0, 2], then ξw = w

4 and ξk = 0. Here,

G(ξwn, ξw, ϱτ) = G(
w

4
, 0, ϱτ) =

[
e
[w4 ]

α

ϱτ

]−1

≥
[
e

max{w,k}α
τ

]−1

= G(w, k, τ),

H(ξwn, ξw, ϱτ) = H(
w

4
, 0, ϱτ) = 1−

[
e
[w4 ]

α

ϱτ

]−1

≤ 1−
[
e

max{w,k}α
τ

]−1

= H(w, k, τ),

Case 2) If w, k ∈ [−2, 0), then ξw = w
4 and ξk = k

4 . We have

G(ξwn, ξw, ϱτ) = G(
w

4
,
k

4
, ϱτ) =

[
e

max{w
4 , k4}α

ϱτ

]−1

≥
[
e

max{w,k}α
τ

]−1

= G(w, k, τ),
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H(ξwn, ξw, ϱτ) = H(
w

4
,
k

4
, ϱτ) = 1−

[
e

max{w
4 , k4}α

ϱτ

]−1

≤ 1−
[
e

max{w,k}α
τ

]−1

= H(w, k, τ),

Case 3) If w, k ∈ (0, 2], then ξw = 0 and ξk = 0. Here,

G(ξw, ξk, ϱτ) = G(0, 0, ϱτ) = e0 ≥
[
e

max{w,k}α
τ

]−1

= G(w, k, τ),

H(ξw, ξk, ϱτ) = H(0, 0, ϱτ) = 1− e0 ≤ 1−
[
e

max{w,k}α
τ

]−1

= H(w, k, τ),

Case 4) If w ∈ (0, 2] and k ∈ [−2, 0], then ξw = 0 and ξk = k
4 . We have

G(ξw, ξk, ϱτ) = G(0,
k

4
, ϱτ) =

[
e

max{0, k4}α

ϱτ

]−1

≥
[
e

max{w,k}α
τ

]−1

= G(w, k, τ),

H(ξw, ξk, ϱτ) = H(0,
k

4
, ϱτ) = 1−

[
e

max{0, k4}α

ϱτ

]−1

≤ 1−
[
e

max{w,k}α
τ

]−1

= H(w, k, τ),

From all the above cases, We obtain that

G(ξw, ξk, ϱτ) ≥ G(w, k, τ), (19)

G(ξw, ξk, ϱτ) ≥ G(w, k, τ), (20)

Hence, ξ is an orthogonal contraction. But, ξ is not a contraction. In fact, let w = −1 and k = −2 and
α = 3, then

G(ξw, ξk, ϱτ) =

[
e

max{w
4 , k4}α

ϱτ

]−1

≥ 1,

H(ξw, ξk, ϱτ) = 1−

[
e

max{w
4 , k4}α

ϱτ

]−1

≤ 0.

Which is not true. Hence, all assumptions of Theorem 3.13 are fulfilled and 0 is the unique FP of ξ. Also,

G(w,w, τ) = G(0, 0, τ) = e0 = 1, ∀τ > 0 (21)

and
H(w,w, τ) = H(0, 0, τ) = 1− e0 = 0.∀τ > 0 (22)

Theorem 3.17. Suppose (Ξ, G,H, ∗,∆,⊥) be an O-complete IFBMS such that limt→∞G(w, k, τ) = 1, and
limt→∞H(w, k, τ) = 0, ∀w, k ∈ Ξ and τ > 0. Suppose ξ : Ξ → Ξ be ⊥-continuous, ⊥-contraction, and
⊥-preserving. Suppose ϱ ∈

(
0, 1θ
)
and τ > 0, such that

G(ξw, ξk, ϱτ) ≥ min{G(ξw,w, τ), G(ξk, k, τ)} (23)

H(ξw, ξk, ϱτ) ≤ min{H(ξw,w, τ),H(ξk, k, τ)} (24)

for all w, k ∈ Ξ, τ > 0. Then ξ has a unique FP, say w∗ ∈ Ξ. Moreover, limn→∞G(ξnw,w∗, τ) = 1 and
limn→∞H(ξnw,w∗, τ) = 0 for all w ∈ Ξ and τ > 0.
Proof. Let (Ξ, G,H, ∗,∆,⊥) be an O-complete IFBMS, There exists w0 ∈ Ξ such that

w0 ⊥ k∀k ∈ Ξ (25)
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Therefore, ξ is ⊥-preserving, and {wn} is an O-sequence. We have

G(wn+1, n, τ) ≥ G(wn+1, n, ϱτ) = G(ξwn, ξwn−1, ϱτ) ≥ min{G(ξwn, n, τ), G(ξwn−1,wn−1, τ)

H(wn+1, n, τ) ≤ H(wn+1, n, ϱτ) = H(ξwn, ξwn−1, ϱτ) ≤ min{H(ξwn, n, τ),H(ξwn−1,wn−1, τ)

Two cases arise.
Case 1: If G(wn+1, n, τ) ≥ G(ξwn,wn, τ), then

G(wn+1,wn, τ) ≥ G(wn+1,wn, ϱτ) ≥ G(ξwn,wn, τ) = G(wn+1,wn, τ)

and
H(wn+1,wn, τ) ≤ H(wn+1,wn, ϱτ) ≤ H(ξwn,wn, τ) = H(wn+1,wn, τ)

Then, by Lemma 3.12, wn = wn+1 for all n ∈ N
Case 2): If G(wn+1, n, τ) ≥ G(ξwn−1,wn−1, τ), then

G(wn+1,wn, τ) ≥ G(wn+1,wn, ϱτ) ≥ G(ξwn−1,wn−1, τ) ≥ G(wn,wn−1, τ)

and H(wn+1, n, τ) ≤ H(ξwn−1,wn−1, τ), then

H(wn+1,wn, τ) ≤ H(wn+1,wn, ϱτ) ≤ H(ξwn−1,wn−1, τ) ≤ H(wn,wn−1, τ)

for all n ∈ N and τ > 0. By utilizing Theorem 3.13, we have an O-Cauchy sequence. Since (Ξ, G,H, ∗,∆,⊥)
is complete, there exists w∗ ∈ Ξ, such that

lim
n→∞

G(wn,w∗, τ) = 1, (26)

and
lim
n→∞

H(wn,w∗, τ) = 0, (27)

for all τ > 0. Science,ξ is an ⊥-continuous, We have

lim
n→∞

G(wn+1,w∗, τ) = G(ξwn, ξw∗, τ) = 1,

and
lim
n→∞

H(wn+1,w∗, τ) = H(ξwn, ξw∗, τ) = 0,

Next, we examine that w∗ is a FP of ξ. Let τ1 ∈ (ϱθ, 1) and τ2 = 1− τ1. then

G(ξw∗,w∗, τ) ≥ G
(
ξw∗,wn+1,

ττ1
θ

)
∗G

(
ξwn+1,w∗,

ττ2
θ

)
,

= G
(
ξw∗, ξwn,

ττ1
θ

)
∗G

(
ξwn+1,w∗,

ττ2
θ

)
,

≥ min

{
G

(
ξw∗,w∗,

ττ1
ϱθ

)
∗G

(
ξwn,wn,

ττ2
ϱθ

)}
∗G

(
ξwn+1,w∗,

ττ2
θ

)
= min

{
G

(
ξw∗,w∗,

ττ1
ϱθ

)
∗G

(
ξwn+1,wn,

ττ2
ϱθ

)}
∗G

(
ξwn+1,w∗,

ττ2
θ

)
Taking n→ ∞, We get

G(ξw∗,w∗, τ) ≥ min

{
G

(
ξw∗,w∗,

ττ1
ϱθ

)
, 1

}
∗ 1,
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G(ξw∗,w∗, τ) ≥ G
(
ξw∗,w∗,

τ

ν

)
τ > 0, ,

and
H(ξw∗,w∗, τ) ≤ H

(
ξw∗,wn+1,

ττ1
θ

)
∆H

(
ξwn+1,w∗,

ττ2
θ

)
,

= H
(
ξw∗, ξwn,

ττ1
θ

)
∆H

(
ξwn+1,w∗,

ττ2
θ

)
,

≤ min

{
H

(
ξw∗,w∗,

ττ1
ϱθ

)
∆H

(
ξwn,wn,

ττ2
ϱθ

)}
∆H

(
ξwn+1,w∗,

ττ2
θ

)
= min

{
H

(
ξw∗,w∗,

ττ1
ϱθ

)
∆H

(
ξwn+1,wn,

ττ2
ϱθ

)}
∆H

(
ξwn+1,w∗,

ττ2
θ

)
Taking n→ ∞, We get

H(ξw∗,w∗, τ) ≤ min

{
H

(
ξw∗,w∗,

ττ1
ϱθ

)
, 0

}
∗ 0,

H(ξw∗,w∗, τ) ≤ H
(
ξw∗,w∗,

τ

ν

)
τ > 0, ,

There is ν = θϱ
τ1

∈ (0, 1), and by utilizing Lemma 3.12, we get ξw∗ = w∗.
Uniqueness : Suppose w∗ ̸= k∗ are two FPs of ξ. We get w0 ⊥ w∗ and w0 ⊥ k∗. Therefore, since ξ is an
⊥-preserving, we have ξnw0 ⊥ ξnw∗ and ξnw0ξ

n ⊥ k∗. for all n ∈ N. we can write

G(ξnw0, ξ
nw∗, τ) ≥ G(ξnw0, ξ

nw∗, ϱτ) ≥ min{G(ξnw0,w0, τ), G(ξ
nw∗,w∗, τ)},

and
G(ξnw0, ξ

nk∗, τ) ≥ G(ξnw0, ξ
nk∗, ϱτ) ≥ min{G(ξnw0,w0, τ), G(ξ

nk∗, k∗, τ)},

Hence, we write that

G(w0, k∗, τ) = G(ξnw∗, ξ
nk∗, τ) ≥ min

{
G

(
ξnw∗,w∗,

τ

ϱ

)
, G

(
ξnk∗, k∗,

τ

ϱ

)}
,

and
H(ξnw0, ξ

nw∗, τ) ≤ G(ξnw0, ξ
nw∗, ϱτ) ≤ min{H(ξnw0,w0, τ),H(ξnw∗,w∗, τ)},

and
H(ξnw0, ξ

nk∗, τ) ≤ H(ξnw0, ξ
nk∗, ϱτ) ≤ min{H(ξnw0,w0, τ),H(ξnk∗, k∗, τ)},

Hence, we write that

H(w0, k∗, τ) = H(ξnw∗, ξ
nk∗, τ) ≤ min

{
H

(
ξnw∗,w∗,

τ

ϱ

)
,H

(
ξnk∗, k∗,

τ

ϱ

)}
,

for all τ > 0. Thus, w∗ = k∗. □

Corollary 3.18. Suppose (Ξ, G,H, ∗,∆,⊥) be a complete OIFBMS and ξ : Ξ → Ξ be an ⊥-continuous and
⊥-preserving. Let ϱ ∈

(
0, 1θ
)
for all τ > 0,with

G(ξw, ξk, ϱτ) ≥ min{G(ξw,w, τ), G(ξk, k, τ),

H(ξw, ξk, ϱτ) ≤ min{H(ξw,w, τ),H(ξk, k, τ).

Then, ξ has a unique FP. Furthermore, limn→∞G(ξnw,w∗, τ) = 1 and limn→∞H(ξnw,w∗, τ) = 0, for all
w ∈ Ξ and τ > 0.
Proof. It is obvious from Theorem 3.14 and 3.17 □
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Example 3.19. Suppose Ξ = [−2, 2] and by ⊥ by w ⊥ k ⇔ w+ k ≥ 0. Define G and H by

G(w, k, τ) =

{
1 ifw = k,

τ
τ+max{w,k}α otherwise

(28)

H(w, k, τ) =

{
0 ifw = k,
max{w,k}α

τ+max{w,k}α otherwise
(29)

for all w, k ∈ Ξ and τ > 0, with σ ∗ θ = σ · θ and σ∆θ = max{σ, θ}, Then (Ξ, G,H, ∗,∆,⊥) is an O-complete
IFBMS. Note that limn→∞Gw, k, τ = 1 and limn→∞Hw, k, τ = 0. Define ξ : Ξ → Ξ by

ξ(w) =


w
4 , w ∈

[
−2, 23

]
,

1− w, w ∈
(
2
3 , 1
]
,

w − 1
2 , w ∈ (1, 2].

(30)

There are following four cases:

1. If w, k ∈
[
−2, 23

]
then ξ(w) = w

4 and ξ(k) = k
4 .

2. If w, k ∈
(
2
3 , 1
]
then ξ(w) = 1− w and ξ(k) = 1− k.

3. If w, k ∈ (1, 2] then ξ(w) = w − 1
2 and ξ(k) = k− 1

2 .

4. If w,∈
[
−2, 23

]
and k ∈

(
2
3 , 1
]
then ξ(w) = w

4 and ξ(k) = k− 1
2 .

5. If w,∈
[
−2, 23

]
and k ∈ (1, 2] then ξ(w) = w

4 and ξ(k) = k− 1
2 .

6. If w,∈
(
2
3 , 1
]
and k ∈

(
2
3 , 1
]
then ξ(w) = 1− w and ξ(k) = k− 1

2 .

7. If w,∈ (1, 2] and k ∈
(
2
3 , 1
]
then ξ(w) = w − 1

2 and ξ(k) = 1− k.

8. If w ∈ (1, 2] and k ∈
[
−2, 23

]
then ξ(w) = w − 1

2 and ξ(k) = k
4 .

9. If w ∈
(
2
3 , 1
]
and k ∈

[
−2, 23

]
then ξ(w) = 1− w and ξ(k) = k

4 .

Because w ⊥ k ⇔ w+ k ≥ 0, it is clearly implies that ξw + k ≥ 0. that is, ξ is ⊥-preserving. Suppose {wn}
be any O-sequence in Ξ that O-converges to w ∈ Ξ. We get

lim
n→∞

G(wn,w, τ) = lim
n→∞

τ

τ +max{wn,w}3
= 1, (31)

lim
n→∞

H(wn,w, τ) = lim
n→∞

max{wn,w}3

τ +max{wn,w}3
= 0, (32)

Note that if G(wn,w, τ) = 1 and H(wn,w, τ) = 0, then G(ξwn, ξw, τ) = 1 and H(ξwn, ξw, τ) = 0 for all
τ > 0. that is, ξ is orthogonal continuous. For w = k, it is obvious. Assume w ̸= k. We get

G(ξw, ξk, ϱτ) ≥ min{G(ξw,w, τ), G(ξk, k, τ)}

H(ξw, ξk, ϱτ) ≤ min{H(ξw,w, τ),H(ξk, k, τ)}.

It fulfilled above all cases. Now, we show that ξ is not a contraction. Suppose

min{G(ξw,w, τ), G(ξk, k, τ)} = G(ξw,w, τ)
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min{H(ξw,w, τ),H(ξk, k, τ)} = H(ξw, k, τ).

then for w = −1 and k = −2, we have

G(ξw, ξk, ϱτ) =
ϱτ

ϱτ +max
{
w
4 ,

k
4

}3 =
64ϱτ

64ϱτ − 1
≥ 1,

H(ξw, ξk, ϱτ) =
max

{
w
4 ,

k
4

}3
ϱτ +max

{
w
4 ,

k
4

}3 =
−1

64ϱτ − 1
≤ 0.

Which is not true. That is, all assumptions of Theorem 2.2 are fulfilled, and 0 is a unique FP of ξ.

Definition 3.20. Suppose (Ξ, G,H, ∗,∆,⊥) be an OIFBMS. A mapping ξ : Ξ → Ξ is called a fuzzy θ− ⊥-
contraction if their exists ϱ ∈ (0, 1) such that

1

G(ξw, ξk, τ)
− 1 ≤ ϱ

[
1

G(w, k, τ)
− 1

]
(33)

H(ξw, ξk, τ) ≤ ϱH(w, k, τ) (34)

for all w, k ∈ Ξ and τ > 0. Where ϱ is said to be an IFB-⊥-contractive constant of ξ.

Theorem 3.21. Suppose (Ξ, G,H, ∗,∆,⊥) be an OIFBMS. Such that

lim
τ→∞

G(w, k, τ) = 1, (35)

lim
τ→∞

H(w, k, τ) = 0, ∀w, k ∈ Ξ. (36)

Assume a mapping ξ : Ξ → Ξ be a ⊥-continuous, IFB-⊥-contraction and ⊥-preserving mapping. Thus, ξ has
a FP, call ν ∈ Ξ. Moreover, G(ν, ν, α) = 1 and H(ν, ν, α) = 0 for all α > 0.
Proof. Suppose (Ξ, G,H, ∗,∆,⊥) be an O-complete IFBMS. For any point w0 ∈ Ξ, w0 ⊥ k, for all k ∈ Ξ.
That is, w0 ⊥ ξw0. Consider wn = ξnw0 = ξwn−1 for all n ∈ N. Therefore, ξ is ⊥-preserving and {wn} is
an O-sequence. If wn = wn−1 for some n ∈ N then wn is a FP of ξ. We suppose that wn ̸= wn−1 for all
n ∈ N. For all τ > 0, n ∈ N and utilizing (9), we have

1

G(wn,wn+1, τ)
− 1 =

1

G(ξwn−1, ξwn, τ)
− 1 ≤ ϱ

[
1

G(wn−1,w, τ)
− 1

]
H(wn,wn+1, τ) = H(ξwn−1, ξwn, τ) ≤ ϱH(wn−1,wn, τ).

We have
1

G(wn,wn+1, τ)
− 1 =

ϱ

G(wn−1,wn, τ)
+ (1− ϱ), ∀τ > 0

ϱ

G(ξwn−2, ξwn−1, τ)
+ (1− ϱ) ≤ ϱ2

G(wn−2,wn−1, τ)
+ ϱ(1− ϱ) + (1− ϱ).

Continuing in this way, we get

ϱ

G(wn,wn+1, τ)
≤ ϱn

G(w0,w1, τ)
+ ϱn−1(1− ϱ) + ϱn−2(1− ϱ) + · · ·+ ϱ(1− ϱ) + (1− ϱ).

≤ ϱn

G(w0,w1, τ)
+ (ϱn−1 + ϱn−2 + · · · 1)(1− ϱ)
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≤ ϱn

G(w0,w1, τ)
+ (1− ϱn)

We have
1

ϱn

G(w0,w1,τ)
+ (1− ϱn)

≤ G(wn,wn+1, τ), ∀τ > 0, n ∈ N (37)

and
H(wn,wn+1, τ) = H(ξwn−1, ξwn, τ) ≤ ϱH(wn−1,wn, τ) = ϱH(ξwn−2, ξwn−1, τ)

≤ ϱ2H(wn−2,wn−1, τ) ≤ · · · ≤ ϱnH(w0,w1, τ)∀τ > 0, n ∈ N (38)

Now, for m ≥ 1 and n ∈ N, we have

G(wn,wn+m, τ) ≥ G
(
wn,wn+1,

τ

θ

)
∗G

(
wn+1,wn+m,

τ

θ

)
≥ G

(
wn,wn+1,

τ

θ

)
∗G

(
wn+1,wn+2,

τ

θ2

)
∗G

(
wn+2,wn+m,

τ

θ2

)
Again, continuing in this way, we get

G(wn,wn+m, τ) ≥ G
(
wn,wn+1,

τ

θ

)
∗G

(
wn+1,wn+2,

τ

θ2

)
∗ · · · ∗G

(
wn+m−1,wn+m,

τ

θm−1

)
and

H(wn,wn+m, τ) ≤ H
(
wn,wn+1,

τ

θ

)
∆H

(
wn+1,wn+m,

τ

θ

)
≤ H

(
wn,wn+1,

τ

θ

)
∆H

(
wn+1,wn+2,

τ

θ2

)
∆H

(
wn+2,wn+m,

τ

θ2

)
Continuing in this way, we get

H(wn,wn+m, τ) ≤ H
(
wn,wn+1,

τ

θ

)
∆H

(
wn+1,wn+2,

τ

θ2

)
∆ · · ·∆H

(
wn+m−1,wn+m,

τ

θm−1

)
By utilizing (37) in the above inequality, we get

G(wn,wn+m, τ) ≥
1

ϱn

G(w0,w1,
τ
θ )

+ (1− ϱn)
∗ 1

ϱn+1

G
(
w0,w1,

τ
θ2

) + (1− ϱn)
∗ · · ·

∗ 1
ϱn+m−1

G
(
w0,w1,

τ
θm−1

) + (1− ϱn+m−1)

≥ 1
ϱn

G(w0,w1,
τ
θ )
+1

∗ 1
ϱn+1

G
(
w0,w1,

τ
θ2

)+1
∗ · · · ∗ 1

ϱn+m−1

G
(
w0,w1,

τ
θm−1

)+1

Also, using (38), we have

H(wn,wn+p, τ) ≤ H
(
wn,wn+1,

τ

θ

)
∆H

(
wn+1,wn+2,

τ

θ2

)
∆ · · ·∆H

(
wn+m−1,wn+m,

τ

θm−1

)
As ϱ ∈ (0, 1), we have limn→∞G(wn,wn+m, τ) = 1 and limn→∞H(wn,wn+m, τ) = 0 for all τ > 0, m ≥
1. Therefore, a sequence {w} is an O-Cauchy in (Ξ, G,H, ∗,∆,⊥) is complete, and we have ξ is an ⊥-
continuous, there exist ν ∈ Ξ such that

lim
n→∞

G(wn+1, ν, τ) = lim
n→∞

G(ξwn, ξν, τ) = 1, ∀τ > 0, (39)
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lim
n→∞

H(wn+1, ν, τ) = lim
n→∞

H(ξwn, ξν, τ) = 0, ∀τ > 0, (40)

Now, we show that ν is a FP of ξ. By utilizing (33), we have

1

G(ξw, ξν, τ)
− 1 ≤ ϱ

[
1

G(wn, ξν, τ)
− 1

]
=

ϱ

G(w, ξν, τ)
− ϱ.

That is,
1

G(ξw, ξν, τ) + 1− ϱ
≤ G(ξwn, ξν, τ).

Using the above inequality, we obtain

G(ν, ξν, τ) ≥ G
(
ν,wn+1,

τ

2θ

)
∗G

(
wn+1, ξν,

τ

2θ

)
= G

(
ν,wn+1,

τ

2θ

)
∗G

(
ξwn, ξν,

τ

2θ

)
≥ G

(
ν,wn+1,

τ

2θ

)
∗ ϱ

G
(
wn, ν,

τ
2θ

)
+ 1− ϱ

and
H(w, ν, τ) = H(ξw, ξν, τ) ≤ ϱH(w, ν, τ) < H(w, ν, τ)

= H
(
w,wn+1,

τ

2θ

)
∆H

(
ξwn, ξw,

τ

2θ

)
≤ H

(
w,wn+1,

τ

2θ

)
∆ϱH

(
wn,w,

τ

2θ

)
Taking limit as n → ∞ and using (39) and (40) in the above expression, we get G(ν, ξν, τ) = 1, that is,
ξν = ν. Therefore, ν is a FP of ξ,and G(ν, ν, τ) = 1 and H(ν, ν, τ) = 0 for all τ > 0. □
Corollary 3.22. Suppose (Ξ, G,H, ∗,∆,⊥) be an O-complete IFBMS such that limnto∞G(w, k, τ) = 1 and
limnto∞H(w, k, τ) = 0, for all w, ,k ∈ Ξ and ξ : ΞtoΞ satisfy

1

G(ξnw, ξnk, τ)
− 1 ≤ ϱ

[
1

G(w, k, τ)
− 1

]
(41)

H(ξnw, ξnk, τ) ≤ ϱH(w, k, τ) (42)

for all n ∈ N,w, k ∈ Ξ, τ > 0,where 0 < ϱ < 1. Then ξ has a FP, say ν ∈ Ξ and G(ν, ν, τ) = 1, for all τ > 0.
Proof. ν ∈ Ξ is a unique FP of ξn by utilizing Theorem 3.22, and G(ν, ν, τ) = 1, for all τ > 0. ξν is also a
FP of ξn(ξν) = ξν from Theorem 3.22, ξν = ν. Hence, the FP of ξ is also a FP of ξn. □
Example 3.23. Suppose Ξ = [−1, 2] and define ⊥ by w ⊥ k ⇔ w + k ≥ 0. Define G,H as in Example 3.4
with α = 3,

G(w, k, τ) =
τ +min{w, k}3

τ +min{w, k}3
∀w, k ∈ Ξ, τ > 0, (43)

and

H(w, k, τ) = 1− τ +min{w, k}3

τ +min{w, k}3
∀w, k ∈ Ξ, τ > 0, (44)

with σ ∗ θ = σ · θ and σ∆θ = max{σ, θ}, then (Ξ, G,H, ∗,∆,⊥) is an O-complete IFBMS. see that
limτ→∞G(w, k, τ) = 1 and limτ→∞H(w, k, τ) = 0 for all w, k ∈ Ξ. Define ξ : Ξ → Ξ by

G(w, k, τ) =

{
2− w w ∈ [−1, 1),

1 w ∈ [1, 2),
(45)

We have the following four cases:
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1. if w, k ∈ [−1, 1) then ξw = 2− w and ξk = 2− k,

2. if w, k ∈ [1, 2] then ξw = ξk = 1,

3. if w,∈ [−1, 1) and k ∈ [1, 2] then ξw = 2− w and ξk = 1,

3. if w,∈ [1, 2] and k ∈ [−1, 1) then ξw = 1 and ξk = 2− k,

Because w ⊥ k ⇔ w + k ≥ 0, it is clearly implies that ξ(w) + ξ(k) ≥ 0. That is, ξ is ⊥-preserving. Suppose
{wn} be any O-sequence in Ξ that O-converges to w ∈ Ξ. we get

lim
n→∞

G(w, k, τ) = lim
n→∞

τ +min{w, k}3

τ +min{w, k}3
= 1∀w, k ∈ Ξ, τ > 0,

and

lim
n→∞

H(w, k, τ) = 1− lim
n→∞

τ +min{w, k}3

τ +min{w, k}3
= 0∀w, k ∈ Ξ, τ > 0,

we can easily see that if limn→∞G(wn,w, τ) = 1, and limn→∞H(wn,w, τ) = 0, then limn→∞G(ξwn, ξw, τ) =
1 and limn→∞H(ξwn, ξw, τ) = 0 for all τ > 0. That is, ξ is orthogonal continuous. For w = k, it is obvious.

1

G(ξw, ξk, τ)
− 1 ≤ ϱ

[
1

G(w, k, τ)
− 1

]
H(ξw, ξk, τ)leqϱH(w, k, τ).

All conditions of Theorem 3.21 are satisfied and 1 is a FP of ξ

4 An Application to an Integeal Equation

Let Ξ = C([σ, θ],R) be the set of all continuous real valued functions defined on [σ, θ]. Now, we consider the
Fredholm type integral equation of fiest kind:

w(η) =

∫ θ

σ
F (η, j)w(η)kj, for η, j ∈ [σ, θ] (46)

Where, F ∈ Ξ. Define G as in Example 3.2, That is

G(w(η), k(η), τ) = sup
η∈[σ,θ]

1 if w = k,[
e

max{w(η),k(η)}α
τ

]−1

otherwise,
(47)

and

H(w(η), k(η), τ) = sup
η∈[σ,θ]

0 if w = k,

1−
[
e

max{w(η),k(η)}α
τ

]−1

otherwise,
(48)

for all w, k ∈ Ξ and τ > 0. Then (Ξ, G,H, ∗,∆,⊥) is an O-complete IFBMS.

Theorem 4.1. Assume that max{F (η, j)w(η), F (η, j)k(η)} ≤ ϱmax{w(η), k(η)}for w, k ∈ Ξ, ϱ ∈ (0, 1) and

η, j ∈ [σ, θ]. Also, consider
∫ θ
σ kj = 1. Then the Fredholm type integral equation of first kind in equation (46)

has a unique solution.
Proof. Define ξ : Ξ → Ξ by w(η) =

∫ θ
σ F (η, j)w(η)kj, for η, j ∈ [σ, θ]. Define Orthogonality as: w(η) ⊥

k(η) ⇔ w(η)k(η) ∈ {|w(η)|, |k(η)|}. We see that w(η) and ξw(η) belong to Ξ. So, observe that if w(η) ⊥ k(η),
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then must be ξw(η) ⊥ ξk(η). Observe that the existence of a FP of the operator ξ is equivalent to the existance
of a solution of the Fredholm type integral equation (46). Now, for w(η) = k(η), the contraction condition
holds. While for w ̸= k, We have

G(ξw(η), ξk(η), ϱτ) =

[
e

max{w(η),k(η)}α
ϱτ

]−1

=

[
e

max{∫ θ
σ F (η,j)w(η)kj,

∫ θ
σ F (η,j)k(η)kj}α

ϱτ

]−1

=

[
e
(
∫ θ
σ max{F (η,j)w(η)kj,F (η,j)k(η)kj})

α

ϱτ

]−1

≥

[
e
(
∫ θ
σ max{w(η)kj,k(η)kj})

α

ϱτ

]−1

≥ sup
η∈[σ,θ]

[
e

(ϱmax{w(η)kj,k(η)})α(
∫ θ
σ kj)

α

ϱτ

]−1

= sup
η∈[σ,θ]

[
e

(max{w(η)kj,k(η)})α
τ

]−1

= G(w(η), k(η), τ),

and

H(ξw(η), ξk(η), ϱτ) = 1−
[
e

max{w(η),k(η)}α
ϱτ

]−1

= 1−

[
e

max{∫ θ
σ F (η,j)w(η)kj,

∫ θ
σ F (η,j)k(η)kj}α

ϱτ

]−1

1−

[
e
(
∫ θ
σ max{F (η,j)w(η)kj,F (η,j)k(η)kj})

α

ϱτ

]−1

≤ 1−

[
e
(
∫ θ
σ max{w(η)kj,k(η)kj})

α

ϱτ

]−1

≤ 1− sup
η∈[σ,θ]

[
e

(ϱmax{w(η)kj,k(η)})α(
∫ θ
σ kj)

α

ϱτ

]−1

= 1− sup
η∈[σ,θ]

[
e

(max{w(η)kj,k(η)})α
τ

]−1

= H(w(η), k(η), τ),

Hence, ξ is an ⊥-contraction. Let {wn} be an O-sequence in Ξ O-converging to w ∈ Ξ. Because ξ is an
⊥-preserving, then {ξwn} is an O-sequence for each n ∈ N. We have

G(ξwn(η), ξw, ϱτ) ≥ G(wn(η),w(η), τ) (49)
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and

H(ξwn(η), ξw, ϱτ) ≤ H(wn(η),w(η), τ) (50)

As limn→∞G(ξwn(η), ξw, ϱτ) = 1 and limn→∞H(ξwn(η), ξw, ϱτ) = 0 for all τ > 0, it is clear that

lim
n→∞

G(ξwn(η), ξw, ϱτ) = 1, (51)

lim
n→∞

H(ξwn(η), ξw, ϱτ) = 0, (52)

Hence, ξ is ⊥-continuous. Therefore, all conditions of Theorem 3.13 are satisfied. Hence, the operator ξ has
a unique FP. That is, the Fredholm type integral equation (46) has a unique solution. □

5 Conclusion

In this study, we established the concept of an OIFBMS as a generalization of an IFBMS. We established
some fixed point theorems and solved some non-trivial examples with an application to Fredholm integral
equations. This work is extendable in the structure of orthogonal neutrosophic b-metric spaces,and orthogonal
inutionistic fuzzy controlled metric spaces and we can increase self mappings to get new results.
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Abstract. One of the most efficient statistical tools for modeling the relationship between a dependent variable
and several independent variables is regression. In practice, observations relating to one or more variables, or the
relationship between variables, may be vague or non-specific. In such cases, classic regression methods will not
have enough capability to model data, and one of the alternative methods is regression in a fuzzy environment.
The fuzzy logistic regression model provides a framework in the fuzzy environment to investigate the relationship
between a binary response variable and a set of covariates. The purpose of this paper is to attempt to develop a
fuzzy model that is based on the idea of the possibility of success. These possibilities are characterized by several
linguistic phrases, including low, medium, and high, among others. Next, we use a set of precise explanatory
variable observations to model the logarithm transformation of ”possibilistic odds.” We assume that the model’s
parameters are triangular fuzzy numbers. We use the least squares method in fuzzy linear regression to estimate
the parameters of the provided model. We compute three types of goodness-of-fit criteria to evaluate the model.
Ultimately, we model suspected cases of Systemic Lupus Erythematosus (SLE) disease based on significant risk
factors to identify the model’s application. We do this due to the widespread use of logistic regression in clinical
studies and the prevalence of ambiguous observations in clinical diagnosis. Furthermore, to assess the prevalence
of diabetes in the community, we will collect a sample of plasma glucose levels, measured two hours after a meal,
from each participant in a clinical survey. The proposed model has the potential to rationally replace an ordinary
model in modeling the clinically ambiguous condition, according to the findings.
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1 Introduction
Regression is one of the most efficient statistical tools for modeling the relationship between a dependent
variable and one or more independent variables. Regression analysis primarily aims to identify the func-
tional relationship between the dependent variable and the independent variable, enabling control over the
dependent variable’s values or future prediction. The standard model for statistical linear regression is as
follows:

Vi = w0 + w1ui1 + · · ·+ wnuin + ϵi, i = 1, · · · , p (1)

where Vi is the dependent variable for the i−th observation and uij is the value of the j−th independent
variable in the i−th sample observation and wj are the coefficients of the independent variables in the
regression function or model parameters. These parameters are based on a sample of observations and The
basis of statistical methods is estimated. In practice, observations of variables or their relationships can be
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vague or non-precise. In such cases, classical regression methods will not have enough capability to model
the data. In such cases, one of the alternative methods of classical regression is fuzzy regression, or, in other
words, regression in a fuzzy environment.
While linear regression models have dominated most existing studies in this field, sometimes the relationships
between variables are too complex to model and analyse using a linear relationship. In the category of non-
linear models, some models are inherently linear. In other words, appropriate transformations can linearise
the relationship between model variables. One of these models is the logistic regression. We use this to
model the relationship between a binary dependent variable and one or more independent variables. When
defining the dependent variable’s classes, we code the desired condition with the number one and the opposite
class with the number zero. This model has many applications in various scientific fields, including health
and medical studies. For instance, it models disease status (sick or healthy) and patient survival (death or
survival).
Many scientific studies use imprecise observations, but the logistic regression model, like other statistical
models, uses precise observations to fit the model. It is impossible to verify model assumptions with imprecise
observations or small sample sizes. Any violation of these assumptions makes using the logistic model
unreasonable. The previous discussion introduced us to the concept of modeling in a fuzzy environment.
Because fuzzy modeling has more flexibility, it works well, especially when the sample size is small or the
observations and relationships between variables are imprecise and approximate.
In 1965, Zadeh first introduced fuzzy sets [1]. Subsequently, Tanaka and his colleagues [2] engaged in a
debate on the subject of fuzzy regression. Tanaka assumed that the data consisted of triangular fuzzy
integers and proceeded to estimate the regression coefficients by minimising a fuzzy index. Tanaka based his
work on mathematical programming methodologies. In the same year, Yager [3], with a different approach,
predicted the value of the dependent variable, the simplest form of fuzzy regression, in her contract with fuzzy
observations. Jajoga [4] calculated the linear regression coefficients using a generalised version of the least
squares method, while until then most of the fuzzy regression models were analysed using the mathematical
programming method. Celmins [5] proposed a method for fitting a multivariate fuzzy model by minimising a
least squares objective function and presented a least squares method for fuzzy regression models. Diamond
[6] introduced a distance measure on the set of fuzzy numbers and used it to define the least squares criterion.
In general, there are three main methods for analysing fuzzy linear regression models:

• Fuzzy least squares methods,

• Mathematical programming methods,

• Numerical methods (simulation or iteration).

Pourahmad et al. [7, 8] investigated fuzzy logistic regression from two perspectives: possibility and least
squares. Namdari et al. [9] conducted a study on using fuzzy logistic regression models to analyze data with
crisp input and fuzzy output. The study assessed the imprecision of the dependent variable using linguistic
terminology. Their study primarily focused on the development of the least absolute deviations approach for
modeling, followed by a comparison of the obtained findings to those derived from the least squares estimate
method. In their work, the authors of reference [10] proposed a method for calculating the integral distance
of cut sets. Additionally, they introduced a fuzzy adjustment term to reduce the likelihood of significant
fuzzy errors in the fuzzy output, mainly when representing the independent variables as crisp integers. The
least squares approach yields the parameters of the fuzzy logistic regression model. Mustafa et al. [11]
proposed a fuzzy probabilistic logistic model that utilizes trapezoidal membership functions. Salmani et al.
[12] proposed a fuzzy regression model that integrates fuzzy covariates to address the issue of erroneous
binary-based response variables. The researchers used a least-squares methodology to estimate the model’s
parameters, and then used a bootstrap technique to compute confidence intervals and test hypotheses about
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the model parameters. Salmani et al. [13] suggested three ways to measure the goodness-of-fit in logistic
regression models: the Mean Squared Error (MSE), the Akaike Information Criterion (AIC), and Cp. The
authors created a forward model selection method for fuzzy logistic regression that takes into account fuzzy
sets’ efficiency level and mean squared error.
Logistic regression analysis is one of the famous non-linear methods used to model the binary response vari-
able based on ordinary explanatory variables. This method is particularly appropriate for models involving
disease state (diseased or healthy), patient survival (alive or dead), and decision-making (yes or no). There-
fore, studies in the health sciences widely use it (for more details refer to Bagley et al. [14]). Classical logistic
regression encounters problems such as (1) Violation of distribution assumptions (Bernoulli probability dis-
tribution for the binary response variable, uncorrelated explanatory variables, independence, and identically
distributed error terms). (2) Low sample size. (3) Vagueness in the relationship between variables that do
not follow the random error patterns in logistic regression models; and (4) Non-precise observations. In fact,
non-precise or vague observations, which occur frequently in practice, may cause the other difficulties. Take
clinical research as an example; certain diseases lack biological examinations, and their diagnosis relies on
well-defined and widely accepted criteria. To distinguish patients with these diseases, cases with some of
those defined criteria (but not all of them) have a vague status. Lupus 1 and Behcet 2 are examples in this
field [15]. In the case of hypertension, it is not rational to use a blood pressure threshold of 3 as a precise
borderline to identify the patient. Furthermore, linguistic terms such as low, medium, and high describe
some variables, such as pain severity or disease severity.
The main contributions of this paper are the creation of a fuzzy multiple linear least squares logistic regression
model, the sharing of computational formulas for figuring out regression parameters, and the addition of a
similarity measure between LR-type fuzzy numbers to test how well the proposed model works. We structure
the remaining sections of this paper as follows: In Section 2, we provide some established findings about LR-
type fuzzy numbers. We talk in depth about the suggested distance measurements between LR-type fuzzy
numbers and show how to use computers to find regression parameters in Section 3. In Section 4, we show
how the suggested model performs with two numerical instances. In the last section, we briefly summarize
our results and provide directions for further research.

2 Preliminaries of Fuzzy Arithmetic
In 1965, Professor Zadeh proposed the concept of fuzzy sets and partial membership for sets whose boundaries
are not completely clear. He introduced the concept of a fuzzy set as a collection of objects that belong to
the set with a degree between 0 and 1, where degree 1 indicates complete membership and degree 0 indicates
complete non-membership in the set. The membership function, which assigns a number from the interval
[0, 1] to each object, served as the basis for this definition.

Definition 2.1. The fuzzy set Ã of R is called a fuzzy number if it applies in the following three conditions:

• Ã is normal, it means that there exists exactly one x ∈ R such that Ã(x) = 1.

• Ã is upper semicontinuous, that is, all α−cuts of that interval are closed.

• The support Ã is bounded.

Definition 2.2. A fuzzy number Ã is called an LR fuzzy number if the membership function of Ã is as
follows:

A(x) =

{
L(m−x

sl
), x < m,

R(x−m
sr

), x ≥ m
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where sl, sr > 0 and L,R : [0,∞) → [0, 1] are continuous, decreasing and invertible functions on [0, 1] and
also L(0) = R(0) = 1 and L(1) = R(1) = 0. We call m, sl and sr the center, left width, and right width of the
fuzzy number Ã, respectively. For simplicity, we denote Ã by Ã = (m, sl, sr). If L = R and s = sl = sr, Ã is
called a symmetric fuzzy number and we denote it by Ã = (m, sl, sr). A fuzzy number with reference functions
L(x) = R(x) = max{0, 1− x} is called a triangular fuzzy number and we denote it by Ã = (m, sl, sr).

Definition 2.3. For two fuzzy numbers Ã = (m, sl, sr) and B̃ = (n, tl, tr), we will have:

• Ã+ B̃ = (m+ n, sl + tl, sr + tr).

•

λÃ =

{
(λm, λsl, λsr), λ > 0,

(λm, λsr, λsl), λ < 0.

Since one of the methods of solving regression models is to use the least squares estimator, and in this
method we need to calculate the distance between two fuzzy numbers, we must define the measure of the
distance between two fuzzy numbers. Researchers in this field have so far expressed different measures to
calculate the distance between two fuzzy numbers, which can be referred to [16] for further study. Here,
we improve the distance measure that Li et al. [16] stated so that the distance between two fuzzy numbers
can be calculated at different levels of decision-making. One of the benefits of this improved interval is that
we can have a model suitable for the same level of decision-making for the problem data by choosing the
appropriate parameter values. The distance measure that was defined by Li et al. [16] for two fuzzy numbers
Ã = (m, sl, sr) and B̃ = (n, tl, tr),is as follows:

D(Ã, B̃)2 = α0(m− n)2 + α1(sl − tl)
2 + α2(sr − tr)

2 + 2(m− n)(α3(sr − tr)− α4(sl − tl)), (2)

Its specific modes
α0 = 3, α1 = λ2, α2 = ρ2, α3 = ρ andα4 = λ

and
α0 = 1, α1 = λ2, α2 = ρ2, α3 = ρ1 andα4 = λ1,

that results in the measures of the distance defined by Yang and Ko [17] and Diamond and Korner [18],
respectively. where

λ =

∫ 1

0
L−1(q)dq, λ1 =

1

2

∫ 1

0
|L−1(q)|dq, λ2 =

1

2

∫ 1

0
|L−1(q)|2dq,

ρ =

∫ 1

0
R−1(q)dq, ρ1 =

1

2

∫ 1

0
|R−1(q)|dq, ρ2 =

∫ 1

0
|R−1(q)|2dq

The least squares method uses minimizing the sum of squared errors as a fit criterion. Fuzzy least squares
methods are also based on the lowest degree of difference between the observed values and the fitted values.
In the following, we use the least squares method to estimate the parameters of the logistic regression model.
In this method, we use the meter introduced in relation 2 to measure the error sentences and the distance
between the observed and fitted fuzzy numbers. This meter is an extended version of the previous meters
Yang and Ko [17] and Diamond and Körner [18] talked about here.
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3 Fuzzy Logistic Regression
Consider a regression model in which the dependent variable has a binary state, such as illness or health,
death or life, buying or not buying, going bankrupt or not going bankrupt, etc. Initially, medical applications
utilized this model primarily to predict the likelihood of a disease’s occurrence. Today, it finds widespread
use across all scientific fields. Logistic regression can be a suitable model for such situations.
The logistic regression model can be considered a generalized linear model that uses the logit function
as a link function, and its error follows a polynomial distribution. When the response variable follows a
binomial distribution, we use binary logistic regression as a statistical method. This approach models a
linear combination of explanatory variables using a function known as the ”logit”. The logit function is
defined as the natural logarithm of the ratio of the probability of success (π) to the probability of failure
(1−π). The following mathematical representation can express the association between the independent and
dependent variables in the context of logistic regression:

Vi = logit(πi) = Ln

(
πi

1− πi

)
= w0 + w1ui1 + · · ·+ wnuin, i = 1, · · · , p (3)

This study will primarily examine a scenario where the explanatory factors represent crisp values, but the
dependent variable is imprecise and quantified using language phrases. The definition of ”possibilistic odds,”
as provided by Pourahmad et al. [7], will be presented in the subsequent definition.

Definition 3.1. Let µi represent the probability of seeing feature 1 or success, denoted as Vi = 1, for the ith
example in a sample of size n. The eventuality of achieving success for the selected feature is determined by a
linguistic word, µi ∈ {· · · , low, average, high, · · · }. We can use expert-defined fuzzy numbers to accurately
represent each term of a linguistic variable. It is important to provide precise definitions for these words in a
manner that ensures the collective range of their respective supports encompasses the whole of the interval
(0, 1). The ratio µi

1−µi
is regarded as the possibilistic odds of the ith scenario, indicating the eventuality of

success in relation to the eventuality of failure.

For instance, triangular fuzzy numbers, which are designed to represent the eventuality of success as
µ = (V erylow, Low,Medium,High, V eryhigh), are provided in equation (4) and visually shown in Figure
1.

V ery low = (0.01, 0.02, 0.18), Low = (0.1, 0.25, 0.40), Medium = (0.35, 0.50, 0.65),

High = (0.6, 0.75, 0.90), V ery High = (0.8, 0.98, 0.90) (4)

3.1 Introducing the Model
The logistic regression model is a generalized linear model that uses the logit function as the dependent
variable and a binomial distribution for the error sentences. The following diagram illustrates this model:

vi = w0 + w1ui1 + · · ·+ wkuik + ϵi, i = 1, · · · , n (5)

Remark 3.2. According to the second part of Definition 2.3, there are differences when the coefficients
of fuzzy numbers are positive or negative. Therefore, according to this definition and applying changes,
calculations for negative coefficients can also be considered, but in this article, calculations based on positive
coefficients are considered.



28 Behdani Z, Darehmiraki M. Trans. Fuzzy Sets Syst. 2024; 3(2)

Figure 1: The membership functions of triangular fuzzy numbers represent the eventuality of success as
µ = (V erylow, Low,Medium,High, V eryhigh)

For the fuzzy model, consider the set of observations Ui = (ui1, ui2, ..., uik), where Ui is the non-fuzzy
observation vector of covariates for the ith case. We indicate the observation of the corresponding answer
with vi, which is a number between 0 and 1, and it shows the possibility of having a desirable characteristic for
the ith case. Consequently, we present the fuzzy logistic regression model with fuzzy coefficients as follows:

ṽi = w̃0 + w̃1ui1 + · · ·+ w̃kuik + ϵi, i = 1, · · · , n (6)

w̃j , j = 0, 1, ..., k are the parameters of the model, which are assumed to be triangular in fuzzy number
w̃j = (wj , lj , rj)T calculations for simplicity. ṽi = ln

µi
1− µi

is the probability logarithmic transformation

estimator, so based on the properties of addition and subtraction of triangular fuzzy numbers, Ṽi will also be
a triangular fuzzy number in the form of Ṽi = (fic(u), fil(u), fir(u)), which:

fic(u) = w0 + w1ui1 + · · ·+ wkuik, (7)
fil(u) = l0 + l1ui1 + · · ·+ lkuik,

fir(u) = r0 + r1ui1 + · · ·+ rkuik,

Therefore, the fuzzy estimated output membership function is obtained as follows:

Ṽi(vi) =


1− fic(u)− vi

fil(u)
, fic(u)− fil(u) ≤ vi ≤ fic(u)

1− vi − fic(u)

fir(u)
, fic(u) ≤ vi ≤ fic(u) + fir(u)

(8)

As mentioned, Ṽi is the natural logarithm of the probability of having the desired property for the observed
ith case. According to the expansion principle, if Ñ is a fuzzy number with the membership function Ñ(x)
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and f(x) = exp(x), then f(Ñ) = exp(Ñ) is a fuzzy number with the following membership function:

exp(Ñ(x)) =

{
Ñ(ln(x)), x > 0

0, o.w.
(9)

Therefore, after estimating the coefficients of the model, the probability membership function of exp(Ṽi(x)), x >
0 can be defined as follows:

exp(Ṽi(u)) = Ṽi(ln(u)) =


1− fic(u)− ln(u)

fil(u)
, fic(u)− fil(u) ≤ ln(u) ≤ fic(u)

1− ln(u)− fic(u)

fir(u)
, fic(u) ≤ ln(u) ≤ fic(u) + fir(u)

(10)

Therefore, for a new fuzzy observed case, its probability is predicted as a fuzzy number using the odds model.

3.2 Estimation of Parameters
We consider the regression model to be a logistic model with fuzzy output, regression coefficients, and a
non-fuzzy input vector (independent variables). To estimate the coefficients, we use the least squares error
method, which uses the distance measure introduced in Equation 2. To achieve this goal, we will estimate
the parameters by minimizing the following relationship:

S(w̃) =

n∑
i=1

ϵ2i =

n∑
i=1

D2(ṽi, Ṽ (ui)) (11)

which is defined as following:

n∑
i=1

α0

vi − w0 −
k∑

j=1

wjuji

2

+ α1

vli − l0 −
k∑

j=1

ljuji

2

+ α2

vri − r0 −
k∑

j=1

rjuji

2
+

n∑
i=1

2

vi − w0 −
k∑

j=1

wjuji

α3

vri − r0 −
k∑

j=1

rjuji

− α4

vli − l0 −
k∑

j=1

ljuji


In order to minimize S(w̃), the partial derivatives of S with respect to the primal variables wj , rj , lj , j =
1, 2, ..., k have to vanish for optimality. To compress the above relationships, we use the matrix symbol as
follows.

S(w̃) =

n∑
i=1

ϵ2i = ϵ′ϵ

=
(
α0(V −XW )′(V −XW ) + α1(L−XS)′(L−XS) + α2(R−XP )′(R−XP )

)
+
(
2(V −XW )′

(
α3(R−XP )− α4(L−XS)′

))
where in

V =



V1
V2
.
.
.
Vn

 R =



r1
r2
.
.
.
rn

 L =



l1
l2
.
.
.
ln

 X =



1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
. . . · · · .
. . . · · · .
. . . · · · .
1 xn1 xn2 · · · xnk
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W =



w0

w1

.

.

.
wk

 S =



wl0

wl1

.

.

.
wlk

 P =



wr0

wr1

.

.

.
wrk


where W and S, P are the central values and the left and right bounds for the unknown parameters. The
X-matrix is a matrix of observations, and the first column is one. We have also observed the V , L, and R
vectors, which represent central values, left width, and right width, respectively, for possible odds values.
The following is the estimate of the least squares of the unknown parameters obtained by deriving the above
expression:

P̂ = (X ′X)−1X ′ (d(α2 − α1α3)R+ ((α1α0 − α2
4)− dα3)Y

)
/b (12)

Ŵ = (X ′X)−1X ′
(
(α2R− α3Y )− α2P̂

)
/− α3

Ŝ = (X ′X)−1X ′
(
(α1L+ α4Y )− α4Ŵ

)
/α1

where d = (α1α0 − α2)/α3 and b = α2d− α3α1.

3.3 Goodness of Fit Criteria
To evaluate the model, there are many criteria for the goodness of fit. In this article, we will use the following
two criteria to evaluate the model:

S =
1

n

n∑
i=1

∫
min{v̂i(t), ˜̂vi(t)}dt∫
max{v̂i(t), ˜̂vi(t)}dt

, E1 =
1

n

n∑
i=1

∫
|v̂i(t), ˜̂vi(t)|dt, E2 =

1

n

n∑
i=1

∫
|v̂i(t), ˜̂vi(t)|dt∫

v̂i(t)dt
. (13)

Many authors (e.g., [19, 20, 21]) commonly use these criteria for model evaluation. That S is the similarity
criterion and the closer it is to one, the better. For the two criteria E1 and E2, the smaller value indicates a
better model.

4 Numerical Example
This part uses two real-life examples from the field of medicine and clinical issues to show how well the
suggested method works for estimating parameters, testing hypotheses, and figuring out confidence intervals
in fuzzy logistic regression models.

Example 4.1. The data includes information about 15 people suspected of having lupus who are aged 18
to 40 years. Lupus is a chronic disease where the body’s immune system, for unknown reasons, produces
antibodies While the body defends itself against bacteria and viruses, it also targets its healthy organs.
These attacks cause symptoms such as pain and muscle cramps. Several body organs, such as the skin,
joints, kidneys, heart, and nervous system, are involved in this type of disease at the same time [9]. This
disease takes several months or even several years to show its symptoms. Therefore, there is no specific
test to identify it. Doctors must gather the required information from various sources, such as a person’s
medical history, laboratory test results, and some external symptoms. This disease is diagnosed based on its
symptoms. Early detection accelerates treatment and prevents disease progression. Generally, lupus disease
is defined as a set of 11 symptoms, and a person with at least four symptoms is considered a patient. Here,
we categorize the degree of illness in the patient group based on the quantity of symptoms.
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This study aims to model the status of people suspected of having lupus based on several important risk
factors. The fitted model estimates each person’s potential risk of contracting the disease. Past research
has identified risk factors such as exposure to sunlight, family history, and various laboratory tests like ANA
and DNA-Anti. In addition, in ESR, we use these special blood tests to diagnose lupus. We can summarise
the introduction of these tests by stating that the nucleus of living cells consists of a significant quantity of
chemicals known as RNA and DNA. The term ANA, or anti-nuclear antibody, literally translates to ”anti-
nuclear substance of the cell.” These substances can damage and destroy cells and tissues. DNA-Anti also
means special anti-DNA immune cells. For these two tests, the unit of measurement is defined by the number
of these substances per millilitre of blood (ml/u). Their normal value is also considered to be less than 25
ml/u. In addition, ESR is a sign of inflammation. It is uncertain whether ESR increases in lupus patients,
and it may be higher in women and elderly individuals. About 95 to 98% of lupus patients have a high value
in the ANA test, and the amount of DNA - Anti in the blood of lupus patients increases. However, the high
results of these tests alone do not indicate the presence of disease [8]. In order to model the relationship

Table 1: Doubtful cases of lupus and its risk factors

No. Family History Sun exposure ANA test Anti DNA test ESR Possibility of disease
1 1 1 112 105 1 High
2 0 1 80 23 0 Medium
3 0 1 115 15 0 High
4 0 1 105 107 1 High
5 0 0 89 150 1 Medium
6 1 1 160 110 1 Very High
7 0 1 100 23 0 Medium
8 0 0 100 85 1 High
9 0 1 48 83 0 Low
10 1 0 15 19 1 Very Low
11 0 0 50 91 0 Low
12 0 1 59 200 1 Medium
13 0 1 83 20 1 Low
14 0 0 15 200 0 Low
15 1 0 85 15 1 Medium

between the possibility of lupus and the risk factors mentioned in Table 1, the following model is used:

ỹi = ln
π̃i

1− π̃i
= w̃0 + w̃1ui1 + w̃2ui2 + w̃3ui3 + w̃4ui4 + w̃5ui5, i = 1, 2, ..., 15. (14)

We estimate the model’s parameters using the least squares method with the meter introduced in the previous
section. Ultimately, we calculate the parameter estimation as follows: (with α = (α0, α1, α2, α3, α4) =
(3, 0.25, 0.25, 0.5, 0.5))

ˆ̃yi =(−4.0885,−3.3528,−0.5554)T + (−0.7017,−0.3554, 0.4145)T ESR

+ (0.01033, 0.0042,−0.0045)T AntiDNA test+ (0.0451, 0.0168,−0.0123)T ANAtest

+ (−0.1405,−0.0853,−0.0235)T Sun..+ (0.2975,−0.4653,−0.8175)T Fam.

The outputs of the fitted log-odds model estimate each suspect’s probability of developing lupus. We can
calculate the possibility of infection for each suspected person using the principle of expansion of possible
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odds. For example, for the 6th person studied with the variables Family History = 1, Sun exposure =
1, ANA test = 160AntiDNA test = 23ESR = 0 based on the estimated model, we calculate the logarithm
of potential odds as follows:

ˆ̃yi =(−4.0885,−3.3528,−0.5554)T + (0.01033, 0.0042,−0.0045)T 23 + (0.0451, 0.0168,−0.0123)T 160

+ (−0.1405,−0.0853,−0.0235)T + (0.2975,−0.4653,−0.8175)T

So we will have, ˆ̃V6(3.72,−1.11,−3.45)T . This implies that the model has calculated the likelihood of lupus
disease in the sixth individual as follows:

(0.98, 0.25, 0.03)T

This is extremely close to the table’s actual value. We can also use this model to predict the likelihood of
disease in a new case. For example, if a person suspected of lupus presents with the following information,
we can use the model to predict the likelihood of disease: She (he) has a family history of u5 = 1; she (he)
has not been exposed to sunlight u4 = 0; the results of the ANA, Anti-DNA, and ESR tests for this person
were u3 = 110, u2 = 87, u1 = 0, respectively. Given the characteristics as mentioned above, we estimate the
likelihood of a disease and calculate the logarithm of its potential odds as follows: ˆ̃Vnew(2.07,−1.61,−3.12)T
and (0.89, 0.17, 0.04)T .
The fitted values for the possibility of disease, as well as the logarithm of odds, were calculated and recorded
in Table 2 using the estimated model. The values of the goodness of fit indices introduced in Equation 13

Table 2: Prediction of the logarithm values of the odds possibility and the possibility of contracting lotus
disease for the data in Table 1.

No. Possibility of disease The predicted of the logarithm odds disease The predicted of possibility of lupus
1 High (1.50,−1.94,−2.83)T (0.82, 0.12, 0.05)T
2 Medium (−0.38,−2.00,−1.67)T (0.40, 0.12, 0.16)T
3 High (1.11,−1.44,−− 2.06)T (0.75, 0.20, 0.11)T
4 High (0.91,−1.58,−1.94)T (0.71, 0.17, 0.12)T
5 Medium (0.77,−1.59,−1.91)T (0.68, 0.17, 0.13)T
6 Very High (3.72,−1.11,−3.45)T (0.98, 0.25, 0.03)T
7 Medium (0.52,−1.66,−1.91)T (0.63, 0.16, 0.13)T
8 High (0.60,−1.67,−1.75)T (0.64, 0.16, 0.15)T
9 Low (−1.21,−2.29,−1.54)T (0.23, 0.09, 0.18)T
10 Very Low (−3.62,−3.84,−1.23)T (0.026, 0.02, 0.23)T
11 Low (−0.89,−2.13,−1.58)T (0.29, 0.10, 0.17)T
12 Medium (−0.20,−1.97,−1.79)T (0.45, 0.12, 0.14)T
13 Low (−0.98,−2.32,−1.27)T (0.27, 0.09, 0.22)T
14 Low (−1.34,−2.27,−1.64)T (0.21, 0.09, 0.16)T
15 Medium (−0.50,−2.68,−2.07)T (0.38, 0.06, 0.11)T

are equal to:

S = 0.8156 E1 = 0.0194 E2 = 0.1725.

These criteria have been calculated by using the estimated values and actual values for the response variable
and placing them in Equation 13.
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Example 4.2. We will use a sample of each community member’s two-hour postprandial plasma glucose
levels from a clinical survey to assess their diabetes condition. We discovered that 15 instances fell within the
range of 140–200 (mg/dl), using a cut-off point of 200 (mg/dl). To guess how likely it was that these people
had diabetes, we added extra information like their gender (female), age (in years), BMI (body mass index,
which is weight in kilograms divided by height in meters squared), family history (including father, mother,
sister, and brother), and two-hour plasma glucose levels (measured in milligrams per decilitre), all of which
have been linked to a higher risk of diabetes (see Table 4). We asked an expert to assign a probability of
illness to each instance. Two-hour postprandial plasma glucose (THPPG)

Table 3: The values of associated risk variables and fuzzy binary observations in SLE disease

No. Sex THPPG (mg/dl) Age(year) Family history BMI(kg/m2) π

1 1 145 40 0 24 (0.1, 0.74)T
2 1 147 42 0 25 (0.15, 0.74)T
3 0 150 45 1 21 (0.35, 0.82)T
4 0 155 37 1 23 (0.42, 0.83)T
5 0 157 59 1 25 (0.49, 0.83)T
6 1 160 44 0 20 (0.50, 0.72)T
7 1 160 38 1 26 (0.60, 0.90)T
8 1 165 52 0 33 (0.60, 0.77)T
9 0 182 50 0 31 (0.70, 0.64)T
10 1 187 55 1 33 (0.85, 0.91)T
11 0 190 53 1 35 (0.90, 0.86)T
12 0 192 62 1 30 (0.97, 0.85)T
13 0 195 57 0 32 (0.95, 0.65)T
14 1 195 50 0 34 (0.95, 0.77)T
15 1 196 60 1 35 (0.99, 0.92)T

ˆ̃Vi = (−16.566, 0.018)T + (0.476, 0.581)T × 0 + 0.102 × 150 + 0.031 × 45

+ (0.680, 1.13)T × 1 + (−0.0727, 0.019)T × 21

This means that ˆ̃V3 = (0.32, 0, 82)T , and the logarithm of possibilistic odds for case 3 is about (−0.77, 1.54)T
This model is capable of estimating the possibility odds of diabetes in a case that is suspected of having the
condition. Please be aware that the estimated probability odds for each case are provided in a fuzzy format.
For example, suppose we want to predict the possible disease odds for the case number 3 in Table 4. We
have:

ˆ̃Vi = (−16.566, 0.018)T + (0.476, 0.581)T Sex+ 0.102THPPG+ 0.031Age

+ (0.680, 1.13)TFamily history + (−0.0727, 0.019)T BMI

The predicted values for the possibility of disease, as well as the logarithm of odds, were calculated and
recorded in Table 2 using this estimated model. To assess the model, we use the three criteria suggested in
Section 3.3, namely, S, E1, and E2.

S = 0.9991 E1 = 0.0011 E2 = 0.00087
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Table 4: The values of associated risk variables and fuzzy binary observations in SLE disease are significant.

No. π The predicted of the logarithm odds disease The predicted of possibility of disease
1 (0.1, 0.74)T (−1.85, 1.05)T (0.13, 0.74)T
2 (0.15, 0.74)T (−1.66, 1.07)T (0.16, 0.74)T
3 (0.35, 0.82)T (−0.77, 1.54)T (0.32, 0.82)T
4 (0.42, 0.83)T (−0.65, 1.58)T (0.340.83)T
5 (0.49, 0.83)T (0.08, 1.62)T (0.52, 0.83)T
6 (0.50, 0.72)T (0.09, 0.97)T (0.52, 0.72)T
7 (0.60, 0.90)T (0.14, 2.22)T (0.54, 0.90)T
8 (0.60, 0.77)T (−0.10, 1.22)T (0.47, 0.77)T
9 (0.70, 0.64)T (1.23, 0.60)T (0.77, 0.64)T
10 (0.85, 0.91)T (2.90, 2.35)T (0.95, 0.91)T
11 (0.90, 0.86)T (2.53, 1.81)T (0.93, 0.86)T
12 (0.97, 0.85)T (3.37, 1.71)T (0.97, 0.85)T
13 (0.95, 0.65)T (2.70, 0.62)T (0.94, 0.65)T
14 (0.95, 0.77)T (2.81, 1.24)T (0.94, 0.77)T
15 (0.99, 0.92)T (3.83, 2.39)T (0.98, 0.92)T

5 Conclusion

Typically, the actual conditions of the data do not fully align with the assumed distributional properties
of theoretical statistical models. This encourages academics to use fuzzy models as a means of simulating
data within a more adaptable framework that closely resembles the actual circumstances of the observations.
Researchers have extensively researched these models and implemented them in various fields. Undoubtedly,
fuzzy models are more intricate than conventional ones regarding computation and interpretation. However,
the assumptions of standard statistical models limit their utility. When the data does not meet the model
assumptions, applying standard procedures is not logical because it introduces bias in the findings. Note
that you cannot substitute conventional and fuzzy models for one another because of their distinct uses.
Typically, it is not possible to use both of these models on the same dataset concurrently, therefore making
it impossible to compare their respective outcomes.
When observations are not accurate, we advise using fuzzy modeling methods. Clinical investigations fre-
quently reveal these characteristics. Occasionally, clinical measurement devices may exhibit mistakes. Fur-
thermore, this research includes some ethical issues. Often, the precise magnitude of variables remains
unmeasurable in such instances, leading to the reporting of observations based on approximations. The di-
agnosis of illness, which determines a condition based on established criteria, presents another ambiguous
scenario in clinical investigations. We classify an individual as a patient if they exhibit all the signs of an
illness. On the other hand, we classify an individual as healthy if they show no symptoms. What is the
outcome when an individual experiences only a subset of these symptoms? The physician is unsure whether
to start treatment. Furthermore, clinical laboratory tests do not provide a clear-cut threshold to distinguish
between patients and healthy individuals. It implies that all people near the cut-off point have ambiguous
status. To identify the primary risk factors that contribute to the disease’s progression of the disease, it is
not logical to rely on vague observations in the typical modeling analysis. Disregarding or neglecting these
observations in the analysis is not rational. For this situation, fuzzy models appear to be suitable methods.
Fuzzy logistic regression provides a framework in a fuzzy environment for investigating the relationship be-
tween a binary response variable and a set of covariates. To date, researchers have presented two general
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methods to estimate the parameters in fuzzy logistic regression models: the least squares error method and
the probability method, both of which use the definition of probability to estimate the parameters. The term
”possible odds” refers to the ratio between the possibility of having the desired feature and not having it.
This paper presents a method for estimating the parameters of the fuzzy logistic regression model using the
least squares method.
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1 Introduction
The Banach fixed point theorem, originally proved by Stefan Banach [1] in 1922, is one of the most foun-
dational and influential results in the field of fixed point theory. It states that a contractive mapping on a
complete metric space has a unique fixed point. Since its introduction, the theorem has been generalized
and extended in many ways, with applications in a variety of scientific disciplines. In particular, generalized
metric spaces have been shown to be an extremely useful tool for studying fixed points in Banach spaces.
The Banach contraction principle has been the subject of much research in recent years, with many different
extensions and generalizations being explored. For example, Ran and Reurings [2] considered the existence of
fixed points for mappings in partially ordered metric spaces, while Nieto and Lopez [3] extended this result to
non-decreasing mappings. Another notable result is that of solving partial differential equations with periodic
boundary conditions. Since its introduction, the Banach contraction mapping principle has been generalized
and refined in numerous ways, leading to a wealth of articles dedicated to its improvement [4, 5, 6, 7, 8, 9, 10].
Czerwik’s introduction of b-metric spaces [11] was a significant development in the field of generalized metric
spaces. He weakened the triangle inequality in a metric space, which led to a generalized form of the Banach
contraction principle. Building on this work, Boriceanu [12] provided concrete examples of b-metric spaces
and investigated the fixed-point properties of set-valued operators in these spaces. Furthermore, Hussain
et al. [13] introduced a new type of generalized metric space known as a dislocated b-metric space, which
further extends the possibilities of the Banach contraction principle.
In 1962, mathematician Martin Edelstein [14] proved a generalization of the Banach contraction principle, a
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fundamental result in fixed point theory. Edelstein’s generalization is sometimes referred to as the Edelstein
fixed point theorem. It states that if a generalized metric space satisfies certain conditions, then a mapping
that is contractive in the generalized metric has a unique fixed point. Motivated by the work of Banach and
Edelstein, mathematician Suzuki [15] proved a refinement of their fixed point theorems, known as Suzuki’s
fixed point theorem. This result states that if a metric space satisfies certain additional conditions, a con-
tractive mapping on the space has a unique fixed point. Many authors have proposed variants of Suzuki’s
theorem, such as those in [16, 17, 18, 19].
Based on the above insight, we present some fixed point results in the setting of sequential compact b-metric
spaces to prove Eldeisten-Suzuki-type contraction for self-mappings and apply our main results to establish
the existence of fixed point for ordered metric spaces. Through illustrative examples, we showcase the practi-
cal applicability of our proposed notions and results, demonstrating their effectiveness in real-world scenarios.

The common notations and terminology used in nonlinear analysis are utilized throughout this work.

2 Preliminaries
We begin this section by outlining a few fundamental definitions.

Definition 2.1. [20] Assume that d : X ×X → [0,+∞) and X are non-empty sets. (X, d) is a symmetric
space (also known as an E-space) if and only if it meets the requirements listed below:
i. d(x, y) = 0 if and only if x = y;
ii. d(x, y) = d(y, x) for all x, y ∈ X.

Remark 2.2. [20] In the absence of triangle inequality, symmetric spaces are different from more practical
metric spaces. However, a lot of concepts have definitions that are comparable to those in metric spaces.

Definition 2.3. [20] A sequence {xn} has a limit point in a symmetric space (X, d) defined by lim
n→+∞

d(xn, x) =

0 if and only if lim
n→+∞

xn = x.

Definition 2.4. [20] If, for every given ϵ > 0, there exists a positive integer n(ϵ) such that d(xm, xn) < ϵ for
all m,n > n(ϵ), then a sequence {xn} ⊂ X is a Cauchy sequence.

Definition 2.5. [20] If every Cauchy sequence in a symmetric space (X, d) converges to a point x in X, then
the space is considered complete.

Definition 2.6. [21] Let s ≥ 1 be a given real integer and let X be a nonempty set. A function d : X×X →
[0,+∞) is considered a b-metric if and only if each of the subsequent requirements holds for any x, y, z ∈ X:
i. d(x, y) = 0 if and only if x = y;
ii. d(x, y) = d(y, x);
iii. d(x, z) ≤ s[d(x, y) + d(y, z)].
A triplet (X, d, s) is called a b-metric space.

Remark 2.7. [21] The definitions of complete space, Cauchy sequence, and convergent sequence are defined
as in symmetric spaces.

Definition 2.8. [5] If there is a subsequence {xnk
} of {xn} that converges to a point x in X for each sequence

{xn} in X, then a b-metric space (X, d, s) is sequentially compact.

Example 2.9. [20] Let d : X×X → [0,+∞) and X = [0, 1] be defined by d(x, y) = (x−y)2, for all x, y ∈ X.
Obviously, (X, d, 2) is a b-metric space.
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Definition 2.10. [17] Assume that X is a non-empty set. (X,≼) is referred to as an ordered b-metric space
if (X, d, s,≼) is a b-metric space and (X,≼) is a partially ordered set. When x ≼ y or y ≼ x holds, then
x, y ∈ X are referred to as comparable.

Definition 2.11. [22, 23] If (X,≼) is a partially ordered set, then a self-mappings f is dominated if and only
if x ≼ fx for all x in X and fx ≼ x for all x in X.

Definition 2.12. [20] A sequential limit comparison property of an ordered b-metric space (X, d, s,≼) exist
if, for each decreasing sequence {xn} in X such that xn → x ∈ X, then x ≺ xn.

Definition 2.13. [24, 25] Let f, g : X → X and (X, d) be a metric space. If fx = gx, then there is a
coincidence point at x ∈ X for a pair of self mappings f and g. Additionally, if fx = gx = x, then a point
x ∈ X is a common fixed point of f and g.

Definition 2.14. [20] For every sequence {(xn, yn)} ⊂ [0,+∞) × [0,+∞), then F : [0,+∞) × [0,+∞) →
[0,+∞) is referred to as upper semi-continuous from the right if and only if lim

n→+∞
xn = x+ and lim

n→+∞
yn = y+,

then

lim
n→+∞

supF (xn, yn) ≤ F (x, y).

We represent Ψ the collection of all the functions ϕ : [0,+∞)× [0,+∞) → [0,+∞) satisfying the following
conditions:
(ϕ1) ϕ admits upper semi-continuous from the right;
(ϕ2) ϕ(t, 0) ≤ t for all t ≥ 0.

Definition 2.15. [20] Consider the b-metric space (X, d, s). The collection of all the functions αL : X×X →
[0,+∞) satisfying the following assertions is also denoted by ΨL.
(α1) if {xn} and {yn} are two sequences in (X, d, s) such that xn → x and yn → y, then

lim
n→+∞

supαL(xn, yn) ≤ αL(x, y),

(α2) αL(x, y) = 0 when x = y.

3 Main Results
Here is the Theorem that we use to start this section.

Theorem 3.1. Let f be a self mapping on X and (X, d, s) be a sequential compact b-metric space. Suppose
that

d(fx, fy) < a1d(x, y) + a2
d(x, fx)d(x, fy) + d(y, fx)d(y, fy)

d(y, fx) + d(x, fy)
+ a3

d(x, fx)d(y, fy)

d(x, y)
+
a4
s
d(x, fy) + Ld(y, fx)

(3.1)

for all x, y ∈ X, x ̸= y, where a1 + a2 + a3 +2a4 = 1, a3 ̸= 1, L ≥ 0 and satisfies the following conditions:
i. If f and d are continuous,
then f possesses a fixed point in X.
Additionally,
ii. If a1 + a4

s + L ≤ 1;
then f possesses a unique fixed point.



40 Raji M, Rajpoot AK, Rathour L, Mishra LN, Mishra VN. Trans. Fuzzy Sets Syst. 2024; 3(2)

Proof. Let us take any arbitrary point x0 ∈ X and let {xn} in X be defined as xn = fnx0 = fxn−1. If
xn = xn−1 for some n ≥ 1, then xn is a fixed point of f and the proof is finished.

Now, let dn = d(xn, xn+1) and dn−1 = d(xn−1, xn) for all n ∈ N. Assume that xn ̸= xn+1, for all n ≥ 1.
From condition (3.1) with x = xn−1 and y = xn, we get

dn =d(xn, xn+1) = d(fxn−1, fxn)

< a1d(xn−1, xn) + a2
d(xn−1, fxn−1)d(xn−1, fxn) + d(xn, fxn−1)d(xn, fxn)

d(xn, fxn−1) + d(xn−1, fxn)

+ a3
d(xn−1, fxn−1)d(xn, fxn)

d(xn−1, xn)
+
a4
s
d(xn−1, fxn) + Ld(xn, fxn−1)

= a1d(xn−1, xn) + a2
d(xn−1, xn)d(xn−1, xn+1) + d(xn, xn)d(xn, xn+1)

d(xn, xn) + d(xn−1, xn+1)

+ a3
d(xn−1, xn)d(xn, xn+1)

d(xn−1, xn)
+
a4
s
d(xn−1, xn+1) + Ld(xn, xn)

= a1dn−1 + a2dn−1 + a3dn +
a4
s
d(xn−1, xn+1)

≤ a1dn−1 + a2dn−1 + a3dn + a4[dn−1 + dn]. (3.2)

From (3.2), we get [1− (a3 + a4)]dn < (a1 + a2 + a4)dn−1. Since a1 + a2 + a3 + 2a4 = 1 and a3 ̸= 1, we have
[1− (a3 + a4)] > 0 and so

dn <
a1 + a2 + a4
1− (a3 + a4)

dn−1 = dn−1.

Consequently, {dn} is a decreasing sequence of positive real numbers and hence there exists d∗ ≥ 0 such that
lim
n→∞

dn = d∗. By using the sequentially compactness of X, there exists a subsequence {xni} of {xn} such
that xni → x∗ ∈ X as i→ +∞. Again, by using the continuity of d and f , we have

dni = d(xni , xni+1) = d(xni , fxni) → d(x∗, fx∗) as i→ +∞

Similarly,

dni+1 = d(xni+1, xni+2) = d(fxni , ffxni) → d(fx∗, ffx∗) as i→ +∞.

If x∗ = fx∗, then f has a fixed point. Assume that x∗ ̸= fx∗, d∗ = d(x∗, fx∗) > 0, with x = x∗ and y = fx∗

in (3.2), we have

d∗ = d(fx∗, ffx∗)

< a1d(x
∗, fx∗) + a2

d(x∗, fx∗)d(x∗, ffx∗) + d(fx∗, fx∗)d(fx∗, ffx∗)

d(fx∗, fx∗) + d(x∗, ffx∗)

+ a3
d(x∗, fx∗)d(fx∗, ffx∗)

d(x∗, fx∗)
+
a4
s
d(x∗, ffx∗) + Ld(fx∗, fx∗)

≤ (a1 + a2 + a3)d
∗ +

a4
s
d(x∗, ffx∗)

≤ (a1 + a2 + a3)d
∗ + a4[d(x

∗, fx∗) + d(fx∗, ffx∗)]

= (a1 + a2 + a3 + 2a4)d
∗ = d∗,

a contradiction. Hence, d∗ = d(x∗, fx∗) = 0, that is x∗ = fx∗. Thus, x∗ represent a fixed point of f .
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To prove the uniqueness of the fixed point, suppose z is another fixed point of f different from x∗, so that
d(z, x∗) > 0. Using x = z and y = x∗ in (3.1), we have

d(z, x∗) = d(fz, fx∗)

< a1d(z, x
∗) + a2

d(z, fz)d(z, fx∗) + d(x∗, fz)d(x∗, fx∗)

d(x∗, fz) + d(z, fx∗)

+ a3
d(z, fz)d(x∗, fx∗)

d(z, x∗
+
a4
s
d(z, fx∗) + Ld(x∗, fz)

=
(
a1 +

a4
s

+ L
)
d(z, x∗)

≤ d(z, x∗),

a contradiction and hence z = x∗. □
Example 3.2. Consider X = [0, 1] and assume d : X ×X → [0,+∞). endowed with d(x, y) = (x− y)2, for
all x, y ∈ X. Then, let f : X → X be defined as

f(x) =
1

4(x2 + 1)
.

Clearly, (X, d, 2) represent a sequentially compact b-metric space. Since

d(fx, fy) =

∣∣∣∣ x+ y

4(x2 + 1)(y2 + 1)

∣∣∣∣2 |x− y|2 < |x− y|2 = d(x, y) for all x, y ∈ X,x ̸= y.

Thus, all the hypotheses of Theorem 3.1 are verified, with a1 = 1, a2 = a3 = a4 = L = 0 and hence f has a
unique fixed point.

Corollary 3.3. Let f be a self mapping on X and (X, d, s) be a sequential compact b-metric space. Suppose
that

d(fx, fy) < a1d(x, y) + a2
d(x, fx)d(y, fy)

d(x, y)
+
a3
s
d(x, fy) + Ld(y, fx) (3.3)

for all x, y ∈ X, x ̸= y, where a1 + a2 + a3 +2a4 = 1, a2 ̸= 1, L ≥ 0 and satisfies the following conditions:
i. If f and d are continuous,
then f possesses a fixed point in X.
Additionally,
ii. If a1 + a4

s + L ≤ 1;
then f possesses a unique fixed point.
Proof. Theorem 3.1 provides the basis for the Corollary’s proof. □
Corollary 3.4. Let f be a self mapping on X and (X, d, s) be a sequential compact b-metric space. Suppose
that

d(fx, fy) < a1
d(x, fx)d(x, fy) + d(y, fx)d(y, fy)

d(y, fx) + d(x, fy)
+ a2

d(x, fx)d(y, fy)

d(x, y)
+
a3
s
d(x, fy) + Ld(y, fx) (3.4)

for all x, y ∈ X, x ̸= y, where a1 + a2 + 2a3 = 1, a2 ̸= 1, L ≥ 0 and satisfies the following conditions:
i. If f and d are continuous,
then f possesses a fixed point in X.
Additionally,
ii. If a1 + a3

s + L ≤ 1;
then f possesses a unique fixed point.
Proof. It is evident that the proof of the Corollary follows from Theorem 3.1. □
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Corollary 3.5. Let f be a self mapping on X and (X, d, s) be a sequential compact b-metric space. Suppose
that

d(fx, fy) < a1d(x, y) + a2
d(x, fx)d(x, fy) + d(y, fx)d(y, fy)

d(y, fx) + d(x, fy)
+ a3

d(x, fx)d(y, fy)

d(x, y)
+
a4
s
d(x, fy) (3.5)

for all x, y ∈ X, x ̸= y, where a1 + a2 + a3 +2a4 = 1, a3 ̸= 1, L ≥ 0 and satisfies the following conditions:
i. If f and d are continuous,
then f possesses a fixed point in X.
Additionally,
ii. If a1 + a4

s + L ≤ 1;
then f possesses a unique fixed point.
Proof. Theorem 3.1 provides the proof of the Corollary in the case where L = 0. □

The next theorem is the Suzuki type fixed point result.

Theorem 3.6. Let f be a self mapping on X and (X, d, s) be a sequential compact b-metric space. Suppose
that

1

2s
d(x, fx) < d(x, y)

implies

d(fx, fy) < φ

(
d(y, fx),

d(x, fx)d(x, fy) + d(y, fx)d(y, fy)

d(y, fx) + d(x, fy)

)
+ αLd(y, fx) (3.6)

for all x, y ∈ X and d is continuous, then f has a fixed point.

Proof. Let r = inf d(x, fx) : x ∈ X. We define a sequence {xn} in X be

lim
n→∞

d(xn, fxn) = r. (3.7)

Since X is sequentially compact, we assume that xn → u and fxn → v with u, v ∈ X. Now we prove that
r = 0. Assume on the contrary that r > 0. Using the continuity of d, we have

lim
n→+∞

d(xn, v) = (u, v) = lim
n→+∞

d(xn, fxn) = r (3.8)

and

lim
n→+∞

d(u, fxn) = (u, v) = lim
n→+∞

d(xn, fxn) = r. (3.9)

Hence, there exists n1 ∈ N such that
2

3s
< d(xn, v) and d(xn, fxn) <

4

3
f, for all n ≥ n1.

For all n ≥ n1, we have
1

2s
d(xn, fxn) <

1

2s

4

3
r =

1

s

2

3
r <

1

s
d(xn, v) ≤ d(xn, v),

and by (3.6), we get

d(fxn, fv) < φ

(
d(v, fxn),

d(xn, fxn)d(xn, fv) + d(v, fxn)d(v, fv)

d(v, fxn) + d(xn, fv)

)
+ αLd(v, fxn). (3.10)



Nonlinear Contraction Mappings in b-metric Space
and Related Fixed Point Results with Application. Trans. Fuzzy Sets Syst. 2024; 3(2) 43

Taking the limsup as n→ +∞ in (3.10), we get

d(v, fv) = lim sup
n→+∞

d(fxn, fv)

≤ lim sup
n→+∞

φ

(
d(v, fxn),

d(xn, fxn)d(xn, fv) + d(v, fxn)d(v, fv)

d(v, fxn) + d(xn, fv)

)
+ lim sup

n→+∞
αLd(v, fxn)

≤ φ(0, d(u, v)) + αLd(v, v) ≤ d(u, v) = r. (3.11)

Thus, from (3.11), we have d(v, fv) = r. Since r > 0, v ̸= fv. So
1

2s
d(v, fv) < d(v, fv).

And by condition (3.6), we get

d(fv, ffv) < φ

(
d(fv, fv),

d(v, fv)d(v, ffv) + d(fv, fv)d(fv, ffv)

d(fv, fv) + d(v, ffv)

)
+ αLd(fv, fv)

implies

d(fv, ffv) < d(v, fv) = r, (3.12)

a contradiction with the given definition of r. Thus, r = 0 and hence u = v. Now, we prove by contradiction.
Assume on the contrary that f does not have fixed points. Since

1

2s
d(xn, fxn) < d(xn, fxn), for all n ≥ 1,

by condition (3.6), we have

d(fxn, ffxn) < φ

(
d(fxn, fxn),

d(xn, fxn)d(xn, ffxn) + d(fxn, fxn)d(fxn, ffxn)

d(fxn, fxn) + d(xn, ffxn)

)
+ αLd(fxn, fx)

implies

d(fxn, ffxn) < d(xn, fxn), for all n ≥ 1. (3.13)

From

d(u, ffxn) ≤ s[d(u, fxn) + d(fxn, ffxn)] ≤ s[d(u, fxn) + d(xn, fxn)],

as n→ +∞, we have f2xn → u and fxn → u. Suppose that there exists n ≥ 1 such that
1

2s
d(xn, fxn) ≥ d(xn, u) and 1

2s
d(fxn, ffxn) ≥ d(fxn, u),

then by (3.13), we get

d(xn, fxn) ≤ s[d(xn, u) + d(u, fxn)]

≤ s
1

2s
d(xn, fxn) + s

1

2s
d(fxn, ffxn)

≤ 1

2
d(xn, fxn) +

1

2
d(xn, fxn)

= d(xn, fxn),
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a contradiction. Hence, for every n ≥ 1, we have
1

2s
d(xn, fxn) < d(xn, u), or 1

2s
d(fxn, ffxn) < d(fxn, u).

By (3.6) for each n ≥ 1,

d(fxn, fu) < φ

(
d(u, fxn),

d(xn, fxn)d(xn, fu) + d(u, fxn)d(u, fu)

d(u, fxn) + d(xn, fu)

)
+ αLd(u, fxn) (3.14)

or

d(ffxn, fu) < φ

(
d(u, ffxn),

d(fxn, ffxn)d(fxn, fu) + d(u, ffxn)d(u, fu)

d(u, ffxn) + d(fxn, fu)

)
+ αLd(u, ffxn) (3.15)

(3.14) and(3.15) hold.
Assume that (3.14) holds for every n ∈ J ⊂ N. If J is infinite set, then

d(u, fu) = lim sup
n→+∞,n∈J

d(fxn, fu)

≤ lim sup
n→+∞,n∈J

φ

(
d(u, fxn),

d(xn, fxn)d(xn, fu) + d(u, fxn)d(u, fu)

d(u, fxn) + d(xn, fu)

)
+ lim sup

n→+∞,n∈J
αLd(u, fxn)

≤ 0,

Thus, u = fu. The same conclusion satisfies if N \ J represents an infinite set, in this case we use condition
(3.15). In (3.14) and (3.15), we have shown that u is a fixed point of f . □
Corollary 3.7. Let f be a self mapping on X and (X, d, s) be a sequential compact b-metric space. Suppose
that

1

2s
d(x, fx) < d(x, y)

implies

d(fx, fy) < φ (d(x, y), d(y, fx)) + αLd(y, fx) (3.16)

for all x, y ∈ X and d is continuous, then f has a fixed point.

Proof. Clearly, the proof of the corollary follows from Theorem 3.2. □
If we take αLd(y, fx) in Theorem 3.2 to be Lmin{d(y, fx), d(x, fx), d(y, fy)} with L ≥ 0, we have

Corollary 3.8. Let f be a self mapping on X and (X, d, s) be a sequential compact b-metric space. Suppose
that

1

2s
d(x, fx) < d(x, y),

implies

d(fx, fy) < φ

(
d(y, fx),

d(x, fx)d(x, fy) + d(y, fx)d(y, fy)

d(y, fx) + d(x, fy)

)
+ Lmin{d(y, fx), d(x, fx), d(y, fy)} (3.17)

for all x, y ∈ X and d is continuous, then f has a fixed point.
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Proof. The proof of the Corollary follows from Theorem 3.2 if αLd(y, fx) = Lmin{d(y, fx), d(x, fx), d(y, fy)}
with L ≥ 0. □

Corollary 3.9. Let f be a self mapping on X and (X, d, s) be a sequential compact b-metric space. Suppose
that

1

2s
d(x, fx) < d(x, y),

implies

d(fx, fy) < φ (d(x, y), d(y, fx)) + Lmin{d(y, fx), d(x, fx), d(y, fy)} (3.18)

for all x, y ∈ X and d is continuous with L ≥ 0, then f has a fixed point.

Proof. Clearly the proof of the Corollary follows from Theorem 3.2. □

Corollary 3.10. Let f be a self mapping on X and (X, d, s) be a sequential compact b-metric space. Suppose
that

1

2s
d(x, fx) < d(x, y),

implies

d(fx, fy) < d(x, y) + Lmin{d(y, fx), d(x, fx), d(y, fy)} (3.19)

for all x, y ∈ X and d is continuous with L ≥ 0, then f has a fixed point.

4 Application
Ran and Reurings pioneered the study of fixed point results on partially ordered sets in their paper [22], where
they explored the applications of these results to the solution of matrix equations. Nieto and Rodrıguez-Lopez
continued this research direction in their paper [26], in which they provided several applications to differential
equations.

We obtain the subsequent theorems in partially ordered metric spaces through the application of our
previously demonstrated results.

Theorem 4.1. Assume that d is continuous in the ordered b-metric space (X, d, s,≼) and let f, g : X → X
be such that f(X) ⊂ g(X), g(X) represents a sequentially compact subspace of X, f a dominated mapping
and g a dominating mapping. Suppose that

d(fx, fy) < a1d(gx, gy)+a2
d(gx, fx)d(gx, fy) + d(gy, fx)d(gy, fy)

d(gy, fx) + d(gx, fy)
+a3

d(gx, fx)d(gy, fy)

d(gx, gy)
+
a4
s
d(gx, fy)+Ld(gy, fx)

(4.1)
for every comparable elements x, y ∈ X, gx ̸= gy, where a1 + a2 + a3 + 2a4 = 1, a3 ̸= 1, L ≥ 0 and satisfies
the following conditions:
(i) X possesses a sequential limit comparison property, then g and f possesses a coincidence point in X.
Additionally,
(ii) If a1 + a4

s + L ≤ 1,
then the points of coincidence of g and f is well ordered if and only if g and f possesses one and only one
point of coincidence.
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Proof. Let us take any arbitrary point x0 ∈ X and let {xn} in X be defined as

gn+1 = fxn, for all n ≥ 0.

Since the range of g contains the range of f . If d(gxn, gxn+1) = 0 for some n ≥ 0, then gxn = gxn+1 = fxn
and so xn is a coincidence point of f and g. Assume that d(gxn, gxn+1 > 0 for all n ≥ 0. On using the
property of the mappings f and g, we have

xn+1 ≼ gxn+1 = fxn ≼ gxn for all n ≥ 0.

Then xn and xn+1 are comparable for all n ≥ 0. Since d(gxn, gxn+1 > 0, we get that gxn+1 ≺ gxn, for
all n ≥ 0. Thus {gxn} is a decreasing sequence. Using the hypothesis that g(X) is a sequentially compact
subspace of X, we can assume that gxn → gu for some u ∈ X. Now, condition (i) guarantees that gu ≺ gxn,
for all n ≥ 0. Now, we prove that fu = gu. We have

d(gu, fu) = lim
n→+∞

d(gxn+1, fu) = lim
n→+∞

d(fxn, fu)

≤ lim
n→+∞

[
a1d(gxn, gu) + a2

d(gxn, fxn)d(gxn, fu) + d(gu, fxn)d(gu, fu)

d(gu, fxn) + d(gxn, fu)

+ a3
d(gxn, fxn)d(gu, fu)

d(gxn, gu)
+
a4
s
d(gxn, fu) + Ld(gu, fxn)

]
= a3d(gy, fu) +

a4
s
d(gu, fu)

=
(
a3 +

a4
s

)
d(gu, fu)

< d(gu, fu)

a contradiction. That is, d(gu, fu) = 0 and hence fu = gu. Therefore, u is a coincidence point of f and g.
Now, suppose that the set of points of coincidence of f and g is well ordered. We claim that the point of
coincidence of f and g is unique. Assume on the contrary that there exists another point v in X such that
fv = gv with gu ̸= gv. Assume that gu ≺ gv, then u ≼ gu ≺ gv = fv ≼ v and u, v are comparable. Now,
using the condition (4.1), we get

d(fu, fv) < a1d(gu, gv) + a2
d(gu, fu)d(gu, fv) + d(gv, fu)d(gv, fv)

d(gv, fu) + d(gu, fv)

+ a3
d(gu, fu)d(gv, fv)

d(gu, gv)
+
a4
s
d(gu, fv) + Ld(gv, fu)

=
(
a1 +

a4
s

+ L
)
d(fu, fv)

≤ d(fu, fv),

a contradiction and hence gu = gv. The same holds if gv ≺ gu. Therefore fu = gu = z is the unique point
of coincidence of f and g in X. Conversely, if f and g have one and only one point of coincidence, then the
set of points of coincidence of f and g being singleton is well ordered. □

Theorem 4.2. Consider all the hypotheses of Theorem 4.1 with the following assertions:
(ii) If {gxn} possess a decreasing sequence that converges to gu for some u ∈ X, then ggu ≼ gu;
(iii) g and f possess a weakly compatible;
then g and f possesses a common fixed point in X.
Additionally, g and f possesses a unique common fixed point in X if coincidence of g and f is well ordered.
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Proof. Let us take any arbitrary point x0 ∈ X and let {xn} in X be defined as

gxn+1 = fxn for all n ≥ 0.

Continuing as in the proof of Theorem 4.1, we deduce that {gxn} is a decreasing sequence that converges to
gu for some u ∈ X and gu = fu = z. Using condition (ii), we have gz ≼ gu. Since, the mappings f and g
are weakly compatible we obtain that fz = fgu = gfu = gz. If gz = gu = z, then z is a common fixed point
of f and g. If gz ≺ gu, then u, z are comparable and using the condition (4.1), we get gz = gu. So z is a
common fixed point of f and g. If the set of points of coincidence of f and g is well ordered, then f and g
have a unique point of coincidence and so z is a unique common fixed point of f and g. □

Corollary 4.3. Assume that d is continuous in the ordered b-metric space (X, d, s,≼) and let f : X → X be
such that f(X) ⊂ X possess a sequentially compact subspace of X, f a dominated mapping. Suppose that

d(fx, fy) < a1d(x, y) + a2
d(x, fx)d(x, fy) + d(y, fx)d(y, fy)

d(y, fx) + d(x, fy)
+ a3

d(x, fx)d(y, fy)

d(x, y)
+
a4
s
d(x, fy) + Ld(y, fx)

(4.2)
for every comparable elements x, y ∈ X, x ̸= y, where a1 + a2 + a3 + 2a4 = 1, a3 ̸= 1, L ≥ 0 and satisfies the
following conditions:
(i) X possess a sequential limit comparison property,
then f possesses a fixed point in X.
Additionally,
(ii) If a1 + a4

s + L ≤ 1,
then f possesses a unique fixed point.

5 Conclusion
The main findings of this study demonstrate applicability of sequential compact b-metric spaces in estab-
lishing fixed point theorems for Eldeisten-Suzuki-type contraction mappings. This study provides significant
advancements in the understanding of sequential compact b-metric spaces, with potential applications in
differential equations and nonlinear integral equation.
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Abstract. In this paper, we present innovative concepts of fuzzy type contractions and leverage them to establish
fixed point theorems for fuzzy mappings within the framework of fuzzy metric spaces. The results of this article
are applied to multivalued mappings and fuzzy mappings for contractive fuzzy type mappings. Through illustra-
tive examples, we showcase the practical applicability of our proposed notions and results, demonstrating their
effectiveness in real-world scenarios.
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1 Introduction

Throughout the years, Banach’s fixed point theorems for contraction mappings have emerged as pivotal
findings in the realm of mathematical analysis. These results, particularly Banach’s contraction principle
[1], have greatly contributed to the evolution of metric fixed point theory. By offering a reliable framework,
this principle and its variations serve as invaluable tools in ensuring both the existence and uniqueness of
solutions to nonlinear problems, including integral equations, differential equations, variational inequalities,
and optimization problems. Numerous mathematicians have dedicated extensive efforts to refine and broaden
this principle from various angles. Below, we delve into some of these noteworthy contributions. By reducing
the triangle inequality constraint of the standard metric spaces, Czerwik [2] established the idea of b-metric
spaces. The fixed-point properties of set-valued operators in b-metric spaces were then examined by Boriceanu
[3], who also gave some specific instances of b-metric spaces. The notion of dislocated b-metric space, which
is a generalization of b-metric spaces, was further developed by Hussain et al. [4]. They also proved certain
fixed-point findings for four mappings that meet the generalized weak contractive conditions in a partially
ordered dislocated b-metric space. The idea of fuzzy sets was first introduced by Zadeh [5], who also laid
the groundwork for further studies in fuzzy mathematics. Weiss [6] explored fuzzy mappings and obtained
multiple fixed point findings, expanding on Zadeh’s work. Heilpern [7] introduced the idea of fuzzy contraction
mappings, which is a further development of fuzzy mappings. Similar to Nadler’s [8] fixed point theorem
for multivalued mappings, he established a fixed point theorem for fuzzy contraction mappings. Later, in
order to establish some common fixed point results for fuzzy mappings obeying a new rational F-contraction
of Ciric type, Shahzad et al. [9] introduced the concept of F-contractions. The presence of fuzzy fixed
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points of set-valued fuzzy mappings in metric and fuzzy metric spaces that meet the Ciric type contraction
in complete metric spaces was recently studied by Kanwal et al. [10]. In this direction several authors
obtained further results, some of which can be found in [11, 12, 13, 14, 15, 16] . Considering the insights,
we aim to introduce novel concepts of fuzzy type contractions and subsequently establish fixed point results
for fuzzy mappings within the framework of fuzzy metric spaces. To bolster our findings, we offer illustrative
examples demonstrating the practical application of the presented results and concepts. In addition, we
present applications of our main results to multivalued mappings and fuzzy mappings.
Throughout our discourse, we let CB(X) denote the family of all closed and bounded subsets of the metric
space (X, d).

2 Preliminaries

In this section, we will introduce some definitions and lemmas that will be used in the rest of this work.

Definition 2.1. [17, 18] A function with X as its domain and the interval [0, 1] as its range is called a fuzzy
set in X. F (X) represents the set of all fuzzy sets in X. The degree of membership of x in A is denoted by
the value A(x), given a fuzzy set A and a point x in X. A fuzzy set A’s α-level set is represented by [A]α
and has the following definition:

[A]α = {x : A(x) ≥ α} where α ∈ (0, 1), [A]0 = {x : A(x) > 0}

Definition 2.2. [19, 20] Let Y be a metric space and X a nonempty set. If a mapping T is a mapping from
X into F (Y ), the set of all fuzzy sets on Y , then it is referred to as a fuzzy mapping. The degree to which
y is a member of T (x) is the membership function of a fuzzy mapping T , represented as T (x)(y). Stated
differently, T (x)(y) represents y’s degree of membership in the fuzzy set T (x). Instead of using [T (x)]α to
denote the α-level set of T (x), we will simply use [Tx]α.

Definition 2.3. [21, 22, 23] A fuzzy fixed point of a fuzzy mapping T : X → F (X) is defined as a point
x ∈ X where α ∈ (0, 1] and x ∈ [Tx]α.

Definition 2.4. [24] Let (X, d) be a metric space. Hausdorff metric H on CB(X) induced by d is defined as

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}, forallA,B ∈ CB(X),

where d(a,B) = inf{d(a, b) : b ∈ B}.

Lemma 2.5. [25] Assume that A and B are bounded, nonempty subsets of a metric space (X, d). If a ∈ A,
then

d(a,B) ≤ H(A,B)

Lemma 2.6. [25] Assume that A and B are bounded, nonempty subsets of a metric space (X, d) and
0 < σ ∈ R. Then for a ∈ A, there exists b ∈ B such that

d(a, b) ≤ H(A,B) + σ.

Lemma 2.7. [10] If A,B ∈ CB(X) with H(A,B) < ε, then for all a ∈ A, there exists b ∈ B such that

d(a, b) < ε.

Lemma 2.8. [10] Let µ ∈ X and A ∈ CB(X), d(µ,A) ≤ d(µ, v) for all v ∈ A.



Fuzzy Metric Spaces and Corresponding Fixed Point
Theorems for Fuzzy Type Contraction. Trans. Fuzzy Sets Syst. 2024; 3(2) 53

3 Main Results

Here are the definitions that we use to start this section.

Definition 3.1. Let T : X → F (X) be a fuzzy mapping and (X, d) be a complete metric space. Assume that
α (x) ∈ (0, 1], and that the closed, bounded subsets of X are [Tx]α(x) and [Ty]α(y), respectively, non-empty.
Then, T is considered fuzzy type I if it satisfies the following requirement for all x, y in X and a1, a2, a3, a4 ≥ 0
with a1 + 2a2 + a3 + a4 < 1:

H([Tx]α(x), [Ty]α(y)) ≤ a1d(x, y)+a2[d(x, [Tx]α(x))+d(y, [Ty]α(y))]+a3
d(x, [Tx]α(x))d(y, [Ty]α(y))

d(x, y) + d(x, [Ty]α(y)) + d(y, [Tx]α(x))

+ a4
d(x, [Tx]α(x))d(x, [Ty]α(y)) + d(y, [Tx]α(x))d(y, [Ty]α(y))

d(x, [Ty]α(y)) + d(y, [Tx]α(x))
(3.1)

Definition 3.2. Let T : X → F (X) be a fuzzy mapping and (X, d) be a complete metric space. Assume
that α (x) ∈ (0, 1], and that the closed, bounded subsets of X are [Tx]α(x) and [Ty]α(y), respectively, non-
empty. Then, T is considered fuzzy type II if it satisfies the following requirement for all x, y in X and
a1, a2, a3, a4 ≥ 0 with a1 + 2a2 + a3 + a4 < 1:

H([Tx]α(x), [Ty]α(y)) ≤ a1d(x, y)+a2[d(x, [Ty]α(y))+d(y, [Tx]α(x))]+a3
d(x, [Tx]α(x))d(y, [Ty]α(y))

d(x, y) + d(x, [Ty]α(y)) + d(y, [Tx]α(x))

+ a4
d(x, [Tx]α(x))d(x, [Ty]α(y)) + d(y, [Tx]α(x))d(y, [Ty]α(y))

d(x, [Ty]α(y)) + d(y, [Tx]α(x))
(3.2)

Theorem 3.3. Let (X, d) be a complete metric space and T : X → F (X) be a fuzzy type I contraction
mapping. Then, T has a fixed point in X.

Proof. Let x0 ∈ X be any arbitrary point in X and [Tx0]α(x0) ̸= 0 be a closed and bounded subsets of X.
Let x1 ∈ [Tx0]α(x0). Since [Tx1]α(x1) ̸= 0 is a closed and bounded subsets of X and by using Lemma 2.6,
there exists x2 ∈ [Tx1]α(x1) such that

d(x1, x2) ≤ H([Tx0]α(x0), [Tx1]α(x1)) + σ (3.3)

Again, [Tx0]α(x0) ̸= 0 is a closed and bounded subsets of X and by using Lemma 2.6, there exists x3 ∈
[Tx2]α(x2) such that

d(x2, x3) ≤ H([Tx1]α(x1), [Tx2]α(x2)) + σ2 (3.4)

Continuing in this manner, we create a sequence xn of points in X such that xn ∈ [Txn−1]α(xn−1), we can
choose xn+1 ∈ [Txn−1]α(xn−1) such that

d(xn, xn+1) ≤ H([Txn−1]α(xn−1), [Txn]α(xn)) + σn. (3.5)

Now, from (3.3),
d(x1, x2) ≤ H([Tx0]α(x0), [Tx1]α(x1)) + σ,

using (3.1), we get
d(x1, x2) ≤ H([Tx0]α(x0), [Tx1]α(x1)) + σ,

≤ a1d(x0, x1) + a2[d(x0, [Tx0]α(x0)) + d(x1, [Tx1]α(x1))] + a3
d(x0, [Tx0]α(x0))d(x1, [Tx1]α(x1))

d(x0, x1) + d(x0, [Tx1]α(x1)) + d(x1, [Tx0]α(x0))
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+ a4
d(x0, [Tx0]α(x0))d(x0, [Tx1]α(x1)) + d(x1, [Tx0]α(x0))d(x1, [Tx1]α(x1))

d(x0, [Tx1]α(x1)) + d(x1, [Tx0]α(x0))
+ σ (3.6)

d(x1, x2) ≤ a1d(x0, x1) + a2[d(x0, x1) + d(x1, x2)] + a3d(x0, x1) + a4d(x0, x1) + σ

d(x1, x2) ≤
a1 + a2 + a3 + a4

1− a2
d(x0, x1) +

σ

1− a2
. (3.7)

Let σ = a1+a2+a3+a4
1−a2

. Since a1 + 2a2 + a3 + a4 < 1 implies that a1+a2+a3+a4
1−a2

< 1. Hence,

d(x1, x2) ≤ σ d(x0, x1) +
σ

1− a2
for all n ∈ N. (3.8)

Now, from (3.4),

d(x2, x3) ≤ H([Tx1]α(x1), [Tx2]α(x2)) + σ2,

using (3.1), we get

d(x2, x3) ≤ H([Tx1]α(x1), [Tx2]α(x2)) + σ2,

≤ a1d(x1, x1) + a2[d(x1, [Tx1]α(x1)) + d(x2, [Tx2]α(x2))] + a3
d(x1, [Tx1]α(x1))d(x2, [Tx2]α(x2))

d(x1, x2) + d(x1, [Tx2]α(x2)) + d(x2, [Tx1]α(x1))

+ a4
d(x1, [Tx1]α(x1))d(x1, [Tx2]α(x2)) + d(x2, [Tx1]α(x1))d(x2, [Tx2]α(x2))

d(x1, [Tx2]α(x2)) + d(x2, [Tx1]α(x1))
+ σ2 (3.9)

d(x2, x3) ≤ a1d(x1, x2) + a2[d(x1, x2) + d(x2, x3)] + a3d(x1, x2) + a4d(x1, x2) + σ2

d(x2, x3) ≤
a1 + a2 + a3 + a4

1− a2
d(x1, x2) +

σ2

1− a2
. (3.10)

Let σ = a1+a2+a3+a4
1−a2

. Since a1 + 2a2 + a3 + a4 < 1 implies that a1+a2+a3+a4
1−a2

< 1. Hence,

d(x2, x3) ≤ σ d(x1, x2) +
σ2

1− a2
for all n ∈ N. (3.11)

d(x2, x3) ≤ σ [σ d(x0, x1) +
σ

1− a2
] +

σ2

1− a2

d(x2, x3) ≤ σ2d(x0, x1) +
σ2

1− a2
+

σ2

1− a2

d(x2, x3) ≤ σ2d(x0, x1) +
2σ2

1− a2
(3.12)

Now,

d(x3, x4) ≤ H([Tx2]α(x2), [Tx3]α(x3)) + σ3,

using (3.1), we get

d(x3, x4) ≤ H([Tx2]α(x2), [Tx3]α(x3)) + σ3,

≤ a1d(x2, x2) + a2[d(x2, [Tx2]α(x2)) + d(x3, [Tx3]α(x3))] + a3
d(x2, [Tx2]α(x2))d(x3, [Tx3]α(x3))

d(x2, x3) + d(x2, [Tx3]α(x3)) + d(x3, [Tx2]α(x2))

+ a4
d(x2, [Tx2]α(x2))d(x2, [Tx3]α(x3)) + d(x3, [Tx2]α(x2))d(x3, [Tx3]α(x3))

d(x2, [Tx3]α(x3)) + d(x3, [Tx2]α(x2))
+ σ3 (3.13)
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d(x3, x4) ≤ a1d(x2, x3) + a2[d(x2, x3) + d(x3, x4)] + a3d(x2, x3) + a4d(x2, x3) + σ3

d(x3, x4) ≤
a1 + a2 + a3 + a4

1− a2
d(x2, x3) +

σ3

1− a2
. (3.14)

Let σ = a1+a2+a3+a4
1−a2

. Since a1 + 2a2 + a3 + a4 < 1 implies that a1+a2+a3+a4
1−a2

< 1. Hence,

d(x3, x4) ≤ σ d(x2, x3) +
σ3

1− a2
for all n ∈ N. (3.15)

d(x3, x4) ≤ σ [σ2d(x0, x1) +
2σ2

1− a2
] +

σ3

1− a2

d(x3, x4) ≤ σ3d(x0, x1) +
2σ3

1− a2
+

σ3

1− a2

d(x3, x4) ≤ σ3d(x0, x1) +
3σ3

1− a2
(3.16)

Again, continuing in this fashion, we have

d(xn, xn+1) ≤ σnd(x0, x1) +
nσn

1− a2
(3.17)

If n > m and n,m ∈ N , then we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm). (3.18)

Applying (3.17) in (3.18) , we get

d(xn, xm) ≤ σnd(x0, x1) +
nσn

1− a2
+ σn+1d(x0, x1) +

(n+ 1)σn+1

1− a2
+ · · ·+ σm−1d(x0, x1) +

(m− 1)σm−1

1− a2

d(xn, xm) ≤ σnd(x0, x1)(1 + σ + σ2 + σ3 + · · ·+ σm−n−1) +

m−1∑
i=n

iσi

1− a2

d(xn, xm) ≤ σnd(x0, x1)(
1− σm−n

1− σ
) +

m−1∑
i=n

iσi

1− a2
(3.19)

On taking m,n→ ∞ in (3.19), we get

d(xn, xm) = 0. (3.20)

This proves that the sequence {xn} is a Cauchy sequence in X. Since X is a complete metric space, there
exists x∗ ∈ X such that xn → x∗ as n→ ∞. Now,

d(x∗, [Tx∗]α(x∗)) ≤ [d(x∗, xn) + d(xn, [Tx
∗]α(x∗))],

using (3.1), we get

d(x∗, [Tx∗]α(x∗)) ≤ d(x∗, xn) + a1d(xn−1, x
∗) + a2[d(xn−1, [Txn−1]α(xn−1)) + d(x∗, [Tx∗]α(x∗))]+

a3
d(xn−1, [Txn−1]α(xn−1))d(x

∗, [Tx∗]α(x∗))

d(xn−1, x∗) + d(xn−1, [Tx∗]α(x∗)) + d(x∗, [Txn−1]α(xn−1))
+
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a4
d(xn−1, [Txn−1]α(xn−1))d(xn−1, [Tx

∗]α(x∗)) + d(x∗, [Txn−1]α(xn−1))d(x
∗, [Tx∗]α(x∗))

d(xn−1, [Tx∗]α(x∗)) + d(x∗, [Txn−1]α(xn−1))

d(x∗, [Tx∗]α(x∗)) ≤ d(x∗, xn) + a1d(xn−1, x
∗) + a2[d(xn−1, xn) + d(x∗, [Tx∗]α(x∗))]+

a3
d(xn−1, xn)d(x

∗, [Tx∗]α(x∗))

d(xn−1, x∗) + d(xn−1, [Tx∗]α(x∗)) + d(x∗, xn)
+

a4
d(xn−1, xn)d(xn−1, [Tx

∗]α(x∗)) + d(x∗, xn)d(x
∗, [Tx∗]α(x∗))

d(xn−1, [Tx∗]α(x∗)) + d(x∗, xn)
(3.21)

On taking n→ ∞ in (3.21), we get

d(x∗, [Tx∗]α(x∗)) ≤ d(x∗, x∗) + a1d(x
∗, x∗) + a2[d(x

∗, x∗) + d(x∗, [Tx∗]α(x∗))]+

a3
d(x∗, x∗)d(x∗, [Tx∗]α(x∗))

d(x∗, x∗) + d(x∗, [Tx∗]α(x∗)) + d(x∗, x∗)
+

a4
d(x∗, x∗)d(x∗, [Tx∗]α(x∗)) + d(x∗, x∗)d(x∗, [Tx∗]α(x∗))

d(x∗, [Tx∗]α(x∗)) + d(x∗, x∗)

implies
(1− a2)d(x

∗, [Tx∗]α(x∗)) ≤ 0 (3.22)

Since a1 + 2a2 + a3 + a4 < 1 implies a1 + a2 + a3 + a4 < 1− a2, that is, 1− a2 ̸= 0. Hence,

d(x∗, [Tx∗]α(x∗)) = 0.

Implies
x∗ ∈ [Tx∗]α(x∗).

Thus, x∗ ∈ X is the fixed point. □

Theorem 3.4. Let (X, d) be a complete metric space and T : X → F (X) be a fuzzy type II contraction
mapping. Then, T has a fixed point in X.

Proof. Let x0 ∈ X be any arbitrary point in X and [Tx0]α(x0) ̸= 0 be a closed and bounded subsets of X.
Let x1 ∈ [Tx0]α(x0). Since [Tx1]α(x1) ̸= 0 is a closed and bounded subsets of X and by using Lemma 2.6,
there exists x2 ∈ [Tx1]α(x1) such that

d(x1, x2) ≤ H([Tx0]α(x0), [Tx1]α(x1)) + σ. (3.23)

Again, [Tx0]α(x0) ̸= 0 is a closed and bounded subsets of X and by using Lemma 2.6, there exists x3 ∈
[Tx2]α(x2) such that

d(x2, x3) ≤ H([Tx1]α(x1), [Tx2]α(x2)) + σ2 (3.24)

Continuing in this manner, we create a sequence xn of points in X such that xn ∈ [Txn−1]α(xn−1), we can
choose xn+1 ∈ [Txn−1]α(xn−1) such that

d(xn, xn+1) ≤ H([Txn−1]α(xn−1), [Txn]α(xn)) + σn. (3.25)

Now, from (3.23),
d(x1, x2) ≤ H([Tx0]α(x0), [Tx1]α(x1)) + σ,
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using (3.2), we get

d(x1, x2) ≤ H([Tx0]α(x0), [Tx1]α(x1)) + σ,

≤ a1d(x0, x1) + a2[d(x0, [Tx1]α(x1)) + d(x1, [Tx0]α(x0))] + a3
d(x0, [Tx0]α(x0))d(x1, [Tx1]α(x1))

d(x0, x1) + d(x0, [Tx1]α(x1)) + d(x1, [Tx0]α(x0))

+ a4
d(x0, [Tx0]α(x0))d(x0, [Tx1]α(x1)) + d(x1, [Tx0]α(x0))d(x1, [Tx1]α(x1))

d(x0, [Tx1]α(x1)) + d(x1, [Tx0]α(x0))
+ σ (3.26)

d(x1, x2) ≤ a1d(x0, x1) + a2[d(x0, x2) + d(x1, x1)] + a3d(x0, x1) + a4d(x0, x1) + σ.

By triangular inequality, we have

d(x1, x2) ≤
a1 + a2 + a3 + a4

1− a2
d(x0, x1) +

σ

1− a2
. (3.27)

Let σ = a1+a2+a3+a4
1−a2

. Since a1 + 2a2 + a3 + a4 < 1 implies that a1+a2+a3+a4
1−a2

< 1. Hence,

d(x1, x2) ≤ σ d(x0, x1) +
σ

1− a2
for all n ∈ N. (3.28)

Now, from (3.24),

d(x2, x3) ≤ H([Tx1]α(x1), [Tx2]α(x2)) + σ2,

using (3.2), we get

d(x2, x3) ≤ H([Tx1]α(x1), [Tx2]α(x2)) + σ2,

≤ a1d(x1, x1) + a2[d(x1, [Tx2]α(x2)) + d(x2, [Tx1]α(x1))] + a3
d(x1, [Tx1]α(x1))d(x2, [Tx2]α(x2))

d(x1, x2) + d(x1, [Tx2]α(x2)) + d(x2, [Tx1]α(x1))

+ a4
d(x1, [Tx1]α(x1))d(x1, [Tx2]α(x2)) + d(x2, [Tx1]α(x1))d(x2, [Tx2]α(x2))

d(x1, [Tx2]α(x2)) + d(x2, [Tx1]α(x1))
+ σ2 (3.29)

d(x2, x3) ≤ a1d(x1, x2) + a2[d(x1, x3) + d(x2, x2)] + a3d(x1, x2) + a4d(x1, x2) + σ2

Again, by triangular inequality, we obtain

d(x2, x3) ≤
a1 + a2 + a3 + a4

1− a2
d(x1, x2) +

σ2

1− a2
. (3.30)

Let σ = a1+a2+a3+a4
1−a2

. Since a1 + 2a2 + a3 + a4 < 1 implies that a1+a2+a3+a4
1−a2

< 1. Hence,

d(x2, x3) ≤ σ d(x1, x2) +
σ2

1− a2
for all n ∈ N. (3.31)

d(x2, x3) ≤ σ [σ d(x0, x1) +
σ

1− a2
] +

σ2

1− a2

d(x2, x3) ≤ σ2d(x0, x1) +
σ2

1− a2
+

σ2

1− a2

d(x2, x3) ≤ σ2d(x0, x1) +
2σ2

1− a2
(3.32)

Now,
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d(x3, x4) ≤ H([Tx2]α(x2), [Tx3]α(x3)) + σ3,

using (3.2), we get
d(x3, x4) ≤ H([Tx2]α(x2), [Tx3]α(x3)) + σ3,

≤ a1d(x2, x2) + a2[d(x2, [Tx3]α(x3)) + d(x3, [Tx2]α(x2))] + a3
d(x2, [Tx2]α(x2))d(x3, [Tx3]α(x3))

d(x2, x3) + d(x2, [Tx3]α(x3)) + d(x3, [Tx2]α(x2))

+ a4
d(x2, [Tx2]α(x2))d(x2, [Tx3]α(x3)) + d(x3, [Tx2]α(x2))d(x3, [Tx3]α(x3))

d(x2, [Tx3]α(x3)) + d(x3, [Tx2]α(x2))
+ σ3 (3.33)

d(x3, x4) ≤ a1d(x2, x3) + a2[d(x2, x4) + d(x3, x3)] + a3d(x2, x3) + a4d(x2, x3) + σ3

By triangular inequality, we get

d(x3, x4) ≤
a1 + a2 + a3 + a4

1− a2
d(x2, x3) +

σ3

1− a2
. (3.34)

Let σ = a1+a2+a3+a4
1−a2

. Since a1 + 2a2 + a3 + a4 < 1 implies that a1+a2+a3+a4
1−a2

< 1. Hence,

d(x3, x4) ≤ σ d(x2, x3) +
σ3

1− a2
for all n ∈ N. (3.35)

d(x3, x4) ≤ σ [σ2d(x0, x1) +
2σ2

1− a2
] +

σ3

1− a2

d(x3, x4) ≤ σ3d(x0, x1) +
2σ3

1− a2
+

σ3

1− a2

d(x3, x4) ≤ σ3d(x0, x1) +
3σ3

1− a2
(3.36)

Again, continuing in this fashion, we have

d(xn, xn+1) ≤ σnd(x0, x1) +
nσn

1− a2
(3.37)

If n > m and n,m ∈ N , then we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm) (3.38)

Applying (3.37) in (3.38) , we get

d(xn, xm) ≤ σnd(x0, x1) +
nσn

1− a2
+ σn+1d(x0, x1) +

(n+ 1)σn+1

1− a2
+ · · ·+ σm−1d(x0, x1) +

(m− 1)σm−1

1− a2

d(xn, xm) ≤ σnd(x0, x1)(1 + σ + σ2 + σ3 + · · ·+ σm−n−1) +

m−1∑
i=n

iσi

1− a2

d(xn, xm) ≤ σnd(x0, x1)(
1− σm−n

1− σ
) +

m−1∑
i=n

iσi

1− a2
(3.39)

On taking m,n→ ∞ in (3.19), we get
d(xn, xm) = 0. (3.40)
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This proves that the sequence {xn} is a Cauchy sequence in X. Since X is a complete metric space, there
exists x∗ ∈ X such that xn → x∗ as n→ ∞. Now,

d(x∗, [Tx∗]α(x∗)) ≤ [d(x∗, xn) + (xn, [Tx
∗]α(x∗))],

Using (3.2), we get

d(x∗, [Tx∗]α(x∗)) ≤ d(x∗, xn) + a1d(xn−1, x
∗) + a2[d(xn−1, [Tx

∗]α(x∗)) + d(x∗, [Txn−1]α(xn−1))]+

a3
d(xn−1, [Txn−1]α(xn−1))d(x

∗, [Tx∗]α(x∗))

d(xn−1, x∗) + d(xn−1, [Tx∗]α(x∗)) + d(x∗, [Txn−1]α(xn−1))
+

a4
d(xn−1, [Txn−1]α(xn−1))d(xn−1, [Tx

∗]α(x∗)) + d(x∗, [Txn−1]α(xn−1))d(x
∗, [Tx∗]α(x∗))

d(xn−1, [Tx∗]α(x∗)) + d(x∗, [Txn−1]α(xn−1))

d(x∗, [Tx∗]α(x∗)) ≤ d(x∗, xn) + a1d(xn−1, x
∗) + a2[d(xn−1, [Tx

∗]α(x∗)) + d(x∗, xn)]+

a3
d(xn−1, xn)d(x

∗, [Tx∗]α(x∗))

d(xn−1, x∗) + d(xn−1, [Tx∗]α(x∗)) + d(x∗, xn)
+

a4
d(xn−1, xn)d(xn−1, [Tx

∗]α(x∗)) + d(x∗, xn)d(x
∗, [Tx∗]α(x∗))

d(xn−1, [Tx∗]α(x∗)) + d(x∗, xn)
(3.41)

On taking n→ ∞ in (3.41), we get

d(x∗, [Tx∗]α(x∗)) ≤ d(x∗, x∗) + a1d(x
∗, x∗) + a2[d(x

∗, [Tx∗]α(x∗)) + d(x∗, x∗)]+

a3
d(x∗, x∗)d(x∗, [Tx∗]α(x∗))

d(x∗, x∗) + d(x∗, [Tx∗]α(x∗)) + d(x∗, x∗)
+

a4
d(x∗, x∗)d(x∗, [Tx∗]α(x∗)) + d(x∗, x∗)d(x∗, [Tx∗]α(x∗))

d(x∗, [Tx∗]α(x∗)) + d(x∗, x∗)

implies

(1− a2)d(x
∗, [Tx∗]α(x∗)) ≤ 0 (3.42)

Since a1 + 2a2 + a3 + a4 < 1 implies a1 + a2 + a3 + a4 < 1− a2, that is, 1− a2 ̸= 0. Hence,

d(x∗, [Tx∗]α(x∗)) = 0.

Implies

x∗ ∈ [Tx∗]α(x∗).

Thus, x∗ ∈ X is the fixed point. □

Example 3.5. Consider X = [0, 2] the usual metric space which is complete and T : X → F (X) be a fuzzy
type mapping such that T (x) ∈ F (X), where x ∈ X and T (x) : X → [0, 1] is a function defined by

T (x)(t) =


1
2 , 0 ≤ t ≤ 1

2
1
3 ,

1
2 < t < 1

0, 1 ≤ t ≤ 2
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If for all x ∈ X, there exist α(x) = 1
2 such that

[Tx] 1
2
=

{
t : Tx(t) ≥ 1

2

}
,

[Tx] 1
2
=

[
0,

1

2

]
and [Ty] 1

2
=

[
0,

1

2

]
.

Now,

H
(
[Tx] 1

2
, [Ty] 1

2

)
= max

 sup
x∈[Tx] 1

2

d
(
x, [Ty] 1

2

)
, sup
y∈[Ty] 1

2

d
(
y, [Tx] 1

2

) ,

H
(
[Tx] 1

2
, [Ty] 1

2

)
= 0.

H(x, y) = |x− y|.

H
(
[Ty] 1

2
, y
)
=

{
0 if y ∈ [Ty] 1

2

Otherwise nonzero

H
(
[Tx] 1

2
, x
)
=

{
0 if x ∈ [Tx] 1

2

Otherwise nonzero

H
(
[Tx] 1

2
, y
)
=

{
0 if y ∈ [Tx] 1

2

Otherwise nonzero

H
(
[Ty] 1

2
, x
)
=

{
0 if x ∈ [Ty] 1

2

Otherwise nonzero

let a1 =
1
50 , a2 =

1
10 , a3 =

1
20 , a4 =

1
30 . Then,

H([Tx] 1
2
, [Ty] 1

2
) ≤ 1

50
d(x, y) +

1

10
[d(x, [Tx] 1

2
) + d(y, [Ty] 1

2
)]+

1

20

d(x, [Tx] 1
2
)d(y, [Ty] 1

2
)

d(x, y) + d(x, [Ty] 1
2
) + d(y, [Tx] 1

2
)

+
1

30

d(x, [Tx] 1
2
)d(x, [Ty] 1

2
) + d(y, [Tx] 1

2
)d(y, [Ty] 1

2
)

d(x, [Ty] 1
2
) + d(y, [Tx] 1

2
)

0 ≤ 1

50
|x− y|+ 1

10
[d(x, [Tx] 1

2
) + d(y, [Ty] 1

2
)]+

1

20

d(x, [Tx] 1
2
)d(y, [Ty] 1

2
)

d(x, y) + d(x, [Ty] 1
2
) + d(y, [Tx] 1

2
)

+
1

30

d(x, [Tx] 1
2
)d(x, [Ty] 1

2
) + d(y, [Tx] 1

2
)d(y, [Ty] 1

2
)

d(x, [Ty] 1
2
) + d(y, [Tx] 1

2
)
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As all the conditions of Theorem 3.3 are satisfied, we can conclude that T has a fixed point in X.
Similarly, for fuzzy type II contraction mapping, we have

H([Tx] 1
2
, [Ty] 1

2
) ≤ 1

50
d(x, y) +

1

10
[d(x, [Ty] 1

2
) + d(y, [Tx] 1

2
)]+

1

20

d(x, [Tx] 1
2
)d(y, [Ty] 1

2
)

d(x, y) + d(x, [Ty] 1
2
) + d(y, [Tx] 1

2
)

+
1

30

d(x, [Tx] 1
2
)d(x, [Ty] 1

2
) + d(y, [Tx] 1

2
)d(y, [Ty] 1

2
)

d(x, [Ty] 1
2
) + d(y, [Tx] 1

2
)

0 ≤ 1

50
|x− y|+ 1

10
[d(x, [Ty] 1

2
) + d(y, [Tx] 1

2
)]+

1

20

d(x, [Tx] 1
2
)d(y, [Ty] 1

2
)

d(x, y) + d(x, [Ty] 1
2
) + d(y, [Tx] 1

2
)

+
1

30

d(x, [Tx] 1
2
)d(x, [Ty] 1

2
) + d(y, [Tx] 1

2
)d(y, [Ty] 1

2
)

d(x, [Ty] 1
2
) + d(y, [Tx] 1

2
)

As all of the conditions of Theorem 3.4 are satisfied, we can conclude that T has a fixed point in X.

Corollary 3.6. Let (X, d) be a complete metric space and T : X → CB(X) be a fuzzy mapping. Suppose
there exists α(x) ∈ (0, 1], with [Tx]α(x) and [Ty]α(y) a closed, bounded, non-empty subsets of X. Then T has
a fixed point in X, if for all x, y ∈ X and a1, a2, a3, a4, a5 ≥ 0 with a1 + 2a2 + 2a3 + a4 + a5 < 1 satisfying
the following condition:

H([Tx]α(x), [Ty]α(y)) ≤ a1d(x, y) + a2[d(x, [Tx]α(x)) + d(y, [Ty]α(y))]+

a3[d(x, [Ty]α(y)) + d(y, [Tx]α(x))] + a4
d(x, [Tx]α(x))d(y, [Ty]α(y))

d(x, y) + d(x, [Ty]α(y)) + d(y, [Tx]α(x))

+ a5
d(x, [Tx]α(x))d(x, [Ty]α(y)) + d(y, [Tx]α(x))d(y, [Ty]α(y))

d(x, [Ty]α(y)) + d(y, [Tx]α(x))
(3.43)

4 Application

In this section, we explore a specific application of our results. We demonstrate how Theorems 3.3 and 3.4
can be applied to show the existence of fixed points for multivalued mappings in metric spaces. To begin, we
start with the following definitions

Definition 4.1. Let R : X → CB(X) be a multivalued mapping and (X, d) be a complete metric space. Let
us assume that α(x) ∈ (0, 1], where R(x) and R(y) are closed, bounded, non-empty subsets of X. Then R
is said to be fuzzy type I contraction if for all x, y ∈ X and a1, a2, a3, a4 ≥ 0 with a1 + 2a2 + a3 + a4 < 1
satisfying the following requirement:

H(R(x), R(y)) ≤ a1d(x, y) + a2[d(x,R(x)) + d(y,R(y))]

+ a3
d(x,R(x))d(y,R(y))

(d(x, y) + d(x,R(y)) + d(y,R(x))
+ a4

d(x,R(x))d(x,R(y)) + d(y,R(x))d(y,R(y))

(d(x,R(y)) + d(y,R(x))
(4.1)
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Definition 4.2. Let R : X → CB(X) be a multivalued mapping and (X, d) be a complete metric space. Let
us assume that α(x) ∈ (0, 1], where R(x) and R(y) are closed, bounded, non-empty subsets of X. Then R
is said to be fuzzy type II contraction if for all x, y ∈ X and a1, a2, a3, a4 ≥ 0 with a1 + 2a2 + a3 + a4 < 1
satisfying the following requirement:

H(R(x), R(y)) ≤ a1d(x, y) + a2[d(x,R(y)) + d(y,R(x))]

+ a3
d(x,R(x))d(y,R(y))

(d(x, y) + d(x,R(y)) + d(y,R(x))
+ a4

d(x,R(x))d(x,R(y)) + d(y,R(x))d(y,R(y))

(d(x,R(y)) + d(y,R(x))
(4.2)

Theorem 4.3. Let (X, d) be a complete metric space and R : X → CB(X) be a fuzzy type I contraction
mapping. Then, T has a fixed point in X.

Proof. Let α : X → (0, 1] be an arbitrary mapping. Consider a fuzzy mapping R : X → F (X) defined by

(Tx)(t) =

{
α(x), t ∈ Rx,
0, t ̸∈ Rx.

We have that

[Tx]α(x) = {t : Tx(t) ≥ α(X)} = Rx.

Hence, condition (4.1) becomes condition (3.1) in Theorem 3.3. It implies that there exists x∗ ∈ X such
that x∗ ∈ [Tx∗]α(x∗) = Rx∗. □

Theorem 4.4. Let (X, d) be a complete metric space and R : X → CB(X) be a fuzzy type II contraction
mapping. Then, T has a fixed point in X.

Proof. Let α : X → (0, 1] be an arbitrary mapping. Consider a fuzzy mapping R : X → F (X) defined by

(Tx)(t) =

{
α(x), t ∈ Rx,
0, t ̸∈ Rx.

We have that

[Tx]α(x) = {t : Tx(t) ≥ α(x)} = Rx.

Hence, condition (4.2) becomes condition (3.2) in in Theorem 3.4. It implies that there exists x∗ ∈ X such
that x∗ ∈ [Tx∗]α(x∗) = Rx∗. □

Corollary 4.5. Let (X, d) be a complete metric space and R : X → CB(X) be a multivalued mapping.
Suppose there exists α(x) ∈ (0, 1], with R(x) and R(y) a closed, bounded, non-empty subsets of X. Then R
has a fixed point in X, if for all x, y ∈ X and a1, a2, a3, a4, a5 ≥ 0 with a1+2a2+2a3+a4+a5 < 1 satisfying
the following condition:

H(R(x), R(y)) ≤ a1d(x, y) + a2[d(x,R(x)) + d(y,R(y))] + a3[d(x,R(y)) + d(y,R(x))]

+ a4
d(x,R(x))d(y,R(y))

(d(x, y) + d(x,R(y)) + d(y,R(x))
+ a5

d(x,R(x))d(x,R(y)) + d(y,R(x))d(y,R(y))

(d(x,R(y)) + d(y,R(x))
(4.3)

Proof. It follows from the logic of the proof of Theorem 4.3 and Theorem 4.4. □
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5 Conclusion

The main findings of this study demonstrate applicability of fuzzy type contractions in establishing fixed
point theorems for fuzzy mappings. This study provides significant advancements in the understanding of
fuzzy metric spaces, with potential applications in differential equations and nonlinear Fredholm integral
equation.
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Abstract. I am utilizing a brand-new simulation function that has previously been developed by eminent mathe-
maticians and that uses fuzzy metric-like spaces to establish new fixed point theorems. Here, this is demonstrated
that the current conclusion is unquestionably a unified one that can generalize earlier current results. To further
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1 Introduction

In 1951, Menger pioneered the idea of a metric which is statistical metric; see [1]. Kramosil and Michalek
initiated the concept of a new metric called fuzzy metric in 1975([2]), building on the idea of a statistical
metric. This idea is what is known as in a short form KM(Kramosil and Michalek)-fuzzy metric. In some
ways, a KM(Kramosil and Michalek)- fuzzy metric is comparable to a metric based on statistics, but there
are important distinctions in how they are explained and clarified. George and Veeramani [3], who are cited
in [3, 4], inconsistently altered the fundamental idea of a KM(Kramosil and Michalek)- fuzzy metric; this
improvement is known as a GV(George and Veeramani)-fuzzy metric. This improvement enables a number
of realistic examples(some of them are very natural) of fuzzy metrics in unique fuzzy metrics established from
measures. GV(George and Veeramani )-fuzzy metrics surface to be much more practical for looking at induced
topological structures as well, in addition fuzzy metrics have sparked interest in between experts working in
a variety of applied feilds of mathematics in addition to the main zest of many mathematicians based on
theory phase of the principle of particularly fuzzy metrics, their topological and sequential components, their
completeness, fixed points on maps, etc.

The Banach contraction principle guarantees the existence and uniqueness of a fixed point for a specific
type of function. Fuzzy mathematics uses the Banach contraction principle to prove the existence and
uniqueness of solutions to some fuzzy equations.

According to fuzzy mathematics, the Banach contraction principle is as follows:
There exists a constant α ∈ (0, 1) such that if (X,M) is a fuzzy metric space and T : X → X is a fuzzy

contraction
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For every x, y ∈ X, M(Tx, Ty) ≤ αM(x, y).
Then, in X, T has a fixed point which is unique.
A fuzzy contraction is a function that maps items to itself in a fuzzy metric space, therefore decreasing

the fuzzy distances between those objects. The constant is known as the contraction constant. The Banach
contraction principle states that a fuzzy contraction needs to have a clear fixed point in order to exist.
The map ς : [0,∞) × [0,∞) → ℜ supposed to be a function which is simulation , it meets the given
requirements:
(ς1) ς(0, 0) = 0;
(ς2) ς(r, w) <r - tw ∀t,r,w > 0;
(ς3) if {rn} and {wn} re-orders( in (0, ∞) s.t.

0 < lim
n→∞

rn = lim
n→∞

wn,

if so

0 > lim sup
n→∞

ς(rn, wn).

The notion of simulation function was extended and modified, along with other concepts like b and θ-
metric spaces, to produce the fixed point findings. By removing (ς1), Argoubi [5] refined this idea in the same
way, and Roldan et al. [6] simultaneously enhanced condition (ς3) as follows:

(ς3)‘ let two sequences {rn} and {wn} in (0, ∞) s.t.

lim
n→∞

wn = lim
n→∞

rn > 0, & wn > rn, ∀ n ∈ N

if so

0 > lim sup
n→∞

ς(rn, wn).

By including α-admissible mappings, Karapinar [7] demonstrated a more broadly applicable version of
the finding of Khojasteh [8].

In this paper, I prove a new type fixed point theorem in fuzzy metric-like spaces using the recently
created MA-simulation function, a novel simulation function proposed by Perveen and Imdad [9] (see also
[10]). Furthermore, I show that our results can be used more widely to synthesize several current conclusions
from the literature and develop a few new findings as corollaries. I also offer a solid illustration to back up
our conclusion. As an application of my theorems, I finally give the Fredholm nonlinear integral equation,
which has an existential solution.

2 Preliminaries

Definition 2.1. [11] A t-norm which is continouos of a mapping(binary operation) ⋆ : (−∞, 1] ∩ [0,∞) ×
(−∞, 1] ∩ [0,∞) → (−∞, 1] ∩ [0,∞) if the subsequent circumstances holds:

(I) ⋆ is continuous evrywhere;

(II) ⋆ is associative & commutative;

(III) for all r ∈ [0, 1], r ⋆ 1 = a;
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(IV) ∀ r, s, t, u ∈ [0, 1] r ⋆ s ≤ t ⋆ u whenever r ≤ t and s ≤ u .

For further details on continuous t-norms and their classical instances, consider the t-norms of maximum,
product, and minimum, which are represented by the symbols Tl(r, s),= max(r + s − 1, 0), Tp(r, s) = rs &
Tm(r, s) = min(r, s), respectively.

The definition below was provided in 1994 by George and Veeramani ([3]), who also made major changes
to Kramosil and Michalek’s definition ([2]).

Definition 2.2. [3] Given that X is arbitrary and M be a fuzzy set, and ⋆ be a t-norm which is a continuous
on this triplet, it is called to be a FMS that meets the criteria listed below, s, t > 0 & ∀ x, z, y ∈ X:

(I) M(x, y, t) greator than zero;

(II) M(x, y, t) equals to 1, for all t > 0 if and only if x and y are same;

(III) M(x, y, t) is commutative:

(IV) M(x, y, t) is holds traingular inequality i.e. M(x, y, t) ⋆ M(y, z, s) ≤M(x, z, t+ s);

(V) M(x, y, t) is continouos defined as M(x, y, .) : (0,∞) → [0, 1].

If x is not equal to y, M(x, y, t) is greater than 0 and less than 1, as shown by (1) and (2) (cf. [12]), for
all t > 0. It is clear that M(x, y, .) is an increasing function for any x, y ∈ X. See the following works for
further details: Citations for George and Veeramani [3], Gregori et al. [12], Roldan et al. [13] and Sapena
[14].

Remark 2.3. Remark 2.3.[15] M(x, y, .) be a non-decreasing function on ∀ x, y ∈ X & ℜ ∩ (0,∞) .

Definition 2.4. [16] Let ⋆ is a continuous t-norm on the triplet (X,F, ⋆), here F is a fuzzy set and the set
X be an arbitrary set. This triplet is referred to as a fuzzy metric-like space if it meets the conditions listed
below t, s > 0 & ∀ x, y, z ∈ X.

(I) F(x, y, t) is greator than 0;

(II) If F(x, y, t) is equals to 1, then x = y, ∀ t > 0,;

(III) F(x, y, t) is commutative;

(IV) F(x, y, t) ⋆ F (y, z, s) ≤ F(x, z, t+ s);

(V) F is continuous where F(x, y, .) : ℜ ∩ (0,∞) → [0, 1].

In this case, F (fitted with ⋆) is described as a fuzzy metric-like on X.

Remark 2.5. This fuzzy metric-like space has an additional constraint, which is that F(x, x, t) may be
smaller than 1 for all t > 0 for all (or may be some) x ∈ X. Shukla et al. [16] to make this argument.
Additionally, for all t > 0 and for all x ∈ X, any fuzzy metric space is the same as a fuzzy metric-like space
when F (x, x, t) = 1.

The fact that the value of F(x, x, t) may be less than 1 indicates that the definition above is usable when
the degree of proximity between y and x is not the same, whereas this is not the case for the George and
Veeramani [3] definition.
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Example 2.6. Let this (X,F, ⋆l) is a fuzzy metric-like space, with X = ℜ∩ [0, 1], then, the F be a fuzzy set
is defined like this;

F(x, y, t) =

{
1 if x and y are same and equal to 0;
x+y
2 if else

,

∀ t > 0.

The following propositions can be used to identify different examples of triplet (X,F, ⋆) (fuzzy metric-like
spaces).

Proposition 2.7. [16] Let metric-like space be (X,σ) (see Harandi [17]. The fuzzy set F is provided by, and
(X,F, ⋆p) is a fuzzy metric-like space

F(x, y, t) =
ktn

ktn +mσ(x, y)

∀ x, y ∈ X, t > 0, m > 0 and n ≥ 1 where k ∈ ℜ.

Remark 2.8. [16] Given that k = n = m = 1 in standard metric-like space induces a fuzzy metric-like
space, this fuzzy metric-like space is known as standard fuzzy metric-like space. This fuzzy metric-like space
is where

Fσ(x, y, t) =
t

t+ σ(x, y)

∀ t > 0, x, y ∈ X.

Proposition 2.9. [16] Let’s say that the fuzzy set F is defined as F(x, y, t) = e−
σ(x,y)

tn , where n ≥ 1 (here,
(X,σ) is metric-like sapce) is true for any x, y ∈ X , t > 0. Then (X,F, ⋆p) is a space that resembles a fuzzy
metric.

Example 2.10. Let F be a fuzzy set in X2×ℜ∩(0,∞) by F(x, y, t) = 1
emax{x,y}/t and X be a natural numbers.

Here we take prduct t-norm(i.e.. a ⋆ b = ab) and ∀ x, y ∈ X, t > 0. Therefore, according to Proposition 2.9,
the triplet (X,F, ⋆) is not a fuzzy metric space but rather a fuzzy metric-like space since σ(x, y) = max(x, y),
for any x, y ∈ X, is a fuzzy metric-like on X as F(x, x, t) = 1

ex/t
̸= 1, ∀ x > 0 and t > 0.

Example 2.11. ([16]) Let F be a fuzzy set in X2 × (0,∞) by

F(x, y, t) =

{
x
y3

if x ≤ y;
y
x3 if y ≤ x

,

for all x, y ∈ X, t > 0. and X = ℜ∩ [0, 1]. Define t-norm by product norm(a ⋆ b = ab). Then triplet (X,F, ⋆)
is a fuzzy metric-like space.

Even if we use the minimum t−norm ⋆m(a ⋆ b = min{a, b} instead of the product t−norm a ⋆ b = ab (see
[16]), the Propositions 2.7 and 2.9 are still valid.

Proposition 2.12. If K > 0 exists and σ(x, y) ≤ K for all u, v in X, then (X,σ) is the bounded metric-like

space and the fuzzy set F is defined by F(u, v, t) = 1− σ(u,v)
K+t , where t > 0 for all u, v in X. A fuzzy metric-like

space is thus represented by the triplet (X,F, ⋆l).



70 Hasan M. Trans. Fuzzy Sets Syst. 2024; 3(2)

Proof. The characteristics (i)-(iii) and (v) (defined in Definition 2.4) are clear and simple to prove. For
(iv)(Definition 2.4), let t > 0 and u, v, w ∈ X, then since σ(u,w) ≤ σ(u, v) + σ(v, w), we have

1− σ(u,w)

K + t
≥ 1− σ(u, v) + σ(v, w)

K + t
.

From the above inequality it follows that

max

{
1− σ(u, v) + σ(v, w)

K + t
, 0

}
≤ 1− σ(u, v)

K + t
.

This demonstrates that (iv) was met.
□

I will now determine Cauchy sequences, completeness, and convergence in fuzzy metric-like spaces.

Definition 2.13. [16] Let {un} be a sequence in any X and the triplet (X,F, ⋆) be a fuzzy metric-like space.
Then

(a) A u is referred to be the limit of a un sequence, and a un sequence is referred to as convergent to u ∈ X
if for all t > 0,

lim
n→∞

F(un, u, t) = F(u, u, t)

(b) The limit limn→∞ F(un+p, un, t) exists if ∀ t > 0 and each p > 1. The sequence un is then referred to
as Cauchy.

(c) if every Cauchy sequence un in any X converges to a particular u point in X. The triplet (X,F, ⋆) is
therefore said to be complete if and only if

limn→∞ F(un, u, t) = F(u, u, t) = limn→∞ F(un+p, un, t), for each p ≥ 1 and ∀ t > 0.

Lemma 2.14. [15] The mappings in the fuzzy metric-like space (X,F, ⋆) are continuous on X ×X × (0,∞).

In the debate that follows, the following may be necessary.

Definition 2.15. [18] Let triplet (X,F, ⋆) is a fuzzy metric-like space. A mapping h : X → X is said to be
α-admissible if ∃ a function α : X ×X ×ℜ ∩ (0,∞) → ℜ∩ [0,∞) such that for all t > 0

u, v ∈ X,α(u, v, t) ≥ 1 implies α(hu, hv, t) ≥ 1.

Definition 2.16. [19] Let the space (X,F, ⋆) represent a fuzzy metric-like. If ∀ t > 0, a triangular α-admissile
mapping h : X → X is said to exist.

u, v, w ∈ X,α(u, v, t) ≥ 1 and α(v, w, t) ≥ =⇒ α(u,w, t) ≥ 1.

Lemma 2.17. [19] Assume that the triplet (X,F, ⋆) is a fuzzy metric-like space and that the mapping h : X →
X is α-admissible. Assume there is a point u0 in X where α(u0, hu0, t) is true. Define a sequenceu0 ⊆ X by
un = fun−1, ∀ n ∈ N. Then comes

α(un, um, t) ≥ 1, n < m, for all m,n ∈ N, .
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3 Results

A novel simulation function, the MA-simulation function, is introduced by Khojasteh et al. [8], Parveen
and Imdad [9]. Using this function, I have created a new sort of contraction called the α-admissible ΓMA-
contraction, which will be used to deduce several new findings while also establishing a new result that unifies
numerous results from the literature already in existence.

Definition 3.1. [9] If a mapping γ : (−∞, 1]∩ (0,∞)× (−∞, 1]∩ (0,∞) → ℜ satisfies the following criteria,
it is said to be an MA-simulation function:

(γ1) γ(r, w) <
1
r −

1
w , ∀ r, w ∈ (0, 1);

(γ2) if {rn} and {wn} are given sequences lies in (0, 1] such that limn→∞ rn = limn→∞wn = l ∈ (0, 1) and
rn < wn, ∀ n ∈ ℜ then

lim sup
n→∞

γ(rn, wn) < 0.

The set of all MA-simulation functions represented by the notation ΓMA.

I provide several instances of MA-simulation function in the lines that follow.

Example 3.2. Suppose γ : (−∞, 1] ∩ (0,∞)× (−∞, 1] ∩ (0,∞) → ℜ having a clear valuet as

γ(r, w) = c
(1
r
− 1
)
−
( 1

w
− 1
)
,

∀ r, w ∈ (0, 1] and c ∈ (0, 1).

Example 3.3. Suppose γ : (−∞, 1] ∩ (0,∞)× (−∞, 1] ∩ (0,∞) → ℜ having a clear valuet as

γ(r, w) = ψ
(1
r
− 1
)
−
( 1

w
− 1
)
,

∀ r, w ∈ (0, 1] where ψ is self mapping at the interval [0,∞) and ∀ r > 0, ψ(r)r are right continuous
functions.

Example 3.4. Suppose γ : (−∞, 1] ∩ (0,∞)× (−∞, 1] ∩ (0,∞) → ℜ having a clear value as

γ(r, w) =
(1
r
− 1
)
− ψ

(1
r
− 1
)
−
( 1

w
− 1
)
,

∀ r, w ∈ (0, 1] where ψ is a self-mapped variable at the range [0,∞) andr > 0,, ψ(r) > 0, and ψ(0) = 0.

Example 3.5. Suppose γ : (−∞, 1] ∩ (0,∞)× (−∞, 1] ∩ (0,∞) → ℜ having a clear value as

γ(r, w) = w − ψ(r), ∀ r, w ∈ (0, 1]

where ψ(r) > r,for all r in (0, 1) and ψ : (0, 1] → (0, 1] are left-continuous and non-decreasing, respectively.

Example 3.6. Suppose γ : (−∞, 1] ∩ (0,∞)× (−∞, 1] ∩ (0,∞) → ℜ having a clear value as

γ(r, w) =
(1
r
− 1
)
ψ
( 1

w
− 1
)
−
(1
r
− 1
)
,

∀ r, w ∈ (0, 1] where ψ : ℜ∩[0,∞) → ℜ∩(0, 1) is a function that is specified so that ∀ R > 0, lim
r→R+

ψ(r) < 1.
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Example 3.7. Suppose γ : (−∞, 1] ∩ (0,∞)× (−∞, 1] ∩ (0,∞) → ℜ having a clear value as

γ(r, w) =
(1
r
− 1
)
−
∫ 1

w
−1

0
ψ(w)dw,

∀ r, w ∈ (0, 1] and ∀ s > 0 where ψ is a self-mapped variable at the range,[0,∞) and
∫ s
0 ψ(w)dw > s,

respectively.

Now, I am able present the notion for fuzzy metric-like space called it α-admissible ΓMA-contraction.

Definition 3.8. The triplet (X,M, ⋆) is a fuzzy metric-like space, and a self mapping h on set X is said to
be a α-admissible ΓMA-contraction defind on this triplet. If a γ ∈ ΓMA exists and is such that for any t > 0,
it fulfills the following

x, y ∈ X, α(x, y, t) ≥ 1 ⇒ γ
(
M(x, y, t),M(hx, hy, t)

)
≥ 0, (3.1.1)

I am prepared to offer our primary finding right here.

Theorem 3.9. If h is a self-mapping on X a α-admissible ΓMA-contraction in respect of γ, then (X,M, ⋆)
is a fcomplete fuzzy metric-like space. Assume the following circumstances are true:

(i) ∃ x0 ∈ X like that α(x0, hx0, t) ≥ 1;

(ii) h to be triangular α-admissible;

(iii) h to be continuous
or
if ∀ n ∈ N, t > 0 and {xn} → x, such that α(xn, xn+1, t) ≥ 1, where {xn} is a sequence in X for
some x ∈ X, ∃ a subsequence {xnk

} ∈ {xn} such that α(xnk
, x, t) ≥ 1, for all k is natural number

and t greater than 0.

Next, h maintain a fixed point.

Proof. Assume that x0 ∈ X is a random point. Explain the Picard sequence. {xn = hnx0}. Suppose ∃ some
m0 ∈ N such that hm0(x0) = hm0+1x0, i.e., xm0 = xm0+1, then xm0 is a fixed point of h. Now, suppose that
hn−1x0 ̸= hnx0, ∀ n ∈ N. Using Lemma 2.2, we then have

α(xn, xm, t) ≥ 1, for all m,n be are natural numbers, n < m, (3.1.2.)

In light of (3.1.2) and (3.1.1), for y = xn and x = xn−1 I obtain

0 ≤ γ
(
M(xn−1, xn, t),M(hxn−1, hxn, t)

)
= γ

(
M(xn−1, xn, t),M(xn, xn+1, t)

)
<

1

M(xn−1, xn, t)
− 1

M(xn, xn+1, t)
,

which implies

M(xn−1, xn, t) <M(xn, xn+1, t)

Therefore, {M(xn, xn+1, t)} is non-decreasing(an increasing) sequence of ℜ+ in ℜ ∩ (0, 1]. Let lim
n

→
∞M(xn, xn + 1, t) = r(t). I claim that r(t) = 1, for every t > 0. On the other hand, suppose that for
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some t0 > 0, r(t0) < 1. Then, as {rn = M(xn−1, xn, t0)} → r(t0) and {wn = M(xn, xn+1, t0)} → s(t0) so
using (γ2), I obtain

0 ≤ lim sup
n→∞

γ
(
M(xn−1, xn, t0),M(xn, xn+1, t0)

)
< 0.

a contradiction, thus, we obtain (∀t > 0) from the expression r(t) = 1,∀t > 0.

lim
n→∞

M(xn, xn+1, t) = 1 (3.1.3.)

The next step is to demonstrate that xn is a Cauchy sequence. Let’s say it’s not true, then ∃ 0 < ϵ0 <
1, t0 > 0 and 2 sub-sequences {{xnk

}, {xmk
}} of {xn} such that m(k) > n(k) ≥ k and

M(xn(k), xm(k), t0) ≤ 1− ϵ0.

From the Remark 2.3, we have

M
(
xn(k), xm(k),

t0
2

)
≤ 1− ϵ0 (3.1.4.)

Let’s now assume that m(k) is the smallest integer that can be used to represent n(k) and yet fulfill (3.1.4).
Then comes

M
(
xn(k), xm(k)−1,

t0
2

)
≤ 1− ϵ0. (3.1.5)

Now, using condition ((iv of Definition 2.5), (3.1.4) and (3.1.5), we obtain

1− ϵ0 ≥ M(xn(k), xm(k), t0)

≥ M
(
xn(k), xm(k)−1,

t0
2

)
⋆M

(
xm(k)−1, xm(k),

t0
2

)
> (1− ϵ0) ⋆M

(
xm(k)−1, xm(k),

t0
2

)
Applying the t-norm and allowing k → ∞, it produces

1− ϵ0 ≥ M(xn(k), xm(k), t0) ≥ 1− ϵ0

and hence

lim
n→∞

M(xn(k), xm(k), t0) = 1− ϵ0. (3.1.6)

Also, again by (3.1.1) and (γ2), for x = xnk−1, y = xmk−1 and t = t0, we get

0 ≤ γ
(
M(xn(k)−1, xm(k)−1, t0),M(xn(k), xm(k), t0)

)
<

1

M(xn(k)−1, xm(k)−1, t0)
− 1

M(xn(k), xm(k), t0)
,

so that

M(xn(k), xm(k), t0) >M(xn(k)−1, xm(k)−1, t0)

≥ M
(
xn(k)−1, xn(k),

t0
2

)
⋆M

(
xn(k), xm(k)−1,

t0
2

)
>M

(
xn(k)−1, xn(k),

t0
2

)
⋆ (1− ϵ0)
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which on letting k → ∞ and using t-norm yields

1− ϵ0 > lim
k→∞

M(xn(k)−1, xm(k)−1, t0) ≥ 1− ϵ0.

Hence, we have
lim
k→∞

M(xn(k)−1, xm(k)−1, t0) = 1− ϵ0. (3.1.7)

As a result, according to (3.1.2), we obtain α(xn(k)−1, xm(k)−1, t0) ≥ 1, assuming
{rk = M(xn(k)−1, xm(k)−1, t0)} and {wk = M(xn(k), xm(k), t0)} and applying (γ2), we obtain

0 ≤ lim sup
k→∞

γ
(
M(xn(k)−1, xm(k)−1, t0),M(xn(k), xm(k), t0)

)
< 0,

a contradiction. Thus, (X,M, ⋆) has a Cauchy sequence (xn). Now, due to X’s completeness, {xn} → x
exists within X. If h is continuous, then we have {hxn} → hx, which implies that hx = x by the uniqueness
of the limit.

□
We now give the example below, which illustrates how Theorem 3.1 can be used.

Example 3.10. Let X = [0, 1]. Define ∗ : [0, 1]× [0, 1] → [0, 1]be a t-norm as p ∗ q = min{p, q}. Define fuzzy
metric-like space M by

M(x, y, t) =
t

σ(x, y) + t
,

where σ(x, y) = x2 + y2 is metric-like space. This is (X,M, .) a complete fuzzy metric-like space. A mapping
with the definitions of h : X → X and α : X ×X ×ℜ+ → [0,∞) is as follows:

α(x, y, t) =

{
1 if x, y ∈ [0, 12 ];

0 if otherwise
,

and

hx =

{
ax
1+x if x ∈ [0, 12 ];

x if otherwise
,

in where a ∈ (0, 1). Then, there is (∀ x, y ∈ X and t > 0)

1

M(x, y, t)
− 1 =

t+ σ(x, y)

t
− 1 =

σ(x, y)

t
=
x2 + y2

t

Also, for x, y ∈ X such that α(z, y, t) ≥ 1, we have

1

M(hx, hy, t)
− 1 =

t+ σ(hx, hy)

t
− 1 =

σ(hx, hy)

t

=
(hx)2 + (hy)2

t
=

( ax
1+x)

2 + ( ay
1+y )

2

t

=

a2x2

(1+x)2
+ a2y2

(1+y)2

t
.

Then, using the formula γ(t, s) = k(1t − 1)− (frac1s− 1), we can obtain (for x, y ∈ X) for any k ∈ [a, 1] and
a ∈ (0, 1).
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α(x, y, t) ≥ 1 ⇒ ξ
(
M(x, y, t),M(hx, hy, t)

)
= k

(x2 + y2

t

)
−
( a2x2

(1+x)2
+ a2y2

(1+y)2

t

)
=
x2

t

(
k − a2

(1 + x)2

)
+
y2

t

(
k − a2

(1 + y)2

)
≥ 0

∀ t > 0. Thus, Theorem 3.1’s prerequisites are all met, and the theorem’s conclusionthat h has a unique
fixed point, namely x = 0. However, the Gregori and Sapena [12] result cannot be applied. In fact, there is
no k in (0, 1) such that (1.1) is met for any x, y ∈ (12 , 1].

Next theorem shows the uniqueness of fixed point.

Theorem 3.11. Theorem 3.9’s premise is met. along with one extra following observation is fulfilled:

(iv) for each x, y ∈ Fix(h), ∃ w ∈ X like that 1 ≤ α(y, w, t), and α(x,w, t) ≥ 1 for all t > 0,

then h(x) = x is unique.

Proof. Theorem above follows the existence portion. In order to determine if a fixed point is unique, let’s
suppose that x and x⋆ are two separate fixed points of h. Then, according to condition (iv), there is a point
w ∈ X where ∀ t > 0, α(x∗⋆w, t) ≥ 1 and α(x,w, t) ≥ 1.

Create a sequence wn ⊆ X by setting wn + 1 = Twn and w0 = w and , for every n ∈ N∪ {0}. Triangular
α-admissibility provides us with

α(x∗, wn, t) ≥ 1 and α(x,wn, t) ≥ 1, ∀ t > 0 and n ∈ N ∪ {0} (3.1.8)

Using 3.1.8 and 3.1.1 (for x = x and y = wn), we can now deduce

M(x,wn+1, t) > M(x,wn, t), ∀ t > 0 and n ∈ N ∪ {0} (3.1.9)

which demonstrates that the sequence {M(x,wn, t)} is an increasing series of positive real numbers in the
range lim

n→∞
M(x,wn, t) = L(t). Our contention is that ∀ t > 0 gives L(t) = 1, . On the other hand, suppose

that certain t0 > 0 exist and that L(t0)1. As a result, for {tn = M(x,wn, t0)} and {sn = M(x,wn + 1, t0)},
we obtain (γ2) by using 3.1.1.

0 ≤ lim
n→∞

γ
(
M(x,wn+1, t0),M(x,wn, t0)

)
< 0,

a contradiction. As a result, L(t) = 1 and for allt > 0. As a result, lim
n→∞

wn = x from lim
n→∞

M(x,wn, t) = 1,

for all t > 0. The same pattern allows us to demonstrate that lim
n→∞

wn = x∗. We get to x = x∗ through the

uniqueness of the limit.
□

Next example below, which illustrates how Theorem 3.11 where fixed point is unique.

Example 3.12. Let X = [0, 1]. Define ∗ : [0, 1]× [0, 1] → [0, 1]be a t-norm as p ∗ q = min{p, q}. A mapping
with the definitions of h : X → X and α : X ×X ×ℜ+ → [0,∞) is as follows:

hx =

{
ax
1+x if x ∈ [0, 12 ];

x if otherwise
,
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in where a ∈ (0, 1). and

α(x, y, t) =

{
1 if x, y ∈ [0, 12 ];

0 if otherwise
,

Define fuzzy metric-like space M by

M(x, y, t) =
t

σ(x, y) + t
,

where σ(x, y) = x2 + y2 is metric-like space. This is (X,M, ⋆) a complete fuzzy metric-like space. One can
easily varify this exapmle on lines of Example 3.10, in this example fixed point is unique.

4 Consequences

I now derive a few corollaries for fuzzy metric-like spaces as a result of Theorem 3.1, starting with the one
that follows.

Corollary 4.1. ( [20] type) Assume that (X, ,M, ⋆) is a complete fuzzy metric-like space and h is a satisfied
self mapping on X.

x, y ∈ X α(x, y, t) ≥ 1 ⇒ 1

M(hx, hy, t)
− 1 ≤ k

( 1

M(x, y, t)
− 1
)
,

Both k ∈ (0, 1) and ∀ t > 0. After that, h has a unique fixed point.

Proof. One can proof this corollary from Theorem 3.9 and Example 3.2. □

Corollary 4.1 may be reduced to the following result by assuming that α(x, y, t) = 1, for any x, y ∈ X
and t > 0 by Gregori and Sapena [12].

Corollary 4.2. Let triplet (X,M, ⋆) be a complete fuzzy metric-like space, and let h : X → X be a satisfied .

k
( 1

M(x, y, t)
− 1
)
≥ 1

M(hx, hy, t)
− 1,

∀ k ∈ (0, 1) and t > 0, x, y ∈ X,. After that, hx = x i.e. h has a fixed point which is unique.

The Boyd and Wong [21] type result for fuzzy metric-like spaces will be presented in the following corollary.

Corollary 4.3. If h is a satisfied self mapping on X, then triplet (X,M, ⋆) is a complete fuzzy metric-like
space. Then

α(x, y, t) ≥ 1 ⇒ 1

M(hx, hy, t)
− 1 ≤ ψ

( 1

M(x, y, t)
− 1
)
,

∀ x, y ∈ X and t > 0, where ψ : ℜ∩ [0,∞) → ℜ∩ [0,∞) is a given function like that ψ(r) < r, ψ(0) = 0 and
∀ r > 0. After that, hx = x i.e. h has a fixed point which is unique.

Proof. The conclusion arises from Theorem 3.9 and Example 3.3. □

The fixed point result from Abbas et al. [22] is shown below.
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Corollary 4.4. Suppose triplet (X,M, ⋆) is a complete fuzzy metric-like space and h : X → X is satisfying

α(x, y, t) ≥ 1 ⇒ 1

M(hx, hy, t)
− 1 ≤

( 1

M(x, y, t)
− 1
)
− ψ

( 1

M(x, y, t)
− 1
)
,

∀ t > 0 and x, y ∈ X, where ψ : ℜ ∩ [0,∞) → ℜ ∩ [0,∞) is a function such that ψ(0) = 0, and ψ(r) > 0
for all r > 0. After that, h has a fixed point which is unique.

Proof. The conclusion follows in light of Theorem 3.9 and Example 3.4. □

The results that follow are known in some natural settings but appear novel in the fuzzy context.

Corollary 4.5. Suppose triplet (X,M, ⋆) is a complete fuzzy metric-like space and h : X → X is satisfying

α(x, y, t) ≥ 1 ⇒ M(hx, hy, t) ≥ ψ(M(x, y, t)),

∀ t > 0 and x, y ∈ X, where ψ : ℜ∩ (0, 1] → ℜ∩ (0, 1] is a left-continuousfunction and nondecreasing such
that ∀ r ∈ ℜ ∩ (0, 1], ψ(r) > r,. After that, h has a fixed point which is unique.

Proof. Theorem 3.9 and Example 3.5 lead to the proof. □

Corollary 4.6. Suppose triplet (X,M, ⋆) is a complete fuzzy metric-like space and h : X → X is satisfying

x, y ∈ X α(x, y, t) ≥ 1 ⇒ 1

M(hx, hy, t)
− 1 ≤

( 1

M(x, y, t)
− 1
)
.ψ
( 1

M(x, y, t)
− 1
)
,

∀ t > 0 and x, y ∈ X, where ψ : ℜ ∩ [0,∞) → ℜ ∩ [0,∞) is a given function such that lim
r→s+

ψ(r) > 0,

∀ r > 0. After that, h has a fixed point which is unique.

Proof. The conclusion is inferred from Example 3.6 and Theorem 3.9. □

5 An Application

Many authors have recently used various sufficient conditions to determine the existence and uniqueness of
integral equation solutions in various contexts. Here, I focus on a Fredholm nonlinear integral equation and
use our established finding for fuzzy metric-like spaces to identify the problem’s one and only solution. I see
that by using Theorem 3.1, this Fredholm non-linear integral equation has a unique solution under particular
circumstances, and that if these circumstances are not met, I am unable to use our findings to obtain the
unique solution.

To illustrate this, I take into account the following:

x(t) =

∫ b

a
K(t, s)h(x(w))dw + g(r), (5.1)

∀ t ∈ Ω = [a, b](a, b ∈ ℜ), g, h ∈ C(Ω,ℜ) K ∈ C(Ω× Ω,ℜ).

Let Phi represent the collection of all mappings from ϕ : ℜ ∩ [0,∞) → ℜ ∩ [0,∞) that meet the criteria
listed below:

(ϕ1) ∀ t ∈ [o,∞), ϕ(t) ≤ t;

(ϕ2) ϕ is non-decreasing.
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I can now state our theorem as follows in this section:

Theorem 5.1. The following requirements must be met for the integral equation (5.1) with the variables
K ∈ C(Ω× Ω,ℜ) and g ∈ C(Ω,ℜ) to be valid:

(i) ∃ a +ve number ϕ ∈ Φ and λ such that the following is true for any x, y ∈ C(Ω,R):

h(x)− h(y) ≤ λϕ(x− y) (5.2);

(ii) λ supt∈Ω
∫ b
a |K(r, w)|dr ≤ 1

2 .

Then, C(Ω,ℜ) is the ounique solution to equation (5.1).

Proof. Be aware that X = C(Ω,ℜ) is a complete metric space in terms of its sup-metric.

σ(x, y) = sup
t∈Ω

(|x(t)|+ |y(t)|+ a).

Additionally, the space (X,M, ⋆)

∀ t > 0 and x, y ∈ X M(x, y, t) =
t

t+ σ(x, y)
,

be a complete fuzzy metric-like space with product t-norm.
Now we define a mapping h : X → Xas:

Sx(r) =

∫ b

a
K(r, w)h(x(w))dw + g(r) (5.3)

∀ r ∈ Ω. Using (5.2) and (5.3), we have

hx(r)− hy(r) =

∫ b

a
K(r, w)[h(x(w))− h(y(w))]dw

≤ λ

∫ b

a
K(r, w)ϕ(x(w)− y(w))dw (5.4).

Using(ϕ1), we have

ϕ(x(w)− y(w) ≤ ϕ(sup(|x(w)|+ |y(w)|+ a)) = ϕ(σ(x, y)). (5.5).

Applying (5.5) in (5.4), we obtain

ϕ(x(w)− y(w) ≤ λ

∫ b

a
K(r, w)ϕ(σ(x, y))dw.

Taking supremum over r ∈ Ω, using conditions (II) and (ϕ2), we get

σ(hx, hy) ≤ λϕ(σ(x, y))

∫ b

a
|K(r, w)|dw

≤ 1

2
ϕ(σ(x, y)) ≤ 1

2
(σ(x, y)). (5.6).
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Now, we have
1

M(hx, hy, t)
− 1 =

σ(hx, hy)

t

≤ σ(x, y)

2t
=

1

2

( 1

M(x, y, t)
− 1
)

By using the formula γ(r, w) = 1
2 ,
(
1
r − 1

)
−
(

1
w − 1

)
and α(x, y, t) = 1 for all t > 0 and x, y ∈ X satisfies

all the criteria of Theorem 3.1 for every r, w ∈ (0, 1]). Theorems 3.1 and 3.2’s results lead to the conclusion
that C(Ω,ℜ) is the only solution to equation (5.1). □

6 Conclusion

In this paper, motivated by the work of Khojasteh et al. [8], Perveen and Imdad [9] and Karapinar citeKara-
pinar, we propose the idea of a new contraction called the α-admissible ΓMA-contraction and use it to prove
fixed point results, ensuring the existence and uniqueness of fixed points. We also introduce a new simulation
function. Additionally, we show through a few corollaries that our main finding is broad enough to encompass
a number of findings from the body of literature already in existence. Finally, we demonstrate the utility of
our primary result by showing an application.
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Abstract. The paper aims to introduce novel concepts of fuzzy type contractions and establish fixed point theorems
for fuzzy mappings within the framework of fuzzy cone metric spaces. These contributions extend the existing
literature on fuzzy mappings and fixed point theory. Through illustrative examples, we showcase the practical
applicability of our proposed notions and results, demonstrating their effectiveness in real-world scenarios.
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1 Introduction

Banach’s fixed point theorem for contraction mappings has been one of the most influential results in math-
ematical analysis. Banach’s contraction principle [1] has been instrumental in the development of metric
fixed point theory, and has been used to solve a wide range of problems, including differential equations,
integral equations, optimization problems, and variational inequalities. Since its introduction, the Banach
contraction mapping principle has been generalized and refined in numerous ways, leading to a wealth of
articles dedicated to its improvement [2, 3, 4].
Guang and Xian [5] extended the notion of metric spaces by considering a real Banach space as the range
set, thereby introducing the concept of cone metric spaces. Through their exploration of cone metric spaces,
they uncovered significant properties that led to the derivation of several fixed point theorems, some of which
can be found in [6, 7, 8].
Zadeh [9] pioneered the concept of fuzzy sets, laying the foundation for subsequent research in fuzzy mathe-
matics. Building upon Zadeh’s work, Weiss [10] delved into fuzzy mappings and derived numerous fixed point
results. Heilpern [11] further expanded upon fuzzy mappings by introducing the concept of fuzzy contraction
mappings. He established a fixed point theorem for fuzzy contraction mappings akin to Nadler’s fixed point
theorem for multivalued mappings. Moreover, Bag [12] introduced the innovative notion of fuzzy cone metric
spaces, leveraging this framework to derive fixed point results for fuzzy T -Kannan contraction and fuzzy T -
Chatterjea contraction mappings. Recently, Raji and Ibrahim [13] proved some fixed point results for fuzzy
mappings in a complete dislocated b-metric space.
Based on the above insight, we introduce novel concepts of fuzzy type contractions and subsequently estab-
lish fixed point results for fuzzy mappings within the framework of fuzzy cone metric spaces. To bolster our
findings, we offer illustrative examples demonstrating the practical application of the presented results and
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concepts.
Throughout our discourse, we denote by E a fuzzy real Banach space, by F a fuzzy cone in E with a
non-empty interior, and by ≤ a partial ordering with respect to F .

2 Preliminaries

A fuzzy cone metric space integrates concepts from fuzzy metric space and cone metric space, offering a
broader and more adaptable approach to handle uncertainty and fuzziness in distance measurements. We
begin this section with a few key definitions.

Definition 2.1. [14, 15] A function with X as its domain and the interval [0, 1] as its range is called a fuzzy
set in X. F(X) represents the set of all fuzzy sets in X. The degree of membership of x in A is denoted by
the value A(x), given a fuzzy set A and a point x in X. A fuzzy set A’s α-level set is represented by [A]α
and has the following definition:

[A]α = {x : A(x) ≥ α} where α ∈ (0, 1), [A]0 = {x : A(x) > 0}

Definition 2.2. [16, 17] Let Y be a metric space and X a nonempty set. If a mapping T is a mapping from
X into F(Y ), the set of all fuzzy sets on Y , then it is referred to as a fuzzy mapping. The degree to which
y is a member of T (x) is the membership function of a fuzzy mapping T , represented as T (x)(y). Stated
differently, T (x)(y) represents y’s degree of membership in the fuzzy set T (x). Instead of using [T (x)]α to
denote the α-level set of T (x), we will simply use [Tx]α.

Definition 2.3. [18, 19] A fuzzy fixed point of a fuzzy mapping T : X → F(X) is defined as a point x ∈ X
where α ∈ (0, 1] and x ∈ [Tx]α.

Definition 2.4. [20] Consider the fuzzy real Banach space (E, ∥.∥), where ∥□∥ : E → R(I). Use E∗(I) to
indicate the range of ∥.∥,Thus, E∗(I) ⊂ R∗(I).

Definition 2.5. [21] An interior point is defined as member η ∈ A ⊂ R∗(I) if there exists r > 0 such that

S(η, r) = {δ ∈ R∗(I) : δ ⊖ η < r̄} ⊂ A

set of all interior points of A is called interior A.

Definition 2.6. [11] Fuzzy closed subset F of E∗(I) is defined as follows: for each sequence {ηn}, such that

lim
n→∞

ηn = η implies η ∈ F .

Definition 2.7. [22] A fuzzy cone is defined as a subset F of E∗(I) if
i. F is fuzzy closed,nonempty and F ≠ {0̄},
ii. a, b ∈ R, a, b ≥ 0, η, δ ∈ F =⇒ aη ⊕ bδ ∈ F

Definition 2.8. [22] A mapping x : R 7→ [0, 1] over the set R of all real numbers is called a fuzzy real number

Definition 2.9. [22] A fuzzy real number x is convex if x(t) ≥ ∧ (x(s), x(r)) where s ≤ t ≤ r.

Definition 2.10. [9] α-level set of fuzzy real number x is defined by {t ∈ R : x(t) ≥ α} where α ∈ (0, 1]. If
there exists a t0 ∈ R such that x(t0) = 1, then x called normal. For 0 < α ≤ 1, α-level set of an upper semi
continuous convex normal fuzzy real number η denoted by [η]α, serves as a closed interval [aα, bα], where
aα = −∞ and bα = +∞ are admissible.
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Definition 2.11. [22] Given a fuzzy cone F ∈ E∗(I) define a partial odering ≤ with respect to F by η ≤ δ
iff δ⊖ η ∈ F and η < δ indicates that η ≤ δ but η ̸= δ while η << δ will stand for δ⊖ η ∈ IntF where Int F
denote the interior of F .

Definition 2.12. [22] The fuzzy cone F is called normal if there exists a number K > 0 such tha for all
x, y ∈ E with 0̄ ≤ ∥x∥ ≤ ∥y∥ implies ∥x∥ ≤ K∥y∥. The least positive number satisfying above is called the
normal constant of F .

Definition 2.13. [22] If every growing sequence that is bounded from above is convergent, the fuzzy cone
F is said to be regular. That is {xn} is a sequence in E such that
∥x1∥ ≤ ∥x2∥ ≤ · · · ≤ ∥y∥ for some y ∈ E, then there exists x ∈ E such that ∥xn − x∥ → 0̄ as n→ ∞

Definition 2.14. [22] Let X be a nonempty set. Suppose the mapping d : X ×X 7→ E∗(I) satisfies
(fd1) d(x, y) ≥ 0̄ and d(x, y) = 0̄ iff x = y;
(fd2) d(x, y) = d(y, x);
(fd3) d(x, y) ≤ d(x, z)⊕ d(z, y) for all x, y, z ∈ X.
Then, the d is called a fuzzy cone metric and the pair (X, d) is called a fuzzy cone metric space.

Definition 2.15. [22] Let (X, d) be a fuzzy cone metric space. Let {xn} be a sequence in X and x ∈ X. If
for every c ∈ E with 0̄ << ∥c∥, there is a positive integer N such that for all n > N , d(xn, x) << ∥c∥, then,
{xn} is said to be convergent and converges to x and x is called the limit of {xn}. Denoted by

lim
n→∞

xn = x

Definition 2.16. [22] Let {xn} be a sequence in X and (X, d) be a fuzzy cone metric space. {xn} is referred
to as a Cauchy sequence in X if, for any c ∈ E with 0̄ << ∥c∥, there exists a natural integer N such that,
for any m,n > N, d(xn, xm) << ∥c∥.

Definition 2.17. [22] Let (X, d) be a metric space with fuzzy cones. X is referred to as a complete fuzzy
cone metric space if every Cauchy sequence is convergent in it.

Definition 2.18. [22] Let {xn} be a sequence in X and (X, d) be a fuzzy cone metric space with normal
fuzzy cone. Then
i. {xn} converges to x if and only if d(xn, x) → 0̄ as n→ ∞
ii. {xn} is a Cauchy sequence if and only if d(xm, xn) → 0̄ as m,n→ ∞

3 Main Results

We start this section with the definitions that follow.

Definition 3.1. Suppose (X, d) is a fuzzy cone metric space. Let T, S : X → X be two functions. Then
S is said to be fuzzy cone T -type I contraction if for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3, a4 ≥ 0 with
2a1 + a2 + a3 + a4 < 1 satisfying the following condition:

d (TSx, TSy) ≤ a1 [d(Tx, TSx)⊕ d(Ty, TSy)]⊕ a2
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)

⊕a3
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)⊕ d(Tx, TSy)⊕ d(Ty, TSx)
⊕ a4

d(Tx, TSx)d(Tx, TSy)⊕ d(Ty, TSx)d(Ty, TSy)

d(Tx, TSy)⊕ d(Ty, TSx)

(3.1)
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Definition 3.2. Suppose (X, d) is a fuzzy cone metric space. Let T, S : X → X be two functions. Then
S is said to be fuzzy cone T -type II contraction if for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3, a4 ≥ 0 with
2a1 + a2 + a3 + a4 < 1 satisfying the following condition:

d (TSx, TSy) ≤ a1 [d (Tx, TSy)⊕ d (Ty, TSx)]⊕ a2
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)

⊕a3
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)⊕ d (Tx, TSy)⊕ d (Ty, TSx)

⊕a4
d (Tx, TSx) d (Tx, TSy)⊕ d (Ty, TSx) d (Ty, TSy)

d (Tx, TSy)⊕ d (Ty, TSx)

(3.2)

Theorem 3.3. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with normal
constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T -type I
contraction mapping. Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let x0 ∈ X be any arbitrary point in X. Define the iterate sequence {xn} by xn+1 = Sxn = Snx0,
Now, by using (3.1), we get

(Txn, Txn+1) = d (TSxn−1, TSxn)

≤ a1 [d (Txn−1, TSxn−1)⊕ d (Txn, TSxn)]

⊕a2
d (Txn−1, TSxn−1) d (Txn, TSxn)

d (Txn−1, Txn)

⊕a3
d (Txn−1, TSxn−1) d (Txn, TSxn)

d (Txn−1, Txn)⊕ d (Txn−1, TSxn)⊕ d (Txn, TSxn−1)

⊕a4
d (Txn−1, TSxn−1) d (Txn−1, TSxn)⊕ d (Txn, TSxn−1) d (Txn, TSxn)

d (Txn−1, TSxn)⊕ d (Txn, TSxn−1)

= a1 [d (Txn−1, Txn)⊕ d (Txn, Txn+1)]⊕a2
d (Txn−1, Txn) d (Txn, Txn+1)

d (Txn−1, Txn)

⊕a3
d (Txn−1, Txn) d (Txn, Txn+1)

d (Txn−1, Txn)⊕ d (Txn−1, Txn+1)⊕ d (Txn, Txn)

⊕a4
d (Txn−1, Txn) d (Txn−1, Txn+1)⊕ d (Txn, Txn) d (Txn, Txn+1)

d (Txn−1, Txn+1)⊕ d (Txn, Txn)

d (Txn, Txn+1) ≤ a1d (Txn−1, Txn)⊕ a1d (Txn, Txn+1)⊕ a2d (Txn, Txn+1)

⊕ a3d (Txn−1, Txn)⊕ a4d (Txn−1, Txn)

d (Txn, Txn+1) ≤
a1 + a3 + a4
1− (a1 + a2)

d (Txn−1, Txn) (3.3)
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Let λ = a1+a3+a4
1−(a1+a2)

. Since 2a1 + a2 + a3 + a4 < 1 implies that a1+a3+a4
1−(a1+a2)

< 1. Hence,

d (Txn, Txn+1) ≤ λd (Txn−1, Txn) ∀ n ∈ N (3.4)

Then, by repeated application of (3.4), we have

d
(
TSnx0, TS

n+1x0
)
≤ λnd (Tx0, TSx0) ∀ n ∈ N (3.5)

Since F is a normal cone with constant K, we have from (3.5),

d
(
TSnx0, TS

n+1x0
)
≤ λnKd (Tx0, TSx0) ∀ n ∈ N (3.6)

Implies
d
(
TSnx0, TS

n+1x0
)
≤ λnKdiα (Tx0, TSx0) for i = 1, 2 (3.7)

On taking the limit in (3.7), we have

lim
n→∞

diα
(
TSnx0, TS

n+1x0
)
= 0 for i = 1, 2, α ∈ (0, 1]

(
since

a1 + a3 + a4
1− (a1 + a2)

< 1

)
Hence,

lim
n→∞

d
(
TSnx0, TS

n+1x0
)
= 0 (3.8)

For any m > n where m,n ∈ N, we have,

d (Txn, Txm) ≤ d (Txn, Txn+1)⊕ d (Txn+1, Txn+2)⊕ · · · ⊕ d (Txm−1, Txm)

≤

[(
a1 + a3 + a4
1− (a1 + a2)

)n

+

(
a1 + a3 + a4
1− (a1 + a2)

)n+1

+ · · ·+
(
a1 + a3 + a4
1− (a1 + a2)

)m−1
]
d (Tx0, TSx0)

≤
[
λn + λn+1 + · · ·+ λm−1

]
d (Tx0, TSx0)

≤ λn
1

1− λ
d (Tx0, TSx0) (3.9)

So

d (TSnx0, TS
mx0) ≤ λn

1

1− λ
d (Tx0, TSx0) (3.10)

Since F is normal, we get

d (TSnx0, TS
mx0) ≤ λn

k

1− λ
d (Tx0, TSx0) (3.11)

Taking the limit as m,n→ ∞, we get

lim
m,n→∞

d (TSnx0, TS
mx0) = 0̄

(
since

a1 + a2 + a3 + a4
1− (a2 + a3)

< 1

)
(3.12)

This proves that {(TSnx0} is Cauchy sequence in X. Since X is a complete metric space, there exists v ∈ X
such that

lim
n→∞

(TSnx0 = v). (3.13)
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Now if T is subsequentially convergent, {Snx0} has a convergent subsequence.So there exists u ∈ X and {ni}
such that

lim
i→∞

Snix0 = u. (3.14)

Since T is continuous by (3.13), we get
lim
i→∞

TSnix0 = Tu. (3.15)

Considering (3.14) and (3.15), we get Tu = u.
Now

d (TSu, Tu) ≤ d (TSu, TSni(x0))⊕ d
(
TSni(x0), TS

ni+1(x0)
)
⊕ d

(
TSni+1(x0), Tu

)
.

d (TSu, Tu) ≤ a1
[
d (Tu, TSu)⊕ d

(
TSni−1(x0), TS

ni(x0)
)]

⊕ a2
d (Tu, TSu) d

(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))

⊕a3
d (Tu, TSu) d

(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))⊕ d (Tu, TSni(x0))⊕ d (TSni−1(x0), TSu)

⊕a4
d (Tu, TSu) d (Tu, TSni(x0))⊕ d

(
TSni−1(x0), TSu

)
d
(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))⊕ d (TSni−1(x0), TSu)

⊕λnid (Tx0, TSx0)⊕ d
(
TSni+1(x0), Tu

)
So

(TSu, Tu) ≤ λd
(
TSni−1(x0), TS

ni(x0)
)
⊕ 1

1− λ
λnd (Tx0, TSx0)⊕

1

1− λ
d
(
TSni+1(x0), Tu

)
Since F is normal cone with normal constant K, we have

(TSu, Tu) ≤ λKd
(
TSni−1(x0), TS

ni(x0)
)
⊕ k

1− λ
λnd (Tx0, TSx0)⊕

k

1− λ
d
(
TSni+1(x0), Tu

)
Taking the llimit i→ ∞, using (3.15) and λ < 1, we get
diα (TSu, Tu) = 0 for all α ∈ (0, 1] and i = 1, 2,
Hence,

d (TSu, Tu) = 0̄ (3.17)

So that TSu = Tu.
Since T is one-one, we get Su = u. So S has a fixed point.
if v is another fixed point of S, then Sv = v. Since S is type I contraction, we obtain

d (TSu, TSv) ≤ a1 [d (Tu, TSu)⊕ d (Tv, TSv)]⊕ a2
d (Tu, TSu) d (Tv, TSv)

d (Tu, Tv)
⊕

a3
d (Tu, TSu) d (Tv, TSv)

d (Tu, Tv)⊕ d (Tu, TSv)⊕ d (Tv, TSu)
⊕ a4

d (Tu, TSu) d (Tu, TSv)⊕ d (Tv, TSu) d (Tv, TSv)

d (Tu, TSv)⊕ d (Tv, TSu)
(3.18)

= a1 [d (Tu, Tu)⊕ d (Tv, Tv)]⊕ a2
d (Tu, Tu) d (Tv, Tv)

d (Tu, Tv)
⊕

a3
d (Tu, Tu) d (Tv, Tv)

d (Tu, Tv)⊕ d (Tu, Tv)⊕ d (Tv, Tu)
⊕ a4

d (Tu, Tu) d (Tu, Tv)⊕ d (Tv, Tu) d (Tv, Tv)

d (Tu, Tv)⊕ d (Tv, Tu)
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Implies
d (TSu, TSv) = 0̄

So that TSu = TSv. Since S is injective, we get u = v. Thus,S has a unique fixed point.
Lastly, if T is sequentially convergent, by replacing n for ni, we get that

lim
n→∞

Snx0 = u.

Thus, {Snx0} is convergent to the fixed point u.
□

Theorem 3.4. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with normal
constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T -type II
contraction mapping. Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let x0 ∈ X be any arbitrary point in X. Define the iterate sequence xn by x(n+1) = Sxn = Snx0.
Now, by using (3.2), we get

(Txn, Txn+1) = d (TSxn−1, TSxn)

≤ a1 [d (Txn−1, TSxn)⊕ d (Txn, TSxn−1)]

⊕a2
d (Txn−1, TSxn−1) d (Txn, TSxn)

d (Txn−1, Txn)

⊕a3
d (Txn−1, TSxn−1) d (Txn, TSxn)

d (Txn−1, Txn)⊕ d (Txn−1, TSxn)⊕ d (Txn, TSxn−1)

⊕a4
d (Txn−1, TSxn−1) d (Txn−1, TSxn)⊕ d (Txn, TSxn−1) d (Txn, TSxn)

d (Txn−1, TSxn)⊕ d (Txn, TSxn−1)

= a1 [d (Txn−1, Txn+1)⊕ d (Txn, Txn)]⊕a2
d (Txn−1, Txn) d (Txn, Txn+1)

d (Txn−1, Txn)

⊕a3
d (Txn−1, Txn) d (Txn, Txn+1)

d (Txn−1, Txn)⊕ d (Txn−1, Txn+1)⊕ d (Txn, Txn)

⊕a4
d (Txn−1, Txn) d (Txn−1, Txn+1)⊕ d (Txn, Txn) d (Txn, Txn+1)

d (Txn−1, Txn+1)⊕ d (Txn, Txn)

d (Txn, Txn+1) ≤ a1d (Txn−1, Txn)⊕ a1d (Txn, Txn+1)⊕ a2d (Txn, Txn+1)

⊕ a3d (Txn−1, Txn)⊕ a4d (Txn−1, Txn)

d (Txn, Txn+1) ≤
a1 + a3 + a4
1− (a1 + a2)

d (Txn−1, Txn) (3.20)

Let λ = a1+a3+a4
1−(a1+a2)

. Since 2a1 + a2 + a3 + a4 < 1 implies that a1+a3+a4
1−(a1+a2)

< 1. Hence,

d (Txn, Txn+1) ≤ λd (Txn−1, Txn) ∀ n ∈ N (3.21)
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Then, by repeated application of (3.21), we have

d
(
TSnx0, TS

n+1x0
)
≤ λnd (Tx0, TSx0) ∀ n ∈ N (3.22)

Since F is a normal cone with constant K, we have from (3.22),

d
(
TSnx0, TS

n+1x0
)
≤ λnKd (Tx0, TSx0) ∀ n ∈ N (3.23)

Implies
d
(
TSnx0, TS

n+1x0
)
≤ λnKdiα (Tx0, TSx0) for i = 1, 2 (3.24)

On taking the limit in (3.24), we have

lim
n→∞

diα
(
TSnx0, TS

n+1x0
)
= 0 for i = 1, 2, α ∈ (0, 1]

(
since

a1 + a3 + a4
1− (a1 + a2)

< 1

)
Hence,

lim
n→∞

d
(
TSnx0, TS

n+1x0
)
= 0 (3.25)

For any m > n where m,n ∈ N, we have,

d (Txn, Txm) ≤ d (Txn, Txn+1)⊕ d (Txn+1, Txn+2)⊕ · · · ⊕ d (Txm−1, Txm)

≤

[(
a1 + a3 + a4
1− (a1 + a2)

)n

+

(
a1 + a3 + a4
1− (a1 + a2)

)n+1

+ · · ·+
(
a1 + a3 + a4
1− (a1 + a2)

)m−1
]
d (Tx0, TSx0)

≤
[
λn + λn+1 + · · ·+ λm−1

]
d (Tx0, TSx0)

≤ λn
1

1− λ
d (Tx0, TSx0) (3.26)

So

d (TSnx0, TS
mx0) ≤ λn

1

1− λ
d (Tx0, TSx0) (3.27)

Since F is normal, we get

d (TSnx0, TS
mx0) ≤ λn

k

1− λ
d (Tx0, TSx0) (3.28)

Taking the limit as m,n→ ∞, we get

lim
m,n→∞

d (TSnx0, TS
mx0) = 0̄

(
since

a1 + a2 + a3 + a4
1− (a2 + a3)

< 1

)
(3.29)

This proves that {(TSnx0} is Cauchy sequence in X. Since X is a complete metric space, there exists v ∈ X
such that

lim
n→∞

(TSnx0 = v). (3.30)

Now if T is subsequentially convergent, {Snx0} has a convergent subsequence.So there exists u ∈ X and {ni}
such that

lim
i→∞

Snix0 = u. (3.31)
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Since T is continuous by (3.31), we get
lim
i→∞

TSnix0 = Tu. (3.32)

Considering (3.31) and (3.32), we get Tu = u.
Now

d (TSu, Tu) ≤ d (TSu, TSni(x0))⊕ d
(
TSni(x0), TS

ni+1(x0)
)
⊕ d

(
TSni+1(x0), Tu

)
.

d (TSu, Tu) ≤ a1
[
d (Tu, TSni(x0))⊕ d

(
TSni−1(x0), TSu

)]
⊕ a2

d (Tu, TSu) d
(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))

⊕a3
d (Tu, TSu) d

(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))⊕ d (Tu, TSni(x0))⊕ d (TSni−1(x0), TSu)

⊕a4
d (Tu, TSu) d (Tu, TSni(x0))⊕ d

(
TSni−1(x0), TSu

)
d
(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))⊕ d (TSni−1(x0), TSu)

⊕λnid (Tx0, TSx0)⊕ d
(
TSni+1(x0), Tu

)
So

(TSu, Tu) ≤ λd
(
TSni−1(x0), TS

ni(x0)
)
⊕ 1

1− λ
λnd (Tx0, TSx0)⊕

1

1− λ
d
(
TSni+1(x0), Tu

)
Since F is normal cone with normal constant K, we have

(TSu, Tu) ≤ λKd
(
TSni−1(x0), TS

ni(x0)
)
⊕ k

1− λ
λnd (Tx0, TSx0)⊕

k

1− λ
d
(
TSni+1(x0), Tu

)
Taking the llimit i→ ∞, using (3.33) and λ < 1, we get
diα (TSu, Tu) = 0 for all α ∈ (0, 1] and i = 1, 2,
Hence,

d (TSu, Tu) = 0̄ (3.34)

So that TSu = Tu.
Since T is one-one, we get Su = u. So S has a fixed point.
if v is another fixed point of S, then Sv = v. Since S is type I contraction, we obtain

d (TSu, TSv) ≤ a1 [d (Tu, TSv)⊕ d (Tv, TSu)]⊕ a2
d (Tu, TSu) d (Tv, TSv)

d (Tu, Tv)
⊕

a3
d (Tu, TSu) d (Tv, TSv)

d (Tu, Tv)⊕ d (Tu, TSv)⊕ d (Tv, TSu)
⊕ a4

d (Tu, TSu) d (Tu, TSv)⊕ d (Tv, TSu) d (Tv, TSv)

d (Tu, TSv)⊕ d (Tv, TSu)
(3.35)

= a1 [d (Tu, Tv)⊕ d (Tv, Tu)]⊕ a2
d (Tu, Tu) d (Tv, Tv)

d (Tu, Tv)
⊕

a3
d (Tu, Tu) d (Tv, Tv)

d (Tu, Tv)⊕ d (Tu, Tv)⊕ d (Tv, Tu)
⊕ a4

d (Tu, Tu) d (Tu, Tv)⊕ d (Tv, Tu) d (Tv, Tv)

d (Tu, Tv)⊕ d (Tv, Tu)

Implies

d (TSu, TSv) ≤ 2a1d (Tu, Tv)

< d (Tu, Tv) as 2a1 < 1,
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this is a contradiction. So that TSu = TSv. Since S is injective, we get u = v. Thus,S has a unique fixed
point.
Lastly, if T is sequentially convergent, by replacing n for ni, we get that

lim
n→∞

Snx0 = u.

Thus, {Snx0} is convergent to the fixed point u.

□

Example 3.5. Consider E = C[0, 1] and F = {η ∈ E∗(I) : η ≥ 0̄} and X = R. Let d : X ×X 7→ E∗(I) be a
fuzzy mapping define by

d(x, y)(t) =

{
|x−y|ek0

t , if t ≥ |x− y|ek0

0, if t < |x− y|ek0

Where k0 is a fixed number in [0, 1]. Now,

|x− y|ek0
t

≥ α =⇒ t ≤ |x− y|ek0
α

Thus, α-level set of d(x, y) are given by

[d(x, y)]α =

[
|x− y|ek0 . |x− y|ek0

α

]
, α ∈ (0, 1].

Choose the ordering ” ≤ ” as ” ⪯ ”, then it is easy to verify that,
(Fd1)d(x, y) ⪰ 0̄ and d(x, y) = 0̄ iff x = y;
(Fd2)d(x, y) = d(y, x);
(Fd3)d(x, y) ⪯ d(x, z)⊕ d(z, y) forall x, y, z ∈ X.
Then, the pair (X, d) is completely fuzzy cone metric space.
Now, show that (X, d) is a complete fuzzy cone metric space.
Let {xn} be a Cauchy sequence in (X, d). Then (xn, xm) → 0̄ as m,n → ∞, that is d1α(xn, xm) → 0̄ as
m,n → ∞ forall α ∈ (0, 1]. So {xn} is Cauchy sequence in X(R). Since X is complete, there exists x ∈ X
such that

|xn − x| → 0̄ as n→ ∞.

Thus, (X, d) is complete. Since for any η, µ ∈ E∗(I), η ≤ µ =⇒ η ≤ 1.µ, then,F is a fuzzy normal cone with
normal constant 1.
Now consider the functions T, S : X 7→ X defined by Tx = x2 and Sx = 1

2 . Let a1 = 1
50 ,a2 = 1

20 ,a3 =

1
30 ,a4 =

1
40 . Then, we have.

d1α (TSx, TSy) = |TSx− TSy|ek0 =

∣∣∣∣x24 − y2

4

∣∣∣∣ ek0
d1α (TSx, TSy) ≤

1

50
[|Tx− TSx|+ |Ty − TSy|] ek0 + 1

20

[|Tx− TSx||Ty − TSy|] ek0
|Tx− Ty|ek0

+
1

30

[|Tx− TSx||Ty − TSy|] ek0
[|Tx− Ty|+ |Tx− TSy|+ |Ty − TSx|] ek0

+
1

40

[|Tx− TSx||Tx− TSy|+ |Ty − TSx||Ty − TSy|] ek0
[|Tx− TSy|+ |Ty − TSx|] ek0
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d1α (TSx, TSy) ≤
1

50

[
d1α(Tx, TSx) + d1α(Ty, TSy)

]
+

1

20

d1α(Tx, TSx)d
1
α(Ty, TSy)

d1α(Tx, Ty)

+
1

30

d1α(Tx, TSx)d
1
α(Ty, TSy)

d1α(Tx, Ty) + d1α(Tx, TSy) + d1α(Ty, TSx)
+

1

40

d1α(Tx, TSx)d
1
α(Tx, TSy) + d1α(Ty, TSx)d

1
α(Ty, TSy)

d1α(Tx, TSy) + d1α(Ty, TSx)
(3.36)

Also,

d2α (TSx, TSy) ≤
1

50

[
|Tx− TSx

α
+

|Ty − TSy

α

]
ek0 +

1

20

[
|Tx−TSx|

α + |Ty−TSy|
α

]
ek0

|Tx−TSx|
α ek0

+
1

30

[
|Tx−TSx|

α
|Ty−TSy|

α

]
ek0[

|Tx−Ty|
α + |Tx−TSy|

α + |Ty−TSx|
α

]+
1

40

[
|Tx−TSx|

α
|Tx−TSy|

α + |Ty−TSx|
α

|Ty−TSy|
α

]
ek0[

|Tx−TSy|
α + |Ty−TSx|

α

]
ek0

d2α (TSx, TSy) ≤
1

50

[
d2α(Tx, TSx) + d2α(Ty, TSy)

]
+

1

20

d2α(Tx, TSx)d
2
α(Ty, TSy)

d2α(Tx, Ty)

+
1

30

d2α(Tx, TSx)d
2
α(Ty, TSy)

d2α(Tx, Ty) + d2α(Tx, TSy) + d2α(Ty, TSx)
+

1

40

d2α(Tx, TSx)d
2
α(Tx, TSy) + d2α(Ty, TSx)d

2
α(Ty, TSy)

d2α(Tx, TSy) + d2α(Ty, TSx)
(3.37)

From (3.36) and (3.37), we have

d (TSx, TSy) ≤ 1

50
[d(Tx, TSx) + d(Ty, TSy)] +

1

20

d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)

+
1

30

d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty) + d(Tx, TSy) + d(Ty, TSx)
+

1

40

d(Tx, TSx)d(Tx, TSy) + d(Ty, TSx)d(Ty, TSy)

d(Tx, TSy) + d(Ty, TSx)

Thus, S is a fuzzy cone T -type I contraction for 2a1 + a2 + a3 + a4 < 1.
Now, to show that S is a fuzzy T -type II contraction, Let a1 =

1
30 ,a2 =

1
10 ,a3 =

1
20 ,a4 =

1
40 .
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Then, we have

d1α (TSx, TSy) = |TSx− TSy|ek0 =

∣∣∣∣x24 − y2

4

∣∣∣∣ ek0
d1α (TSx, TSy) ≤

1

30

[∣∣∣∣(x2 − y2

4

)
−
(
y2 − x2

4

)∣∣∣∣] ek0 + 1

10

[∣∣∣(x2 − x2

4

)(
y2 − y2

4

)∣∣∣] ek0
|x2 − y2|ek0

+
1

20

[∣∣∣(x2 − x2

4

)(
y2 − y2

4

)∣∣∣] ek0[
|x2 − y2|+

∣∣∣(x2 − y2

4

)
−
(
y2 − x2

4

)∣∣∣] ek0
+

1

40

[∣∣∣(x2 − x2

4

)(
x2 − y2

4

)
−
(
y2 − x2

4

)(
y2 − y2

4

)∣∣∣] ek0[∣∣∣(x2 − y2

4

)
−
(
y2 − x2

4

)∣∣∣] ek0

d1α (TSx, TSy) ≤
1

30
[|Tx− TSy|+ |Ty − TSx|]ek0 + 1

10

[|Tx− TSx||Ty − TSy|]ek0
[|Tx− Ty|]ek0

+
1

20

[|Tx− TSx||Ty − TSy|]ek0
[[|Tx− Ty|]ek0 + |Tx− TSy|+ |Ty − TSx|] ek0

+
1

40

[|Tx− TSx||Tx− TSy|+ |Ty − TSx||Ty − TSy|] ek0
[|Tx− TSy|+ |Ty − TSx|] ek0

Implies

d1α (TSx, TSy) ≤
1

30

[
d1α (Tx, TSy) + d1α (Ty, TSx)

]
+

1

10

d1α (Tx, TSx) d
1
α (Ty, TSy)

d1α (Tx, Ty)

+
1

20

d1α (Tx, TSx) d
1
α (Ty, TSy)

d1α (Tx, Ty) + d1α (Tx, TSy) + d1α (Ty, TSx)

+
1

40

d1α (Tx, TSx) d
1
α (Tx, TSy) + d1α (Ty, TSx) d

1
α (Ty, TSy)

d1α (Tx, TSy) + d1α (Ty, TSx)
(3.38)

Also,

d2α (TSx, TSy) ≤
1

30

[
d2α (Tx, TSy) + d2α (Ty, TSx)

]
+

1

10

d2α (Tx, TSx) d
2
α (Ty, TSy)

d2α (Tx, Ty)

+
1

20

d2α (Tx, TSx) d
2
α (Ty, TSy)

d2α (Tx, Ty) + d2α (Tx, TSy) + d2α (Ty, TSx)

+
1

40

d2α (Tx, TSx) d
2
α (Tx, TSy) + d2α (Ty, TSx) d

2
α (Ty, TSy)

d2α (Tx, TSy) + d2α (Ty, TSx)
(3.39)
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From (3.38) and (3.39), we have

d (TSx, TSy) ≤ 1

30
[d (Tx, TSy) + d (Ty, TSx)] +

1

10

d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)

+
1

20

d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty) + d (Tx, TSy) + d (Ty, TSx)

+
1

40

d (Tx, TSx) d (Tx, TSy) + d (Ty, TSx) d (Ty, TSy)

d (Tx, TSy) + d (Ty, TSx)

Thus, S is a fuzzy cone T -type II contraction for 2a1 + a2 + a3 + a4 < 1.

Example 3.6. Consider E = C[0, 1] and F = {η ∈ E∗(I) : η ≥ 0̄} ⊂ E∗(I), X = R. Let d : X ×X 7→ E∗(I)
be a fuzzy mapping define by

d(x, y) = |x− y|ek0 , ek0 ∈ E

Where k0 is a fixed number in [0, 1] and the α-level set of d(x, y) are given by

[d(x, y)]α =

[
|x− y|ek0 . |x− y|ek0

α

]
, α ∈ (0, 1].

Then, the pair (X, d) is called a fuzzy cone metric space as in Example 3.5 and consider the functions
T, S : X 7→ X defined by Tx = x and Sx = x

2 . Clearly, T is one-one and continuous. Then, by Theorem 3.4,
v = 0 is the unique fixed point of S in X.

Corollary 3.7. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with normal
constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T -type I
contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1 satisfying
the following

d (TSx, TSy) ≤ a1 [d(Tx, TSx)⊕ d(Ty, TSy)]⊕ a2
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)

⊕a3
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)⊕ d(Tx, TSy)⊕ d(Ty, TSx)

(3.40)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a4 = 0 in Theorem 3.3, we get the result immediately. □

Corollary 3.8. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with normal
constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T -type I
contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1 satisfying



Fuzzy Cone Metric Spaces and Fixed Point
Theorems for Fuzzy Type Contraction. Trans. Fuzzy Sets Syst. 2024; 3(2) 95

the following

d (TSx, TSy) ≤ a1 [d(Tx, TSx)⊕ d(Ty, TSy)]⊕ a2
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)

⊕a3
d(Tx, TSx)d(Tx, TSy)⊕ d(Ty, TSx)d(Ty, TSy)

d(Tx, TSy)⊕ d(Ty, TSx)

(3.41)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a3 = 0 in Theorem 3.3, we get the result immediately. □

Corollary 3.9. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with normal
constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T -type I
contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1 satisfying
the following

d (TSx, TSy) ≤ a1 [d(Tx, TSx)⊕ d(Ty, TSy)]

⊕a2
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)⊕ d(Tx, TSy)⊕ d(Ty, TSx)
⊕ a3

d(Tx, TSx)d(Tx, TSy)⊕ d(Ty, TSx)d(Ty, TSy)

d(Tx, TSy)⊕ d(Ty, TSx)

(3.42)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a2 = 0 in Theorem 3.3, we get the result immediately. □

Corollary 3.10. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with
normal constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T
-type I contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1
satisfying the following

d (TSx, TSy) ≤ a1
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)

⊕a2
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)⊕ d(Tx, TSy)⊕ d(Ty, TSx)
⊕ a3

d(Tx, TSx)d(Tx, TSy)⊕ d(Ty, TSx)d(Ty, TSy)

d(Tx, TSy)⊕ d(Ty, TSx)

(3.43)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
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ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a1 = 0 in Theorem 3.3, we get the result immediately. □

Corollary 3.11. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with
normal constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T
-type II contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1
satisfying the following

d (TSx, TSy) ≤ a1 [d (Tx, TSy)⊕ d (Ty, TSx)]⊕ a2
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)

⊕a3
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)⊕ d (Tx, TSy)⊕ d (Ty, TSx)

(3.44)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a4 = 0 in Theorem 3.4, we get the result immediately. □

Corollary 3.12. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with
normal constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T
-type II contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1
satisfying the following

d (TSx, TSy) ≤ a1 [d (Tx, TSy)⊕ d (Ty, TSx)]⊕ a2
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)

⊕a3
d (Tx, TSx) d (Tx, TSy)⊕ d (Ty, TSx) d (Ty, TSy)

d (Tx, TSy)⊕ d (Ty, TSx)

(3.45)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a3 = 0 in Theorem 3.4, we get the result immediately. □

Corollary 3.13. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with
normal constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T
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-type II contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1
satisfying the following

d (TSx, TSy) ≤ a1 [d (Tx, TSy)⊕ d (Ty, TSx)]

⊕a2
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)⊕ d (Tx, TSy)⊕ d (Ty, TSx)

⊕a3
d (Tx, TSx) d (Tx, TSy)⊕ d (Ty, TSx) d (Ty, TSy)

d (Tx, TSy)⊕ d (Ty, TSx)

(3.46)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a2 = 0 in Theorem 3.4, we get the result immediately. □

4 Conclusion

The main findings of this study demonstrate applicability fuzzy cone metric spaces in establishing fixed point
theorems for fuzzy mappings. This study provides significant advancements in the understanding of fuzzy
cone metric spaces, with potential applications in differential equations and nonlinear Fredholm integral
equation. Future work could also explore the extension of this results to other types of fuzzy mappings and
their applications in real-world problems.
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Abstract. In this article, we introduce a new concept of fuzzy measurement, the space of fuzzy measurable
functions and fuzzy integral, which has a dynamic position and is different from previous approaches. With this
concept, we create a new version of measurement theory and fuzzy integral. The main goal of this paper is to define
the fuzzy integral in the fuzzy size space. First, we introduce fuzzy measurable functions and L+ essential and
related concepts in fuzzy space. In the continuation of the work, with the help of fuzzy measurable functions, we
define the fuzzy integral in the fuzzy measurement space and examine the theorems related to it and the relationship
between them in the fuzzy measurement space. The next step is to establish one of the fundamental convergence
theorems with the uniform convergence theorem in the fuzzy measurement space and prove it. Finally, we prove
Fatou’s lemma as an application of the theorems raised in the fuzzy measurement space.
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1 Introduction

Here, we let Ξ = [0, 1], Υ = [0,∞] and ℧ = (0,∞).

Let us assume ⋆ : Ξ × Ξ → Ξ is a topological monoid with unit 1 and ϱ ⋆ γ ≤ ς ⋆ δ whenever ϱ ≤ γ
and ς ≤ δ (ϱ, ς, γ, δ ∈ Ξ). In this case, ⋆ is called a continuous t-norm and ⋆∞i=1 = limn→∞ ⋆ni=1. For some
examples ϱ ⋆ ς = ϱ.ς and ϱ ⋆ ς = ∧(ϱ, ς) are continuous t-norms.

Let us consider U ̸= ∅, ⋆ is a continuous t-norm and ρ is a fuzzy set on U2 × ℧. Then (U, ρ, ⋆) is said to
be a fuzzy metric space where for arbitrary ε, υ, η ∈ U and τ, θ > 0,

(FM1) ρ(ε, υ, τ) = 1 for every τ ∈ ℧ iff ε = υ;

(FM2) ρ(ε, υ, τ) = ρ(υ, ε, τ), ∀ε, υ ∈ U , ∀τ ∈ ℧;

(FM3) ρ(ε, η, τ + θ) ≥ ρ(ε, υ, τ) ⋆ ρ(υ, η, θ), ∀ε, υ, η ∈ U , ∀τ, θ ∈ ℧;

(FM4) ρ(ε, υ, ·) : ℧ → (0, 1] is continuous.([1, 2, 3, 4, 5, 6, 7, 8])

Definition 1.1. Suppose that X ̸= ∅ and C ⊆ 2X such that

..
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(i) ∅ ∈ C and X ∈ C;

(ii) if A ∈ C, then Ac ∈ C;

(iii) if A1, · · · ,An ∈ C, then ∪n
i=1Ai and ∩n

i=1Ai are in C.

(iv) whenever A1,A2, · · · are in C, then ∪∞
i=1Ai and ∩∞

i=1Ai are in C.

So C is called a σ-algebra and (X, C) is called a measurable space.

Definition 1.2. Let us assume that X ̸= ∅ and C ⊆ 2X a σ-algebra. A fuzzy function ν : C × ℧ → Ξ such
that

(i) ν(∅, τ) = 1, ∀τ ∈ ℧;

(ii) if Ai ∈ C, for i = 1, 2, · · · are pairwise disjoint,

ν(∪∞
i=1A

∞
i , τ) = ⋆∞i=1ν(Ai, τ), ∀τ ∈ ℧.

So ν is said to be a fuzzy measure and (X, C, ν, ⋆) is said to be a fuzzy measure space.

Definition 1.3. Consider (X,M) and (Y,N ) measurable spaces, a mapping ȷ : X → Y is called (M,N )-
measurable if ȷ−1(E) ∈ M for all E ∈ N . We know BR as σ-algebra on R.

2 Main Results

Theorem 2.1. Consider X is a metric (or topological) space, then every cotinuous ȷ : X → R is (BX,BR)-
measurable.

Proof. ȷ is continuouse iff ȷ−1(U) in X for every U ⊆ R. □

Theorem 2.2. Consider (X,M), (R,BR) measurable spaces and ȷ : X → R, then the following statements
are equivalence.

(i) ȷ is M-measurable;

(ii) ȷ−1((q,∞]) ∈ M, ∀q ∈ R;

(iii) ȷ−1([q,∞]) ∈ M, ∀q ∈ R.

Lemma 2.3. Suppose ȷ, ı : X → R are M-measurable so F : X → R × R with F(p) = (ȷ(d), ı(p)) is M-
measurable.

Proof. We know BR×R = BR
⊗

BR. So F is a (M,BR×R)-measurable. □

Theorem 2.4. If ȷ, ı : X → R are M-measurable, then ȷ + ı : X → R with (ȷ + ı)(p) = ȷ(p) + ı(p) is a
M-measurable.

Proof. Define F : X → R × R with F(p) = (ȷ(p), ı(p)), ϕ : R × R → R with ϕ(z, w) = z + w. Since
BR×R = BR

⊗
BR, F is (M,BR×R)-measurable, wherease ϕ is (BR×R,BR)-measurable by theorem 2.1. Thus

ȷ+ ı = ϕ ◦ F is M-measurable. □
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Theorem 2.5. If ȷj is a sequence of R-valued measurable functions on (X,M), then the functions ın(p) =
supj≥n ȷj(p), ı(p) = lim sup ȷj(p), hn(p) = infj≥n ȷj(p), h(p) = lim inf ȷj(p) are M-measurable. If ȷ(p) =
limj→∞ ȷj(p) exists for every p ∈ X, then ȷ is M-measurable.

Proof. We have ı−1
n ((q,∞]) = ∪∞

j=nȷ
−1
j ((q,∞]) ∈ M, h−1

n ((q,∞]) = ∩∞
j=nȷ

−1
j ((q,∞]) ∈ M, more generally, if

hk(p) = supj≥n ȷj(p) then hk is measurable for each k, so ı(p) = infk≥1 hk(p) is measurable, and likewise for
h. Finally, ȷ exists then ȷ = ı = h, so ȷ is measurable. □

Corollary 2.6. If ȷ, ı : X → R are fuzzy measurable, then so max{ȷ, ı} and min{ȷ, ı}.

Proof. We now discuss the functions that are building blocks for the theory of integration. Let (X,M) be
a measurable space. If E ⊆ X, the characteristic function χE of E is given as

χE(p) =

{
1 p ∈ E,
0 p /∈ E.

χE is measurable iff E ∈ M. A simple function on X is a finite linear combination, with coefficients in R, of
characteristic functions of sets in M. So ȷ : X → R is simple iff ȷ is measurable and the range of ȷ is a finite
subset of R. Indeed, we have ȷ =

∑n
j=1 zjχEj , where Ej = ȷ−1({zj}) and range(ȷ) = {z1, z2, · · · , zn}, we call

this the standard representation of ȷ. □

Theorem 2.7. If ȷ, ı : X → R are simple functions, so then ȷ+ ı.

Theorem 2.8. Consider (X,M) measurable space. If ȷ : X → R is fuzzy measurable, there exist a sequence
{ϕn} of fuzzy simple functions such that 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ ȷ pointwise, and ϕn → ȷ uniformly on X.

Definition 2.9. Consider (X, C, ν) measure space, define

L+ = {ȷ : X× ℧ → [0,∞) | ȷ is measurable function and increase with second component} .

Consider ϕ ∈ L+ a simple function by ϕ =
∑n

i=1 qiχEi , for every qi ≥ 0, we define the fuzzy integral of ϕ with
respect to ν by ∫

X
ϕ(p)dν(p, τ) = ⋆ni=1ν(Ei,

τ

qi
),

for every τ ∈ ℧. If A ∈ C, then ϕχA is also simple function and define
∫
A ϕ(p)dν(p, τ) to be

∫
X(ϕχA)(p)dν(p, τ).

Theorem 2.10. Consider ϕ and ψ simple functions in L+.

(i) If c ∈ Ξ then
∫
X(cϕ)(p)dν(p, τ) ≥ c

∫
X ϕ(p)dν(p, τ), if c ∈ (1,∞) then

∫
X(cϕ)(p)dν(p, τ) ≤ c

∫
X ϕ(p)dν(p, τ),

∀τ ∈ ℧;

(ii)
∫
X(ϕ+ ψ)(p)dν(p, τ) ≥

(∫
X ϕ(p)dν(p, τ) ⋆

∫
X ψ(p)dν(p, τ)

)
, ∀τ ∈ ℧;

(iii) If ϕ ≤ ψ, then
∫
X ϕ(p)dν(p, τ) ≥

∫
X ψ(p)dν(p, τ), ∀τ ∈ ℧;

(iv) The map A →
∫
A ϕ(p)dν(p, τ) is a measure on C, ∀τ ∈ ℧.

Proof.
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(i) : If c ∈ Ξ then

∫
X
(cϕ)(p)dν(p, τ)

=

∫
X

(
n∑

i=1

caiχEi(p)

)
dν(p, τ)

= ⋆ni=1ν

(
Ei,

τ

cai

)
≥ ⋆ni=1ν

(
Ei,

τ

qi

)
=

∫
X
(cϕ)(p)dν(p, τ)

≥ c

∫
X
ϕ(p)dν(p, τ),

if If c ∈ (1,∞) then

∫
X
(cϕ)(p)dν(p, τ)

=

∫
X

(
n∑

i=1

caiχEi(p)

)
dν(p, τ)

= ⋆ni=1ν

(
Ei,

τ

cai

)
≤ ⋆ni=1ν

(
Ei,

τ

qi

)
=

∫
X
(cϕ)(p)dν(p, τ)

≤ c

∫
X
ϕ(p)dν(p, τ).

(ii) :

∫
X
(ϕ+ ψ)(p)dν(p, τ) (1)

=

∫
X

( n∑
i=1

qiχEi(p)

)
+

 m∑
j=1

bjχFj (p)

 dν(p, τ)

=

∫
X

∑
i,j

(qi + bj)χEi∩Fj (p)

 dν(p, τ)

= ⋆ni=1 ⋆
m
j=1 ν

(
(Ei ∩ Fj) ,

τ

(qi + bj)

)
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Since

(∫
X
ϕ(p)dν(p, τ) ⋆

∫
X
ψ(p)dν(p, τ)

)
(2)

=

(∫
X

(
n∑

i=1

qiχEi(p)

)
dν(p, τ)

)
⋆

∫
X

 m∑
j=1

bjχFj (p)

 dν(p, τ)


=

(
⋆ni=1 ⋆

m
j=1 ν

(
(Ei ∩ Fj) ,

τ

qi

))
⋆

(
⋆mj=1 ⋆

n
i=1 ν

(
(Ei ∩ Fj) ,

τ

bj

))
= ⋆ni=1 ⋆

m
j=1

(
ν

(
(Ei ∩ Fj) ,

τ

qi

)
⋆ ν

(
(Ei ∩ Fj) ,

τ

bj

))
≤ ⋆ni=1 ⋆

m
j=1

(
ν

(
(Ei ∩ Fj) ,

τ

(qi + bj)

)
⋆ ν

(
(Ei ∩ Fj) ,

τ

(qi + bj)

))
≤ ⋆ni=1 ⋆

m
j=1

(
ν

(
(Ei ∩ Fj) ,

τ

(qi + bj)

))

(iii) :If ϕ ≤ ψ, then qi ≤ bj whenever Ei ∩ Ej = ∅, so

∫
X
ϕ(p)dν(p, τ)

=

∫
X

(
n∑

i=1

qiχEi(p)

)
dν(p, τ)

=

∫
X

(
n∑

i=1

qiχEi∪(∩∞
j=1Ej)(p)

)
dν(p, τ)

=

∫
X

 n∑
i=1

m∑
j=1

qiχEi∩Ej (p)

 dν(p, τ)

= ⋆ni=1 ⋆
m
j=1 ν

(
(Ei ∩ Fj) ,

τ

qi

)
≥ ⋆ni=1 ⋆

m
j=1 ν

(
(Ei ∩ Fj) ,

τ

bj

)
≥ ⋆mj=1ν

(
Fj ,

τ

bj

)
=

∫
X
ψ(p)dν(p, τ).
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(iv) : Assume that Ak ∈ C is a disjoint sequence and A = ∪∞
k=1Ak where,∫

A
ϕ(p)dν(p, τ)

=

∫
X
(ϕχA)(p)dν(p, τ)

=

∫
X

(
n∑

i=1

qiχEi

)
χA(p)dν(p, τ)

=

∫
X

(
n∑

i=1

qiχ∪∞
k=1(Ak∩Ei

)

)
(p)dν(p, τ)

=

∫
X

(
n∑

i=1

qi

∞∑
k=1

χAk∩Ei

)
(p)dν(p, τ)

=

∫
X

∑
i,k

qiχAk∩Ei

 (p)dν(p, τ)

= ⋆ni=1 ⋆
∞
k=1 ν

(
(Ei ∩ Ak) ,

τ

qi

)
= ⋆∞k=1

∫
X
(ϕχAk

) (p)dν(p, τ)

= ⋆∞k=1

∫
Ak

ϕ(p)dν(p, τ).

Now we will have the definition of integral with expansion for all functions ȷ ∈ L+ as follows∫
X
ȷ(p)dν(p, τ) = inf

{∫
X
ϕ(p)dν(p, τ) | 0 ≤ ϕ ≤ ȷ, ϕ is a simple

}
. (3)

□
It is obvious from the definition that theorem 2.10 satisfying for every ȷ, ı ∈ L+.

Theorem 2.11. Consider ȷn ∈ L+ such that ȷi ≤ ȷi+1 for every i, and ȷ = lim ȷn(= supn∈N ȷn), then∫
X ȷ(p)dν(p, τ) = limn→∞

∫
X ȷn(p)dν(p, τ).

Proof. The sequence {ȷn(p)}, for every p ∈ X, is an increasing sequence of numbers, therefore limn→∞ ȷn(p) =
ȷ(p), moreover ȷn(p) ≤ ȷn(p), for every n ∈ N, so∫

X
ȷ(p)dν(p, τ) ≤

∫
X
ȷn(p)dν(p, τ),

then

lim
n→∞

∫
X
ȷn(p)dν(p, τ) ≥

∫
X
ȷ(p)dν(p, τ). (4)

Now, Consider ϕ a simple function with 0 ≤ ϕ ≤ ȷ and En = {p | ȷn(p) ≥ ϕ(p)}, then En is a measurable set.
We claim En ⊆ En+1 and ∪n∈NEn = X, sine for any p ∈ En

ϕ(p) ≤ ȷn(p) ≤ ȷn+1(p),
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so p ∈ En+1. If p ∈ X and p /∈ ∪n∈NEn, we have ȷn(p) ≤ ϕ(p), for all n ∈ N , so ȷ(p) ≤ ϕ(p), it is a
contradiction. Then ∪n∈NEn = X and there is m ∈ N such that p ∈ Em, we have∫

X
ȷn(p)dν(p, τ) ≤

∫
En

ȷn(p)dν(p, τ) ≤
∫
En

ϕ(p)dν(p, τ).

limn→∞
∫
En
ϕ(p)dν(p, τ) =

∫
X ϕ(p)dν(p, τ) and hence limn→∞

∫
X ȷn(p)dν(p, τ) ≤

∫
X phi(p)dν(p, τ). By taking

the infimum over all simple 0 ≤ ϕ ≤ ȷ, we get

lim
n→∞

∫
X
ȷn(p)dν(p, τ) ≤

∫
X
ȷ(p)dν(p, τ). (5)

Frome (4) and (5) we have

lim
n→∞

∫
X
ȷn(p)dν(p, τ) =

∫
X

lim
n→∞

ȷn(p)dν(p, τ) =

∫
X
ȷ(p)dν(p, τ).

□

3 Application

In this section, as an application of the theorems raised in the previous section, we prove Fatou’s lemma
fuzzy measure space.

Theorem 3.1. If ȷn is any sequence in L+, then

lim inf

∫
X
ȷn(p)dν(p, τ) ≤

∫
X
lim inf ȷn(p)dν(p, τ).

Proof. For each k ≥ 1, infn≥k ȷn ≤ ȷj for j ≥ k, hence∫
X
inf
n≥k

ȷn(p)dν(p, τ) ≥
∫
X
ȷj(p)dν(p, τ),

for j ≥ k, hence ∫
X
inf
n≥k

ȷn(p)dν(p, τ) ≥ inf
j≥k

∫
X
ȷj(p)dν(p, τ).

Now let k → ∞ and apply the monotone convergence theorem

lim

∫
X
inf
n≥k

ȷn(p)dν(p, τ) =

∫
X
lim inf ȷn(p)dν(p, τ) ≥ lim inf

∫
X
ȷn(p)dν(p, τ).

□

4 Conclusion

We worked on a new concept of fuzzy measurement. We define a new type of fuzzy measure with distance
functions. With this concept, we introduced a new version of measurement theory and fuzzy integral and
addressed theorems about it. As a continuation of this research, by defining the fuzzy outer measure, a new
concept of fuzzy measurement can be defined and using it, new theorems in the fuzzy measure theory can be
proposed.
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Abstract. In the evolving landscape of e-commerce, selecting an optimal online shopping platform is crucial for
businesses aiming to enhance customer experience and operational efficiency. This paper introduces a novel approach
that combines the Fermatean fuzzy set theory with the triangular divergence distance measure in Compromise
Ranking of Alternatives from Distance to Ideal Solution (CRADIS) method to streamline the decision-making
process in online platform selection. By applying the CRADIS method, businesses can systematically evaluate and
select an online shopping platform that best meets their operational needs and strategic goals, thereby enhancing
their e-commerce effectiveness and customer satisfaction. Through a comprehensive example, we illustrate the
application of this approach in evaluating and ranking four distinct online shopping platforms based on multiple
criteria. This result shows that Myntra (χ̂4) is the best choice. Through this integrated approach, decision-
makers can gain valuable insights into the relative merits of each online shopping platform, allowing them to make
informed choices aligned with their preferences and requirements. Furthermore, by accommodating uncertainty and
imprecision, the Fermatean fuzzy set theory enhances the robustness of the decision-making process, minimizing
the risk of making sub-optimal decisions. Overall, this paper demonstrates the practical applicability of Fermatean
fuzzy set theory in decision support systems for online platform selection. To demonstrate the proposed method’s
applicability, we have compared the results with existing Multi-attribute decision making (MADM) methods. To
establish its stability, we conducted a sensitivity analysis. By leveraging the CRADIS method alongside Fermatean
fuzzy set theory, decision-makers can navigate the complex landscape of online shopping platforms with greater
confidence and efficiency, ultimately leading to more satisfactory outcomes for both consumers and businesses alike.
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1 Introduction

Distance measures play an important role in handling fuzzy information. Several distance measures have
been developed for different fuzzy environments over the years. Recently, Ganie et al. [1] define an innovative
picture fuzzy distance measure and novel multi-attribute decision-making method. Puška et al. [2] proposed
a comprehensive decision framework for selecting distribution center locations: a hybrid improved fuzzy
SWARA and fuzzy compromise ranking of alternatives from distance to ideal solution (CRADIS) approach.
Deng et al. [3] proposed a new distance measure in Fermatean fuzzy sets (FFSs). Palanikumar et al. [4]
present the novelty of different distance approaches for multi-criteria decision-making challenges using q-rung
vague sets. Robot sensors process based on generalized Fermatean normal different aggregation operators
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framework is proposed by Palanikumar et al. [5]. Some recent decision-making problems can be found in
various fuzzy environments [6, 7, 8, 9].

There are a few distance measures for Fermatean fuzzy sets in the literature. Senapati et al. [10] proposed
the general-Euclidean distance measure (GEDM) for FFSs and used Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) to solve some illustrative Multi-attribute decision making (MADM)
problems. Onyeke and Ejegwa [11] defined a modified distance measure for FFSs to fulfill the axiomatic
description of the distance function. These distances are not completely competent for calculating accurate
distances between FFSs. FFSs, being more advanced and efficient in depicting fuzzy information, automati-
cally call for the development of modified distance measures for better decision-making methods. Recently,
the triangular divergence measure, a method generally used in probability distributions, has been researched
to develop distance measures based on it. We find instances where the existing distance measures fail to
evaluate the distances between FFSs accurately. The triangular divergence measure, proposed by Yehudayoff
[12], has been extended to form distance measures by some researchers. Liu [13] defines a distance measure
of Fermatean fuzzy sets based on triangular divergence and its application in medical diagnosis. Sahoo [14]
uses similarity measures for Fermatean fuzzy sets and its applications in group decision-making. Mandal
and Seikh [15] explain the interval-valued Fermatean fuzzy (TOPSIS) method and its application to sustain-
able development programs. In recent times, FFSs have been utilized in various decision-making problems
[16, 17, 18, 19, 20]. Seikh and Chatterjee [21] establish the determination of the best renewable energy
sources in India using SWARA-ARAS in a confidence level-based interval-valued Fermatean fuzzy environ-
ment. Seikh and Mandal [22] mentioned interval-valued Fermatean fuzzy Dombi aggregation operators and
SWARA-based PROMETHEE II method for bio-medical waste management.

Several MADM methods use the distance measure to identify the best alternative. One such method
is CRADIS. CRADIS is a relatively new method proposed by Puška et al. [23] in 2022. Hence, it has
relatively fewer applications in decision-making problems and fewer extensions in other fuzzy environments.
It identifies the best alternatives more comprehensively and simply by using the merits of MARCOS, ARAS,
and TOPSIS. Yuan et al. [24] proposed a novel distance measure and CRADIS method in picture fuzzy
environment. Further, Puška et al. [25] clarify fuzzy multi-criteria analysis on green supplier selection in
an agri-food company. Krishankumar et al. [26] select the IoT service provider for sustainable transport
using q-rung orthopair fuzzy CRADIS and unknown weights. Most of these studies utilized the GEDM or
the Hamming distance measure (HDM) in the CRADIS method. From the thorough review of the literature,
it is observed that Fermatean fuzzy numbers (FFNs) are efficient in expressing fuzzy information and are a
popular research area. Also, triangular divergence distance measure forming effective distance measures has
few studies on them. Moreover, the CRADIS method is a recently developed and strong method combining
the merits of various decision-making methods that have been applied to solve a variety of decision-making
problems. Hence, modification of the CRADIS method would eventually make it better and stronger. In
this study, the triangular divergence-based distance measure (TDDM) for FFSs is proposed. To improve
the existing distance measure, the hesitancy degree of FFSs is included in the distance formula. We further
employ it in the CRADIS method to improve the existing CRADIS method.

There are several motivations for this study. They are as follows:

• FFSs have two popular distance measures, but they are not entirely competent in calculating distances
between all FFNs. It leads to the requirement of a new and better distance measure for achieving more
accurate results in decision-making problems.

• Triangular divergence measure is a popular classical method, mostly used in probability distributions.
It has been utilized for distance measures for FFSs and Interval-valued intuitionistic fuzzy sets (IVIFSs).
FFNs are better at expressing fuzzy information than FFSs and IVIFSs. Hence, extending the triangular
divergence-based distance measure to FFNs will be more beneficial and realistic.
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• The previous application of triangular divergence-based measure does not include the hesitancy degree.
It leaves out certain fuzzy information from the calculated data and thus may cause discrepancies in
results. Hence, including the hesitancy degree in the distance measure will make it more precise.

The following are some significant contributions of this study.

• A new triangular divergence-based distance measure for FFSs is proposed and its properties are dis-
cussed.

• The hesitancy degree is also included in the triangular divergence-based distance measure for FFSs to
overcome the loss of information.

• The proposed distance measure is utilized in the CRADIS method, eventually modifying the method
to give better results to decision-making problems.

• The proposed method is used to solve a real-life decision-making problem of selection of the best online
shopping platform.

The study has been organized in the following way: Section 2, consists of the preliminaries. Section 3 has
the newly proposed distance measure with its properties and we establish the superiority of the proposed
triangular divergence-based distance measure. In Section 4, we iterate the modified-CRADIS method used
to solve an illustrative MADM problem. In Section 5, we use an example to apply our proposed method
and solve it followed by a comparative and sensitivity analysis. Lastly, Section 6 has the conclusion, research
implications, limitations, and future research scopes. Table 1 presents the list of abbreviations used in the
manuscript.

Table 1: List of abbreviation.

Abbreviation Full-form

CRADIS Compromise ranking of alternatives from distance to ideal solution
TOPSIS Technique for order performance by similarity to ideal solution
GEDM General-Euclidean distance measure
HDM Hamming distance measure
VIKOR VlseKriterijumska Optimizacija I Kompromisno Resenje
MADM Multi-attribute decision making
FFSs Fermatean fuzzy sets
FFNs Fermatean fuzzy numbers
IoT Internet of things
SWARA Stepwise weight assessment ratio analysis
ARAS Additive ratio assessment method
MARCOS Measurement of alternatives and ranking according to the compromise solution
IVIFSs Interval valued intuitionistic fuzzy sets
TDDM Triangular divergence-based distance measure
LVS Linguistic variables
PDM Positive distance matrix
NDM Negative distance matrix

2 Preliminaries

In this section, some basic definitions and preliminaries are recalled. Throughout the manuscript, the universal
set is consistently denoted as Υ.
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Definition 2.1. [10] Let ℜ be an FFS over Υ and is defined as follows:

ℜ = {⟨ ℏ, αℜ(ℏ), βℜ(ℏ)⟩|ℏ ∈ Υ}

introducing this condition
0 ≤ (αℜ(ℏ))3 + (βℜ(ℏ))3 ≤ 1.

For all ℏ ∈ Υ, the numbers αℜ(ℏ) and βℜ(ℏ) denote the degree of membership and the degree of non
membership.

Where, αℜ : Υ −→ [0, 1] and βℜ : Υ −→ [0, 1].
For any Fermatean fuzzy set ℜ and ℏ ∈ Υ.

γℜ(ℏ) = 3
√

1− (αℜ(ℏ))3 − (βℜ(ℏ))3

is define as the degree of indeterminacy of ℏ to ℜ.

Definition 2.2. [10] Let ℜ = (αℜ, βℜ), ℜ1 = (αℜ1 , βℜ1) and ℜ2 = (αℜ2 , βℜ2) be three FFNs, then some
operation are defined as below:

1. ℜ1
∩

ℜ2 = (min{αℜ1 , βℜ2},max{βℜ1 , βℜ2}).

2. ℜ1
∪

ℜ2 = (max{αℜ1 , βℜ2},min{βℜ1 , βℜ2}).

3. ℜc = (βℜ, αℜ).

Definition 2.3. [10] Let ℜ = (αℜ, βℜ), ℜ1 = (αℜ1 , βℜ1) and ℜ2 = (αℜ2 , βℜ2) be three FFNs and λ >0, then
some mathematical operations are formulated as below:

1. ℜ1 ⊞ ℜ2 = ( 3

√
α3
ℜ1

+ α3
ℜ2

− α3
ℜ1
α3
ℜ2
, βℜ1βℜ2).

2. ℜ1 ⊠ ℜ2 = (αℜ1αℜ2 ,
3

√
β3ℜ1

+ β3ℜ2
− β3ℜ1

β3ℜ2
).

3. λℜ = ( 3

√
1− (1− α3

ℜ)
λ, βλℜ).

4. ℜλ = (αλ
ℜ,

3

√
1− (1− β3ℜ)

λ).

Definition 2.4. Let ℜ1=(αℜ1 , βℜ1) and ℜ2=(αℜ2 , βℜ2) be two FFNs. Then the Euclidean distance measure
[10] de(ℜ1,ℜ2) and the Hamming distance measure [3] dh(ℜ1,ℜ2) between ℜ1 and ℜ2 are defined as follow:

de(ℜ1,ℜ2) =

√
1

2
[(α3

ℜ1
− α3

ℜ2
)2 + (β3ℜ1

− β3ℜ2
)2 + (γ3ℜ1

− γ3ℜ2
)2] (1)

dh(ℜ1,ℜ2) =
1

2
|[(α3

ℜ1
− α3

ℜ2
)2 + (β3ℜ1

− β3ℜ2
)2 + (γ3ℜ1

− γ3ℜ2
)2]|. (2)

Definition 2.5. [12] The set Ξn = {M = (m1,m2, ...,mn)|mi > 0,
n∑

i=1
mi = 1}, with n ≥ 2, represents a

collection of finite discrete probability distributions. For ∀ M,P ∈ Ξn, the classical triangular divergence
measure between M and P is defined as follows:

∆(M,P ) =

n∑
i=1

(mi − pi)
2

mi + pi
.



112 Seikh MR, Mukherjee A. Trans. Fuzzy Sets Syst. 2024; 3(2)

Greater triangular divergence indicates greater difference between the probability distributions M and P. Us-
ing the above-mentioned equation, the square root of the triangular divergence is presented in the following
manner:

d(M,P ) =

√√√√ n∑
i=1

(mi − pi)
2

mi + pi

where, by convention, 0/0 = 0.

3 Distance Measure Based on Triangular Divergence for Fermatean Fuzzy
Sets

In this section, we proposed the new distance measure for Fermatean fuzzy sets based on triangular divergance
measure.

Definition 3.1. Let ℜi = ⟨ ℏ, αℜi
(ℏ), βℜi

(ℏ)⟩ for i = 1, 2 be two FFSs in Υ = {ℏ1, ℏ2}, then the triangular
divergence-based modified distance measure(TDDM) between FFSs ℜ1 and ℜ2 denoted by dT is given by

dT (ℜ1,ℜ2) =

√√√√√ 1

2n

n∑
j=1

[(
α3
ℜ1
(ℏj)− α3

ℜ2
(ℏj)

)2
α3
ℜ1
(ℏj) + α3

ℜ2
(ℏj)

+

(
β3ℜ1

(ℏj)− β3ℜ2
(ℏj)

)2
β3ℜ1

(ℏj) + β3ℜ2
(ℏj)

+

(
γ3ℜ1

(ℏj)− γ3ℜ2
(ℏj)

)2
γ3ℜ1

(ℏj) + γ3ℜ2
(ℏj)

]
. (3)

Theorem 3.2. The distance measure dT (ℜ1,ℜ2), between the two FFSs ℜ1 and ℜ2, follows the following
properties. Here ℜ1, ℜ2 and ℜ3 are FFSs.

I. dT (ℜ1,ℜ2) = 0 ⇔ ℜ1 = ℜ2;

II. dT (ℜ1,ℜ2) = dT (ℜ2,ℜ1);

III. 0 ≤ dT (ℜ1,ℜ2) ≤ 1;

IV. If ℜ1 ≤ ℜ2 ≤ ℜ3, then dT (ℜ1,ℜ2) ≤ dT (ℜ1,ℜ3) and dT (ℜ2,ℜ3) ≤ dT (ℜ1,ℜ3).

Proof. I. Let dT (ℜ1,ℜ2) = 0 for any ℏ ∈ Υ. Then we can say that

dT (ℜ1,ℜ2) =

√√√√√ 1

2n

n∑
j=1

[(
α3
ℜ1
(ℏj)− α3

ℜ2
(ℏj)

)2
α3
ℜ1
(ℏj) + α3

ℜ2
(ℏj)

+

(
β3ℜ1

(ℏj)− β3ℜ2
(ℏj)

)2
β3ℜ1

(ℏj) + β3ℜ2
(ℏj)

+

(
γ3ℜ1

(ℏj)− γ3ℜ2
(ℏj)

)2
γ3ℜ1

(ℏj) + γ3ℜ2
(ℏj)

]
= 0.

Then (
α3
ℜ1
(ℏj)− α3

ℜ2
(ℏj)

)2
α3
ℜ1
(ℏj) + α3

ℜ2
(ℏj)

=

(
β3ℜ1

(ℏj)− β3ℜ2
(ℏj)

)2
β3ℜ1

(ℏj) + β3ℜ2
(ℏj)

=

(
γ3ℜ1

(ℏj)− γ3ℜ2
(ℏj)

)2
γ3ℜ1

(ℏj) + γ3ℜ2
(ℏj)

= 0.

That is, (
α3
ℜ1
(ℏj)− α3

ℜ2
(ℏj)

)2
=
(
β3ℜ1

(ℏj)− β3ℜ2
(ℏj)

)2
=
(
γ3ℜ1

(ℏj)− γ3ℜ2
(ℏj)

)2
.

Again we know that
0 ≤ αℜ1 , αℜ2 , βℜ1 , βℜ2 , γℜ1 , γℜ2 ≤ 1.

Hence, we have αℜ1(ℏj) = αℜ2(ℏj), βℜ1(ℏj) = βℜ2(ℏj), γℜ1(ℏj) = γℜ2(ℏj).
Therefore,

ℜ1 = ℜ2.
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Conversely, when ℜ1 = ℜ2, one has

αℜ1(ℏj) = αℜ2(ℏj), βℜ1(ℏj) = βℜ2(ℏj), γℜ1(ℏj) = γℜ2(ℏj).

Then, we can obtain

dT (ℜ1,ℜ2) =

√√√√√ 1

2n

n∑
j=1

[(
α3
ℜ1
(ℏj)− α3

ℜ2
(ℏj)

)2
α3
ℜ1
(ℏj) + α3

ℜ2
(ℏj)

+

(
β3ℜ1

(ℏj)− β3ℜ2
(ℏj)

)2
β3ℜ1

(ℏj) + β3ℜ2
(ℏj)

+

(
γ3ℜ1

(ℏj)− γ3ℜ2
(ℏj)

)2
γ3ℜ1

(ℏj) + γ3ℜ2
(ℏj)

]
= 0.

Hence, property I holds.
II. Next we prove that dT (ℜ1,ℜ2) = dT (ℜ2,ℜ1). We know that

dT (ℜ1,ℜ2) =

√√√√√ 1

2n

n∑
j=1

[(
α3
ℜ1
(ℏj)− α3

ℜ2
(ℏj)

)2
α3
ℜ1
(ℏj) + α3

ℜ2
(ℏj)

+

(
β3ℜ1

(ℏj)− β3ℜ2
(ℏj)

)2
β3ℜ1

(ℏj) + β3ℜ2
(ℏj)

+

(
γ3ℜ1

(ℏj)− γ3ℜ2
(ℏj)

)2
γ3ℜ1

(ℏj) + γ3ℜ2
(ℏj)

]

=

√√√√√ 1

2n

n∑
j=1

[(
α3
ℜ2
(ℏj)− α3

ℜ1
(ℏj)

)2
α3
ℜ2
(ℏj) + α3

ℜ1
(ℏj)

+

(
β3ℜ2

(ℏj)− β3ℜ1
(ℏj)

)2
β3ℜ2

(ℏj) + β3ℜ1
(ℏj)

+

(
γ3ℜ2

(ℏj)− γ3ℜ1
(ℏj)

)2
γ3ℜ2

(ℏj) + γ3ℜ1
(ℏj)

]
= dT (ℜ2,ℜ1).

Hence, property II holds.
III. We then prove that 0 ≤ dT (ℜ1,ℜ2) ≤ 1. From Definition 2.1, it is obvious that 0 ≤ dT (ℜ1,ℜ2) and

we observe that, 0 ≤ α3
ℜ1
(ℏ) + β3ℜ1

(ℏ) ≤ 1, 0 ≤ α3
ℜ2
(ℏ) + β3ℜ2

(ℏ) ≤ 1. So, the following inequality holds(
α3
ℜ1
(ℏ)− α3

ℜ2
(ℏ)
)2

≤
(
α3
ℜ1
(ℏ) + α3

ℜ2
(ℏ)
)2

and
(
β3ℜ1

(ℏ)− β3ℜ2
(ℏ)
)2

≤
(
β3ℜ1

(ℏ) + β3ℜ2
(ℏ)
)2
.

Then,

dT (ℜ1,ℜ2) =

√√√√√ 1

2n

n∑
j=1

[(
α3
ℜ1
(ℏj)− α3

ℜ2
(ℏj)

)2
α3
ℜ1
(ℏj) + α3

ℜ2
(ℏj)

+

(
β3ℜ1

(ℏj)− β3ℜ2
(ℏj)

)2
β3ℜ1

(ℏj) + β3ℜ2
(ℏj)

+

(
γ3ℜ1

(ℏj)− γ3ℜ2
(ℏj)

)2
γ3ℜ1

(ℏj) + γ3ℜ2
(ℏj)

]

≤

√√√√√ 1

2n

n∑
j=1

[(
α3
ℜ1
(ℏj) + α3

ℜ2
(ℏj)

)2
α3
ℜ1
(ℏj) + α3

ℜ2
(ℏj)

+

(
β3ℜ1

(ℏj) + β3ℜ2
(ℏj)

)2
β3ℜ1

(ℏj) + β3ℜ2
(ℏj)

+

(
γ3ℜ1

(ℏj) + γ3ℜ2
(ℏj)

)2
γ3ℜ1

(ℏj) + γ3ℜ2
(ℏj)

]

=

√√√√ 1

2n

n∑
j=1

[
α3
ℜ1
(ℏj) + α3

ℜ2
(ℏj) + β3ℜ1

(ℏj) + β3ℜ2
(ℏj) + γ3ℜ1

(ℏj) + γ3ℜ2
(ℏj)

]

=

√√√√ 1

2n

n∑
j=1

2

= 1.

Hence, property III holds.
IV. Lastly, we prove that if ℜ1 ≤ ℜ2 ≤ ℜ3, then dT (ℜ1,ℜ2) ≤ dT (ℜ1,ℜ3) and

dT (ℜ2,ℜ3) ≤ dT (ℜ1,ℜ3)).
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When ℜ1 ≤ ℜ2 ≤ ℜ3, we have

α3
ℜ1

≤ α3
ℜ2

≤ α3
ℜ3

and β3ℜ3
≤ β3ℜ2

≤ β3ℜ1

for 0 ≤ ηk ≤ 1(k = 1, 2) and 0 ≤ η1 + η2 ≤ 1, a function h(ℏ1, ℏ2) could be establish below

h(ℏ1, ℏ2) =
2∑

k=1

(ℏk − ηk)
2

ℏK + ηK
, ℏk ∈ [0, 1]

then the partial derivative of the function h(ℏ1, ℏ2) in term of ℏi will be calculated as follow

δh

δℏK
=

(ℏk − ηk)(ℏk + 3ηk)

(ℏk + ηk)2
. (4)

From the partial derivation function of Equation (4) one has{
δh
δℏk ≥ 0, 0 ≤ ηk ≤ ℏk ≤ 1,
δh
δℏk < 0, 0 ≤ ℏk ≤ ηk ≤ 1.

Therefore, when ℏk ≥ ηk, h(ℏ1, ℏ2) is monotonically increasing function for ℏk and when ℏk ≥ ηk, h(ℏ1, ℏ2) is
a monotonically decreasing function for ℏk.

Let, η1 = α3
ℜ1
, η2 = β3ℜ1

when ℜ1 ≤ ℜ2 ≤ ℜ3

η1 = α3
ℜ1

≤ α3
ℜ2

≤ α3
ℜ3
,

β3ℜ3
≤ β3ℜ2

≤ β3ℜ1
= η2.

Because, h(ℏ1, ℏ2) is monotonically increasing when ℏ1 ≥ η1 if α3
ℜ3

≥ α3
ℜ2

one has

h(α3
ℜ3
, β3ℜ3

) ≥ h(α3
ℜ2
, β3ℜ3

). (5)

Meanwhile, because h(ℏ1, ℏ2) is monotonically decreasing when ℏ3 ≤ η3 if β3ℜ3
≤ β3ℜ2

one has

h(α3
ℜ2
, β3ℜ3

) ≥ h(α3
ℜ2
, β3ℜ2

). (6)

Combining (5) and (6) one has
h(α3

ℜ3
, β3

ℜ3
) ≥ h(α3

ℜ2
, β3ℜ2

)

that is,
(α3

ℜ2
− α3

ℜ1
)2

α3
ℜ2

+ α3
ℜ1

+
(β3ℜ2

− β3ℜ1
)2

β3ℜ2
+ β3ℜ1

≤
(α3

ℜ3
− α3

ℜ1
)2

α3
ℜ3

+ α3
ℜ1

+
(β3ℜ3

− β3ℜ1
)2

β3ℜ3
+ β3ℜ1

.

Consequently, we have

dT (ℜ1,ℜ2) =

√√√√√ 1

2n

n∑
j=1

[(
α3
ℜ2
(ℏj)− α3

ℜ1
(ℏj)

)2
α3
ℜ2
(ℏj) + α3

ℜ1
(ℏj)

+

(
β3ℜ2

(ℏj)− β3ℜ2
(ℏj)

)2
β3ℜ2

(ℏj) + β3ℜ1
(ℏj)

]

≤

√√√√√ 1

2n

n∑
j=1

[(
α3
ℜ3
(ℏj)− α3

ℜ1
(ℏj)

)2
α3
ℜ3
(ℏj) + α3

ℜ1
(ℏj)

+

(
β3ℜ3

(ℏj)− β3ℜ2
(ℏj)

)2
β3ℜ3

(ℏj) + β3ℜ1
(ℏj)

]
= dT (ℜ1,ℜ3).
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Since, the hesitancy degree is dependent on the membership and non-membership degree, we can say that
dT (ℜ1,ℜ2) ≤ dT (ℜ1,ℜ3). Similarly, we can proved that dT (ℜ2,ℜ3) ≤ dT (ℜ1,ℜ3). □

Next, we utilize the following example to establish the superiority of the proposed triangular divergence-
based distance measure for FFNs.

Example 3.3. Let there be three FFNs, F̄1 = (0.65, 0.8321), F̄2 = (0.85, 0.6831) and F̄3 = (0.85, 0.6849).
Clearly F̄2 ̸= F̄3, so distance between (F̄1, F̄2) and (F̄1, F̄3) should not be equal. We now calculate the
GEDM (proposed by Senapati [10]), HDM (proposed by Deng. [3]) and TDDM (proposed) between (F̄1, F̄2)
and (F̄1, F̄3) using Equations (1), (2) and (3) respectively, to establish superiority of the proposed distance
measure. Table 2 gives the values of the calculated distances.

Table 2: Comparison of distance measure for FFNs.

FFN Pair GEDM [10] HDM [3] TDDM (proposed)

(F̄1, F̄2) 0.306 0.339 0.342
(F̄1, F̄3) 0.306 0.339 0.343

Thus we see that even though the GEDM and HDM give equal distances for the pairs, the proposed
TDDM gives different distances for the given pair, thus establishing the superiority of the proposed distance
measure.

From Figure 1, we notice that there is a significant difference in the distance measures between the given
pairs in the case of TDDM, whereas the existing distance measures fail to distinguish between them.

Figure 1: Superiority of the proposed distance measure.

4 MADMProcess Using Modified Distance Based FFNs-CRADISMethod

In this section, we propose a MADM process utilizing a modified version of the CRADIS method by imple-
menting the proposed distance measure for FFNs.

Let the set of alternatives be χ̂ = {χ̂1, χ̂2, ..., χ̂m} such that there are “m” alternatives and “n” criteria
such that SC = {SC1, SC2, ..., SCn} be the set of criteria where their weights are ϖ1, ϖ2, ..., ϖn respectively.

Here 0 ≤ ϖj ≤ 1 and
n∑

j=1
ϖj = 1.
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General the initial decision matrices is B = (bij)m×n. A panel of specialists has been invited to offer their
assessments in order to achieve the desired ranking of the “m” alternatives regarding “n” attributes. Then
construct the Fermatean fuzzy evaluation matrix as B = (bij)m×n, where i = 1, 2...,m and j = 1, 2, ..., n also
bij = (αij , βij). The algorithm shown in Figure 2.

Figure 2: CRADIS-based MADM process using the triangular divergence distance measure.

The triangular distance-based CRADIS method is used for ranking the alternatives. The algorithm of
the method is as follows:

Step 1: Construct the decision matrix for the FFNs.

Step 2: Now normalized the decision matrix. The two group are cost type and benefit type. The normalized
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Fermatean fuzzy decision matrix, D = (dij)m×n is as follows:

D = (dij)m×n =

{
bij = (αij , βij), SCj is a benefit attribute,

bcij = (αij , βij), SCj is a cost attribute.

Step 3: Set up the Fermatean fuzzy weighted decision matrix.

T = (tij)m×n based on the subsequent formula

T = dijϖj

= ( 3

√
1− (1− α3

dij
)ϖj ,β

ϖj

dij
) (7)

where, dij is the component of normalized decision matrix D and ϖj is the attribute weight SCj .

Step 4: Find out the ideal and anti-ideal solution.

Ideal alternatives ,

χ̂0 = {t01, t02, ..., t0n}
t0j = (αtoj , βtoj )

= { max
1≤i≤m

αtij , min
1≤i≤m

βtij}, j = 1, 2, ..., n

and

anti-ideal alternatives ,

χ̂m+1 = (tm+11, ..., tm+1n)

tm+1j = (αtm+ij , βtm+ij)

= { max
1≤i≤m

αtij , min
1≤i≤m

βtij}, j = 1, 2, ..., n. (8)

Step 5: Deviation are obtain by TDDM

d+T = d(tij , t0j) for i = 1, 2...,m and j = 1, 2, ..., n. (9)

d−T = d(tij , tm+ij for i = 1, 2...,m and j = 1, 2, ..., n. (10)

Using the formula (3).

Step 6: Determine the degree of deviation of every option from the ideal and undesirable solution

s+i =
n∑

j=1

d+j , s
−
i =

n∑
j=1

d−j .

Step 7: Analysis of every alternative utility function concerning its deviation from ideal option

k+i =
s+0
s+i
, k−i =

s−i
s−0

where, s−0 is the optimal choice that is situated at the greatest distance from anti-ideal solution and s+0
is the best option that is the closet to the ideal solution.

Step 8: Ranking possible option. Finding the average departure of the option from the degree of value yield
the final ranking

Qi =
(k+i + k−i )

2
. (11)

The selection possessing the greatest numerical magnitude is the ideal choice Qi.
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5 Illustrative Example

This section illustrates the proposed MADM technique by solving a numerical problem. Suppose there
are four online platforms for shopping. There are four alternatives Amazon(χ̂1); Flipkart(χ̂2); Meesho(χ̂3);
Myntra(χ̂4). The decision expert will assess the alternative online shopping platform based on the following
eight criteria: SC1 is the price competitiveness; SC2 is the delivery charge; SC3 is the subscription; SC4

is the customer reviews and rating; SC5 is the fast delivery; SC6 is the return policy; SC7 is the product
quality; SC8 is the customer support. Among the criteria SC1, SC2 and SC3 are the “cost criteria” and
SC4, SC5, SC6, SC7 and SC8 are “benefit criteria”.

The linguistic variables (LVs) used to rate the importance of decision experts, and criteria and evaluate
the alternatives are given in Table 3. The framework is shown in Figure 3.

Figure 3: Framework for selecting online shopping platform alternatives.

Table 3: LVs for assessing importance of DEs, criteria and alternatives.

LVs FFNs

Extremely good (EG) (0.98,0.3)
Good (G) (0.9,0.6)

Medium (M) (0.85,0.7)
Bad (B) (0.78,0.8)

Very bad (VB) (0.3,0.98)
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The weight of the criteria’s are ϖ1 = 0.15, ϖ2 = 0.22, ϖ3 = 0.18, ϖ4 = 0.22, ϖ5 = 0.12, ϖ6 = 0.08, ϖ7 =
0.15, ϖ8 = 0.08 for SC1 to SC8 respectively.

The next and last step is the application of the proposed triangular divergence distance measure-based
CRADIS method for ranking of the alternatives. The initial decision matrix made by the decision maker is
given in Table 4.

Table 4: Decision matrix for in terms of LVs.

Alternative SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

χ̂1 (G) (M) (G) (B) (VB) (M) (G) (EG)
χ̂2 (EG) (M) (G) (VB) (B) (M) (EG) (B)
χ̂3 (G) (B) ( M) (VB) (EG) (B) (M) (G)
χ̂4 (B) ( M) (VB) (EG) (B) (M) (G) (G)

Step 1 The decision matrix made by the decision experts is given below in Table 5.

Table 5: Decision matrix.

Alternative SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

χ̂1 (0.9,0.6) (0.85,0.7) (0.9,0.6 ) (0.78,0.8) (0.3,0.98) (0.85,0.7) (0.9,0.6) (0.98,0.3)
χ̂2 (0.98,0.3) (0.85,0.7) (0.9,0.6) (0.3,0.98) (0.78,0.8) (0.85,0.7) (0.98,0.3) (0.78,0.8)
χ̂3 (0.9,0.6) (0.78,0.8) (0.85,0.7) (0.3,0.98) (0.98,0.3) (0.78,0.8) (0.85,0.7) (0.9,0.6)
χ̂4 (0.78,0.8) (0.85,0.7) (0.3,0.98) (0.98,0.3) (0.78,0.8) (0.85,0.7) (0.9,0.6) (0.9,0.6)

Step 2 Construct the normalized decision matrix for the FFNs which is given in Table 6.

Table 6: Normalized decision matrices.

Alternative SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

χ̂1 (0.6,0.9) (0.7,0.85) (0.6,0.9 ) (0.78,0.8) (0.3,0.98) (0.85,0.7) (0.9,0.6) (0.98, 0.3)
χ̂2 (0.3,0.98) (0.7,0.85) (0.6,0.9) (0.3,0.98) (0.78,0.8) (0.85,0.7) (0.98,0.3) (0.78,0.8)
χ̂3 (0.6,0.9) (0.8,0.78) (0.7,0.85) (0.3,0.98) (0.98,0.3) (0.78,0.8) (0.85,0.7) (0.9,0.6)
χ̂4 (0.8,0.78) (0.7,0.85) (0.98,0.3) (0.98,0.3) (0.78,0.8) (0.85,0.7) (0.9,0.6) (0.9,0.6)

Step 3 We calculate the weighted decision matrix using Equation (7). The weighted decision matrix is given
in Table 7.

Table 7: Weighted decision matrix.

Alter-
native

SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

χ̂1 (0.330,0.984) (0.445,0.965) (0.349,0.981) (0.234,0.995) (0.148,0.997) (0.419,0.972) (0.562,0.926) (0.587,0.908)
χ̂2 (0.160,0.997) (0.445,0.965) (0.349,0.981) (0.081,0.999) (0.420,0.974) (0.419,0.972) (0.702,0.835) (0.369,0.982)
χ̂3 (0.330,0.984) (0.526,0.947) (0.418,0.971) (0.082,0.999) (0.660,0.865) (0.369,0.982) (0.511,0.948) (0.463,0.960)
χ̂4 (0.467,0.963) (0.445,0.965) (0.736,0.805) (0.380,0.976) (0.420,0.973) (0.419,0.972) (0.562,0.926) (0.462,0.959)

Step 4 Establish the ideal and anti-ideal solution which is given in Table 8 using Equation (8).
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Table 8: Ideal and anti-ideal solution.

ideal
and anti
ideal

SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

(t0j) (0.467,0.963) (0.527,0.947) (0.736,0.805) (0.380,0.976) (0.660,0.865) (0.419,0.972) (0.702,0.835) (0.587,0.908)
(tm+ij) (0.160,0.997) (0.445,0.965) (0.350,0.981) (0.0812,0.999) (0.148,0.997) (0.369,0.982) (0.510,0.948) (0.369,0.982)

Step 5 Next, we find the distance of every alternative from both the ideal and anti-ideal using the proposed
TDDM given in Equations (9) and (10). The positive distance matrix (PDM) and negative distance
matrix (NDM) are recorded in Table 9.

Table 9: PDM and NDM.

Alterna-
tive

SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

D+ D− D+ D− D+ D− D+ D− D+ D− D+ D− D+ D− D+ D−

χ̂1 0.136 0.118 0.098 0 0.478 0 0.143 0.075 0.449 0 0 0.067 0.231 0.077 0 0.281
χ̂2 0.218 0 0.098 0 0.478 0 0.185 0 0.339 0.184 0 0.067 0 0.302 0.281 0
χ̂3 0.136 0.118 0 0.098 0.438 0.064 0.185 0 0 0.449 0.067 0 0.302 0 0.177 0.121
χ̂4 0 0.218 0.098 0 0 0.478 0 0.185 0.339 0.184 0 0.067 0.231 0.077 0.177 0.121

Step 6 In this step, we calculate the degree of deviation using Equation (11). The deviation values of alterna-
tives are enlisted in Table 10.

Table 10: Deviation of alternatives.

Alternative S+
i S−

i

χ̂1 1.536 0.619
χ̂2 1.600 0.553
χ̂3 1.306 0.851
χ̂4 0.845 1.332

Step 7 We now compute utility function of each alternative using Equation (11) which are given in table 11.

Step 8 In the last step, we rank the alternatives using Equation (11) as depicted in Table 11.

Table 11: Ranking.

Alternative K+
i K−

i Qi Ranking

χ̂1 0.550 0.465 0.507 3
χ̂2 0.528 0.416 0.471 4
χ̂3 0.647 0.639 0.643 2
χ̂4 1 1 1 1

After ranking of all alternatives we get that χ̂4 is the best option.

5.1 Comparative Analysis

In this section, the proposed modified CRADIS method is compared with the existing methods and distance
measures. The comparison has been performed with the TOPSIS and VIKOR methods. The algorithm of
the TOPSIS method as given by Kirisci [27], is used to solve the illustrative problem. In place of the distance



Fermatean Fuzzy CRADIS Approach Based
on Triangular Divergence for Selecting Online Shopping Platform. Trans. Fuzzy Sets Syst. 2024; 3(2) 121

measure used by Kirisci [27], we have used GEDM, HDM, and the proposed TDDM. To compare with the
VIKOR method, the algorithm given by Gül [28] is used where, the GEDM, HDM, and proposed TDDM are
used to calculate distances of alternatives from an ideal solution.

The TDDM-based CRADIS method gives the ranking χ̂4 > χ̂3 > χ̂1 > χ̂2. First, we compare the TDDM-
based CRADIS method with the GEDM-based CRADIS method which is given in Equation (1) to evaluate the
distance between the alternatives and the PIS and NIS and we see that the ranking order is χ̂4 > χ̂3 > χ̂2 > χ̂1.
Next, we used HDM-based CRADIS which is given in Equation (2) in place of TDDM-based CRADIS
for comparison. The outcome remains unchanged in the case of the GEDM-based CRADIS method, i.e.,
χ̂4 > χ̂3 > χ̂2 > χ̂1.

Now the comparison is done by the VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [29]
method. The comparison is performed by using TDDM-based VIKOR in place of the modified TDDM-based
CRADIS method and the result obtained is χ̂4 > χ̂3 > χ̂1 > χ̂2, which is the same as the proposed method.
We also use GEDM-based VIKOR and HDM-based VIKOR in place of the modified TDDM-based CRADIS
method for comparison. In both cases, we see that the ranking is equivalent to the proposed method, i.e.,
χ̂4 > χ̂3 > χ̂1 > χ̂2.

Lastly, a comparison is done with a novel TOPSIS [27] method. For comparison, we use TDDM-based
TOPSIS in place of TDDM-based CRADIS and here the ranking result is χ̂4 > χ̂3 > χ̂1 > χ̂2 which is the
same as TDDM-based CRADIS method. We also compare GEDM-based TOPSIS and we get the rank-
ing χ̂3 > χ̂4 > χ̂1 > χ̂2. Comparing TDDM-based CRADIS method with HDM-based TOPSIS, it gives the
ranking χ̂4 > χ̂3 > χ̂1 > χ̂2 which is the same as TDDM-based CRADIS method.

Given in Table 12 are the ranking orders using different distance measures. Therefore, it can be stated
that the proposed TDDM method is superior as well as reliable.

Table 12: Comparison of ranking results using different distance-based MADM methods.

MADM method Alternatives ranked based on Distance measure Ranking result

CRADIS (proposed) Degree of value yield
GEDM χ̂4 > χ̂3 > χ̂2 > χ̂1

HDM χ̂4 > χ̂3 > χ̂2 > χ̂1

TDDM χ̂4 > χ̂3 > χ̂1 > χ̂2

VIKOR [28] Compromise measure
GEDM χ̂4 > χ̂3 > χ̂1 > χ̂2

HDM χ̂4 > χ̂3 > χ̂1 > χ̂2

TDDM χ̂4 > χ̂3 > χ̂1 > χ̂2

TOPSIS [27] Closeness coefficient
GEDM χ̂3 > χ̂4 > χ̂1 > χ̂2

HDM χ̂4 > χ̂3 > χ̂1 > χ̂2

TDDM χ̂4 > χ̂3 > χ̂1 > χ̂2

Thus, we see for all the cases, the best alternative is χ̂4, except GEDM based TOPSIS.

Figure 4 shows the comparative analysis concerning different distance measures.

5.2 Sensitivity Analysis

In this particular subsection, a sensitivity analysis is conducted to ascertain the stability of the method put
forth. Four attributes were utilized in the case study. To conduct the sensitivity analysis, six different sets of
attribute weights are employed, which are derived from the rearrangement of the initially computed attribute
weights. Through the examination of the model’s reaction to various weighting methods, it is possible to
pinpoint the attributes that carry the greatest influence on the outcomes and detect probable sources of
uncertainty.

Through this iterative process, sensitivity analysis improves decision-making by elucidating the resilience
of the model across various scenarios, directing stakeholders towards better informed and adaptable decisions.
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Figure 4: Comparison analysis.

The criteria weights for six sets are presented in Table 13. These particular sets of criteria weights are
employed in the suggested approach, leading to alterations in the prioritization of the alternatives. Table 13
presents the selection of weight sets utilized for conducting sensitivity analysis. It is observed that in sets 2
and 4, the variable SC1 holds the maximum weight, while for sets 4 and 6, SC7 is assigned the minimum
weight.

Table 13: Set of weight of criteria.

Sets SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8

Set 1 0.15 0.22 0.18 0.02 0.12 0.08 0.15 0.08
Set 2 0.22 0.18 0.15 0.12 0.08 0.02 0.08 0.15
Set 3 0.18 0.02 0.12 0.08 0.15 0.08 0.15 0.22
Set 4 0.22 0.18 0.15 0.08 0.08 0.15 0.02 0.12
Set 5 0.12 0.08 0.15 0.08 0.15 0.22 0.18 0.02
Set 6 0.08 0.15 0.08 0.15 0.22 0.18 0.02 0.12

From the sensitivity analysis results presented in Table 14, it is evident that the ordering of alternatives
remains consistent across all six sets of attribute weights, with the exception of set 5. The rankings consistently
place Myntra (χ̂4) in the first position, followed by Meesho (χ̂3), Amazon (χ̂1) and Flipkart (χ̂2). However,
in set 5, there is a deviation where Flipkart (χ̂2) is ranked third and Amazon (χ̂1) is ranked fourth. This shift
in rankings can be attributed to variations in the weights assigned to the criteria, leading to a reduction in
the overall utility of the alternatives. Therefore, the consistency observed in the ranking outcomes indicates
that the proposed methodology exhibits significant stability and effectiveness across different configurations
of criterion weights.

From Figure 5 we show the graphical demonstration of the sensitivity analysis.
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Table 14: Sensitivity of proposed method.

Sets Q1 Q2 Q3 Q4 Ranking

Set 1 0.507 0.472 0.643 1 χ̂4 > χ̂3 > χ̂1 > χ̂2

Set 2 0.501 0.338 0.521 1 χ̂4 > χ̂3 > χ̂1 > χ̂2

Set 3 0.563 0.430 0.589 1 χ̂4 > χ̂3 > χ̂1 > χ̂2

Set 4 0.487 0.309 0.519 1 χ̂4 > χ̂3 > χ̂1 > χ̂2

Set 5 0.436 0.463 0.541 1 χ̂4 > χ̂3 > χ̂2 > χ̂1

Set 6 0.513 0.377 0.625 1 χ̂4 > χ̂3 > χ̂1 > χ̂2

Figure 5: Sensitivity analysis.

6 Conclusion

This study proposes a modified CRADIS based on triangular divergence distance measure in the Fermatean
Fuzzy sets. The FFNs are more efficient at accommodating fuzzy information compared to fuzzy extensions.
Given the shortcomings of the existing distance measures for FFNs, a triangular divergence-based distance
measure is proposed. To prevent any loss of information, the proposed triangular divergence-based distance
measure includes the hesitancy degree of FFNs. The superiority of the proposed TDDM is established by an
example where the proposed TDDM successfully distinguishes the distances between two given pairs of FFNs.
To validate the proposed modified CRADIS method’s practical applicability, it is used to solve a numerical
problem. To check the applicability of the proposed modified CRADIS method, it has been compared with
existing methods and distance measures. The comparative analysis suggests the superiority and reliability of
the proposed method. We also conduct a sensitivity analysis to check its stability.

However, every research endeavor inevitably encounters certain constraints. In this paper, only the
CRADIS method has been modified using the proposed TDDM. Utilizing the proposed TDDM in other
distance-based MADM methods can establish the practicality of the proposed distance measure. Another
limitation is that we have addressed only one numerical problem using the proposed modified CRADIS
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method. We have involved only one decision expert. Including more decision experts in the decision-making
process can give better results. Also, we have assumed the weight of the criteria to maintain the simplicity
of the method. Using different criteria weight determination methods can improve the model significantly.

There are numerous avenues for future investigation. The proposed distance measure can be extended to
other fuzzy environments like 3,4-quasirung fuzzy sets [30], p,q-quasirung orthopair fuzzy sets [31], hesitant
fuzzy sets [32], neutrosophic fuzzy sets [33], linear diophantine fuzzy sets [34], q-rung linear diophantine fuzzy
hypersoft fuzzy set [35]. Also, the proposed TDDM can be applied to other distance-based MADM methods.
The proposed TDDM-based modified CRADIS can be applied to other real-life MADM problems to establish
further applicability of the method.
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is transformed into a clear matrix equation group. Two new and simplified models for calculating fuzzy solutions
are designed in detail, and sufficient conditions for strong fuzzy solutions are analyzed. Finally, two examples are
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1 Introduction

There are a large number of phenomena and events in the real world that we can not find a definite classifi-
cation standard to judgment them. We call this kind of property of things as fuzziness and it is difficult to
be accurately measured and described by classical mathematics. In 1965, the American cybernetics expert
Professor Zadeh [1] proposed the concept of fuzzy sets wich made the birth of the new subject of fuzzy math-
ematics. In the past half century, the development of fuzzy mathematics has shown extraordinary vitality,
its theoretical research involves fuzzy analysis, fuzzy algebra, fuzzy topology and other disciplines, and its
application practice covers many fields such as artificial intelligence, cluster analysis, expert system, fault
diagnosis, system evaluation, social sciences, big data processing and so on. As we all know, no matter in
statistical analysis or in management science, only the linear system that theory is relatively mature and
easy to calculate. If this uncertainty is expressed and calculated by fuzzy numbers, the description of the
problem will be more reasonable and accurate, and analysis and decision of the problem will be convenient.
Therefore, it is of practical significance to study uncertain linear systems based on fuzzy numbers. Fuzzy
number is a special kind of fuzzy set, which is a generalization of one kind of natural real numbers.[2, 3, 4].
In 1998, Friedman[5] et al. proposed a general model for solving fuzzy linear systems, and studied the fuzzy
linear system Ax̃ = b̃ by using the embedding method. After this, T. Allahviranloo et al. and B. Zheng
et al. studied some other forms of fuzzy linear systems such as DFLS, GFLS, cffls, DFFLS, and GDFLS
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[6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In recent years, new studies on fuzzy numbers and various types of fuzzy
linear systems have emerged in an endless stream. [16, 17, 18].

It is well known that matrix systems play a crucial role in the vast field of scientific computing. These
systems often need to deal with situations that contain some or all of the parameter uncertainty, which is
particularly common when modeling and predicting complex phenomena. In 2009 and 2018, respectively, Al-
lahviranloo et al.[19] And AmirfakhrianIn et al.[20] used different methods to study and solve the fuzzy linear
matrix equation of the form AX̃B = C̃. Different forms of fuzzy matrix equations have been systematically
studied by Guo et al. in the last decade. [21]− [22]. For complex fuzzy linear systems, few researchers have
proposed research methods in recent decades. The concept of fuzzy complex numbers was first introduced
by J.J. Buckley[23] in 1989. In 2000, Qiu et al.[24] restudied fuzzy complex sequences and their convergence
properties by studying n×n fuzzy complex linear systems.In 2009, Rahgooy et al.[25] applied fuzzy composite
linear equations to circuit analysis problems. In 2014, Behera and Chakraverty used the embedding method
to analyze and discuss fuzzy complex systems of linear equations, and improved the arithmetic operations of
complex fuzzy numbers[16].In 2018, Guo et al.[26] introduced the complex fuzzy matrix equation Z̃C = W̃
and proposed a general model for complex LR fuzzy solutions. Recently, Wu et al.[25] established a method
for calculating generalized fuzzy solutions of the semi-complex fuzzy matrix equation AX=B by meabs of the
MPwg inverse of a crisp matrix.

In this paper, a matrix model for solving fuzzy matrix equation AX̃B = C̃ is proposed.Compare with
the present work, this paper has three mathematical contribution, that is, (1) semi complex LR fuzzy matrix
equation AXB = C is firstly investigated by a matrix method. Through giving basic operations of complex
LR fuzzy matrices; (2) two new and simple computing models that is a system of linear matrix equations
are constructed; (3) Two sufficient condition of strong complex fuzzy solution condition are analyzed and
provided. The content structure is as follows:

In Section 2, we review the concept of complex LR fuzzy numbers, based on which we introduce the
concept of complex LR fuzzy linear matrix equation. In Section 3, we construct a detailed model of the LR
complex fuzzy matrix equation, solve the equation by using the generalized inverse of the coefficient matrix,
and at the same time explore the existence conditions of strong fuzzy solutions and their properties in depth.
In order to verify the effectiveness and practicability of the method, some numerical examples are given.
Section 4 is the summary and conclusion refinement of the whole paper, and Section 5 is the prospect of
future research directions, and puts forward the topics and potential research areas for further exploration.

2 Preliminaries

The concepts of fuzzy numbers and fuzzy matrices have the following definitions. [2, 3, 4]

Definition 2.1. A fuzzy number is a special kind of fuzzy set, denoted as a map ũ : R → I = [0, 1], which
has the following four conditions::

(1) ũ is upper semi continuous,
(2) ũ is fuzzy convex, i.e., ũ(λx+ (1− λ)y) ≥ min{ũ(x), ũ(y)} for all x, y ∈ R, λ ∈ [0, 1],
(3) ũ is normal, i.e., there exists x0 ∈ R such that ũ(x0) = 1,
(4) suppũ = {x ∈ R | ũ(x) > 0} is the support of the ũ, and its closure cl(suppũ) is compact.
Let E1 be the set of all fuzzy numbers on R.

Definition 2.2. We represent an arbitrary fuzzy number (u(r), u(r)), 0 ≤ r ≤ 1, by a set of ordered pairs of
functions satisfying the following conditions:

(1) u(r) is a bounded monotonic increasing left continuous function,
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(2) u(r) is a bounded monotonic decreasing left continuous function,
(3) r in the interval [0, 1],u(r) is always less than or equal to overlineu(r).
A crisp number x can be represented as a fuzzy number by setting both u(r) and u(r) to x with 0 ≤ r ≤ 1.

By introducing a proper definition, the space of fuzzy numbers {(u(r), u(r))} forms a convex cone E1. This
convex cone can be embedded in a Banach space in an isomorphic and metric consistent manner.

Definition 2.3. A fuzzy number M̃ is said to be a LR fuzzy number if

µ
M̃
(x) =

{
L(m−x

mα
), x ≤ m, α > 0,

R(x−m
mβ

), x ≥ m, β > 0,

Here m is the principal mean of M̃ , mα is the left extension, mβ is the right extension, and the function
L(·), we will make it a left-shaped function that satisfies the following conditions:

(1) L(x) = L(−x),
(2) L(0) = 1 and L(1) = 0,
(3) L(x) is non increasing on [0,∞).
The definition of a right shape function R(·) is similar to that of L(·).
Clearly, when two LR fuzzy numbers M̃ = (m,mα,mβ)LR and Ñ = (n, nα, nβ)LR are equal, if and only

if m = n,mα = nα,mβ = nβ. Similarly, if M̃ is positive (negative), if and only if m−mα > 0(m+mβ < 0).

Definition 2.4. We have for any LR fuzzy numbers M̃ = (m,mα,mβ)LR and Ñ = (n, nα, nβ)LR, the
following.

(1) Addition

M̃ ⊕ Ñ = (m,mα,mβ)LR ⊕ (n, nα, nβ)LR = (m+ n,mα + nα,mβ + nβ)LR.

(2) Subtraction

M̃ − Ñ = (m,mα,mβ)LR − (n, nα, nβ)LR = (m− n,mα + nβ,mβ + nα)LR.

(3) Scalar multiplication

λ⊗ M̃ = λ⊗ (m,mα,mβ)LR ∼=

{
(λm, λmα, λmβ)LR, λ ≥ 0,
(λm,−λmβ,−λmα)RL, λ < 0.

Definition 2.5. The LR complex fuzzy number consists of real part and imaginary part. An arbitrary complex
LR fuzzy number could be represented as x̃ = p̃ + iq̃, where p̃ = (p, pl, pr), q̃ = (q, ql, qr). In this case, x̃ can
be written as

x̃ = p̃+ iq̃ = (p, pl, pr) + i(q, ql, qr).

Definition 2.6. Each element of A complex LR fuzzy matrix Ã = (ãij) is a matrix constructed from complex

fuzzy numbers. Let Ã = (ãij) = ([m,ml,mr] + i[n, nl, nr])ij , i, j = 1, 2, · · · , n, the complex LR fuzzy matrix Ã

can be represented by Ã = (M,M l,M r) + i(N,N l, N r).

Definition 2.7. Given two arbitrary complex LR fuzzy matrices X̃ and Ỹ , consisting of real parts P̃ and
Ũ , and imaginary parts Q̃ and Ṽ , respectively, where these real and imaginary parts are LR fuzzy number
matrices. The arithmetic operation rules between these two complex LR fuzzy matrices are defined as follows.

(1) X̃ + Ỹ = (P̃ + Ũ) + i(Q̃+ Ṽ ),
(2) X̃ − Ỹ = (P̃ − Ũ) + i(Q̃− Ṽ ),
(3) kX̃ = kP̃ + ikQ̃, k ∈ R,
(4) X̃ × Ỹ = (P̃ × Ũ − Q̃× Ṽ ) + i(P̃ × Ṽ + Q̃× Ũ).
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Definition 2.8. The matrix system
a11 a12 · · · a1n
a21 a12 · · · a2n
. . . . . . . . . . . . . . . . . . .
an1 an2 · · · ann




x̃11 x̃12 · · · x̃1n
x̃21 x̃12 · · · x̃2n
. . . . . . . . . . . . . . . . . . .
x̃n1 x̃n2 · · · x̃nn




b11 b12 · · · b1n
b21 b12 · · · b2n
. . . . . . . . . . . . . . . . . .
bn1 bn2 · · · bnn



=


c̃11 c̃12 · · · c̃1m
c̃21 c̃12 · · · c̃2m
. . . . . . . . . . . . . . . . . . .
c̃n1 c̃n2 · · · c̃nn

 , (2.1)

where aij , bij , 1 ≤ i, j ≤ n are crisp numbers and c̃ij , 1 ≤ i, j ≤ n are complex LR fuzzy numbers, is called a
LR complex fuzzy linear matrix equations(CLRFLMEs).

Using matrix notation, we have

AX̃B = C̃, (2.2)

A complex LR fuzzy numbers matrix

X̃ = (M,M l,M r) + i(N,N l, N r)

= (m,ml,mr) + i(n, nl, nr), 1 ≤ i, j ≤ n

is said to the solution of the general dual complex fuzzy matrix equation (2.1) if X̃ satisfies the Eqs.(2.2).

3 Solving the CLRFLMEs

Theorem 3.1. Given a complex fuzzy linear matrix system AX̃B = C̃, it can be equivalently expressed as a
series of linear matrix equations, as follows.

A[MN ]
⊗
B = [UV ],

A
⊗(

M l M r

N l N r

)(
B+ −B−

−B− B+

)
=

(
U l U r

V l V r

)
,

(3.1)

where

X̃ = (M,M l,M r) + i(N,N l, N r), C̃ = (U,U l, U r) + i(V, V l, V r). (3.2)

And the elements b+ij of matrix B+ and b−ij of matrix B− are determined by this way: if bij ≥ 0, b+ij = bij else

b+ij = 0, 1 ≤ i, j ≤ n; if bij < 0, b−ij = bij else b−ij = 0, 1 ≤ i, j ≤ n.

Proof. Let C̃ = [U,U l, U r]+i[V, V l, V r] = ([u, ul, ur]+i[v, vl, vr])n×n and the unknown complex fuzzy matrix
X̃ = [M,M l,M r] + i[N,N l, N r] = ([m,ml,mr] + i[n,ml,mr])n×n. We also let A = A+ + A− in which the
elements a+ij of matrix A+ and a−ij of matrix A+ are determined by the following way: if aij ≥ 0, a+ij = aij
else a+ij = 0, 1 ≤ i, j ≤ n; if aij < 0, a−ij = aij else a−ij = 0, 1 ≤ i, j ≤ n and also let B = B+ +B− in the same
way.
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For complex fuzzy matrix equation AX̃B = C̃, i.e.,

A([M,M l,M r] + i[N,N l, N r])B = [U,U l, U r] + i[V, V l, V r].

Supposing A = A+ +A− and B = B+ +B−, we have

(A+ +A−)([M,M l,M r] + i[N,N l, N r])(B+ +B−) = [U,U l, U r] + i[V, V l, V r]. (3.3)

Since

m̃ijk =

{
(kmij(r), kmij(r)), k ≥ 0,

(kmij(r), kmij(r)), k < 0,

and

M̃B =

{
(M(r)B,M(r)B), B ≥ 0,

(M(r)B,M(r)B), B < 0,

so the Eqs.(3.3) can be rewritten as

A+[M,M l,M r]B+ +A+[M,M l,M r]B− +A−[M,M l,M r]B+ +A−[M,M l,M r]B−+

i(A+[N,N l, N r]B+ +A+[N,N l, N r]B− +A−[N,N l, N r]B+ +A−[N,N l, N r]B−)

= [U,U l, U r] + i[V, V l, V r].

In comparison with the coefficients of i, we get

A+[M,M l,M r]B+ +A+[M,M l,M r]B− +A−[M,M l,M r]B+ +A−[M,M l,M r]B− = [U,U l, U r],

and

A+[N,N l, N r]B+ +A+[N,N l, N r]B− +A−[N,N l, N r]B+ +A−[N,N l, N r]B− = [V, V l, V r],

i.e., 

A+MB+ +A+MB− +A−MB+ +A−MB− = U,
A+M lB+ −A+M rB− −A−M rB+ +A−M lB− = U l,
A+M rB+ −A+M lB− −A−M lB+ +A−M rB− = U l,
A+NB+ +A+NB− +A−NB+ +A−NB− = V,

A+N lB+ −A+N rB− −A−N rB+ +A−N lB− = V l,
A+N rB+ −A+N lB− −A−N lB+ +A−N rB− = V l,

(3.4)

Denoting in matrix form, they can be written as
AMB = U,

A
(
M l,M r

)( B+ −B−

−B− B+

)
=
(
U l, U r,

)
,

(3.5)

and 
ANB = V,

A
(
M l,M r

)( B+ −B−

−B− B+

)
=
(
V l, V r,

)
.

(3.6)

From Eqs.(3.5) and (3.6), we obtain the Eqs.(3.1). and (3.2) as follows:
A[MN ]

⊗
B = [UV ],

A
⊗(

M l M r

N l N r

)(
B+ −B−

−B− B+

)
=

(
U l U r

V l V r

)
,
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where
⊗

is the Kronecker product of matrices and

X̃ = (M,M l,M r) + i(N,N l, N r), C̃ = (U,U l, U r) + i(V, V l, V r).

Similarly, we can derivd another model for solving the Eqs.(2.2). □

Theorem 3.2. The complex LR fuzzy linear matrix system AX̃B = C̃ can be converted into the following
system of linear matrix equations

A
⊗(

M
N

)
B =

(
U
V

)
,(

A+ −A−

−A− A+

)(
M l N l

M r N r

)⊗
B =

(
U l V l

U r V r

)
,

(3.7)

where
X̃ = (M,M l,M r) + i(N,N l, N r), C̃ = (U,U l, U r) + i(V, V l, V r). (3.8)

And the elements a+ij of matrix A+ and a−ij of matrix A− are determined by the following way: if aij ≥ 0, a+ij =

aij else a+ij = 0, 1 ≤ i, j ≤ n; if aij < 0, a−ij = aij else a−ij = 0, 1 ≤ i, j ≤ n.

Proof. The proof is similar with the above Theorem 3.1. □

Theorem 3.3. [27]Given a matrix S belong to Rm×n, T belong to Rp×q, and C belong to Rm×q, there exists
a minimal solution X∗ to the matrix equation SXT = C, which can be expressed as follows.

X∗ = S†CT †.

In order to find a solution to the fuzzy matrix equation (2.2), we first need to compute the system of linear
equations (3.1) or (3.7). We obtain the minimum solution of the linear system(2.2) as follows.

[MN ] = A†[UV ]
⊗
B†,(

M l M r

N l N r

)
== A†⊗(

U l U r

V l V r

)(
B+ −B−

−B− B+

)† (3.9)

or 
(
M
N

)
= A†⊗(

U
V

)
B†,(

M l N l

M r N r

)
=

(
A+ −A−

−A− A+

)†(
U l V l

U r V r

)⊗
B†,

(3.10)

where (.)† is the Moore-Penrose generalized inverse of matrix (.).
It seems that we obtained the complex fuzzy solution matrix X̃ = (M,M l,M r)+ i(N,N l, N r) as the above

expression (3.9) or (3.10). However, the solution matrix may still not be an appropriate LR fuzzy numbers

matrix except for that both M̃ = (M,M l,M r) and Ñ = (N,N l, N r) are appropriate LR fuzzy matrices. So
we give the definition of LR fuzzy solution to the Eq.(2.2) as follows.

Definition 3.4. Let X̃ = (M,M l,M r) + i(N,N l, N r). If ((M,M l,M r) and (N,N l, N r) is the minimal
solution of Eqs.(3.1) or (3.7), such that M l ≥ O,M r ≥ O and N l ≥ O,N r ≥ O, we said that X̃ =
(M,M l,M r) + i(N,N l, N r) is a strong LR complex fuzzy minimal solution of fuzzy matrix equation(2.2).
Otherwise, the X̃ = (M,M l,M r) + i(N,N l, N r) is said to a weak LR complex fuzzy fuzzy minimal solution
of fuzzy matrix equation(2.2) given by

X̃ = m̃ij + iñij
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where

m̃ij =


(mij ,m

l
ij ,m

r
ij), ml

ij > 0, mr
ij > 0,

(mij , 0,max{−ml
ij ,m

r
ij}), ml

ij < 0, mr
ij > 0,

(mij ,max{ml
ij ,−mr

ij}, 0, ), ml
ij > 0, mr

ij < 0,

(mij ,−ml
ij ,−mr

ij), ml
ij < 0, mr

ij < 0.

i, j = 1, . . . , n. (3.11)

and

ñij =


(nij , n

l
ij , n

r
ij), nlij > 0, nrij > 0,

(nij , 0,max{−nlij , nrij}), nlij < 0, nrij > 0,

(nij ,max{nlij ,−nrij}, 0, ), nlij > 0, nrij < 0,

(nij ,−nlij ,−nrij), nlij < 0, nrij < 0.

i, j = 1, . . . , n. (3.12)

Theorem 3.5. Let

S† =

(
E F
F E

)
,

where

S =

(
A+ −A−

−A− A+

)
.

Then {
E = 1

2((A
+ −A−)† + (A+ +A−)†),

F = 1
2((A

+ −A−)† − (A+ +A−)†),
(3.13)

where (A+ +A−)†, (A+ −A−)† are Moore-Penrose inverses of matrices A+ +A− and A+ −A−, respectively.
For the model Eqs.(3.7), we have the following result.

Theorem 3.6. If
A† ≥ O,

(B+ −B−)† + (B+ +B−)†) ≥ O, (B+ −B−)† − (B+ +B−)†) ≥ O,

the fuzzy matrix equation (2.2) has a strong LR complex fuzzy minimal solution as follows:

X̃ = (M,M l,M r) + i(N,N l, N r],

where 

[MN ] = A†[UV ]
⊗
B†,

M l = A†U lE +A†U rF,
M r = A†U lF +A†U rE,
N l = A†V lE +A†V rF,
N r = A†V lF +A†V rE,

E = 1
2((B

+ −B−)† + (B+ +B−)†),
F = 1

2((B
+ −B−)† − (B+ +B−)†).

(3.14)

Proof. Since U l and U r are the left and right extensions of the fuzzy matrix Ũ , respectively, C l ≥ O
and Cr ≥ O, this indicates that

(
U l, U r

)
is a nonnegative matrix. Similarly, for the fuzzy matrix Ṽ =

(V, V l, V r), the properties are the same.
Let

S† =

(
E F
F E

)
=

1

2

(
(B+ −B−)† + (B+ +B−)† (B+ −B−)† − (B+ +B−)†

(B+ −B−)† − (B+ +B−)† (B+ −B−)† + (B+ +B−)†

)
.

The nonnegativity of the condition S†, is equivalent to the fact that both matrices E and F satisfy the
nonnegativity condition.
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Now that E ≥ O and F ≥ O, the product of three non negative matrices(
M l,M r

N l, N r

)
= A†

⊗(
U l, U r

V l, V r

)(
B+ −B−

−B− B+

)†

= A† ( C l, Cr
)( E F

F E

)
=

(
A†U lE +A†U rF,A†U lF +A†U rE
A†V lE +A†V rF,A†V lF +A†V rE

)
≥ O

is non negative in nature. It means that M l ≥ O,M r ≥ O and N l ≥ O,N r ≥ O.
For the model Eqs.(3.1), we have the following result similarly. □

Theorem 3.7. If
B† ≥ O,

(A+ −A−)† + (A+ +A−)†) ≥ O, (A+ −A−)† − (A+ +A−)†) ≥ O,

the fuzzy matrix equation (2.2) has a strong LR fuzzy minimal solution as follows:

X̃ = (M,M l,M r) + i(N,N l, N r],

where 

(
M
N

)
= A†⊗(

U
V

)
B†,

M l = EU lB† + FU rB†,
M r = FU lB† + EU rB†,
N l = EV lB† + FV rB†,
N r = FV lB† + EV rB†,

E = 1
2((A

+ −A−)† + (A+ +A−)†),
F = 1

2((A
+ −A−)† − (A+ +A−)†).

(3.15)

Proof. The proof is straight forward. □

4 Numerical Examples

Example 4.1. Consider the following complex LR fuzzy linear matrix equation(
1 −1
0 2

)(
x̃11 x̃12
x̃21 x̃22

)(
−3 4
1 0

)
=

(
(3, 2, 1)LR (4, 1, 1)LR
(5, 2, 2)LR (3, 1, 2)LR

)
+ i

(
(4, 1, 2)LR (2, 1, 1)LR
(5, 3, 2)LR (3, 2, 1)LR

)
.

By the Theorem 3.2., the original fuzzy matrix equation is extended into the following a system of linear
matrix equations (3.7) 

A
⊗(

M
N

)
B =

(
U
V

)
,(

A+ −A−

−A− A+

)(
M l N l

M r N r

)⊗
B =

(
U l V l

U r V r

)
,

where
X̃ = (M,M l,M r) + i(N,N l, N r), C̃ = (U,U l, U r) + i(V, V l, V r).
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and

A+ =

(
1 0
0 2

)
, A− =

(
0 −1
0 0

)
,

U =

(
3 4
5 3

)
, U l =

(
2 1
2 1

)
, U r =

(
1 1
2 2

)
,

V =

(
4 2
5 3

)
, V l =

(
1 1
3 2

)
, V r =

(
2 1
2 1

)
,

From the Eqs. (3.14), the solution of the computing model is(
M
N

)
= A†

⊗(
U
V

)
B†

=

(
1 −1
0 2

)†


3 4
5 3
4 5
2 3

( −3 4
1 0

)†
=


1.3750 9.6250
0.3750 3.6250
0.8570 9.1250
0.3750 3.6250


and (

M l N l

M r N r

)
=

(
A+ −A−

−A− A+

)†(
U l V l

U r V r

)⊗
B†

=


1 0 0 1
0 2 0 0
0 1 1 0
0 0 0 2


†

2 1 1 1
2 1 3 2
1 1 2 1
1 2 2 1

( −3 4
1 0

)†

=


0.3750 1.5000 0.1250 0.8750
0.1250 0.2500 0.2500 2.2500
0.5000 0.8750 0.0000 0.5000
0.2500 0.6250 0.1250 0.8750

 .

It means

M̃ =

(
(1.3750, 0.3750, 0.5000) (9.6250, 1.5000, 0.8750)
(0.3750, 0.1250, 0.2500) (3.6250, 0.2500, 0.6250)

)
and

Ñ =

(
(0.8570, 0.1250, 0.0000) (9.1250, 0.8750, 0.5000)
(0.3750, 0.2500, 0.1250) (3.6250, 2.2500, 0.8750)

)
.

Since M l,M r and N l, N r are nonnegative matrices and M − M l > O,N − N l > O, the solution we
obtained is an appropriate LR complex fuzzy matrix

X̃ = (M,M l,M r) + i(N,N l, N r)

=

(
(1.3750, 0.3750, 0.5000) (9.6250, 1.5000, 0.8750)
(0.3750, 0.1250, 0.2500) (3.6250, 0.2500, 0.6250)

)
+i

(
(0.8570, 0.1250, 0.0000) (9.1250, 0.8750, 0.5000)
(0.3750, 0.2500, 0.1250) (3.6250, 2.2500, 0.8750)

)
,

which admits a nonnegative strong LR complex fuzzy solution of the original fuzzy matrix system.
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Example 4.2. Consider another complex LR fuzzy linear matrix equation 2 1
1 −1
0 1

( x̃11 x̃12
x̃21 x̃22

)(
1 −1
−1 1

)

=

 (2, 2, 1)LR (3, 2, 1)LR
(3, 1, 1)LR (2, 1, 2)LR
(1, 1, 1)LR (3, 2, 1)LR

+ i

 (5, 1, 3)LR (2, 1, 2)LR
(3, 2, 1)LR (3, 1, 2)LR
(2, 1, 2)LR (1, 1, 1)LR

 .

Suppose

X̃ = (M,M l,M r) + i(N,N l, N r),

A = A+ +A− =

 2 1
1 0
0 1

+

 0 0
0 −1
0 0

 ,

B = B+ +B− =

(
1 0
0 1

)
+

(
0 −1
−1 0

)
and

Ũ =
(
U,U l, U r

)
=

 2 3
3 2
1 3

 ,

 2 2
1 1
1 2

 ,

 1 1
1 2
1 1

 ,

Ṽ =
(
V, V l, V r

)
=

 5 2
3 3
2 1

 ,

 1 1
2 1
1 1

 ,

 3 2
1 2
2 1

 .

By the Theorem 3.1., the original fuzzy matrix equation is extended into the following a system of linear
matrix equations(3.5) 

A[MN ]
⊗
B = [UV ],

A
⊗(

M l M r

N l N r

)(
B+ −B−

−B− B+

)
=

(
U l U r

V l V r

)
,

where

X̃ = (M,M l,M r) + i(N,N l, N r), C̃ = (U,U l, U r) + i(V, V l, V r).

From the Eqs.(3.13), the solution of the computing model is

[MN ] = A†[UV ]
⊗

B†

=

 2 1
1 −1
0 1

† 2 3 5 2
3 2 3 3
1 3 2 1

( 1 −1
−1 1

)†

=

(
0.0179 −0.0179 0.2500 0.2500
−0.3393 0.3393 0.2500 0.2500

)
,

(
M l M r

N l N r

)
= A†

⊗(
U l U r

V l V r

)(
B+ −B−

−B− B+

)†
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=

 2 1
1 −1
0 1

†



2 2 1 1
1 1 1 2
1 2 1 1
1 1 3 2
2 1 1 2
1 1 2 1




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


†

=


0.4464 0.3571 0.3571 0.4464
0.0179 0.2143 0.2143 0.0179
0.5179 0.4464 0.4464 0.5179
−0.0893 0.2679 0.2679 −0.0893

 .

It means

M̃ =

(
(0.0179, 0.4464, 0.3571)LR (−0.0179, 0.3571, 0.4464)LR
(−0.3393, 0.0179, 0.2143)LR (0.3393, 0.4464, 0.0179)LR

)
and

Ñ =

(
(0.2500, 0.5179, 0.4464)LR (0.2500, 0.4464, 0.5179)LR
(0.2500,−0.0893, 0.2679)LR (0.2500, 0.2679,−0.0893)LR

)
.

Since M̃ is an appropriate LR complex fuzzy matrix, but Ñ is not an appropriate one, the solution we
obtained is

X̃ = (M,M l,M r) + i(N,N l, N r)

=

(
(0.0179, 0.4464, 0.3571)LR (−0.0179, 0.3571, 0.4464)LR
(−0.3393, 0.0179, 0.2143)LR (0.3393, 0.4464, 0.0179)LR

)

+i

(
(0.2500, 0.5179, 0.4464)LR (0.2500, 0.4464, 0.5179)LR
(0.2500, 0.0000, 0.2679)LR (0.2500, 0.2679, 0.0000)LR

)
,

which admits a weak complex LR fuzzy solution of the original fuzzy matrix system by the by Definition 3.5.

5 Conclusion

In this paper, two models are proposed to solve the LR complex fuzzy linear matrix equation AX̃B = C̃,
where A and B are crisp matrices for m×m and n×n, respectively, and C̃ is an arbitrary matrix of LR fuzzy
numbers for m × n.We obtained the complex fuzzy approximate solutions of fuzzy linear matrix equations
by solving a crisp linear matrix equation system. In addition, we also discussed the two existence conditions
of strongly complex fuzzy solutions. We demonstrated two numerical examples to show effectiveness of the
proposed method. Next, we will consider the case where matrices A and B are complex matrices, and apply
the algorithm to other types of linear matrix equations. This method is not limited to a specific type of fuzzy
matrix equations, it has a wide range of applicability. To some extent, our study enriches the computational
theory of fuzzy linear systems.
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Abstract. Embedded computing systems are very vulnerable to anomalies that can occur during execution of de-
ployed software. Anomalies can be due, for example, to faults, bugs or deadlocks during executions. These anomalies
can have very dangerous consequences on the systems controlled by embedded computing devices. Embedded sys-
tems are designed to perform autonomously, i.e., without any human intervention, and thus the possibility of
debugging an application to manage the anomaly is very difficult, if not impossible. Anomaly detection algorithms
are the primary means of being aware of anomalous conditions. In this paper, we describe a novel approach for
detecting an anomaly during the execution of one or more applications. The algorithm exploits the differences in the
behavior of memory reference sequences generated during executions. Memory reference sequences are monitored in
real-time using the PIN tracing tool. The memory reference sequence is divided into randomly-selected blocks and
spectrally described with the Discrete Cosine Transform (DCT) [1]. Experimental analysis performed on various
benchmarks shows very low error rates for the anomalies tested.
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1 Introduction

Nowadays, embedded computing systems are extensively diffused and their uses include automotive applica-
tions, consumer applications and particular domains such as industrial subsystems or military applications.
Embedded systems share some important properties, namely the fact that their failures often result in se-
vere consequences (whose degree of gravity depends on the specific application), and interacting with them
is difficult, if not impossible, and the number of concurrent executions is limited and frequently known in
advance . Embedded system failures may be caused by software errors (bugs), faults, or the injection of
new applications, including those deliberately designed to cause failures (malware), possibly coming from the
network to which some embedded systems could be connected [2]. All of these events could result in runtime
anomalies. The ability to automatically detect these anomalies may prevent failures in embedded systems
and, hence, avoid damage to the controlled systems.

Anomalies are events that differ from some standard or reference events. They can be detected explic-
itly, i.e., through pattern recognition, which aims to classify patterns using a-priori knowledge or statistical
information extracted from patterns [3, 4, 5]. Anomaly detection is a key application of Machine Learning,
focusing on identifying data points that deviate from the norm and understanding why this occurs. Its uses
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are numerous, ranging from noise reduction and data cleaning to security-related tasks such as fault detection,
fraud prevention, predictive maintenance, and social security.

Our anomaly detection technique establishes the behavior of the normal executions under examination,
compares the observed behavior with the normal behavior, and signals when the observed behavior differs
significantly from its normal profile. Since anomaly detection techniques signal all anomalies, false alarms
are expected when anomalies are caused by behavioral irregularities. Therefore, this realizes a methodology
based on Stochastic Processes (e.g., [6]).

Following these considerations, in this paper we propose a technique (and related algorithm) to build a
profile of program behavior and to detect deviations from this profile. The profile is based on a statistical
model of the memory references generated during the execution [7]. Our technique is designed to operate,
for the detection phase, on embedded devices. Its computational complexity is low, and hence the overhead
on the embedded device is limited. In particular, our prototypical implementation on an embedded device
currently introduces an overhead lower than 35%. However, it can easily be speeded-up.

Our approach uses the memory address sequences generated by the applications during their execution,
since these sequences contain a lot of information about the running applications. After an initial time period
where the applications perform initialization tasks, we train, for each application, a Hidden Markov Model
(HMM) of the execution. Then, we compute the likelihood that the sequences observed during the following
execution are consistent with the HMM models, and we use this figure to detect the anomalies.

This paper significantly extends our previous conference paper [8], where we have first introduced the
preliminary concepts of our research. Here, with respect to the previous paper, we made the following
contributions:

• we provide a extended concepts on the methodology we proposed, along with a better organization and
linkage with the results introduced in our original work;

• we provide a clearer description about the paper organization;

• we extend related work analysis, as to include other emerging initiatives dealing with the anomaly
detection research problem;

• we extend our proposed methodology with several algorithms that clearly describe our main proposal
for anomaly detection in embedded systems;

• we extend the experimental evaluation and analysis of our proposed framework, by introducing novel
experimental metrics;

• we provide an innovative case study that clearly describes runtime anomaly detection using our method-
ology, within the context of embedded systems.

The remaining part of this paper is organized as follows. Section 2 provides a summary of relevant work
in anomaly detection for embedded systems. In Section 3, we provide the theoretical foundations of our
research. Section 4 presents a detailed description of our methodology in the case of offline executions. In
Section 4.5, we experimentally demonstrate that the analysis framework performs well in classification tasks.
Section 5 focuses on the runtime analysis and anomaly detection in an embedded system, thus leading to
our innovative algorithm, including its experimental validation. In Section 6, we introduce an innovative
case study on runtime anomaly detection using our methodology, within the context of embedded systems.
Finally, Section 7 provides conclusions and possible future work.
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2 Related Work

In this Section, we provide an overview on research efforts that are related to our work.

Different aspects of a program execution may be used for describing its behavior and, hence, analyzing it
in order to detect anomalies. A system call trace is a common type of measure for detecting anomalies [9]. A
system call trace is an ordered sequence of system calls that a process performs during its execution. Other
systems use measures based on the use of resources [10], such as CPU, memory or I/O. The traces collected
during a normal execution are classified with standard pattern matching tools such as HMM [11, 12, 13, 14, 15],
Embedded Hidden Markov Model (EHMM) [16], Neural Networks and Genetic Programming [17], Support
Vector Machine (SVM) [18], and rule-based classifiers [19]. Anomaly detection, also called intrusion detection
in networked systems, is a very important problem that has been widely studied in different areas and
applications. Markovian techniques are one of the best methods for detecting anomalies in a sequence of
discrete symbols [20]. Training a Markov model means fine-tuning the parameters of a probabilistic model
of a sequence without anomalies; after training, the likelihood of unknown sequences are computed given the
parameters of the trained model.

[3] presents two methods for detecting anomalies in embedded systems, namely Markov and Sequence
Time Delay Embedding (Stide) . The Markov approach evaluates the probabilities of the transitions between
events in a training set and uses these probabilities to see if they correspond to the transitions of the test
set. The Stide approach builds templates of normal executions and compares the templates with unknown
sequences. Other approaches, such as [21], use Markov Models of system call sequences. In some cases,
enhanced models can be obtained with Hidden Markov Models, which are widely used for sequence modeling.

In [22], authors report a survey of HMM-based techniques for intrusion detection. Despite their power,
there are few papers dealing with the use of HMM for anomaly detection in embedded systems . Sugaya et
al. describe in [23] an anomaly detection system based on HMM modeling of resource consumption, such as
CPU, memory and network. In [24], Zandrahimi et al. propose two methods, a buffer-based and a probabilistic
detector. The buffer-based detector builds a cache formed with events considered as normal. During test
stage, the method counts the cache misses. However, the probabilistic detector employs the probability of
events to evaluate the testing sequence. The approaches are suitable for embedded systems, as they require
a smaller memory size and can be easily implemented in hardware. Some authors, for example [25, 16, 26],
consider the discrete sequences as signals and use signal processing techniques to analyze them.

[27] presents a significant contribution to the field of anomaly detection by developing a novel method-
ology for acquiring reliable performance results for frequency-based anomaly detectors. By identifying and
characterizing key aspects of the data environment, such as the frequency distribution of data, the paper
constructs a synthetic data environment specifically tailored to assess detector performance comprehensively.
Through a systematic series of experiments, this approach effectively maps out the performance landscape
of the anomaly detector, by highlighting its strengths and exposing areas of weakness. Furthermore, the
study demonstrates the practical applicability and extensibility of the insights gained from synthetic data to
real-life scenarios, providing valuable guidance for improving anomaly detection techniques.

In [28], authors introduce an innovative network transmission model and localization algorithm designed
to detect and rank anomalies using only coarse-grained information from network endpoints. The research
addresses the critical challenge of anomaly detection in distributed systems (e.g. [29, 30, 31]), where the lack
of sufficient sensors impedes monitoring and timely detection of traffic flow irregularities across interconnected
nodes. By developing a novel metric to accurately rank anomalies, the study surpasses traditional statistical
models that rely on standard deviation measures. The experimental results demonstrate that the proposed
algorithm effectively identifies and ranks anomalies, and aligns well with transportation events reported on
social media, thereby improving overall system reliability and performance.

[32] provides a formal runtime security model that enhances anomaly-based malware detection in network-
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connected embedded systems. By defining normal system behavior, including execution sequences and tim-
ing, and leveraging on-chip hardware to non-intrusively monitor system execution via the processor trace
port. This approach addresses significant limitations of existing anomaly-based methods, which often suffer
from performance overheads and susceptibility to mimicry attacks. The detection method is evaluated on a
network-connected pacemaker benchmark, which is prototyped in FPGA, and simulated in SystemC, which
highlights its effectiveness against various impression attacks at different.

In [33], authors advance the field of complex system design and analysis by introducing wrappings in-
tegration infrastructure, a novel knowledge-based approach that enhances system-level verification beyond
component-level analysis. This research demonstrates how the integration infrastructure utilizes domain-
specific knowledge to effectively manage system resources, detect anomalies, and monitor behavior, thereby
improving the reliability and robustness of complex systems. The infrastructure provides a flexible frame-
work for incorporating anomaly detection algorithms originally developed for verification and validation of
knowledge-based systems, facilitating both offline and online evaluation studies. This contribution not only
bridges the gap between component-level and system-level verification but also empowers system developers
with tools for better anomaly detection and system monitoring, which leads to more dependable and efficient
system designs.

With respect to classical state-of-the-art proposals, our method has the specific merit of addressing em-
bedded systems, which is very relevant at the moment . With respect to similar approaches that make use
of HMM for anomaly detection, our main contribution consists in specifically pointing memory references as
the input of our analysis, contrary to others that make use of other parameters like CPU and network flows.

3 Preliminaries

In this Section, we summarize the fundamental concepts used through this paper, namely spectral description
of the virtual memory sequences and program representation by means of HMM. Here, we consider a spectral
representation of memory sequences using Discrete Cosine Transform (DCT) as described in [16].

3.1 Spectral Description of Memory References

The Short-Time Fourier Transform (STFT) is a Fourier-related transform used to determine the sinusoidal
frequency and phase content of local sections of a signal as it changes over time. It describes how the energy
is distributed over a spectral range.

We show hereafter that memory references can be described with spectral parameters. In fact, important
parts of a program are composed of loops that become peaks in the spectral domain, as we will point out
shortly. Let us consider, for example, a simple cycle of this type:

i=0;

while(i<N) {

i++;

}

The virtual memory reference sequence generated during the execution of this loop can be modeled with
a sawtooth signal, as shown in Figure 1 . Calling F (ω) the amplitude spectrum of a single ramp, the analytic
form of the sawtooth spectrum is defined as follows:

F (ω) =
∑
n

δ(n−N) (1)
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Figure 1: Sawtooth model of a loop

Figure 2: Sawtooth in the amplitude spectrum domain

where N is the number of iterations of the loop. The spectrum is therefore composed by a periodic series of
peaks with decreasing amplitudes whose period is related to the loop width N (see Figure 2) .

As a more practical example, let us consider the code fragment reported in Figure 3, which represents
a bubble sort algorithm . After acquiring the virtual memory sequence and performing its spectral analysis,
the STFT described in Equation (2) is applied:

X(n) =

∞∑
−∞

x(n)w(n−m)e−jωn (2)

The sequence of memory addresses is divided into chunks or frames, (which usually overlap each other,
to reduce artifacts at the boundary). Each chunk is Fourier transformed, and the amplitude spectrum over
time is reported in Figure 4. The spectral patterns can be used to characterize the executions. We obtain
spectral information with Fast Discrete Cosine Transform.
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Figure 3: Bubble sort algorithm

Figure 4: STFT spectrum of the bubble sort routine

3.2 Discrete Cosine Transform Representation

Discrete Cosine Transform is a method to obtain spectral information, and it is used in this work instead
of STFT because it is fast and has a good energy compaction capability. Energy compaction means the
capability of the transform to redistribute signal energy into a small number of transform coefficients. It
can be characterized by the fraction of the total number of signal transform coefficients that carry a certain
(substantial) percentage of the signal energy. The lower this fraction is for a given energy percentage, the
better the transform energy compaction capability is.
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X(n) =
N−1∑
i=0

xi cos

(
kπ

N

(
i+

1

2

))
, n = 0, . . . , N − 1 (3)

The principle advantage of DCT transformation is the removal of redundancy between neighboring ad-
dresses. This leads to uncorrelated transform coefficients, which can be processed independently. The ef-
fectiveness of a transformation scheme can be directly gauged by its ability to pack input data into as few
coefficients as possible. This allows the quantizer to discard coefficients with relatively small amplitudes
without introducing visual distortion in the reconstructed image. DCT exhibits excellent energy compaction.

3.3 Hidden Markov Modeling

A standard Hidden Markov model with N states and M possible observation symbols can be denoted as
follows:

λ = (A,B, π) (4)

such that, A matrix gives the probability of each transition from one state to another, B matrix gives the
probability of observing each symbol in each state, and π vector specifies the initial state distribution.

The Baum-Welch algorithm [34] is typically used to learn the state transition (i.e., A matrix) and obser-
vation symbol probability distributions (i.e., B matrix) of an HMM. The well-known backward and forward
procedures can be used to iteratively estimate the model parameters with a space and time complexity of
O(N2T ), where T is the length of the sequence of events. The quality of a model can be evaluated using the
forward procedure to find the probability that a sequence O was generated by the model λ for all possible
paths, namely the likelihood P (O|λ).

4 Anomaly Detection Methodology: The Offline Case

In this Section, we describe in details our proposed methodology in the offline case, including its prelimi-
nary experimental validation. Later, we introduce our algorithm for supporting the detection at runtime,
particularly in embedded systems.

We define the formulation of our problem as follows. Here, we assume that we have a group of N
concurrent processes running on behalf of a given user. Our objective is to detect anomalies during the
execution of the processes due, for example, to a malware attack or a bug in the code. We considered the
following two situations.

In the first considered situation, we assume that all but one of the N processes are prone to anomalies
because there are well-known services that we know for sure cannot generate any anomalies. In this case,
there is only one process that can introduce an anomaly. Our algorithm exploits the effects that the anomaly
introduces by measuring the distance of the execution that can contain anomaly with all the other executions.

In the other considered situation, we use the same concept of measuring distances among executions and
detect anomalies when all the distances change. The execution that introduces anomalies is found using an
argmax criterion. The current limit of our approach is that we detect only one anomaly at a time, or, in
other words, we detect the execution that introduces the biggest anomaly, in the sense that we will explain
shortly.

The methodology applies the following steps:

• employing a pseudo2D-HMM model [35] to characterize the workloads of the target system;

• applying HMM to analyze the executions within the target system;
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• classifying the target executions by means of the previous HMM analysis.

In the next Sections, we describe all these steps in details.

We used trace-driven simulations [36] to test the proposed approach. The traces were a subset of the
SPEC2000 benchmark suite [37]. In particular, we consider the following six workloads: bzip2 and gzip,
which are two popular compression programs; eon, which is a ray traces program; gcc, perl and vpr, which
are FPGA place & route programs. CPU address traces have been obtained by running the applications with
different input data. As a result, several executions of each application have been considered. The programs
reported above run on an Intel(R) Core(TM) i7− 10700CPU @ 2.90GHz, 16GB of RAM with Windows 10
Pro as operating system . The benchmarks were downloaded from traces.byu.edu.

4.1 Pseudo-2D Hidden Markov Models for Workloads Classification

The basic Markov model is the Markov chain, which is represented with a graph composed by a set of N
states. This graph describes the fact that the probability of the next event depends on the previous event.
The current state is temporally linked to k states in the past via a set of Nk transition probabilities.

In our approach, we use Hidden Markov Models (e.g. [38, 39, 39, 40]) to describe the dynamic behavior
of workloads. However, since a program exhibits different behaviors during its execution, different HMMs
should be used to model memory references for each behavior. This led us to a pseudo2D-HMM structure [35],
in which each state in the model, called a superstate, represents another HMM. Specifically, pseudo2D-HMM
is a machine learning approach that requires a learning phase to estimate its parameters. In particular, the
goal of the parameter re-estimation is to estimate the parameters of the pseudo2D-HMM λ that maximize
P (O|λ), the probability that the observed sequence O is produced by the model λ. Thus, in the training
phase, the memory reference sequence related to a given workload is uniformly divided into segments, on
which a DCT is applied. The Discrete Cosine Transform is a well-known signal processing operation with
important properties [41]. For example, it is useful in reducing signal redundancy since it places as much
energy as possible in as few coefficients as possible (energy compaction). The greatest DCT coefficients are
given as input to the pseudo2D-HMM.

The pseudo2D-HMM is incrementally trained on the segments pertaining to a single memory reference
workload type. Each different workload type is modeled using a different pseudo2D-HMM.

4.2 HMM Analysis of Executions

In this Section, we state the validity of the analysis methodology we use in the anomaly detection algorithm.
Given N executions running in our system, we have N HMM models of the form λ = (A,B, π), which we
call λ1, λ2, . . ., λN . Together with the HMM models, we also have N observations, O1, O2, . . ., ON , which
are the sequences of symbols estimated from the memory reference sequence with vector quantization and
from which we estimate the HMM models. The final goal of the proposed methodology is the computation
of likelihood matrices computed with these models and observations.

Our basic assumption is that with a HMM model, we capture a high-level description of each observation.
As a result, we perform the HMM training with blocks of memory references randomly extracted from an
initial part of the address sequence. For the same reason, HMM testing, i.e., the computation of P (O|λ), is
performed by randomly selecting blocks of data and averaging the results. In the following, we describe how
we divide the sequence of memory references.

The data used for the HMM analysis is taken as follows: the sequence of memory references is divided
into 1024 address blocks ; on these blocks, a spectral vector is computed with Discrete Cosine Transform
and from each vector, the first sixteen coefficients are extracted. The following step is to vector quantize the
16-dimension vectors into 64 centroids; the final result is that each address block is represented by a discrete
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symbol from 0 to 63. The symbols are used to train a discrete Hidden Markov Model. It is worth noting
that the data for HMM training and testing is different. As regards the HMM training, we consider nine
thousand blocks randomly chosen within the first 20000 blocks (each block is of 1024 addresses), and we use
the Baum-Welch algorithm. In conclusion, we use 20 million addresses for each execution to train a HMM.
It is worth noting that the first million addresses are omitted from the training procedure because they are
generally related to an initialization phase.

As regards HMM testing, namely the procedure to obtain the P (O|λ) likelihoods, we use the forward
algorithm. The data used for testing is chosen into subsequent 109 virtual addresses in the following way:
each test is performed on 100 blocks chosen randomly into the section of 109 addresses. The final value of
likelihood is computed by averaging all the computed likelihoods.

Finally, the sequence of memory references is divided into sections of one billion addresses, which we call
EPOCHS. For each epoch, we compute the likelihoods by averaging the values obtained on 100 blocks of
memory reference, each block is composed of 1024 addresses, chosen randomly. The analysis algorithm does
not work continuously: as said before, during each epoch, the algorithm acquires addresses, computes DCT
coefficients and vector quantization, and computes likelihoods by randomly sampling portions of data.

While the models are obtained from the first 20 million address references, a block of about three million
references is extracted every million from the sequence of address references. On these blocks, the likelihoods
P (O|λ) are computed.

In this way, during the execution of the programs, a series of likelihood matrices , one for each epoch, are
computed as follows:

P (O1
1|λ1) P (O1

2|λ1) . . . P (O1
N |λ1)

P (O1
1|λ2) P (O1

2|λ2) . . . P (O1
N |λ2)

· · ·
P (O1

1|λN ) P (O1
2|λN ) . . . P (O1

N |λN )

· · ·
P (ON

1 |λ1) P (ON
2 |λ1) . . . P (ON

N |λ1)
P (ON

1 |λ2) P (ON
2 |λ2) . . . P (ON

N |λ2)
· · ·

P (ON
1 |λN ) P (ON

2 |λN ) . . . P (ON
N |λN )

where P (Ok
i |λj) is the likelihood that the j-th model generates the j-th observation, at the k-th time epoch.

Our monitoring algorithm is based upon the differences between HMM models. Usually, the distance is
a measure of how well model λ1 matches observations generated by model λ2, relative to how well model λ2
matches observations generated by itself. In other words, this distance is computed by means of Equation
(5) :

d(λ1, λ2) = |P (O2|λ1)− P (O2|λ2)| (5)

This definition, however, does not take into account how the other observations behave with refer-
ence to λ1 and λ2. We therefore consider the two vectors Λ1 = |P (O1|λ1), P (O2|λ1), . . . , P (ON |λ1)| and
Λ2 = |P (O1|λ2), P (O2|λ2), . . . , P (ON |λ2)| to better represent the models λ1 and λ2. We extend the distance
measure between models reported in Equation (5) in the following way:

d(λ1, λ2) =
N∑
i=1

|P (Oi|λ1)− P (Oi|λ2)| (6)

The distance measure reported in Equation (6) allows us to better separate the different benchmarks than
the distance reported in Equation (5).
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4.3 Tools Developed for Offline Analysis: Valgrind Plugin

Before developing the detection algorithm, we studied the validity of the described analysis framework by
performing several experiments, as we will report shortly. It was impossible to perform this study using
stored address traces, because of the extremely large amount of data required to perform the experiments,
and the high processing time due to the reading operations. It is worth noting that an experiment may
require analyzing several hundred of GBs. For this reason, we developed a tool based on Valgrind, which we
called Tracehmm, to perform all the described processing online.

Valgrind tool [42] is a tracing framework designed to give the possibility to perform dynamic analysis
of software, i.e., analysis performed during the code execution. Valgrind is distributed with several tools
designed to perform common analysis of memory, threading, etc. Valgrind is available under the GNU
GPLv2 license; it is possible to modify the available tools and to modify also the code of the framework itself,
i.e. Coregrind. Coregrind [43] has been designed to analyze already-developed execution code. When the
name of the executable file is given as input to Valgrind, the code itself is loaded in memory together with
the related libraries. The instructions are translated into instructions of a RISC-like language, called VEX
IR, and then executed on a virtual CPU.

The Tracehmm tool performs the DCT analysis and the HMM training directly using the memory ad-
dresses generated during execution. The direct porting of the off-line analysis tools cannot be performed
because Coregrind cannot use any library. For this reason, we rewrite all the writing/reading, memory
allocation and memory copy functions of the standard library. Moreover, we rewrite also some necessary
mathematical functions, namely cos(), sqrt() and log(). The tool is called from the command line as follows:

valgrind --tool=tracehmm [opt] prog & args

The Tracehmm tool’s structure is reported in Figure 5. With this tool, it is possible to perform the
training of a new HMM model or the re-estimation of an already computed HMM model. It also performs
the Viterbi test on a previously trained HMM model for computing the likelihood that the model λ may
generate the execution sequence O.

Figure 5: Structure of the Tracehmm tool
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4.4 Classification of Executions

Before extensively using Tracehmm, we perform a limited classification experiment with only four SPEC
benchmarks to explore the performance of Neural Networks using the following standard configuration: feed-
forward topology , weights computation with the back-propagation algorithm, six hundred inputs and one
output, and 256 elements in the hidden layer. Then we used HMM for the same classification task. We first
stored the address memory sequences for the four benchmarks (bzip, gcc, go, and perl), we compute the
DCT coefficients and vector quantization, and perform classification with Neural Networks and HMM. The
classification results are reported in Figure 6 and Figure 7.

Figure 6: Classification results with neural network model

Figure 7: Classification results with HMM

From this comparison, it is clear the superiority of HMM. Then, we performed more extensive classification
experiments with the Valgrind tool Tracehmm. Classification results are reported in Figure 8 for all the SPEC
benchmarks: h264, gcc, perl, bzip, go, mcf, hmmer, sjeng, quantum, omnet, astar, and xalanc.

Moreover, in order to evaluate the classification results for different pseudo2D-HMM orders, an extensive
test has been performed for different number of superstates and states. The results have been averaged for
all the workloads. In Figure 9, a graphical representation of the mean classification of all the sequences over
the number of states and superstates is depicted. From this data, it comes out that the best pseudo2D-HMM
orders are six superstates and nine states. As Figure 9 represents average values, we have considered the
results for each workload, i.e., averaging the results for all the traces belonging to a given workload type.

The good results reported in the previous Section say that the executions are well discriminated in the
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Figure 8: HMM classification result for all the twelve SPEC benchmarks
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Figure 9: Average recognition rate for all the memory reference sequences over the number of states and
superstates of the pseudo2D-HMM models

HMM likelihoods space. For this reason, we perform the following experiment: for each epoch, compute
the distance matrix between models where the elements are computed according to Equation (6), and find a
3D distribution of points whose inter-point Euclidean distance closely resembles this distance matrix. This
operation, called Multidimensional Scaling, may be used to represent in graphical form a distance matrix. By
repeating this operation among several epochs, we obtain the 3D graph reported in Figure 10, which shows
a good separation among the benchmarks. The line connected to each benchmark represents the dynamic
over the first five epochs.



154 Cuzzocrea A, Mumolo E, Belmerabet I, Hafsaoui A. Trans. Fuzzy Sets Syst. 2024; 3(2)

Figure 10: 3D visualization of the distance matrix between models of all the twelve SPEC benchmarks

4.5 Validation of the HMM-based Machine Learning Approach

Before performing experimental evaluations of the detection tool [44, 45], we performed extensive classification
experiments to verify the described analysis framework [46]. We assume that the HMM models of the
applications and the computation of the likelihood matrices are able to well describe the executions. To
explore the validity of this assumption, we classify the executions.

Namely, the HMM models computed from each observation are used to see if the observations with
the highest likelihood correspond to the related model. To perform this classification, we use the programs
contained in the suite CINT2006 of the SpecCPU2006 benchmark. The suite is composed by twelve programs
with different inputs. Of course, a program with a different input generates different observations.

In other words, if the model λ is computed from the observation O, can λ be used to verify that P (O|λ)
is the maximum for the observation used to compute that model? Of course, numerous observations are
generated from the same application.

Classification results are reported in Figure 11 for all the SPEC benchmarks: h264, gcc, perl, bzip, go,
mcf, hmmer, sjeng, quantum, omnet, astar, xalanc.

It was impossible to perform this analysis using stored address traces, because of the extremely large
amount of data required to perform the experiments, and the high processing time due to the reading
operations. In fact, a single classification experiment may require analyzing several billion bytes. For this
reason, we developed a Valgrind tool, that we called Tracehmm, to perform all the described processing online
.

5 Runtime Anomalies Detection Algorithm in Embedded Systems

In this Section, we demonstrate how our proposed methodology can be effectively and efficiently used in
the context of runtime anomaly detection in embedded systems. Particularly, we provide an algorithm that
makes use of the proposed theoretical framework, which has been described in the offline case by Section 4.

We use the programs contained in the suite CINT2006 of the SpecCPU2006 benchmark. The suite is
composed by twelve programs with different inputs. CPU2006 [47] is SPEC’s CPU-intensive benchmark
suite, stressing a system’s processor, memory subsystem and compiler. SPEC designed CPU2006 to provide
a comparative measure of compute-intensive performance across the widest practical range of hardware using
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Figure 11: Average classification rate for all the considered workloads

workloads developed from real user applications [48, 49]. All the benchmarks are provided as source code.
The programs included in the benchmark suite are the following:

401.bzip2: It is derived from the bzip2 compressor. The inputs are different files to compress.

445.gobmk: It is a version of the Gnu GO game. The input data is related to different positions in the board.
The output is the following movement in the board.

458.sjeng: It is a modified version of the chess game Sjeng 11.2. The inputs is composed by different board
positions and different game depths.

403.gcc: The program is based on the version 3.2 of GNU Gcc, and it is configured to generate assembler code
for the processor X86− 64.

h264ref: This program is the Karsten Sfuhring implementation of the H.264 compression standard. The program
implements only the compression, but not the decompression.

400.perlbench: It is the Perl version 5.8.7.

429.mcf: It is derived from a scheduling software used for public transportation. The software has been modified
to reduce the number of cache miss and therefore to increment the impact on the CPU than the memory.
The inputs are different paths to optimize.

462.libquantum: It is a simulator of a quantum computer. It executes the Peter Shor algorithm. The inputs
are different numbers and the algorithms find the numbers of their factors.

456.hmmer: This program analyzes DNA sequences using HMM. Its inputs are different reference models and it
perform the searching of the correct sequence.

471.omnetpp: It simulates an Internet network using the OMNeT++ simulation system. The inputs are the
networks and hosts configurations.

473.astar: It implements an algorithm for finding the minimum cost path.
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483.xalancbmk: It derives from Xalan-C++, which is a system that processes documents XML and transform
them using style sheets.

Each program with a different input generates a different process. We run each process, and a sequence
of virtual memory addresses is generated. So, for the program bzip2 of the benchmark suite, for example, a
different memory reference sequence is generated for each input. With each sequence of memory references,
an HMM model is estimated.

Our work is based on the assumption that by iteratively re-estimating the HMM parameters with each
sequence, we obtain an HMM model that describes the program itself, not the execution sequence. With
the trained HMM’s and other memory reference sequences, we derive the likelihood that the sequences are
generated by the model. It is worth noting that the data for HMM training and testing is different.

Furthermore, the runtime anomaly detection algorithm based on the proposed execution model is pre-
sented. It has been tested on the memory references captured from an ARM9 Linux based embedded device.
Using the PIN tracing tool [50], we have developed a runtime monitoring tool that has the structure described
in Figure 12.

Figure 12: Runtime anomalies detection diagram

5.1 Parametrization of Memory Reference Sequences

The initial part of the executions is normally devoted to initialization tasks and is very different from the
steady-state phase of the programs. For this reason, we simply blindly fast forward for 1 billion instructions
before starting data analysis.

After that, each sequence of memory address references is divided into 1024 address blocks; on these
blocks, a spectral vector is computed with Discrete Cosine Transform, and from each vector, the first sixteen
coefficients are extracted. The following step is to perform vector quantization with 64 centroids [51] to reduce
the 16-dimension vectors into 1 symbol; the final result is that each block of 1024 addresses is represented by
a discrete symbol from 0 to 63. The sequences of memory addresses are then transformed into sequences of
symbols, which are called Observations.

Given N programs running in our system, we have thus N observations, O1, O2, . . ., ON , which are
the sequences of symbols estimated from the memory reference sequences with DCT analysis and vector
quantization.

The N observations are used to train a Hidden Markov Model of each application, called λ1, λ2, . . .,
λN in the following. The training of the HMM models is performed as follows. For each observation, nine
thousand blocks are randomly chosen within the first 20000 symbols (recall that each symbol corresponds to
a block, which is composed of 1024 addresses) and the HMM parameters are computed with the Baum-Welch
algorithm. Thus, we use 20 million addresses of each execution to train a HMM. It is worth recalling that
the first billion of addresses is omitted from the training procedure because it is generally related to an
initialization phase.
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After HMM modeling, the observations are used to compute, with the forward-back-word algorithm [52],
the P (O|λ) likelihoods. The data used for computing the likelihoods is chosen into the subsequent billion
memory addresses in the following way: twenty sub-sequences of 100 symbols are chosen randomly within
the sequence corresponding to the billion addresses. The final value of likelihood is obtained by averaging all
the computed likelihoods. It is worth recalling that the observations used to compute the P (O|λ) are formed
by sequences of 100 symbols.

In conclusion, the sequence of memory references is divided in sections of one billion addresses that we
call epochs. For each epoch we compute the likelihoods by averaging the values obtained on twenty sets of
100 blocks of memory reference, each block is of 1024 addresses, chosen randomly. The analysis algorithm
does not work continuously: as said before, during each epoch the algorithm acquires addresses, computes
DCT coefficients and vector quantization and computes likelihoods by randomly sampling portions of data.
The initial memory references are thrown away to avoid the initial transient. After that, the N observations
are used to train a Hidden Markov Model of each observation, called λ1, λ2, . . ., λN in the following.

A standard HMM with N states and M possible observation symbols can be denoted λ = (A,B, π).
The A matrix gives the probability of each transition from one state to another, the B matrix gives the
probability of observing each symbol in each state, and the π vector specifies the initial state distribution.
The Baum-Welch algorithm [34] is typically used to learn the state transition (A matrix) and observation
symbol probability distributions (B matrix) of an HMM. The well known forward-backward procedures is
used to evaluate the quality of models λi, with a space and time complexity of O(N2T ), where T is the length
of the input sequence. The quality of a model is the probability that the observation sequence O is generated
by the model λ for all possible paths, and is referred to the likelihood P (O|λ).

The ultimate goal of the proposed methodology is the computation of likelihood matrices computed with
these models and observations. Our basic assumption is that with a HMM model we capture a high-level
description of each observation. For this reason we perform the HMM training with blocks of 1024 memory
references randomly extracted from an initial part of the address sequence. For the same reason, the HMM
testing, i.e. the computation of P (O|λ), is performed by randomly selecting blocks of data and averaging the
results. While the models are obtained from the first 20 million address references, a block of about three
million references is extracted every million from the sequence of address references. On these blocks the
likelihoods P (O|λ) are computed.

5.2 Anomaly Detection Algorithm

The process running on the embedded device is instrumented and the memory references are collected. The
time sequence of memory references is divided in epochs used to train the corresponding Hidden Markov
Model of the execution. After the training, each new epoch of the time sequence is used to compute the new
matrix |P (Oi|λj)|, as described in Section 4.2. From this matrix, the symmetric matrix Mk of the distances
between the models is obtained:

λ1 λ2 λ3 .

λ1 0 m1,2 m1,3 .
λ2 m2,1 0 m2,3 .
λ3 m3,1 m3,2 0 .
. . . . 0

(7)

where mi,j is the Euclidean norm of the difference between the row i and the row j of the |P (Oi|λj)| matrix.

At epoch k, the difference matrix Dk is computed as follows:

Dk =
√
|Mk −Mk−1| (8)



158 Cuzzocrea A, Mumolo E, Belmerabet I, Hafsaoui A. Trans. Fuzzy Sets Syst. 2024; 3(2)

where k is the current epoch and k − 1 is the previous one.

Then, the evk vector containing the eigenvalues of Dk is computed:

evk = eigenvalues(Dk). (9)

Finally, to detect whether an anomaly is occurred in the current epoch, the Nuclear Norm, NN of the
eigenvalue vector evk is computed as follows :

NN =
N∑
i=1

∣∣∣evki ∣∣∣ . (10)

It is worth recalling that NN is an excellent energy index [53]. The percentage variation of the nuclear
norm is compared to a given threshold THR in order to detect if in the current epoch an anomaly is occurring.

The meaning of the described algorithm is that when an observation varies due to an anomaly, the distance
between the corresponding likelihood among different epochs accordingly changes. Moreover, if an anomaly
is detected, we can determine which model has produced the anomaly, i.e. which execution has changed its
behavior. The anomaly detection algorithm is summarized Figure 13.

Figure 13: Schematic view of the anomalies detection algorithm

On the other hand, by focusing on more algorithmic details, Figure 14 show the pseudo code of the
proposed anomaly detection algorithm presented in Figure 13.

5.3 Runtime Implementation using the PIN Tool

Tools capable of extracting and processing memory traces from running processes have been developed to
monitor systems in real-time. We chose Intel Pin as tracing framework, as it is freely available on both
x86, x86 64 and ARM architectures under a Linux environment. Using the API of PIN [50], we developed
a tool that attach to a running process, track memory accesses until requested then detach and let the
monitored application continue its execution unharmed. Provided a rule set to detect processes to monitor
(e.g. processes listening on a specific port, processes running as a specific user), standard system tools can
be used to find matching Process IDs (PID). PIDs will be used by training and tracking PIN tools to attach
to each process and produce models or test workload resemblance as requested [54].
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Figure 14: Pseudo code for the anomalies detection algorithm

A new group of applications that have been chosen to be monitored requires an (automated) step of tuning,
where training and testing parameters are optimized to suite the group of applications chosen [55, 56]. Once
parameters are defined, a PIN tool is used to generate Markov model and centroids files of each application.
Multiple input sources are used to train the model in order to obtain a good generalization of the application
model. Another PIN tool provides testing capabilities: it requires the PID of the process to track and the
Markov model of the application it claims to belong to. A logarithmic affinity probability is then produced.

A tracking system daemon is devoted to run the testing tool at regular time intervals: the tool attaches
to target process, dumps memory references and then detaches, so target process is able to keep running
without any more overhead. Memory addresses are then processed and output is used to classify the tracked
process as belonging to the claimed application or not. The main tasks to be performed can be summarized
in the following steps:

1. find the process to track;

2. use PIN to extract memory references of the process;

3. train the DCT-HMM description of the process;

4. compute the matrix P (Oi|λj) and check the difference of error matrix to detect anomalies.

In Figure 15, a detailed pseudo code of the real-time monitoring tool is reported.

5.4 Experimental Results

The tool based on PIN described above has been tested in three different experiments, as we will show shortly.
In all the tests of this Section , an embedded device equipped with an ARM9 at 500 MHz, 128 Mb RAM and
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Figure 15: Pseudo code for the anomalies detection tools

a Debian Linux has been used. An important issue related to any monitoring system applyied to embedded
systems is overhead. Embedded systems like the ARM based computers, in fact, have low computational
power and limited power supplies, thus constraints in terms of computational and power requirements are
particularly important. Our prototype implemented PIN with processor instructions, therefore only compu-
tational constraints have been experimentally evaluated. Computational constraints have been evaluated in
terms of the slowdown that the embedded system suffers due to the instrumentation of the code to extract
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the memory references, since most of the computational load can be assigned to a different system. Our tool
each time a memory address is accessed by the instrumented application executes a callback function in order
to save the memory reference, hence introducing an unavoidable overhead to the normal execution of the
application. This is done for the strictly necessary number of references to provide good values of accuracy,
then tool detaches from the application, which can continue its execution normally. Those memory references
are shared with a tracking process, typically on a different machine on the same network, which will begin
the analysis of the trace avoiding the tracing tool to slow down the application even more. In our prototype
the tracing caused an about 33% slow down. However, using other instrumentation approaches the slowdown
can be greatly reduced.

5.4.1 Experiment 1 - Malware Detection

In this first experimental campaign, the PIN tool has been attached to two different processes, and the
anomaly detector changes artificially its input at a given epoch. This test aims at simulating a malware
affecting a process that suddenly change its behavior becoming a different process. For this test 8 different
models of SPEC CPU2006 benchmark have been used, namely sjeng, omnet, astar, h264, xalanc, mcf,
perl, quantum , changing this 8 execution suddenly into gcc, hmm, bzip 0, bzip 1, bzip 2, bzip 3, go 0,
go 1, go 2, go 3, where for bzip and go different execution have been considered. Thus, 80 different anomalies
have been tested. For example, in this test, at a given epoch, the execution of astar suddenly becomes gcc
(or bzip 0, etc.). This behavioral change can be detected by the proposed algorithm.

In Figure 16, the corresponding False Positive versus False Negative behavior for anomaly epoch deter-
mination has been obtained.

Figure 16: Performances of the detection algorithm for change behavior anomalies

The experimental results show that the algorithm can determine in an accurate way the epoch that has
produced the error, with an equal error rate below 0.8%.

5.4.2 Experiment 2 - Loop Bug Detection

In this experiment, an infinite loop substitutes the normal execution of the benchmark at a given epoch. This
experiment shows if the proposed algorithm is capable to detect anomalies in programs that remain blocked
in loops.



162 Cuzzocrea A, Mumolo E, Belmerabet I, Hafsaoui A. Trans. Fuzzy Sets Syst. 2024; 3(2)

Table 1: Loop bug detection results

SNR Correct Detections

0 dB all
5 dB all
10 dB all
15 dB all
20 dB all
25 dB all
30 dB all
35 dB all
40 dB none
45 dB none
50 dB none

This test has been conducted using the following benchmarks: omnet, astar, h264, xalanc, mcf, perl,
gcc, bzip. In all the 8 tested cases, the epoch in which the anomaly has occurred has been always correctly
determined. In this test, the execution that introduces the anomaly has also been detected with an accuracy
of 89.5%.

5.4.3 Experiment 3 - Random Error in Memory References Detection

In this third experiment, the memory trace gathered using PIN has been modified by adding a white gaussian
noise. This experiment shows what energy differences in memory reference are detected as anomaly by the
proposed program.

The results have been conducted on the same 8 benchmark of Experiment 2, namely: omnet, astar, h264,
xalanc, mcf, perl, gcc, bzip , and the noise has been added to one benchmark at a time, resulting in 8 tests
for each value of SNR, using a threshold THR = 100.

This experiment shows that the proposed method is capable of detecting random modifications of the
memory references when this behavior is evident, starting from 35 dB, and it becomes easier and easier as
the SNR is decreasing.

6 Case Study: Runtime Anomaly Detection in Embedded Systems

In this Section, we introduce an innovative case study on runtime anomaly detection using our methodology,
within the context of embedded systems.

Embedded devices have seen a remarkable surge in popularity recently, paralleling a significant increase in
the variety and sophistication of anomalies that can affect their performance and security. Consequently, both
industry and academia have focused extensively on addressing the unique challenges of anomaly detection in
embedded systems.

Anomaly detection is crucial for these systems due to their widespread use in critical applications where
reliability is paramount. To tackle this, advanced behavior-based anomaly detection systems have been
developed, leveraging machine learning algorithms to identify and analyze deviations in data such as sensor
readings, communication patterns, and power consumption. Hence, we provide in this Section a detailed
case study demonstrating how our proposed approach can be employed for anomaly detection in embedded
systems and IoT devices. By examining real-world scenarios, we illustrate the effectiveness of our method in
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identifying and mitigating anomalies, thereby enhancing the reliability and security of these systems. This
case study showcases how our approach can detect irregularities in various parameters, such as sensor data,
communication protocols, and energy consumption, ensuring the robust operation of embedded and IoT
devices.

In recent years, the significance of anomaly detection in embedded systems and IoT devices has escalated
due to the increasing integration of these technologies in critical applications. Statistical data from various
reports highlight the scale and impact of anomaly detection efforts.

For instance, a comprehensive survey on anomaly detection strategies for cyber-physical systems (CPS)
indicates that advanced methods such as edge and edge-Cloud computing are becoming pivotal. These
methods are designed to handle large volumes of high-dimensional data generated by IoT devices, with one
study reporting a significant reduction in detection latency and an improvement in overall accuracy through
the use of these techniques [57, 58].

Furthermore, the adoption of machine learning models in anomaly detection has shown promising results.
A study on industrial IoT (IIoT) networks revealed that using a hybrid machine learning approach can
enhance the detection rate of anomalies while maintaining low false-positive rates. This is particularly
important in environments where real-time response is critical [57]. Additionally, [58] focused on distributed
online one-class support vector machines (SVM) demonstrated that such approaches are effective for anomaly
detection in networked embedded systems. This method allows for continuous learning and adaptation, crucial
for maintaining security and operational efficiency in dynamic environments.

Monitoring data in embedded systems is crucial for assessing system health, identifying workload patterns,
and defining metric spaces, which are subsequently used to detect anomalies. To ensure the efficacy of anomaly
detection, various fault scenarios can be simulated and analyzed, including:

• Sensitive Sensor Interactions. Embedded systems often interact with sensitive sensors and ac-
tuators. Anomalies can be detected by monitoring unusual patterns in these interactions, which may
indicate tampering or misuse. For instance, unauthorized access to a temperature sensor in an industrial
control system could signal an attempt to disrupt normal operations.

• CPU-Intensive Loops. Faulty or malicious code can introduce infinite loops or heavy computational
tasks that exhaust CPU resources, leading to performance degradation or system crashes. By analyzing
CPU usage patterns and detecting abnormal spikes, these issues can be identified and mitigated. For
example, an embedded system might exhibit abnormal CPU usage due to a spin lock fault, causing a
significant slowdown.

• Memory Leaks. Memory leaks occur when a system continuously allocates memory without releasing
it, eventually exhausting available memory and causing crashes. In embedded systems, this can be
particularly problematic due to limited memory resources. Anomaly detection algorithms can monitor
memory usage over time to identify and address leaks before they cause significant harm. For instance,
a gradual increase in memory usage without a corresponding release could indicate a memory leak.

• Disk I/O Errors. Disk I/O operations in embedded systems often follow predictable patterns. Anoma-
lies in these patterns, such as unexpected spikes in read/write operations, can indicate hardware failures
or malicious activity. By continuously monitoring disk I/O performance, potential issues can be de-
tected early. For example, a sudden increase in disk access could be a sign of a disk I/O error caused
by malware.

• Network Anomalies. Embedded systems are increasingly networked, making them vulnerable to
various network-based attacks. Unusual network traffic patterns, such as unexpected bursts of data
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transmission or communication with unknown hosts, can indicate network anomalies. Monitoring net-
work traffic for these patterns helps in identifying and responding to potential threats. For instance,
abnormal outgoing network traffic could suggest a denial-of-service attack or data theft attempt.

In Figure 17, a comprehensive IoT workflow is shown where various stages are involved to ensure efficient
monitoring and anomaly detection:

Figure 17: Workflow for monitoring and anomaly detection in IoT systems using DCT-HMM

• IoT Platform Setup: The workflow begins with the establishment of an IoT platform, which includes
IoT gateways and devices. The platform facilitates seamless communication and data aggregation from
numerous IoT devices deployed in the field.

• Process Monitoring: A specific process is selected for monitoring. This process involves tracking
various performance metrics and data points critical to the operation of the IoT devices.

• Memory Reference Extraction: Using the PIN tool, memory references of the selected process are
extracted. PIN is a dynamic binary instrumentation framework that allows the collection of detailed
memory access patterns and other relevant information from running applications.

• Training the DCT-HMM Model: The next step involves training a Discrete Cosine Transform-
Hidden Markov Model (DCT-HMM) using the extracted memory references. This model helps in
understanding the normal behavior of the process by analyzing the patterns in the data.

• Computing Matrix P (O|λ): Once the model is trained, the matrix P (O|λ), which represents the
transition probabilities between different states in the HMM, is computed. This matrix is crucial for
detecting deviations from normal behavior.

• Anomaly Detection: Finally, anomalies are detected by comparing the difference in the error matrix.
This involves calculating the error matrix during real-time monitoring and checking it against the
learned model. Significant differences indicate potential anomalies, prompting further investigation or
corrective actions.
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7 Conclusion

In this paper, we propose a technique to determine anomaly behaviors in programs based on a model built from
memory reference sequences. We present a detailed modeling techniques based on spectral representation
of memory reference sequences and Hidden Markov Models, and show that the execution epochs of each
program can be clustered and represented using multidimensional scaling. This modeling technique is the
basis of the proposed algorithm for anomaly detection, which is capable of accurately determine the epoch
where an anomaly has occurred [59, 60, 61, 62, 63]. It is also capable to determine the program subject to
the anomaly.

The main limitation of the technique is that it considers a single thread of execution. In a multi-threaded
program, this technique should be extended to consider an aggregate model of all the different threads. In
the scenario of monitoring programs running on a given embedded system, this is not a problem, as typically
the processes in such environments are single-threaded.

The experimental evaluations of the algorithm reported in the paper is obviously preliminary, but, at
the same, it has provided a clear vision of the potentialities offered by our proposed framework, and its
reliability in effectively and efficiently supporting anomaly detection. Indeed, we obviously plan to further
experimentally investigate the algorithm through extensive experiments with different faults and anomaly
injections. In addition to this, we plan to extend our proposed framework to other classes of data, such as
streaming data (e.g., [64]), and data compression (e.g., [65, 66, 67]) and privacy issues (e.g., [68]) in order to
catch other advanced features that may return to be useful in emerging Big Data environments (e.g., [69, 70]).
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Abstract. In this study, we present the ideas of logical entropy and logical conditional entropy for partitions in
interval-valued intuitionistic fuzzy sets, and we establish their fundamental properties. First, we establish the defi-
nitions of logical entropy and logical conditional entropy, demonstrating their key characteristics and relationships.
We then define logical mutual information and explore its properties, providing a comprehensive understanding of
its behavior within the context of interval-valued intuitionistic fuzzy sets. Additionally, we propose the concept of
logical divergence of states defined on interval-valued intuitionistic fuzzy sets and examine its properties in detail,
including its application and implications for understanding state transitions within these fuzzy sets. Finally, we
extend our study to dynamical systems, introducing the logical entropy of such systems when modeled with interval-
valued intuitionistic fuzzy sets. We present several results related to this extension, highlighting the applicability
and relevance of logical entropy in analyzing and understanding the behavior of dynamical systems. Overall, this
paper offers a thorough exploration of logical entropy, mutual information, and divergence within the framework of
interval-valued intuitionistic fuzzy sets, providing new insights and potential applications in various fields.

AMS Subject Classification 2020: 28D20; 03E72
Keywords and Phrases: Interval-valued intuitionistic fuzzy sets, Logical entropy.

1 Introduction

Entropy is a crucial concept in numerous scientific disciplines, Including fields like physics, computer science,
systems theory, information theory, statistics, sociology, and various others. It was initially introduced in the
dynamical systems theory by Kolmogorov in 1958 [1]. Sinai later extended this concept by defining entropy
for a dynamical system with a probability space as the state space [2]. Shannon conceptualized entropy in
information theory [3], and more recently, Ellerman introduced logical entropy based on logical partitioning
[4]. Several authors have recently defined entropy and logical entropy for dynamical systems with an algebraic
structure [5, 6, 7, 8, 9, 10, 11].
Fuzzy generalizations of dynamical systems and their Shannon entropy have also been studied [6, 7, 8]. In
1975, Zadeh introduced interval-valued fuzzy sets (IV FS) as an extension of fuzzy sets [12]. Subsequently,
in 1989, Atanassov and Gargov proposed the concept of interval-valued intuitionistic fuzzy sets (IV IFS(X))
as an extension of interval-valued fuzzy sets [13].
This paper aims to explore logical entropy for interval-valued intuitionistic fuzzy sets in a non-empty set X
and to introduce the logical entropy of dynamical systems in IV IFS(X). The structure of the paper is as
follows:

..

∗Corresponding Author: Zohreh Nazari, Email: z.nazari@vru.ac.ir, ORCID: 0000-0002-4182-5936
Received: 28 July 2024; Revised: 7 October 2024; Accepted: 9 October 2024; Available Online: 4 November 2024; Published
Online: 7 November 2024.

How to cite: Nazari Z, Zangiabadi E. Logical Entropy of partitions for interval-valued intuitionistic fuzzy sets. Transactions on
Fuzzy Sets and Systems. 2024; 3(2): 172-185. DOI: https://doi.org/10.71602/tfss.2024.1127542

172

https://sanad.iau.ir/journal/tfss/
https://doi.org/10.71602/tfss.2024.1127542
https://orcid.org/0000-0002-4182-5936
https://orcid.org/0000-0002-3228-8024


Logical Entropy of Partitions
for Interval-valued intuitionistic Fuzzy Sets. Trans. Fuzzy Sets Syst. 2024; 3(2) 173

Section 2 presents the concepts of logical entropy for partitions in IV IFS(X) and its logical conditional
entropy, along with an investigation of their properties. In Section 3 delves into the concepts of logical mutual
information and their properties. Then in Section 4 defines the logical divergence of states on IV IFS(X)
moreover examines its properties. Finally, Section 5 focuses on the study of logical entropy of dynamical
systems in IV IFS(X).

The subsequent sections offer essential information that will be used throughout the paper. The concepts
mentioned below are all derived from references [13, 10]. For further details, please refer to [13, 10].

Consider C[0, 1] as the set comprising all closed subintervals of [0, 1]. An interval-valued intuitionistic
fuzzy set I within a universe X is described as I = {⟨x, αI(x), βI(x)⟩ | x ∈ X}, where αI : X → C[0, 1]
and βI : X → C[0, 1], and these functions satisfy the condition αIU (x) + βIU (x) ≤ 1 for every x ∈ X.
The intervals αI(x) and βI(x)indicate the degrees of membership and non-membership of an element x in I,
respectively. Expressly, αIL(x) and αIU (x) represent the minimum and maximum levels of membership of x
in I, respectively, and these values satisfy 0 ≤ αIL(x) ≤ αIU (x) ≤ 1.

For convenience, the collection of all interval-valued intuitionistic fuzzy sets overX is denoted as IV IFS(X).
In this discussion, we will write

I = ⟨[αIL, αIU ], [βIL, βIU ]⟩,

instead of

{⟨x, [αIL(x), αIU (x)], [βIL(x), βIU (x)] | x ∈ X⟩}.

Two partial binary operations⊕ and · on IV IFS(X) are defined as follows: for any I = ⟨[αIL, αIU ], [βIL, βIU ]⟩
and J = ⟨[αJL, αJU ], [βJL, βJU ]⟩ ∈ IV IFS(X),

I ⊕ J = ⟨[αIL + αJL, αIU + αJU ], [βIL + βJL − 1, βIU + βJU − 1]⟩,

whenever αIL + αJL ≤ 1, αIU + αJU ≤ 1, βIL + βJL ≥ 1, and βIU + βJU ≥ 1, and

I · J = ⟨[αIL · αJL, αIU · αJU ], [βIL + βJL − βIL · βJL, βIU + βJU − βIU · βJU ]⟩.

See the properties of these partial binary operations in [10].

A function m : IV IFS(X) → [0, 1] is termed a state on IV IFS(X) if it satisfies certain conditions that
allow it to measure or evaluate the interval-valued intuitionistic fuzzy sets over X within the range from 0 to
1.

To be specific, the function m must meet the following criteria:

1. Normalization: The state assigns the value 1 to the specific fuzzy set ⟨[1, 1], [0, 0]⟩. This particular
fuzzy set represents an element that is entirely a member (with a membership degree interval of [1, 1]) and
not at all a non-member (with a non-membership degree interval of [0, 0]). Mathematically, this is expressed
as:

m(⟨[1, 1], [0, 0]⟩) = 1.

2. Additivity: The state is additive for the operation ⊕, which is a binary operation defined for combining
two interval-valued intuitionistic fuzzy sets. For any I, J ∈ IV IFS(X), if I ⊕ J is defined, the state of the
combined set I ⊕ J is equal to the sum of the states of the individual sets I and J . Formally, this is written
as:

m(I ⊕ J) = m(I) +m(J).

A finite collection F = {I1, ..., In} of elements of IV IFS(X) is said to be a partition if

⊕n
i=1Ii = ⟨[1, 1], [0, 0]⟩.
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Thus, the relation between a state m and a partition F = {I1, ..., In} is

m(⊕n
i=1Ii) =

n∑
i=1

m(Ii).

Let F1 = {I1, ..., In} and F2 = {J1, ..., Jm}. The partition F2 = {J1, ..., Jm} is called a refinement of
F1 = {I1, ..., In}, written as F1 ⪯ F2, if there exists a partition k(1), ..., k(n) of the set {1, ...,m} such that

m(Ii) =
∑

h∈k(i)

m(Jh),

for every i = 1, ..., n. The collection

F1 ∨ F2 = {Ii · Jj : i = 1, ..., n, j = 1, ...,m},

which is a partition.

2 Logical Entropy of Partitions in Interval-Valued Intuitionistic Fuzzy
Sets

Logical entropy and logical conditional entropy provide more refined tools for measuring and managing
uncertainty in IV IFS, where both fuzziness and hesitation need to be considered. These concepts extend
classical entropy ideas to work better within the richer structure of IV IFS. For this purpose, in this section,
we introduce the concepts of logical entropy and logical conditional entropy for partitions within IV IFS and
explore their properties.

Definition 2.1. Let F = {I1, · · · , In} be a partition in IV IFS(X),, and let m : IV IFS(X) → [0, 1] be a
state. The logical entropy of F for state m is defined as follows:

H l
m(F) =

n∑
i=1

m(Ii)(1−m(Ii)). (1)

Remark 2.2. The logical entropy H l
m(A) is always non-negative. Given that

∑n
i=1m(Ii) = m(⊕n

i=1Ii) =
m(⟨[1, 1], [0, 0]⟩) = 1, equation (1) can also be expressed in the form shown below:

H l
m(F) = 1−

n∑
i=1

(m(Ii))
2. (2)

Example 2.3. M = {⟨[1, 1], [0, 0]⟩} represents a partition of IV IFS(X), and for every partition B of
IV IFS(X), it holds that B ⪯M . If we set M = {⟨[1, 1], [0, 0]⟩}, then H l

m(M) = 0.

Example 2.4. Suppose that ⟨[αIL, αIU ], [βIL, βIU ]⟩ ∈ IV IFS(X). Then, F = {I1 = ⟨[αIL, αIU ], [βIL, βIU ]⟩, I2 =
⟨[1− αIL, 1− αIU ], [1− βIL, 1− βIU ]⟩} forms a partition of IV IFS(X).

If m is a state such that m(⟨[αIL, αIU ], [βIL, βIU ]⟩) = s < 1 and m(⟨[1−αIL, 1−αIU ], [1−βIL, 1−βIU ]⟩) =
1− s, then H l

m(F) = 2s(1− s).
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Definition 2.5. Consider F1 = {I1, . . . , In} and F2 = {J1, . . . , Jm} as two partitions of IV IFS(X). The
logical conditional entropy of F1 given F2 is defined as follows:

H l
m(F1|F2) =

n∑
i=1

m∑
j=1

m(Ii · Jj) (m(Jj)−m(Ii · Jj)) . (3)

Proposition 2.6. ([10]) Consider F = {I1, ..., In} as a partition of IV IFS(X), and let K ∈ IV IFS(X).
then

m(K) =
n∑

i=1

m(Ii ·K).

Remark 2.7. According to Proposition 2.6, we have
∑n

i=1m(Ii · Ij) = m(Ij). Therefore, equation (3) can
be rewritten in the following form:

H l
m(F1|F2) =

m∑
j=1

(Jj)
2 −

n∑
i=1

m∑
j=1

(m(Ii · Jj))2. (4)

Remark 2.8. Since m(Ii · Jj) ≤ m(Jj) for i = 1, . . . , n and j = 1, . . . ,m, the logical conditional entropy
H l

m(F1 | F2) is always nonnegative. Suppose M = {⟨[1, 1], [0, 0]⟩}. It is straightforward to verify that
H l

m(F |M) = H l
m(F) for any partition F of IV IFS(X).

Theorem 2.9. For any arbitrary partitions F1 and F2 of IV IFS(X), the following property hold.

H l
m(F1 ∨ F2) = H l

m(F1) +H l
m(F2 | F1). (5)

Proof. Suppose that F1 = {I1, · · · , In} and F2 = {J1, · · · , Jm}. Then By equations (2) and (3) we derive:

H l
m(F1) +H l

m(F2 | F1) = 1−
n∑

i=1

(m(Ii)
2 +

n∑
i=1

(m(Ii)
2

−
n∑

i=1

m∑
j=1

(m(Ii · Jj))2

= 1−
n∑

i=1

m∑
j=1

(m(Ii · Jj))

= H l
m(F1 ∨ F2).

□

Remark 2.10. Let F1,F2, · · · ,Fn be partitions of IV IFS(X). Using induction, we obtain the following
generalization of equation (5):

H l
m(F1 ∨ F2 ∨ · · · ∨ Fn) = H l

m(P1) (6)

+

n∑
i=2

H l
m(Fi | F1 ∨ · · · ∨ Fi−1 ∨ Fi+1 · · · ∨ Fn).

Remark 2.11. For any arbitrary partitions F1 and F2 of IV IFS(X), the following relationship is easily
obtained:

H l
m(F1 ∨ F2) = H l

m(F1) +H l
m(F2 | F1) = H l

m(F2) +H l
m(F1 | F2). (7)
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Theorem 2.12. For any partitions F1 and F2 of IV IFS(X), the following assertions hold:

(i) H l
m(F1 | F2) ≤ H l

m(F1).

(ii) H l
m(F1 ∨ F2) ≤ H l

m(F1) +H l
m(F2).

Proof. Assume that F1 = {I1, . . . , In} and F2 = {J1, . . . , Jm}. (i) Given that proposition 2.6 establishes
that

∑m
j=1m(Ii · Jj) = m(Ii), it follows that:

m∑
j=1

m(Ii · Jj)(m(Jj)−m(Ii · Jj)) ≤ (

m∑
j=1

m(Ii · Jj))(
m∑
j=1

(m(Jj)−m(Ii · Jj))

= m(Ii)(
m∑
j=1

m(Jj)−
m∑
j=1

m(Ii · Jj)

= m(Ii)(1−m(Ii)).

So

H l
m(F1 | F2) =

n∑
i=1

m∑
j=1

m(Ii · Jj)(m(Jj)−m(Ii · Jj))

≤
n∑

i=1

m(Ii)(1−m(Ii))

= H l
m(F1).

(ii) Based on equation (5) and property (i), property (ii) is derived. □

Proposition 2.13. ([10]) If F1 = {I1, . . . , In} and F2 = {J1, . . . , Jm} are both partitions of IV IFS(X),
then F1 ∨ F2 also constitutes a partition. Furthermore F1 ⪯ F1 ∨ F2.

Theorem 2.14. For any partitions F1, F2, and F3 of IV IFS(X), the following properties apply:

(i) F1 ⪯ F2 implies H l
m(F1) ≤ H l

m(F2);

(ii) H l
m(F1 ∨ F2) ≥ max[H l

m(F1),H
l
m(F2)].

(iii) F1 ⪯ F2 implies H l
m(F1 | F3) ≤ H l

m(F2 | F3).
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Proof. (i) Assume F1 = {I1, . . . , In} and F2 = {J1, . . . , Jm}. Under the premise F1 ⪯ F2, a partition
{k(1), . . . , k(n)} of the set {1, 2, . . . ,m} exists such that Ii =

∑
j∈k(i) Jj for all i = 1, . . . , n. Therefore,

H l
m(F1) = 1−

n∑
i=1

(m(Ii))
2

= 1−
n∑

i=1

(m(
∑
j∈k(i)

Jj))
2

= 1−
n∑

i=1

(
∑
j∈k(i)

m(Jj))
2

≤ 1−
n∑

i=1

∑
j∈k(i)

(m(Jj))
2

= 1−
m∑
j=1

(m(Jj))
2

= H l
m(F2).

The inequality mentioned previously arises from the inequality (a1+a2+ · · ·+an)2 ≥ a21+a
2
2+ · · ·+a2n which

holds for all nonnegative real numbers a1, . . . , an.
(ii) Since F1 ⪯ F1 ∨ F2 and F2 ⪯ F1 ∨ F2, property (ii) follows as a result of property (i).
(iii) Assuming F1 ⪯ F2, Proposition 2.13 indicates that F1 ∨ F3 ⪯ F2 ∨ F3. Consequently, using equation
(5) and property (i), we can deduce that:

H l
m(F1 | F3) = H l

m(F1 ∨ F3)−H l
m(F3) ≤ H l

m(F2 ∨ F3)−H l
m(F3) = H l

m(F2 | F3).

□
The set of all states defined on IV IFS(X) is represented by M(IV IFS(X)). In the subsequent theorem,

we demonstrate that M(IV IFS(X)) forms a convex set.

Theorem 2.15. If m1,m2 ∈ M(IV IFS(X)), then for any t within the interval [0, 1], the combination
tm1 + (1− t)m2 belongs to M(IV IFS(X)).

Proof. This proof is straightforward. □
The theorem below establishes that logical entropy is a convex function on M(IV IFS(X)).

Theorem 2.16. Given a partition F of IV IFS(X), it is true that for any m1,m2 ∈ M(IV IFS(X)) and
for any t within the interval [0, 1], the following holds:

tH l
m1

(F) + (1− t)H l
m2

(F) ≤ H l
tm1+(1−t)m2

(F).

Proof. Assume F = {I1, . . . , In}. Given that the function f : R → R defined by f(x) = x2 is convex for all
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x ∈ R, it follows that for any t in the interval [0, 1], we derive:

tH l
m1(F) + (1− t)H l

m2
(F) = t

[
1−

n∑
i=1

(m1(Ii))
2

]

+ (1− t)

[
1−

n∑
i=1

(m2(Ii))
2

]

= 1− t

n∑
i=1

(m1(Ii))
2 − (1− t)

n∑
i=1

(m2(Ii))
2

≤ 1−
n∑

i=1

((tm1(Ii) + (1− t)m2(Ii))
2

= 1−
n∑

i=1

(tm1 + (1− t)m2)(Ii))
2

= H l
tm1+(1−t)m2

(F).

□

3 Logical Mutual Information in Interval-Valued Intuitionistic Fuzzy
Sets

In this section, the concept of logical mutual information for partitions in IV IFS is introduced. The intro-
duction of logical mutual information for partitions in IV IFS is aimed at quantifying the interdependence
between different fuzzy partitions in a way that takes into account both fuzziness and hesitation due to intu-
itionistic uncertainty. This measure provides a nuanced way to understand how one fuzzy concept can reduce
uncertainty about another in complex, real-world decision-making and data analysis tasks where uncertainty
is an inherent challenge.

Definition 3.1. The logical mutual information of partitions F1 and F2 in IV IFS(X) is defined as follows:

I l
m(F1,F2) = H l

m(F1)−H l
m(F1 | F2). (8)

Remark 3.2. Since H l
m(F1 | F2) ≤ H l

m(F1), this implies that the logical mutual information I lm(F1,F2) is
consistently nonnegative.

Theorem 3.3. The logical mutual information of partitions F1 and F2 in IV IFS(X) exhibits the following
properties:

(i) I l
m(F1,F2) = H l

m(F1) +H l
m(F2)−H l

m(F1 ∨ F2);

(ii) I l
m(F1,F2) = I l

m(F2,F1);

(iii) I l
m(F1,F2) ≤ min

[
H l

m(F1),H
l
m(F2)

]
.

Proof. (i) Based on equation 5, we have H l
m(F1 | F2) = H l

m(F1)−H l
m(F1 ∨ F2). Consequently, utilizing

equation (8), the following identities are established:

I l
m(F1,F2) = H l

m(F1) +H l
m(F2)−H l

m(F1 ∨ F2). (9)

(ii) This property is derived from equation (9).
(iii) According to part (iii) of Theorem 2.14, H l

m(F1) ≤ H l
m(F1 ∨ F2), which implies that I l

m(F1,F2) ≤
min

[
H l

m(F1),H
l
m(F2)

]
. □
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Theorem 3.4. If partitions F1 and F2 are statistically independent, then:

(i) I l
m(F1,F2) = H l

m(F1).H
l
m(F2);

(ii) 1−H l
m(F1 ∨ F2) =

(
1−H l

m(F1)
)
.
(
1−H l

m(F2)
)
.

Proof. (i) Assume F1 = {I1, . . . , In} and F2 = {J1, . . . , Jm}. Based on equations (2) and (9), we derive:

I l
m(F1,F2) = 1−

n∑
i=1

(m(Ii))
2 + 1−

m∑
j=1

(m(Jj)
2 − 1

+

n∑
i=1

m∑
j=1

(m(Ii · Jj))2

=

(
1−

n∑
i=1

(m(Ii))
2

)
.

1−
m∑
j=1

(m(Jj))
2


= H l

m(F1).H
l
m(F2).

(ii) Utilizing item (i) and equation (9), we arrive at:

(1−H l
m(F1)).(1−H l

m(F2)) = 1−H l
m(F1)−H l

m(F2) +H l
m(F1).H

l
m(F2)

= 1−H l
m(F1)−H l

m(F2) + I lm(F1,F2)

= 1−H l
m(F1)−H l

m(F2) +H l
m(F1) +H l

m(F2)

− H l
m(F1 ∨ F2)

= 1−H l
m(F1 ∨ F2).

□

4 Logical Divergence in Interval-Valued Intuitionistic Fuzzy Sets

In this section, we introduce the concept of logical divergence entropy within IV IFS. The introduction
of this concept is motivated by the need to measure the divergence or difference between fuzzy partitions
that include both fuzziness and intuitionistic hesitation (due to interval-valued uncertainty). This measure
captures not only the imprecision in membership but also the hesitation in decision-making processes. It is
useful for various applications, such as decision-making, pattern recognition, and data analysis, providing a
more nuanced way to compare fuzzy sets in uncertain environments.

Definition 4.1. Assume F = {I1, . . . , In} is a partition of IV IFS(X) and m1,m2 ∈ M(IV IFS(X)). The
logical divergence of states m1 and m2 for F is defined as follows:

Dl
F (m1∥m2) =

1

2

n∑
i=1

(m1(Ii)−m2(Ii))
2.

Theorem 4.2. Assume F = {I1, . . . , In} is a partition of IV IFS(X) and m1,m2 ∈ M(IV IFS(X)). The
logical divergence of states m1 and m2 for F fulfills the following conditions:

(i) Dl
F (m1∥m2) = Dl

F (m2∥m1).

(ii) Dl
F (m1∥m2) ≥ 0, where equality holds if and only if the states m1 and m2 are identical over F .
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Proof. Based on the definition provided above, this proof is straightforward. □ In the example below, it
is demonstrated that logical divergence does not qualify as a distance metric because it does not fulfill the
triangle inequality.

Example 4.3. In Example 2.4, assume m1,m2,m3 are three states on IV IFS(X) where m1(I1) = s1,
m2(I1) = s2, and m3(I1) = s3, with s1, s2, s3 each in the interval (0,1). Consequently, m1(I2) = 1 − s1,
m2(I2) = 1− s2, and m3(I2) = 1− s3. Thus, we derive:

Dl
F (m1∥m2) =

1

2
(m1(I1)−m2(I1))

2 +
1

2
(m1(I2)−m2(I2))

2 = (s1 − s2)
2.

Similarly, we have:

Dl
F (m1∥m3) = (s1 − s3)

2, and Dl
F (m2∥m3) = (s2 − s3)

2.

Set s1 =
1
3 , s2 =

1
4 , s3 =

1
5 . Clearly,

Dl
F (m1∥m3) ≥ Dl

F (m1∥m2) +Dl
F (m2∥m3).

This outcome indicates that the triangle inequality does not generally hold for logical divergence in IV IFS(X).

Theorem 4.4. Assume F = {I1, . . . , In} is a partition of IV IFS(X). Then, for every pair of states m1 and
m2 defined on IV IFS(X), the following is true:

Dl
F (m1∥m2) =

(
n∑

i=1

m1(Ii)(1−m2(Ii))

)
−
[
1

2
(H l

m1
(F) +H l

m2
(F))

]
.

Proof. Assume F = {I1, . . . , In} . Let’s proceed with the calculation:(
n∑

i=1

m1(Ii)(1−m2(Ii))

)
−
[
1

2
(H l

m1
(F) +H l

m2
(F))

]

= 1−
n∑

i=1

m1(Ii)m2(Ii)−
1

2
(1−

n∑
i=1

(m1(Ii))
2)− 1

2
(1−

n∑
i=1

(m2(Ii))
2)

=
1

2
(1−

n∑
i=1

(m1(Ii)−m2(Ii))
2) = Dl

F (m1∥m2).

□

5 The Logical Entropy of Dynamical System in IV IFS(X)

The concept of logical entropy for a dynamical system within the framework of IVIFS(X) is introduced to
measure and track the evolving uncertainty and distinctions in systems characterized by both fuzziness and
intuitionistic uncertainty. Logical entropy allows for a more nuanced analysis of dynamical systems where both
imprecision and hesitation are present, providing deeper insights into the complexity and unpredictability of
the systems behavior over time.

Definition 5.1. [10] A dynamical system in IV IFS(X) consists of the triple (IV IFS(X),m, ψ), where
m : IV IFS(X) → [0, 1] is a state function on IV IFS(X) and ψ : IV IFS(X) → IV IFS(X) is a mapping
that meets the following criteria:
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1. If I · J = ⟨[0, 0], [1, 1]⟩, then ψ(I) · ψ(J) = ⟨[1, 1], [0, 0]⟩ and ψ(I ⊕ J) = ψ(I) ⊕ ψ(J), for any I, J ∈
IV IFS(X).

2. ψ(⟨[1, 1], [0, 0]⟩) = ⟨[1, 1], [0, 0]⟩;

3. s(ψ(I)) = m(I) for any I ∈ IV IFS(X).

Theorem 5.2. Consider (IV IFS(X),m, ψ) as a dynamical system in IV IFS(X), with F1 and F2 as
partitions within IV IFS(X). The following assertions hold:

(i) ψ(F1 ∨ F2) = ψ(F1) ∨ ψ(F2).

(ii) F1 ⪯ F2 implies ψ(F1) ⪯ ψ(F2).

Proof. The proof of (i) is derived from condition (ii) of Definition 5.1.
Consider F1 = {I1, . . . , In} and F2 = {J1, . . . , Jm}, with F1 ⪯ F2. Consequently, there is a partition
{k(1), . . . , k(n)} of the set {1, 2, . . . ,m} such that Ii =

∑
j∈k(i) Jj for each i = 1, 2, . . . , n. Therefore, according

to condition (i) of Definition 5.1, it follows:

ψ(Ii) = ψ(
∑
j∈k(i)

Jj) =
∑
j∈k(i)

ψ(Jj),

for i = 1, 2, . . . , n. This implies that ψ(F1) ⪯ ψ(F2). □

Theorem 5.3. Consider (IV IFS(X),m, ψ) as a dynamical system within IV IFS(X), with F1 and F2 as
partitions of IV IFS(X). Then, for any non-integer n, the following assertions are valid:

(i) H l
m(ψn(F1)) = H l

m(F1);

(ii) H l
m(ψn(F1)|ψn(F2)) = H l

m(F1|F2).

Proof. Suppose that F1 = {I1, . . . , In} and F2 = {J1, . . . , Jm}.

(i) Since for any non-negative integer n and for each i = 1, . . . , k, it is true that m(ψn(Ii)) = m(Ii), we
conclude:

H l
m(ψn(F1)) =

n∑
i=1

m(ψn(Ii)−m(ψn(Ii))
2 =

n∑
i=1

m(Ii)−m(Ii)
2 = H l

m(F1).

(ii) Based on the same argument, we have:

H l
m(ψn(F1)|ψn(F2)) =

m∑
j=1

m(ψn(Ji)
2 −

n∑
i=1

m∑
j=1

m(ψn(Ii · Jj))2

=

m∑
j=1

m(Ji)
2 −

n∑
i=1

m∑
j=1

m(Ii · Jj)2 = H l
m(F1|F2).

□

Theorem 5.4. Take (IV IFS(X),m, ψ) as a dynamical system, where F is a partition of IV IFS(X). Then,

lim
n−→∞

1

n
H l

s(
n−1∨
i=0

ψi(F)).
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Proof. Suppose an = H l
m

(∨n−1
i=0 ψ

i(F)
)

for n = 1, 2, . . .. Then the sequence {an}∞n=1 consists of non-

negative real numbers and satisfies the property as+r ≤ as + ar for any natural numbers s and r. According
to property (i) of Theorem 5.3 and using the sub-additivity of logical entropy, we have:

as+r = H l
m(

s+r−1∨
i=0

ψi(F))

≤ H l
m(

s−1∨
i=0

ψi(F) +H l
m(

s+r−1∨
i=s

ψi(F))

= as +H l
m(ψs(

r−1∨
i=0

ψi(F))

= as +H l
m(

r−1∨
i=0

ψi(F) = as + ar.

Therefore, by Theorem 4.9 from [14], limn→∞
1
nan exists. □

Definition 5.5. Consider (IV IFS(X),m, ψ) as a dynamical system, with F being a partition of IV IFS(X).
We then define the logical entropy of ψ relative to F as follows:

H l
m(ψ,F) = lim

n−→∞

1

n
H l

m(
n−1∨
i=0

ψi(F)).

Remark 5.6. Let (IV IFS(X),m, ψ) be a dynamical system in IV IFS(X) and let F = {⟨[1, 1], [0, 0]⟩}.
Then

∨n−1
i=0 ψ

i(F) = F , and

H l
m(ψ,F) = lim

n→∞

1

n
H l

m

(
n−1∨
i=0

ψi(F)

)
= lim

n→∞

1

n
H l

m(F) = 0.

Theorem 5.7. Consider (IV IFS(X),m, ψ) as a dynamical system, with F being a partition of IV IFS(X).
Then, for every non-negative integer k, the following holds:

H l
m(ψ,F) = H l

m(ψ,

k∨
i=0

ψi(F)).

Proof.Using Definition 5.5, we derive:

H l
m(ψ,

k∨
i=0

ψi(F)) = lim
n−→∞

1

n
H l

m(

n−1∨
j=0

ψj(

k∨
i=0

ψi(F))

= lim
n−→∞

k + n

n

1

k + n
H l

m(
k+n−1∨
j=0

ψj(F))

= lim
n−→∞

1

k + n
H l

m(

k+n−1∨
j=0

ψj(F)) = H l
m(ψ,F).

□
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Theorem 5.8. Consider (IV IFS(X),m, ψ) as a dynamical system, with F1,F2 being two partitions of
IV IFS(X) such that F1 ⪯ F2. Then H l

m(ψ,F1) ≤ H l
m(ψ,F2).

Proof. Suppose that F1 ⪯ F2. By Theorems 5.2 and 5.3, we have
∨n−1

i=0 ψ
i(F1) ⪯

∨n−1
i=0 ψ

i(F2) for n =
1, 2, . . .. Therefore, by a property of logical entropy, we get:

H l
m(

n−1∨
i=0

ψi(F1)) ≤ H l
m(

n−1∨
i=0

ψi(F2)).

Taking the limit as n→ ∞, we obtain H l
m(ψ,F1) ≤ H l

m(ψ,F2). □

Definition 5.9. Let (IV IFS(X),m, ψ) be a dynamical system in IV IFS(X). The logical entropy of
(IV IFS(X),m, ψ) is defined as:

H l
m(ψ) = sup{H l

m(ψ,F) | F is a partition of IV IFS(X)}.

Theorem 5.10. Let (IV IFS(X),m, ψ) be a dynamical system in IV IFS(X). Then, for every natural
number n, H l

m(ψn) = n ·H l
m(ψ).

Proof. Suppose that P be a partition in IV IFS(X). Then for every n ∈ N, we have:

H l
m(ψn,

n−1∨
i=0

ψi(F)) = lim
k→∞

1

k
H l

m(

k−1∨
j=0

(ψn(F))j)(

n−1∨
i=0

ψi(F))

= lim
k→∞

1

k
H l

m(

k−1∨
j=0

n−1∨
i=0

(ψnj+i(F))

= lim
k→∞

kn

k

1

kn
H l

m(

kn−1∨
i=0

ψi(F)) = n.H l
m(ψ,F).

Therefore

n.H l
m(ψ) = n. sup{H l

m(ψ,F); F is a partition in IV IFS(X)}

= sup{H l
m(ψn,

n−1∨
i=0

ψi(F));F is a partition in IV IFS(X)}

≤ sup{H l
m(ψn,G);G is a partition in IV IFS(X)} = H l

m(ψn).

On the other hand, Since F ⪯
∨n−1

i=0 ψ
i(F), by Theorem 5.8, we obtain:

H l
m(ψn,F) ≤ H l

m(ψn,

n−1∨
i=0

ψi(F)) = n.H l
m(ψ,F).

Thus

H l
m(ψn) = sup{H l

m(ψn,F);F is a partition in IV IFS(X)}
≤ n. sup{H l

m(ψ,F);F is a partition in IV IFS(X)}
= n.H l

m(ψ).

□
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6 Conclusion

This paper offers an in-depth examination of logical entropy and its associated measures in the context of
interval-valued intuitionistic fuzzy sets (IVIFS). It begins by introducing the core concepts of logical entropy
for partitions in IVIFS, alongside logical conditional entropy, and thoroughly explores their properties. The
discussion then expands to cover logical mutual information, highlighting its importance in measuring shared
information between fuzzy partitions. The concept of logical divergence is introduced next, providing a
detailed analysis of state divergence in IVIFS and exploring the properties of these measures. The study
concludes by applying logical entropy to dynamical systems in IVIFS, focusing on how evolving uncertainty
and distinctions can be measured in such systems. Collectively, the paper presents a comprehensive theoretical
framework for understanding and quantifying uncertainty in complex environments characterized by both
fuzziness and intuitionistic hesitation, with potential applications in decision-making, control theory, and
systems analysis.
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Abstract. In this paper, the calculation methods of the real eigenvalues and LR fuzzy eigenvectors of clear real
symmetry matrices are deeply considered. The original fuzzy feature problem is extended by using the arithmetic
algorithm of LR fuzzy numbers into a simple feature problem with a high-order clear real symmetry matrix. We
discuss two cases: (a) λ is a non-negative unknown eigenvalue; (b) λ is a negative unknown eigenvalue. We
established two computational models and proposed an algorithm for finding the fuzzy eigenvectors of the true
symmetry matrix. Some numerical examples are used to illustrate our proposed method.
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1 Introduction

Compared with the phenomenon of certainty, there are a large number of uncertain events exist and occur in
real life. Fuzzy mathematics is born from this and happens to be one of the best tools to describe and analyze
these uncertain phenomena. Some descriptive processes of motion and change often have uncertainty of all
and part of the parameters. Sometime the uncertainty of the parameters is represented and computed by the
fuzzy numbers. The concept of fuzzy numbers and their arithmetic operations were first coined and studied
by Zadeh [1, 2], Dubois et al.[3] and Nahmias [4]. In the past half century, many scholars at home and abroad
have paid more and more attention to a series of studies based on algebraic equations of fuzzy numbers. A
new method is proposed to study fuzzy numbers and fuzzy number spatial structures by Puri and Ralescu
[5] Goetschell et al.[6] and Wu Congxin et al.[7, 8].In the past two decades, more scholars have studied some
more general and complex fuzzy linear systems based on Friedman et al. [9]’s 1998 embedding method to
discuss a class of semi-fuzzy linear systems Ax̃ = b̃, such as dual fuzzy linear systems, generalized fuzzy linear
systems, complex fuzzy linear systems, dual fully fuzzy linear systems, and general dual fuzzy linear systems,
see [10, 11, 12, 13, 14].Through the joint efforts of many scholars, new theories and methods have been
proposed in recent years, enriching fuzzy numbers and fuzzy linear systems [15, 16, 17]. The combination
of fuzzy numbers and many mathematical problems has become a new research direction for many scholars.
Guo et al. related linear matrix equations to fuzzy numbers and did some research [18, 19, 20, 14, 21, 22].

In recent years, the problem of fuzzy eigenvalues and eigenvectors has attracted the attention of many
scholars. The reason is that the problem of finding the eigenvalues and eigenvectors of a matrix is widely
used in problems in many fields such as engineering, management, physics and finance, but many of the
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parameters are uncertain. This uncertainty has been linked to fuzzy theory by scholars, and the methods of
solving fuzzy eigenvalues and fuzzy eigenvectors have been used to solve the problem.The fuzzy eigenvalues
and the generalized fuzzy eigenvalues of the form Ãx̃ = λ̃B̃x̃ were studied by Buckley [23] and Chiao [24]
using the same method, respectively. After that, Thoedorou al. [25] obtained a fuzzy eigenvector based
on trigonometric fuzzy numbers by using a two-step method. In 2010, Tian founded the real matrix fuzzy
eigenvector and studied the relationship between the real eigenvectors and the fuzzy eigenvectors [26], and
he also studied the structure of the fuzzy eigenspace with some results. In 2013, Allahviranloo et al. [12]
studied how to obtain the required price difference by deriving the maximum and minimum eigenvalues and
general fuzzy eigenvalues under different conditions.

Most of the matrices involved in many studies today are symmetry matrices, and the role of symmetry
matrices in many aspects is undoubtedly very large. We are not help guessing that which fuzzy vectors under
symmetric linear transformation are simply just scaling This paper focuses on the study of the real eigenvalues
and fuzzy eigenvectors of clear real matrices, which are based on the extension of LR fuzzy numbers and the
universal application of symmetric matrices. Here’s how this article is structured:

In Section 2, we will review some of the relevant definitions and arithmetic operations of LR fuzzy numbers,
and in Section 3 we will deepen and extend the initial fuzzy vector eigenvalue problem to make it a simple
eigenvalue problem for high-order clear real symmetry matrices, and we will propose an algorithm to solve
the fuzzy eigenvectors of real symmetric matrices. In Section 4, we will give a few representative examples
to illustrate. In Section 5, we draw some conclusions and conduct in-depth investigation and outlook.

2 Preliminaries

The concept of fuzzy numbers can be defined in some ways(see [3, 4, 1]).

Definition 2.1. Let X be a non-empty set. Let’s put a fuzzy set Ã in X like this

µ
Ã
: X → [0, 1],

each of these elements x ∈ X, is associated with a real number in the closed interval [0, 1], where the
value µ

Ã
represents the degree of membership of x in fuzzy set Ã, the function µ

Ã
: X → [0, 1] is called the

membership function of Ã. A fuzzy set Ã is represented by the set of ordered pairs of element x and grade
µ
Ã
which can be written as

Ã = {(x, µ
Ã
(x))|x ∈ X}.

Definition 2.2. A fuzzy number is a fuzzy set like t : R→ I = [0, 1] which satisfaction is as follows:
(1) t is upper semi-continuous,
(2) t is fuzzy convex, i.e. t(λx+ (1− λ)y) ≥ min{t(x), t(y)} for all x, y ∈ R, λ ∈ [0, 1],
(3) t is normal, i.e. there exists x0 ∈ R such that u(x0) = 1,
(4) suppt = {x ∈ R | u(x) > 0} is the support of the t, and its closure cl(suppt) is compact.
Let E1 be the set of all fuzzy numbers on R.

Definition 2.3. If a fuzzy number t̃ satisfies the following conditions, then t̃ is called a LR fuzzy number:

µt̃(x) =

{
L( t−x

α ), x ≤ t, α > 0,
R( t−m

β ), x ≥ t, β > 0,

where t, α and β are called the mean value, left and right spreads of t̃, respectively. The left shape function
L(·), satisfies:
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(1) L(x) = L(−x),
(2) L(0) = 1 and L(1) = 0,

(3) L(x) is non increasing on [0,∞).

Under the similar conditions, the right shape function R(·), satisfies:
(1) R(x) = R(−x),
(2) R(0) = 1 and R(1) = 0,

(3) R(x) is non decreasing on (−∞, 0].

So we can get a situation like this, when two LR fuzzy numbers t̃ = (t, α, β)LR and ũ = (u, γ, δ)LR are
equal, if and only if t = u, α = γ and β = δ.

Definition 2.4. For arbitrary LR fuzzy numbers t̃ = (t, α, β)LR and ũ = (u, γ, δ)LR,
we have

(1) Addition

t̃+ ũ = (t, α, β)LR + (u, γ, δ)LR = (t+ u, α+ γ, β + δ)LR.

(2) Subtraction

t̃− ũ = (t, α, β)LR − (u, γ, δ)LR = (t− u, α− δ, β − γ)LR.

(3) Scalar multiplication

λt̃ = λ(t, α, β)LR ∼=

{
(λt, λα, λβ)LR, λ ≥ 0,
(λt,−λβ,−λα)RL, λ < 0.

2.1 Fuzzy Eigenvector of Real Matrix

Definition 2.5. If the mean value of a LR fuzzy number is 0 and the left and right spread values are α and
β where 0 ≤ α, β < 1, this fuzzy number is called LR zero fuzzy number and denoted by 0̃ = (0, α, β).

A fuzzy vector x̃ = (x̃i), i = 1, · · · , n is called a LR zero fuzzy vector, if each element x̃i of x̃ is a LR zero
fuzzy number.

Definition 2.6. Let A to be a n×n real matrix. If the real number λ and the non zero fuzzy vector x̃ satisfies
the following linear system

Ax̃ = λx̃, (2.1)

i.e., 
a11 a12 · · · a1n
a21 a12 · · · a2n
. . . . . . . . . . . . . . . . . . .
an1 an2 · · · ann




x̃1
x̃2
...
x̃n

 = λ


x̃1
x̃2
...
x̃n

 , (2.2)

in this case, λ is a real eigenvalue of the real matrix A and the fuzzy eigenvector belonging to the real matrix
A with the eigenvalue λ is x̃.

3 Finding the Fuzzy Eigenvectors

We mainly study the problem of how to obtain fuzzy eigenvectors of real matrices by calculation in this
paper. We first assume that A is a symmetric matrix, which makes the problem and calculation become
simple and universal. On this basis, we consider the case of eigenvalues λ which are non-negative and
negative respectively.
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3.1 Extended Models and Its Solution

On the basis of the LR fuzzy number multiplication algorithm ( by Dubois et al.), we can get the following
conclusions.

(a) When a non-negative eigenvalue of matrix A is λ.

Theorem 3.1. Suppose A a real matrix. In the case of λ ≥ 0, the fuzzy feature problem (2.1) can be extended
into a clear linear system as follows:

Ax = λx,(
A+ −A−

−A− A+

)(
xl

xr

)
= λ

(
xl

xr

)
,

(3.1)

where

x̃ = (x, xl, xr), A = A+ +A−. (3.2)

And the elements a+ij of matrix A+ and a−ij of matrix A− are determined by this way: if aij ≥ 0, a+ij = aij
else a+ij = 0, 1 ≤ i, j ≤ n; if aij < 0, a−ij = aij else a−ij = 0, 1 ≤ i, j ≤ n.

Proof. Let A = A++A−, x̃ = (x, xl, xr). The elements a+ij of matrix A+ and a−ij of matrix A− are determined

by this way: if aij ≥ 0, a+ij = aij else a+ij = 0, 1 ≤ i, j ≤ n; if aij < 0, a−ij = aij else a−ij = 0, 1 ≤ i, j ≤ n.
Firstly

Ax̃ = (A+ +A−)(x, xl, xr) = (A+x,A+xl, A+xr) + (A−x,−A−xr,−A−xl)

= (A+x+A−x,A+xl −A−xr, A+xr −A−xl), (3.3)

On the other hand,
λx̃ = (λx, λxl, λxr), λ ≥ 0. (3.4)

From Ax̃ = λx̃, we have 
A+x+A−x = λx,

A+xl −A−xr = λxl,

A+xr −A−xl = λxr.

(3.5)

By the matrix multiplication, the Eqs.(3.5) can be written as
Ax = λx,(

A+ −A−

−A− A+

)(
xl

xr

)
= λ

(
xl

xr

)
,

where
x̃ = (x, xl, xr), A = A+ +A−.

The proof was completed. □
(b) When a negative eigenvalue of matrix A is λ.

Theorem 3.2. Suppose A a real matrix. In the case of λ < 0, the fuzzy feature problem (2.1) can be extended
into a clear linear system as follows:

Ax = λx,(
−A− A+

A+ −A−

)(
xr

xl

)
= λ

(
xr

xl

)
,

(3.6)
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where

x̃ = (x, xl, xr), A = A+ +A−. (3.7)

And the elements a+ij of matrix A+ and a−ij of matrix A− are determined by this way: if aij ≥ 0, a+ij = aij
else a+ij = 0, 1 ≤ i, j ≤ n; if aij < 0, a−ij = aij else a−ij = 0, 1 ≤ i, j ≤ n.

Proof. Let A = A++A−, x̃ = (x, xl, xr). The elements a+ij of matrix A+ and a−ij of matrix A− are determined

by this way: if aij ≥ 0, a+ij = aij else a+ij = 0, 1 ≤ i, j ≤ n; if aij < 0, ba−ij = aij else a−ij = 0, 1 ≤ i, j ≤ n.

Firstly

Ax̃ = (A+ +A−)(x, xl, xr) = (A+x,A+xl, A+xr) + (A−x,−A−xr,−A−xl)

= (A+x+A−x,A+xl −A−xr, A+xr −A−xl), (3.8)

On the other hand,

λx̃ = (λx,−λxr,−λxl), λ < 0. (3.9)

From Ax̃ = λx̃, we have 
A+x+A−x = λx,

A+xl −A−xr = −λxr,
A+xr −A−xl = −λxl.

(3.10)

By the matrix multiplication, the Eqs.(3.10) can be written as
Ax = λx,(

−A− A+

A+ −A−

)(
xr

xl

)
= −λ

(
xr

xl

)
,

where

x̃ = (x, xl, xr), A = A+ +A−.

The proof was completed. □

3.2 Solving the Extended Model

With the above preparations, let’s consider the calculation of the model (3.1) and (3.9).

In the first step, under the condition of Ax = λx, i.e., we need to compute all the eigenvalues and
eigenvectors of the real matrix A = A+ +A−.

Then we solve the roots to the equation about λ

f(λ) = det(λI −A) = 0, (3.11)

and the nonzero solution of homogeneous group of linear equations

(λI −A)x = O, (3.12)

The above method can help us solve all the eigenvalues and eigenvectors of the real symmetry matrix
A. Since the eigenvalues of the symmetry matrix A are all real numbers, we can sort these eigenvalues by
magnitude. The assumptions are shown below

λ1 ≥ λ2 ≥ · · · ≥ λj−1 ≥ 0 ≥ λj+1 ≥ · · · ≥ λn, (3.13)
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and all eigenvectors belonging to the real symmetry matrix A are

x1, x2, · · · , xn, (3.14)

each xi is an eigenvector of the eigenvector of the real matrix A that belongs to the eigenvalue λi.

In the second step, we have obtained our eigenvalues, and we naturally start to solve the eigenvectors of
the real matrix S.

We solve homogeneous group nonzero solutions of linear equations for every λi, i = 1, 2, · · · , j as follows:

(λiI − S)

(
xl

xr

)
= O, (3.15)

where

S =

(
A+ −A−

−A− A+

)
.

We solve homogeneous group nonzero solutions of linear equations for every λi, i = j+1, · · · , n as follows:

(λiI + S)

(
xr

xl

)
= O, (3.16)

where

S =

(
−A− A+

A+ −A−

)
.

In the last step, we have the solution to the models (3.1) and (3.9) is as follows:

eigenvalues : λ1, λ2, · · · , λn,

eigenvectors : x̂1, x̂2, · · · , x̂n, (3.17)

where x̂i = (xi, x
l
i, x

r
i ), i = 1, · · · , n.

Remark 3.3. We know that the eigenvalues of symmetric positive-definite matrices are positive, then when
matrix A is a symmetric positive-definite matrix

λ1 ≥ λ2 ≥ · · · ≥ λn > 0,

and the eigenvectors

x̂1, x̂2, · · · , x̂n

of real matrix S are determined by the model (3.1).

When matrix A is symmetric negative definite matrix, its eigenvalues are all negative.

λ1 ≤ λ2 ≤ · · · ≤ λn < 0,

and the eigenvectors

x̂1, x̂2, · · · , x̂n

of real matrix S are determined by the model (3.9).
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3.3 Fuzzy Eigenvector

But we find that the LR fuzzy number solution vector x̂ obtained from the above may still be inappropriate,
except for xl ≥ 0, xr ≥ 0. Therefore, we give the definition of the LR fuzzy feature vector to the problem
(2.1) as follows:

Definition 3.4. Let x̂ = (x, xl, xr). If (x, xl, xr) is the minimal solution of the Eqs.(3.1) or (3.9),such that
xl ≥ 0, xr ≥ 0, we define x̃ = x̂ = (x, xl, xr) is a strong LR fuzzy eigenvector of fuzzy eigen problem (2.1) .
Otherwise, the x̃ = (x, xl, xr) is defined as a weak LR fuzzy eigenvector of fuzzy eigen problem (2.1) given by

x̃ = x̃i,

where

x̃i =


(xi, x

l
i, x

r
i ), xli > 0, xri > 0,

(xi, 0,max{−xli, xri }), xli < 0, xri > 0,
(xi,max{xli,−xri }, 0, ), xli > 0, xri < 0,

(xi,−xli,−xri ), xli < 0, xri < 0.

i = 1, . . . , n. (3.18)

The solution matrix can be a strong LR fuzzy solution only if x̃ = (x, xl, xr) is an LR fuzzy vector, that
is, every element in x̃ = (x, xl, xr) is an LR fuzzy number.

Here we give a specific algorithm for how to find fuzzy eigenvectors of real symmetric matrices.
Algorithm 3.1
Step 1: Decomposing the matrix A with A = A+ +A−.
Step 2: By calculating the equation Ax = λx,i.e, all the eigenvalues and eigenvectors of the real symmetry

matrix A are obtained,

eigenvalues : λ1, λ2, · · · , λn,

eigenvectors : x1, x2, · · · , xn.

Step 3:Solving the left and right spread values of fuzzy eigenvectors of real matrix A.
If λi ≥ 0, then we can calculate the fuzzy eigen problem (2.1) by(

A+ −A−

−A− A+

)(
xl

xr

)
= λi

(
xl

xr

)
,

If λ < 0, then we can calculate the fuzzy eigen problem ((2.1) by(
−A− A+

A+ −A−

)(
xr

xl

)
= λi

(
xr

xl

)
,

Step 4:Arrange the fuzzy eigenvectors of the real symmetric matrix A that we derive, i.e,

eigenvalues : λ1, λ2, · · · , λn,

eigenvectors : x̃1, x̃2, · · · , x̃n,

where x̃i = (xi, x
l
i, x

r
i ), i = 1, · · · , n.

Step 5:Judge the strong LR fuzzy feature vector and take it as

x̃ = (xi, x
l
i, x

r
i )
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or a weak LR fuzzy eigenvector

x̃i =


(xi, x

l
i, x

r
i ), xli > 0, xri > 0,

(xi, 0,max{−xli, xri }), xli < 0, xri > 0,
(xi,max{xli,−xri }, 0, ), xli > 0, xri < 0,

(xi,−xli,−xri ), xli < 0, xri < 0.

i = 1, . . . , n.

by the Definition 3.2.

Based on the above, we also need to discuss the existence conditions of strong fuzzy eigenvectors, so we
re-analyze the equation (3.1) and (3.9).

Firstly, we can rewrite the equation (3.1) as

Sy = λy, (3.19)

where

S =

 A O O
O A+ −A−

O −A− A+

 , y =

 x
xl

xr

 , (3.20)

when λ ≥ 0.

Also, we can rewrite the equation (3.9) as

Ty = (−λ)y, (3.21)

where

T =

 −A O O
O −A− A+

O A+ −A−

 , y =

 x
xr

xl

 , (3.22)

when λ < 0.

Therefore, the matrix S is a higher order non-negative symmetric matrix if and only if matrix A is a non-
negative symmetric matrix in equation (3.19). Similarly, matrix T is a higher order non-negative symmetric
matrix if and only if A is an non-positive symmetric matrix in equation (3.21).

Theorem 3.5. [27] We assume that G ∈ Rm×m is a non-negative matrix with the eigenvalue λ, and that
there exists a non-negative vector z ∈ Rm, z ≥ 0 , which is subject to

Gz = λz.

Now, by using the generalized Perron theorem for non-negative matrices, we give a sufficient condition to
prove that strong fuzzy eigenvectors of real symmetric matrices exist.

Theorem 3.6. Suppose the crisp matrix S and matrix T , when matrix A is a non negative one in the
Eqs.(3.19) or matrix A is a non positive one in the Eqs.(3.21), the strong LR fuzzy eigenvector must exist in
the real symmetric matrix A.

Proof. According to the structure of matrix S or T and the Theorem 3.3, the proof of Theorem 3.5 is
straightforward. The proof is completed. □
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4 Numerical Examples

Example 4.1. Consider the fuzzy eigenvector of the following real symmetric matrix

A =

 2 2 −2
2 5 −4
−2 −4 5

 .

Let

A = A+ +A− =

 2 2 0
2 5 0
0 0 5

+

 0 0 −2
0 0 −4
−2 −4 0

 .

From Ax = λx, i.e., for λ, we solve the root of the equation respect to λ

f(λ) = det(λI −A) = 0,

and the nonzero solution of homogeneous group of linear equations

(λI −A)x = O,

we can get
λ1 = λ2 = 1, λ3 = 10,

x1 =

 −0.2981
−0.5963
−0.7455

 , x2 =

 0.8944
−0.4472
0.0000

 , x3 =

 0.3333
0.6667
0.0000

 ,

the above xi(i = 1, 2, 3) and λi(i = 1, 2, 3) can be used as all the eigenvalues and eigenvectors of the real
symmetric positive definite matrix A.

For λi = 1 > 0, i = 1, 2, we solve non zero solutions to the homogeneous systems of linear equation

(2I − S)

(
xl

xr

)
= O,S =

(
A+ −A−

−A− A+

)
,

and obtain

(
xl

xr

)
=



−0.4149 0.2981
0.2075 0.5963
−0.5491 0, 0000
0.6598 0.0000
0.2192 0.0000
0.0000 −0.7454

 .

For λ3 = 10 > 0, we solve non zero solutions to the homogeneous systems of linear equation

(10I − S)

(
xr

xl

)
= O,S =

(
A+ −A−

−A− A+

)
,

and get

(
xr

xl

)
=



0.3333
0.66674
0.0000
0.0000
0.0000
0.6667

 .
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Based on the above, we can get all the real eigenvalues and fuzzy eigenvectors of the real symmetric
matrix A, i.e

λ1 = λ2 = 1, λ3 = 10,

x̃1 =

 (−0.2981, 0.0000, 0.6598)
(−0.5963, 0.2075, 0.2192)
(−0.7455, 0.0000, 0.0000)

 , x̃2 =

 (0.8944, 0.2981, 0.0000)
(0.4472, 0.5963, 0.0000)
(0.0000, 0.0000, 0.0000)

 ,

x̃3 =

 (0.3333, 0.3333, 0.0000)
(0.6667, 0.6667, 0.0000)
(−0.6667, 0.0000, 0.6667)

 ,

among them, the eigenvectors x̃1 and x̃2 corresponding to the eigenvalues λ1,2 of the original real matrix
A are two weak LR fuzzy eigenvectors, and the eigenvectors x̃3 corresponding to the eigenvalues λ3 of the
original real matrix A is a strong LR fuzzy eigenvector.

Example 4.2. Consider the fuzzy eigenvector of the following real matrix

A =

 1 −2 2
−2 −2 4
2 4 −2

 ,

Let

A = A+ +A− =

 1 0 2
0 0 4
2 4 0

+

 0 −2 0
−2 −2 0
0 0 −2

 .

From Ax = λx, i.e., we solve the roots of the equation respect to λ

f(λ) = det(λI −A) = 0,

and the nonzero solution of homogeneous group of linear equations

(λI −A)x = O,

and get
λ1 = λ2 = 2, λ3 = −7,

x1 =

 −2
1
0

 , x2 =

 2
0
1

 , x3 =

 1
1
−2

 .

For λ1,2 = 2 > 0, we solve non zero solutions to the homogeneous systems of linear equation

(2I − S)

(
xl

xr

)
= O,S =

(
A+ −A−

−A− A+

)
,

and obtain

(
xl

xr

)
=



0.6667 0.0002
−0.6668 0.5000
0.1665 0, 5000
−0.6667 −0.0002
0.6668 −0.5000
−0.1665 −0, 5000

 .
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For λ3 = −7 < 0, we solve non zero solutions to the homogeneous systems of linear equation

(−7I − S)

(
xr

xl

)
= O,S =

(
−A− A+

A+ −A−

)
,

and obtain

(
xr

xl

)
=



0.2357
0.4714
−0.4714
−0.2357
−0.4714
0.4714

 .

Through the above operation, we can obtain all the real eigenvalues and fuzzy eigenvectors of the real
symmetric matrix A, which are respectively

λ1 = λ2 = 2, λ3 = −7,

x̃1 =

 (−2, 0.6667, 0.0000)
(1, 0.0000, 0.6668)
(0, 0.1665, 0.0000)

 , x̃2 =

 (2, 0.0002, 0.0000)
(0, 0.5000, 0.0000)
(1, 0.5000, 0.0000)

 ,

x̃3 =

 (1, 0.0000, 0.2357)
(1, 0.0000, 0.4714)
(−2, 0.4714, 0.0000)

 .

According to the Definition 3.2.,we can draw the conclusion that the eigenvectors x̃1 and x̃2 corresponding
to the eigenvalues λ1,2 of the original real matrix A are two weak LR fuzzy eigenvectors, and the eigenvector
x̃3 corresponding to the eigenvalue λ3 of the original real matrix A is also a weak LR fuzzy eigenvector.

5 Conclusion

In this paper, we study the LR fuzzy eigenvector problem of fuzzy matrices, and propose two computational
models and algorithms for real symmetric matrices, which can solve the non-negative or negative LR fuzzy
eigenvectors. Clear and straightforward mathematical derivations are used in the proof process, which is easy
to understand. The practical application value of the algorithm is illustrated by example. We can consider
extending the algorithm to the complex number field to solve more complex problems, and we can also try
to further explore other properties of fuzzy linear systems, such as stability, so as to better enrich the theory
of fuzzy linear systems.
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