Transactions on Fuzzy Sets and Systems (TFSS)
URL: https://tfss.journals.iau.ir/

Online ISSN: 2821-0131

Vol.2, No.2, (2023), 15-38

DOI: http://doi.org/10.30495/TFSS.2023.1979163.1063 ;Luzrzl'juscetgg%ssuunsmms

Article Type: Original Research Article

Fuzzy Ordinary and Fractional General Sigmoid Function Activated
Neural Network Approximation

George A. Anastassiou®

Abstract. Here we research the univariate fuzzy ordinary and fractional quantitative approximation of fuzzy
real valued functions on a compact interval by quasi-interpolation general sigmoid activation function relied on
fuzzy neural network operators. These approximations are derived by establishing fuzzy Jackson type inequalities
involving the fuzzy moduli of continuity of the function, or of the right and left Caputo fuzzy fractional derivatives
of the involved function. The approximations are fuzzy pointwise and fuzzy uniform. The related feed-forward
fuzzy neural networks are with one hidden layer. We study in particular the fuzzy integer derivative and just fuzzy
continuous cases. Our fuzzy fractional approximation result using higher order fuzzy differentiation converges better
than in the fuzzy just continuous case.
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1 Introduction

The author in [1] and [2], see chapters 2-5, was the first to derive quantitative neural network approximations
to continuous functions with rates by very specifically defined neural network operators of Cardaliaguet-
Euvrard and ”Squashing” types, by employing the modulus of continuity of the engaged function or its high
order derivative, and producing very tight Jackson type inequalities. He studied there both the univariate
and multivariate cases. The defining of these operators ”bell-shaped” and ”squashing” functions are assumed
to be of compact support.

The author inspired by [23], continued his studies on neural networks approximation by introducing and
using the proper quasi-interpolation operators of sigmoidal and hyperbolic tangent type which resulted in
[10], [13] - [22], by treating both the univariate and multivariate cases.

Continuation of the author’s works ([17], [18] and [19], Chapter 20) is this article where fuzzy neural
network approximation based on a general sigmoid activation function is taken at the fractional and ordinary
levels resulting in higher rates of approximation. We involve the fuzzy ordinary derivatives and the right
and left Caputo fuzzy fractional derivatives of the fuzzy function under approximation and we establish tight
fuzzy Jackson type inequalities. An extensive background is given on fuzzyness, fractional calculus and neural
networks, all needed to present our work.

Our fuzzy feed-forward neural networks (FFNNs) are with one hidden layer. About neural networks in
general study [29], [32], [33].
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2 Fuzzy Fractional Mathematical Analysis Basics

(see also [19], pp. 432-444)
We need the following basic background

Definition 2.1. (see [30]) Let p: R — [0, 1] with the following properties:

(i) is normal, i.e., 3 29 € R; p(xg) = 1.

(i) pAz+ 1 =Ny) >min{p(z),n(y)}, Vae,yeR, ¥V Ae[0,1] (1 is called a convex fuzzy subset).

(iii) p is upper semicontinuous on R, i.e. V 29 € R and V € > 0, 3 neighborhood V' (z¢) : p(z) < p(xo)+-e,
VaeV(xg).

(iv) The set supp (p) is compact in R (where supp(p) := {x € R: u(z) > 0}).

We call i a fuzzy real number. Denote the set of all u with Rx.

E.g. X{zo} € Rr, for any zo € R, where x(,,} is the characteristic function at zo.

For 0 <r <1 and p € Rr define

W ={zeR:p(x) =1}

and

W = @ e R (@) > 0},
Then it is well known that for each r € [0,1], [u]" is a closed and bounded interval on R ([28]).
For u,v € Rr and A € R, we define uniquely the sum u & v and the product A ® u by
udv] =[ul"+W", ANou"=Au]", Vrel0,1],

where
[u]" + [v]" means the usual addition of two intervals (as substes of R) and
A [u]” means the usual product between a scalar and a subset of R (see, e.g. [30]).
Notice 1 ©® v = v and it holds
UPBV=vPU, AQu=u® A\

If 0 <r; <ry <1 then
[u]® C [u]™ .
Actually [u]” = [u@, ugf)], where " < uS:), u@, u(l) eR,Vrelol].
For A > 0 one has )\ug:) =(AO u)g), respectively.
Define D : R]: X R]: — R]: by
(r) (r)

U+ U+

b

D (u,v) := sup max{‘u(_r) — ™
rel0,1]

)

where
[v]" = [v(f),vﬁf)] : u,v € Rr.

We have that D is a metric on Rr.

Then (Rz, D) is a complete metric space, see [36], [37].
*

Here ) stands for fuzzy summation and 0 := xo) € R is the neutral element with respect to @, i.e.,
uEBﬁ:a@u:u, YV u€eREr.

Denote

D*(f,9) = es;gRD (f.9),

where f,g: X — Ryr.
‘We mention
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Definition 2.2. Let f: X CR — Rz, X interval, we define the (first) fuzzy modulus of continuity of f by

D(f6)x= s D(f(x),f), §>0.

zyeX, |lz—y|<d

When g: X C R — R, we define

wi(g,0) =wi(g,0)x = sup lg () —g(y)|.
z,yeX, lz—y|<d

We define by C¥ (R) the space of fuzzy uniformly continuous functions from R — Rz, also Cx (R) is the
space of fuzzy continuous functions on R, and Cj (R, Rx) is the fuzzy continuous and bounded functions.
We mention

Proposition 2.3. ([7]) Let f € C%(X). Then wg}-) (f,0)x < oo, for any § > 0.
By [9], p. 129 we have that C¥ ([a,b]) = C ([a, b]), fuzzy continuous functions on [a,b] C R

Proposition 2.4. ([5]) It holds

limey”™ (£,0)x =y (£,0) =

-0
iff f € CL(X), where X is a compact interval.

Proposition 2.5. ([5]) Here [f]" = [fy),ff:)}, r € [0,1]. Let f € Cr(R). Then fj(;) are equicontinuous
with respect to r € [0,1] over R, respectively in =+.

Note 2.6. It is clear by Propositions 2.4, 2.5, that if f € CY (R), then fﬁ") € Cy (R) (uniformly continuous
on R). Also if f € C (R, Rx) implies fg) € Cp (R) (continuous and bounded functions on R).

Proposition 2.7. Let f : R — Rz. Assume that wi (f,8), w1 (f@,é)x, w1 (fJ(rT),(S)X are finite for any
>0, rel0,1], where X any interval of R.

Then (F) (r) (r)
Wi (fvd)X:rzl[BI?l]maX{wl (f— )5>X7wl( + 75>X}
Proof. Similar to Proposition 14.15, p. 246 of [9]. O
We need

Remark 2.8. ([3]). Here r € [0, 1], Z(T),yz(r) €R,i=1,..,m € N. Suppose that

sup max <:c£r),ygr)> eR,fori=1,....m
r€(0,1]

Then one sees easily that
sup max Zw Zyr) <Z sup max( .),yz( )> (1)
r€[0,1] i1 relo,1]
We need

Definition 2.9. Let x,y € Rr. If there exists z € Rr : z = y ® z, then we call z the H-difference on x and
y, denoted x — y
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Definition 2.10. ([35]) Let T := [x0, 20 + 8] C R, with > 0. A function f: T — Rz is H-differentiable at
x € T if there exists an f’ (z) € Ry such that the limits (with respect to D)

o fEE = f@ L f@ = f =)

h—0+ h ’ h—0+ h

(2)

exist and are equal to [’ (z).
We call f’ the H-derivative or fuzzy derivative of f at .

Above is assumed that the H-differences f (v + h)— f (z), f () — f (x — h) exists in Rz in a neighborhood
of z.

Higher order H-fuzzy derivatives are defined the obvious way, like in the real case.

We denote by Cg (R), N > 1, the space of all N-times continuously H-fuzzy differentiable functions from
R into Ry, similarly is defined C¥ ([a, b)), [a,b] C R.

We mention

Theorem 2.11. ([70]) Let f : R — Rr be H-fuzzy differentiable. Let t € R, 0 <r < 1. Clearly
ror=[ro?.rm?] cr

Then (f (t))g) are differentiable and

Le. ,
(MY = (), vrepa.

Remark 2.12. ([4]) Let f € C¥ (R), N > 1. Then by Theorem 2.11 we obtain

0] = [(r0) " (r00)"],

fori=0,1,2,..., N, and in particular we have that

(f(i))(r) _ (ch(!)>(i)7
+

Note 2.13. ([1]) Let f € C¥ (R), N > 1. Then by Theorem 2.11 we have ff) € ON (R), for any r € [0,1] .

for any r € [0,1], alli =0,1,2,..., N.

Items 11-13 are valid also on [a, b].
By [9], p. 131, if f € Cx ([a,b]), then f is a fuzzy bounded function.
é

We need also a particular case of the Fuzzy Henstock integral (d (x) = §), see [30].

Definition 2.14. ([27], p. 644) Let f : [a,b] = Rxr. We say that f is Fuzzy-Riemann integrable to I € R if
for any € > 0, there exists § > 0 such that for any division P = {[u,v];{} of [a, b] with the norms A (P) < 4,

we have
D(Z(v—u)@f({),[) <e.

P
We write

b
[:=(FR) / £ (z) da. (3)
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We mention

Theorem 2.15. ([28]) Let f : [a,b] — Rr be fuzzy continuous. Then

b
(FR) / [ (@) da

exists and belongs to Rx, furthermore it holds

on [ f @) dx]T -/ "0 (@) de, / "9 @) ).

Vrelo1].
For the definition of general fuzzy integral we follow [31] next.

Definition 2.16. Let (2, X, 1) be a complete o-finite measure space. We call F' : Q@ — Rr measurable iff V¥
closed B C R the function F~!(B) : Q — [0,1] defined by

F1(B) (w) = itelgF (w) (x), all we

is measurable, see [31].

Theorem 2.17. ([71]) For F : Q — Ry,

F(w) = {(Fﬁ” (w), F" (w)) 0<r< 1} ,

the following are equivalent
(1) F is measurable,

(2)¥ rel0,1], r, FJ(FT) are measurable.

Following [31], given that for each r € [0,1], Fy), FY) are integrable we have that the parametrized

representation
{</ Fﬁr’du,/ Ff“)dﬂ> 0<r< 1} (4)
A A

is a fuzzy real number for each A € X.
The last fact leads to

Definition 2.18. ([31]) A measurable function F': Q — Rz,
F(w) = {(FE” (w), £ (w)) 0<r< 1}

is integrable if for each r € [0, 1], Fj(g) is integrable, or equivalently, if Fj(to) is integrable.

In this case, the fuzzy integral of F' over A € ¥ is defined by

/qu:z{(/ FE”du,/F_@du) |O§T§1}.
A A A

By [31], F is integrable iff w — || F' (w)|| z is real-valued integrable.

Here denote .
ull 5 = D (u o) , VueRp

We need also
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Theorem 2.19. ([71]) Let F,G : Q — R be integrable. Then
(1) Let a,b € R, then aF + bG is integrable and for each A € X,

/(aF+bG)d,u:a/Fd,u+b/Gd,u;
A A A

(2) D (F,Q) is a real- valued integrable function and for each A € ¥,

D(/ qu,/Gdu) S/D(F,G)d,u.
A A A
H/ quH S/ 1]l 7 dpe-
A F A

Above p could be the Lebesgue measure, with all the basic properties valid here too.

Basically here we have
[ / qu] - [ [ FOan, [ Fi”du], (5)
A A A

()
(/ qu> —/F}f’du, vrelo1].
A + A
We need

Definition 2.20. Let v > 0, n = [v] ([-] is the ceiling of the number), f € AC™ ([a,b]) (space of functions
f with f*=1 ¢ AC ([a,b]), absolutely continuous functions). We call left Caputo fractional derivative (see
[24], pp. 49-52, [20], [34]) the function

In particular,

1.e.

DLt 0) = gy | @0 O ©)

V z € [a,b], where T is the gamma function I' (v) = [ eV~ dt, v > 0.
Notice DY, f € Li ([a,b]) and DY, f exists a.e. on [a,b|.
We set DY f (z) = f(x),V x € [a,b] .

Lemma 2.21. ([3]) Letv >0, v ¢ N, n = [v], f € C" ([a,b]) and f™ € Ly ([a,b]). Then DY, f (a) = 0.
Definition 2.22. (see also [0], [25], [26]) Let f € AC™ ([a,b]), m = [5], 5 > 0. The right Caputo fractional

derivative of order 5 > 0 is given by

b
D @) = o [ (€= (7)

V x € [a,b]. We set DY _f(z) = f(z). Notice that Dbﬁif € L ([a,b]) and Dfﬁf exists a.e. on [a,b].

Lemma 2.23. ([5]) Let f € C™ ! ([a,b]), f™ € Lo ([a,b]), m = [B], 8> 0, 8¢ N. Then DJ_f (b) = 0.

Convention 2.24. We assume that

waof (x) =0, for z < x, (8)
and
Dfoff () =0, for x> xg, (9)

for all z, zg € [a,b].
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We mention

Proposition 2.25. ([5]) Let f € C™ ([a,b]), n = [v]|, v > 0. Then DY, f (x) is continuous in x € |a,b].
Also we have

Proposition 2.26. (/5]) Let f € C™ ([a,b]), m = [B], B > 0. Then Df_f (x) is continuous in x € [a,b].
We further mention

Proposition 2.27. ([9]) Let f € C™ 1 ([a,b]), f'™ € Lo ([a,b]), m = [B], B >0 and

B () = 1 ‘ o pym—B=1 (m)
Do ()= gy | =07 @ (10)

for all x,xzo € [a,b] : x > xp.
Then D2y, f (x) is continuous in x.

Proposition 2.28. ([5]) Let f € C™ ' ([a,b]), f'™ € Ly ([a,b]), m = [B], B> 0 and

0
Dl Fa) = g [ €= (O, (1)
for all x,xzo € [a,b] : x < xp.
Then Dfoff () is continuous in xg.
We need

Proposition 2.29. (/5]) Let g € C ([a,b]), 0 < ¢ < 1, z,z0 € [a,b]. Define
x
L(z,z0) = / (x—t) g (t)dt, forz> o, (12)
o

and L (x,z9) = 0, for xz < xo.
Then L is jointly continuous in (x,29) on [a,b]?.

We mention

Proposition 2.30. (/5]) Let g € C ([a,b]), 0 < ¢ <1, z,z¢ € [a,b]. Define
K(o,0) = [ =0 9O, fora < o (13)

and K (z,x¢) = 0, for x > xy.
Then K (z,x0) is jointly continuous from [a,b]* into R.

Based on Propositions 2.29, 2.30 we derive

Corollary 2.31. ([5]) Let f € C™ ([a,b]), m = [B], 8 >0, B ¢ N, x,20 € [a,b]. Then DL, f (x), DS _f ()
are jointly continuous functions in (x,xo) from [a, b]2 into R.

We need
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]2 — R be jointly continous. Consider

G(x) = w1 (f (7‘73) 75)[1‘}()} )

Theorem 2.32. ([5]) Let f : [a,b

d>0,z¢€[a,b.
Then G is continuous in x € [a,b].

Also it holds

Theorem 2.33. (/5]) Let f : [a,b]> = R be jointly continous. Then

H(x)=w (f () 75)[(1,96] ’

€ [a,b], is continuous in x € [a,b], 6 > 0.

So that for f € C™([a,b]), m = [B], B > 0, B ¢ N, x,29 € [a,b], we have that w; (Df;,j,h) ,

(14)

(15)

[,b]

w1 (Df_ fs h)[ | are continuous functions in x € [a,b], h > 0 is fixed.
We make
Remark 2.34. ([8]) Let f € C" ! ([a,b]), f™ € Lo ([a,b]), n = [v], v > 0, v ¢ N. Then we have

’ 17l nev
|DY, ($)|§m(fv—a} , Vx€la,b].

Thus we observe
w1 (D:afv 5) = Sup ‘DZaf ((E)
z,y€a,b]
lz—y|<

- D:af (y)’

[FAR
§%$£m<rm—u+1ﬂ
lz—y|<d

v I nv
—a) +F(n—y+1)(y_a)

2O
_F(n—y+1) )

Consequently

w1 (DY, f,0 )_F(J{V‘Ll)(b—a)n_”.

Similarly, let f € C™ 1 ([a,b]), f™) € Lo ([a,D]), m = [B], B >0, 8 ¢ N, then
5 2[| £l m—p
@)f’>—r( —ﬂ+n —am
b)), m=1[5],8>0,8¢N, we find

25
T (m—f+1)

So for f € €™ ([a,b]), f™ € Lo ([a,

sup wi ( *xof 5) - < (b— a)m_ﬁ,

zo€la,b]

and
2|/l

2 Mo (p— g)ym B,
Tm—p+1 "%

sup wp (Dfo_f, 5) )] <

zo€[a,b]

By Proposition 15.114, p. 388 of [7], we get here that D2, f € C(|zo,b]), and by |

DBO,f € C ([a, zo)).

(16)

(17)

(20)

(21)

(22)

| we obtain that
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We need

Definition 2.35. ([11]) Let f € Cr ([a,b]) (fuzzy continuous on [a,b] C R), v > 0.
We define the Fuzzy Fractional left Riemann-Liouville operator as

1 x
Ri@ = o [e-o o p 0, el (23)
I'(v) = Ja
Jof = f.
Also, we define the Fuzzy Fractional right Riemann-Liouville operator as
1 b
B o [ -0 oo velad. (24

L f:=F
We mention

Definition 2.36. ([11]) Let f : [a,b] — Rz is called fuzzy absolutely continuous iff ¥ € > 0, 3 6 > 0 for every
finite, pairwise disjoint, family

(Ckadk)zzl - (a, b) with Z (dk — Ck) <0
k=1

we get

ZD (f (di), f(ck)) <e (25)
k=1

We denote the related space of functions by ACr ([a, b]).
If f e ACr (Ja,b]), then f € Cr([a,b]).
It holds
Proposition 2.37. ([11]) f € ACx ([a,b]) & fj(!) € AEC ([a,b]), ¥V r € [0,1] (absolutely equicontinuous).
We need
Definition 2.38. ([11]) We define the Fuzzy Fractional left Caputo derivative, x € [a, b].
Let f € C%([a,b]), n = [v], v > 0 ([-] denotes the ceiling). We define

DII@) = s @ [ @0 e 0 (20)
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So, we get
D25 @) = (g | -0 (1) @
F(nl_y) /; (w— 1) (f@)(”) ) dt>] L o<r<l. (28)
That is . )
(PL1 @)Y = iy [ @0 (1) e = (2 (1)) @)
see [7], [24].
L.e. we get that
(D 1 @)Y = (P (1) (@), (29)
V x € [a,b], in short
(020 =0z, (£), ¥reb. (30)

We need
Lemma 2.39. ([11]) DY f (x) is fuzzy continuous in = € [a,b].
We need

Definition 2.40. ([11]) We define the Fuzzy Fractional right Caputo derivative, x € [a, b].
Let f € C%([a,b]), n = [v], v > 0. We define

DY f(z) := (=1)" @/b(t—x)”l’l@f(”)(t)dt

I'in-v)
(4 o o)
r<(;1—)nu) /: (t— )"Vt (f(”))(:) (t) dt) 0<r< 1} (31)

(e e )

F((;1_)’;) /: et (£ dt) 0<r< 1}.

We get . \
21 @) = | (piy [t (1)
F((nl_)ny) /: (S (fff))(n) (t) dt)] . 0<r<l.
That is

71 @) = o oy (10) @ = (o (1)) @)

see [0].
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L.e. we get that

(075 @)Y = (Dp (1)) @). (52)
V x € [a,b], in short
(D70 =i (58), Ve, (33)
Clearly,
D () < pp (#7), vrelon.
We need

Lemma 2.41. ([11]) D¥” f (x) is fuzzy continuous in x € [a,b].

3 Real Neural Network Approximation

Here we follow [22].

Let h: R — [—1,1] be a general sigmoid function, such that it is strictly increasing, h (0) = 0, h (—z) =
—h (), h(+00) =1, h(—o0) = —1. Also h is strictly convex over (—oo, 0] and strictly concave over [0, 4+00),
with ®) € C (R).

We consider the activation function

1
w(x):zz(h(erl)—h(x—l)), z €R, (34)
As in [21], p. 45, we get that ¢ (—z) = ¢ (x), thus ¢ is an even function. Since x +1 > z — 1, then
h(z+1)>h(zx—1),and ¢ (x) >0, all z € R.
We see that h 1)
¥ (0)=—" (35)

Let > 1, we have that
1
Y (x) = 1 (W (z+1)—h (z—1)) <0,

by h’ being strictly decreasing over [0, +00).

Letnow 0 <z <1,thenl—2z>0and0<1—2 <14z Itholdsh'(z—1)=h (1—2)>h (z+1),s0
that again ¢’ (x) < 0. Consequently v is stritly decreasing on (0, +00).

Clearly, v is strictly increasing on (—o0,0), and ¢’ (0) =

See that )
im0 (@) = § (h(+00) — h(+00)) =0, (36)

and )
lim (@) = § (h(~00) — h(~00)) =0, (37)

That is the z-axis is the horizontal asymptote on .
Conclusion, v is a bell symmetric function with maximum

We need
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Theorem 3.1. ([22]) We have that

iw(x—i):l, VazeR (38)

1=—00

/_OO Y (z)dx = 1. (39)

Theorem 3.2. ([22]) It holds

Thus ¢ (z) is a density function on R.
We give

Theorem 3.3. (/22]) Let 0 < a < 1, and n € N with n*=% > 2. It holds

oo _ nl—a .
Z P (nx —k) < (1 h(2 2)) (40)

k=—o0
Cnx — k| > ntme

i LZPOTN=2)

n——+o0o 2

Notice that

Denote by || the integral part of the number and by [-] the ceiling of the number.
We further give

Theorem 3.4. ([22]) Let x € [a,b] CR and n € N so that [na] < |nb]. It holds

1
, v ,bl. 41
] ea—n v “
Remark 3.5. ([22]) i) We have that
Lnb)
nh_)rglo Z Y (ne —k (42)

=[na]

for at least some z € [a,b].
ii) For large enough n € N we always obtain [na] < [nb]. Also a < £ < b, iff [na] <k < [nb].
In general, by Theorem 3.1, it holds

[nd)
Z Y (ne —k) <1. (43)
k=[na]

We give

Definition 3.6. ([22]) Let f € C ([a,b]) and n € N : [na] < |nb|. We introduce and define the linear neural
network operator
St £ (£) ¥ (nx =)
An (fra) = =] fG) , @ efa]. (44)
Zk [nal (0 (nx - k)
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Clearly here A, (f,x) € C([a,b]). We present results for the pointwise and uniform convergence of

A, (f,x) to f(x) with rates.
We first give

Theorem 3.7. ([22]) Let f € C([a,b]), 0 <a<1,neN:n'"*>2 z € [a,b]. Then

A (Fo) = 1 @) < 5 [ (s ) + Q=== 2) Il

[4n (f) = flls < p
We notice li_>m Ay, (f) = f, pointwise and uniformly.
The speed of convergence is max (n%, (1 —h (nl_a — 2))) .

In the next we discuss high order neural network approximation by using the smoothness of f.

Theorem 3.8. (/22]) Let f € OV ([a,b]), n,N € N, 0 < a < 1, x € [a,b] and n'~% > 2. Then

i)
1 [lF9 @) (1-h(n'™*=2)) -
[An (f,2) = f(2)] < @ {; i [ o T 5 (b—a) |+
—h(nt—o— (N) — o)V
o1 2) o)
i) assume further f9) (zo) =0, j = 1,...,N, for some xq € [a,b], it holds
A (F.20) = £ 20)| € 5
— nl—o _ (N) —a N
(2] )
and
iii)
]) _ nl—a _ )
40 ()= Ml < 77 Z 12 [ LRl 22) o)

n® | noNN| N!

o (ﬂN),l) 1 +<1—h<nl-°f—z>>uf<N>Hoo<b—a>N]}.

Again we obtain lim A, (f) = f, pointwise and uniformly.
n—o0

We present the following fractional approximation result by neural networks.

(45)

(46)

(48)

Theorem 3.9. ([22]) Let a« >0, N =[a], a ¢ N, f € CV ([a,b]),0< B < 1, 2 € [a,b], n € N:nl7F > 2.

Then
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i)
N=Le(h) (g .
Y P (- o) @) - F@)| <
j=1
@y~ [ (w1 (D3_f.5) oy + w1 (DS ) Ly )
T(a+1) noB T

_h (B —
(1 h(z 2)> (HDa fH [ax]x_a) + 1D fll oo wb](b—x)”‘)},

i) if f9) (z) =0, for j=1,....,N — 1, we have

|A, (f,z) — f(2)| < (¥ (1)~

{ (1 (DS 1,55 g 1 (D25 ) N

nabB

1—h(n=F -2
( (n2 )> (HDﬁ_fHoo,[a,x] (@ —a)* + | D% fll oo,y (0 — ar)‘”) } ;

iii)
Ap (fy2) = f (@) < (v (1)
9 () 1 if1=h(@nF -2
{.1 i SERI )
. (w1 (D2_f, 25) oy 1 (D2fo75) )
T (a+1) no? "
(=B
() (102 o 41 0 2)
YV x € [a,b],

and
i)

1AnS = Flloe < (@ (1)

N=11 () (1—h(ntB_2
{ \UJ&{%fwmﬂy< G >>}+
j=1

( sup wi (Dg‘,f, niﬂ)[a ] + sup wq (D*xf nﬂ) xb])

z€[a,b] x€[a,b]
T(at1) b *
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1—h(n'=% -2
( (2 ))<b—ay*(sup»uﬁ_fm”mﬂ+—sm>nDﬁjmmwﬂ>}}- ()
z€[a,b] Y x€|a,b|

Above, when N =1 the sum Z;V;ll -=0.
As we see here we obtain fractionally type pointwise and uniform convergence with rates of A, — I the
unit operator, as n — oQ.

4 Main Results: Approximation by General Fuzzy Neural Network Op-
erators

Let f € Cr ([a,b]) (fuzzy continuous functions on [a,b] C R), n € N. We define the following Fuzzy Quasi-
Interpolation Neural Network operator

[nb] = B
A (fo)= Y f (i‘;) o Ln:f (nx — k) ’ (54)
h=[nal > v(nx—k)

k=[na]

V x € [a,b], see also (44).
The fuzzy sum in (54) is finite.
Let r € [0, 1], we observe that

k=[nal S (nx—k)
k=[na]
[nb)
o (kY o (F ¥ (nx — k) _
> GO :
k=fra] S ¥ (ne — k)
k=[na]
[nb] [nb]
n(k —k [k —k
> <n> anﬁ e K DI (n) L"Zﬁ e >
k=[na] Z P (Tll’ — k) k=[na] Z P (nx - k)
k=[na] k=[na
= [4n (1.2), 40 (10.2)].
We have proved that
(A7 (f, w))g) = Ay (ff_f),m> , (56)

respectively, V r € [0,1], V = € [a, ]].
Therefore we get

A (£0.2) = 1) (@)

)

sup max{
rel0,1]
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V€ la,bl.
We present our first fuzzy neural network approximation result.

Theorem 4.1. Let f € Cr ([a,b]),0<a <1, x € [a,b], n € N with n'=® > 2. Then

1)
D(Z (fa) f @) < oo [l (£ ) + G- n e =) D (19)| =T (59)
and
2)
D* (47 (f), ) < Ta. (59)
We notice that nh_}Irolo (A7 (f)) (=) Tt f(z), nh_}nolO AZ(f) N f, pointwise and uniformly.

Proof. We have that fj(f) € C ([a,b]), ¥V r € [0,1]. Hence by (45), we obtain

40 (10.2) = 12 @) < 55 o (H)57) + (= e =2 2

2 (60)

(by Proposition 2.7 and Hfj(g) < D*(f,0))
1 1
el [w§f> (f, na) +(1—h(n'=*=2)) D* (f,5)] . (61)

Taking into account (57) the theorem is proved. [
We also give
Theorem 4.2. Let f € C¥ ([a,b]), NeN,0<a <1,z € [a,b],n €N withn'=* > 2. Then
1)
1

‘ xz T —
D (A7 (he), ] (@) < 53

o+ (1 b (n;_a - 2)> (b — a)

N
[w@ <f(N)7 1) na;N! 4 (L= b (i = 2)) D (£9,5) (b—N‘f)] } , (62)

2) assume further that fU=) (xo) =0, j« = 1,..., N, for some z¢ € |a,b], it holds

_l’_

D (Af (fv LU()),f(l‘o)) <

1 (F) (N) 1 1 1— . (N) = (b . CL)N
o (1) o 1— “—-2))D S/
v (1) [wl (f e ) ey H AR )) D (F™,8) T (63)
notice here the extremely high rate of convergence n~(N+the,

3) ,
* F
D" (47 (1)) < 5
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N )~ _
D* (fU-) 1—h(nt®—2 ,
Z (f ’0) 1' + (’I’L ) (b _ a)]* +
Ja! noJx 2
je=1
) (v 1 1 1-a ooy =) (b= a)"
WP (10, ) g+ (L= h (et = 2)) D7 (1N, 5) 2 . (64)
Proof. Since f € C¥ ([a,b]), N > 1, we have that fj(!) c CN ([a,b]), ¥ 7 € ]0,1]. Using (47), we get
r r 1
n(i)7$)—fj([)($)‘<<1) (65)
M Ux)
al ‘(fi)> @y 1—h(n - 2) }
> - (b—a)’* | +
. Js! nod« 2
Jx=1
N
e\ 1 1 (N) —a)
[wl <<fi ) v ) e (- N! (66)
(by Remark 2.12)
N ERN _
1 ‘(f ): ()‘ 1 1—h(n'=®—2) .
= — . b—a)*
(1) {j*zl Js! ni + 9 (b—a) |+
1 1 (r) ®-a)™
(N) il _
[‘”1<<f ):I: ’na> ey L=k H N! }S
N ; ~ _
1 D (fU)(z),0) | 1 1—h(npl=—2) :
- — + b —a Jx +
¥ (1) {J*Z:l J! nas 2 ( )

n® J noNN|

[wgf) <f(N)7 1) b + (1 _p (nlfa _ 2)) D* <f(N)75> (b ;V?)N

} : (67)

< D* (f(N),B) and apply (57).

(Fn

The theorem is proved.
Next we present

Theorem 4.3. Let a >0, N = [a], a ¢ N, f € C¥ ([a,b]), 0< B <1, z € [a,b], n €N, n'=P > 2. Then
i)

1

¢ (1)

. (““ i 2)> (b ay"

D (A] (f.x), f(x >)<

+

+ (68)
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b (B
(S0 [0 (0229) 8 0 0 (025) 00 2] .
i) if f9) (20) =0, j=1,..,N — 1, for some xq € [a,b] , we have
D (Af (fa CEO) o f (l’o)) <
(¥ (1))71 { {W(F ((DO‘}— f) )[a zo] +w§}- ((ng;f) LB)[a:o,bJ
r

+ (69)

nob

Ch(nl B
(1 s 2 2)> {D*((Dgf—f)?a)[a,zo] (0 = a)* + D" (D25 £) 0) s (b_m)a}}’

when « > 1 notice here the extremely high rate of convergence at n=(@+t1D58,
and

iii)
D* (A (f),f) <

1 | D (0.5 [ 1 1—h(n=b8—2 .
(D{Z (j*! )[nﬁj*+< (2 ))(b“‘)]

Jx=1

[ up P (DSF1) &)+ sup ol (D7), ),
1 z€a,b] z€a,b]

r (O[ + 1) naﬂ

+ (70)

z€[a,b] z€[a,b]

(S22 o s 0 (09) 9+ 0 (0370).30 .

above, when N =1 the sum Z;V:_ll -=0.
As we see here we obtain fractionally the fuzzy pointwise and uniform convergence with rates of Aj — I
the unit operator, as n — oo.

Proof. Here fi € CN ([a, ]) Vre [0 1], and DS f, DS f are fuzzy continuous over [a,b], V x € [a, b], so

that (D27 )0, (DeF )1 e ),V rel0,1],Vaelab].
We observe by (52), V = € [a b] that (respectively in +)
) N _ )]« L
‘An< + ,l’) fi ($)) = (1)

— (B _ ,
2 I {n;j + (1 ul 5 2>> (b—a)J*}—i- (71)
Jx=
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b (1B
(=000 (o () o-or o ()], 0-o)}}

(by Remark 2.12, (30), (33))

1 (F9 @)V (o 1—h (08 —2 |
w(l){z‘ Js! {nﬁj*+< (2 )>(b—a)J*}+

Jx=1
(Daff) L +w (Daff) B
. (- B>[a’ﬂnaﬁ ! 2 " "
(1 —h (n21/3 - 2)) <H(D?ff)$) i (z —a)® + H (D )( r) . (b— x)a> }} <

1 gy ) fU) (x),0 1 1—h(n'=P -2 i
zb(l){Z ( il ){nﬂj*+< (2 )>(b_“) }+

o=l

47 (D27 £) 3 g 7 (DT F) 5 35) ) N (73)
I'(a+1) nos
1—h(n'? -2
( (n2 )> [D*((D?ff)va)[a,z] (2 —a)" + D" (DY f) ,0) .y (0 —I)a}}},
along with (57) proving all inequalities of theorem.
Here we notice that
(022N 0 = (pe (1)) @)
G A Nea—1 ( ))&V
e | () s
where a <t < z.
Hence . . )
0702 0] < ity [ -0 (20) o
(FO) (r) .
H i N—a Dr (f(N)vO) N—a
= L(N—a+1) - s F(N—a—i—l)( —a)
So we have ( ) )
aF Dr f 75 N—«o
all a <t < z2.
And it holds ( ) )
NG D* (Y, 0 N-a
H(D‘Tif)i la,z] = P(N—Oé+1) (b_a) ’ (74)
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that is ( ) )
f o _
% aF e
D* (D37 f),0) (4 < m(b_a) ’
and - D (f™M8) o~
* « Y < — B - '
el (D21) D)y < NOErETE S

Similarly we have

(=F Y @0 = (02, (7)) @)

where x <t <b.

Hence
a 1 ! Nea—1|( s\
’(D ff) ()‘ F(N_a)/x(t—s) (fN)i (s)|ds
[ vl DG
F(N—oa—l—l)(b_a) gF(N—oz—i—l)(b_a) ’
Tz <t<hb.
So we have ( " )
oF £\ () (S 0 N—
H(D /s ,[a:,b]SF(N—a—I-l)(b_a) ’
that is ( ) )
a]-' D f ’5 N—«a
and ( o )
* aF D~ f 75 N—«
S0 DN PES) Oy < T gy B < e

Furthermore we notice

ng:) ((Dgff),l)[ }: sup D((Dgff)(s),(Dﬁff)(t))g

nf s, t€la,z]
|s—t|< 5
s {D (DT F) (s),0) + D (DT f) (t),0)} <2D* (DT f) .,
s,tela,r
|s—t|<-5
2D* (f( )75) N—a«a
ST -a+n?~9

Therefore it holds

z€[a,b] [a,z] B F(N_a+ 1)

)[a,:p}

2D* (V) &
w o) (079), ) < BP0 oy <o

(76)

(78)
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Similarly we observe

w§f><(D3ff) ) = sup D (D)) (), (D) ) <
"np [2,b] s,t€[x,b]
|s—t|< 5

20" (F),3)

2D* (D] f) .o )[:cb “T(N—a+1)

(b—a)N ™.

Consequently it holds

2D* (fN) &
sup wg <(Daff) ){ | < M (b—a)V™* < +o0.
x,b

z€[a,b] F(N—Oé—{—l)

So everything in the statements of the theorem makes sense.
The proof of the theorem is now completed. U

Corollary 4.4. (to Theorem 4.3, N =1 case) Let 0 < a, 3 < 1, f € C%([a,]]), n €N, n'=P > 2. Then
D* (A (), f) <
sup w(f)((Da]-'f> ;) + sup W) ((Daff) L)
1 z—J ) nB)| b wy B z,b]

(p )~ LE[a,b} zefad]
r (a + 1) nab

a7'r:|

+

(1_h(n21_ﬂ_2)>(b—a)alsup D* (D2 ) ,0) 0 + sup D* (DI f), )[a:b”'

z€[a,b] z€[a,b]

Proof. By (70). O
1

Finally we specialize to o = 3.

Corollary 4.5. (to Theorem 4.3) Let 0 < B < 1, f € C}([a, b)), n €N, n'=8 > 2. Then
D* (A7 (f). f) <

1 1
. [ sup w%f) <<D§ff) ,n1g> + sup w@ <(Df:ff> a;ﬁ)
2(y (1)) z€[a,b] laa]  @€lab] [2,5]
VT n

1—h(nt=F -2 1 1
(n ) vVb—a | sup D* <<D$ff> ,5) + sup D* <<D*§ff> ,5) .
2 z€a,b] la,]  z€lab] [z,b]

Proof. By (80). O

[Nisy
+

5 Conclusion
We have extended to the fuzzy setting all the main approximation theorems of Section 3.
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