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Abstract. In the literature it is very common to see problems in which it is necessary to aggregate a set of
data into a single one. An important tool able to deal with these issues is the aggregation functions, which we
can highlight as the OWA functions. However, there are other functions that are also capable of performing these
tasks, such as the preaggregation function and mixture functions. In this paper we investigate two special types of
functions, the Generalized Mixture functions and Bounded Generalized Mixture functions, which generalize both
OWA and Mixture functions. We also prove some properties, constructions and examples of these functions. Both
the Generalized and Bounded Generalized Mixture functions are developed in such a way that the weight vectors
are variables that depend on the input vector, which generalizes the aggregation functions: Minimum, Maximum,
Arithmetic Mean and Median, and are extensively used in image processing. Finally, we propose a Generalized
Mixture function, denoted by H, and we show that H satisfies a series of properties in order to apply this function
in an illustrative example of application: The image reduction process.
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1 Introduction

Some functions are able to transform a set of data into a single one, for example, aggregations functions
[3, 6, 22] and mixture functions [6]. This type of function has applications in several areas; for example,
we can cite [8, 17, 19, 43, 44]. Image processing used in medicine; for example, you can apply it to: detect
tumors [26, 36, 40, 58]; support techniques in advancing dental treatments [14, 25, 52, 54], etc. Such images
are not always obtained with suitable quality, and to detect the desired information, various methods have
been developed in order to eliminate most of the noise contained in these images [29, 42, 50]. These functions
can also be used to reduce the size of images (this process is called image reduction).

The methods of image reduction are used in order to decrease your resolutions, usually aiming the reduc-
tion of memory consumption required for its storage [23]. There are several techniques for image reduction
to achieve this goal in the literature, among these techniques, we can cite Paternain et al. [45], that built
a method of reduction using weighted averaging aggregation functions. The method proposed by Paternain
et al. consists of: (1) Reducing a given image by using a reduction operator (based on weighted averaging
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aggregation functions); (2) Building a new image from the reduced one, and (3) Analyzing the quality of the
last image be using the measures PSNR and MSSIM defined in [23].

Because of its broad capacity of applications, many researchers have invested in aggregate functions
and its extensions [34, 39, 46, 48, 61, 64]. In this sense, thinking about the problem of decision-making,
Yager [60] introduced a special class of aggregate functions, called Ordered Weighted Averaging - OWA, and
ever since several authors have proposed generalizations for these functions [12, 33, 37, 53, 61]. Mixture
functions, presented in [6], and variants of Choquet integrals in [2, 10, 15, 35] are other important examples
of generalization of the OWA. These functions are not aggregate functions, but also are efficient in converting
various information into a single one.

In this paper we studied a class of functions introduced in [46] and called Generalized Mixture - GM. Since
then many other papers on this class of functions have been found, for example [13, 20, 21, 47, 49]. GM also
generalizes the notion of OWA and consequently, also encompass functions as: Arithmetic Mean, Median,
Maximum and Minimum. Besides that, it is a generalized form of another important class of functions: The
Mixture functions - MO, which as well as OWA functions, are determined from weights w1, w2, · · · , wn ∈ [0, 1],

which generally satisfy the condition
n∑

i=1
wi = 1. The GM functions,as well as the MO functions, are weighted

averaging means with dynamic weights, i.e., the weights of these functions depend on the input variables.
This characteristic of more flexible weights of OWA′ allows us to define functions whose weights are suited
for each input, which does not occur in OWA’s. However, we ended up losing the property of monotonicity,
which can be replaced by directional monotonicity [9] in order to obtain preaggregation functions.

Later, in this work, we weaken the condition of the vector of weights

(
n∑

i=1
wi = 1 to

n∑
i=1

wi ≤ 1

)
, thereby

obtaining in another generalization of OWA, called the Bounded Generalized Mixture - BGM function, we
propose a special GM function (denoted by H). This way, we provide a wide range of their properties such
as: idempotence, symmetry, homogeneity and directional monotonicity. To finalize this work, we apply H in
a method of image reduction [4, 7, 44, 51, 56, 59] and we compare this function with Minimum, Maximum,
Arithmetic Mean, Median and cOWA. The method adopted was the same as Paternain et al. [45].

This work is structured in the following way: The next section provides the basic concepts of Aggrega-
tion functions theory; In Section 3, we introduce the concepts of Generalized Mixture - GM and Bounded
Generalized Mixture - BGM operators, we show properties, constructions, examples and propose a particular
GM function (called H). Also in Section 3, we show that H is idempotent, homogeneous, shift-invariant,
symmetric, self dual and directionally monotonic, which is important to the image reduction field [45]. In
Section 4, we provide an illustrative application for GM’s. in image reduction and finally in Section 5 we
close this paper with some final remarks.

2 Aggregation Functions

Aggregation functions are important mathematical tools for applications in various fields, such as: Information
fuzzy [17, 19, 24, 32]; Decision making [8, 11, 41, 44, 64]; Image processing [4, 26, 45] and Engineering [31, 43].
In this section we introduce them together with examples and properties. We also present a special family of
aggregation functions called Ordered Weighted Averaging (OWA), showing some of its features and the notion
of Mixture Operator (MO), a generalized form of OWA.

2.1 Definition and Examples

Aggregation functions are n-ary operations on the unit interval [0, 1] which are able to summarize an n-
dimensional information x = (x1, . . . , xn) ∈ [0, 1]n into a unique data x ∈ [0, 1]. Formally, they are the
following functions:
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Definition 2.1. An n-ary aggregation function is a mapping A : [0, 1]n → [0, 1], which associates each n-
dimensional vector x = (x1, . . . , xn) to a single value A(x) in the interval [0, 1] which satisfies the mononicity
condition2 and also the boundary condition3:

Example 2.2. Given x = (x1, . . . , xn),

(a) Arithmetic Mean: Arith(x) =
1

n
(x1 + x2...+ xn)

(b) Minimum: Min(x) = min{x1, x2, ..., xn};

(c) Maximum: Max(x) = max{x1, x2, ..., xn};

(d) Product: Prod(x) =
n∏

i=1
xi;

(e) Weighted Average: For (w1, · · · , wn) ∈ [0, 1]n, with
n∑

i=1
wi = 1,WAvg(x) =

n∑
i=1

wi · xi.

Remark 2.3. From now on we will use the short term “aggregation” instead of “n-ary aggregation function”.

Aggregations can be divided into four distinct classes: Averaging, Conjunctive, Disjunctive and Mixed.
Since this paper focus on averaging aggregations, we will define only this class.

Definition 2.4. A function f : [0, 1]n −→ [0, 1] satisfies the averaging property, if for all x ∈ [0, 1]n we
have:

Min(x) ≤ f(x) ≤ Max(x).

When an aggregation f satisfies the averaging property we say that f is a averaging function. Futher-
more, if a aggregation that satisfies the averaging property is called of averaging aggregation function.
As in this paper we are dedicated to studying only functions that satisfy the averaging property, we will not
detail the Conjunctive, Disjuntive and Mixed functions. A wider approach in aggregation can be found in
[1, 3, 6, 16, 22].

Example 2.5. The functons Min, Max, Arith and WAvg are averaging aggregations.

In the definition below we describe a series of properties that the aggregations functions (like any other
function) can satisfy.

Definition 2.6. Let f : [0, 1]n → [0, 1] be a function. We say that f

(1) is Idempotent if, and only if, f(x, ..., x) = x for all x ∈ [0, 1].

(2) is Homogeneous of order k if, and only if, for all λ ∈ [0, 1] and x ∈ [0, 1]n, f(λx1, λx2, ..., λxn) =
λkf(x1,
x2, ..., xn). When f is homogeneous of order 1 we simply say that f is homogeneous.

(3) is Shift-invariant if, and only if, f(x1 + r, x2 + r, .., xn + r) = f(x1, x2, .., xn) + r, for all r ∈ [−1, 1],
x ∈ [0, 1]n, (x1 + r, x2 + r, ..., xn + r) ∈ [0, 1]n and f(x1, x2, ..., xn) + r ∈ [0, 1].

(4) is Monotonic if, and only if, f(x) ≤ f(y) whenever xi ≤ yi, for all i ∈ {1, · · · , n}.

(5) is Strictly Monotone if, and only if, f(x) < f(y) whenever x < y, i.e., x ≤ y and x ̸= y.

2If x ≤ y, i.e., xi ≤ yi, for all i = 1, 2, ..., n, then A(x) ≤ A(y).
3A(0, ..., 0) = 0 and A(1, ..., 1) = 1.
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(6) has a Neutral Element e ∈ [0, 1], if for all t ∈ [0, 1] it has to be:

f(e, ..., e, t, e, ..., e) = t.

(7) is Symmetric if, and only if, its value is not changed under the permutations of coordinate for any
input vector, i.e.:

f(x1, x2, ..., xn) = f(xp(1) , xp(2) , · · · , xp(n)
)

for all vector x = (x1, x2, ..., xn) and any permutation p : {1, 2, ..., n} → {1, 2, ..., n}.

(8) has an Absorbing Element (Annihilator) a ∈ [0, 1], if:

f(x1, x2, ..., xi−1, a, xi+1, ..., xn) = a.

(9) has a Zero Divisor a ∈ ]0, 1[, if for all i ∈ {1, 2, · · · , n} there is some vector x ∈]0, 1]n, of the form
(x1, ..., xi−1,
a, xi+1, ..., xn), such that f(x) = 0.

(10) has a One Divisor a ∈]0, 1[, if for any i ∈ {1, 2, · · · , n} there is some vector x ∈ [0, 1[n, of the form
(x1, ..., xi−1,
a, xi+1, ..., xn), such that f(x) = 1.

Example 2.7.

(i) The functions: Arith,Min and Max are examples of idempotent, homogeneous, shift-invariant and
symmetric aggregations.

(ii) Min and Max have the elements 0 and 1 as its respective annihilators, but Arith does not have anni-
hiladors.

(iii) Min, Max and Arith does not have zero divisors and one divisors.

2.2 Ordered Weighted Averaging - OWA Functions

In the field of aggregations there is a very important kind of function in which the aggregation behavior
is provided parametrically; they are called: Ordered Weighted Averaging or simply OWA [60]. More
precisely, they are average aggregation whose behavior is in function of a vector of weights. Observe the
following definition.

Definition 2.8. Let be an input vector x = (x1, x2, . . . , xn) ∈ [0, 1]n and a vector of weights w = (w1, . . . , wn) ∈
[0, 1]n, such that

n∑
i=1

wi = 1. Assuming the permutation of x:

Sort(x) = (x(1), x(2), . . . , x(n))

such that x(i) ≥ x(i+1), i.e., x(1) ≥ x(2) ≥ · · · ≥ x(n). The Ordered Weighted Averaging (OWA) function with
respect to w, is the function OWAw : [0, 1]n → [0, 1] such that:

OWAw(x) =
n∑

i=1

wi · x(i)

Remark 2.9. In what follows we remove w from OWAw(x) and write only OWA.
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The main properties of OWA functions are:

(a) For any vector of weights w, the function OWAw(x) is an idempotent aggregation function. Moreover,
OWA’s are strictly increasing if all weights w are positive;

(b) The dual of a OWAw, denoted by (OWA)d, is an OWA with the vector of weights dually ordered, i.e.
(OWAw)

d = OWAwd , where wd = (wp(n), wp(n−1), ..., wp(1)).

(c) OWA are continuous, symmetric and shift-invariant;

(d) They do not have neutral or absorption elements, on exception for the second and third case below.

Following is a series of examples of OWA functions

Example 2.10.

(1) If w = (0, 0, 0, ..., 1), then OWA(x) = Min(x);

(2) If w = (1, 0, 0, ..., 0), then OWA(x) = Max(x);

(3) If all weight vector components are equal to 1
n , then OWA(x) = Arith(x);

(4) if wi = 0, for all i, with the exception of a k-th member, i.e, wk = 1, then this OWA is called static
and OWAw(x) = x(k);

(5) Given a vector x and its ordered permutation Sort(x) = (x(1), . . . , x(n)), the Median function

Med(x) =

{
1
2(x(k) + x(k+1)), if n = 2k

x(k+1), if n = 2k + 1

is an OWA function in which the vector of weights is defined by:

• If n is odd, then wi = 0 for all i ̸= ⌈n2 ⌉ and w⌈n/2⌉ = 1.

• If n is even, then wi = 0 for all i ̸= ⌊n+1
2 ⌋ and i ̸= ⌈n+1

2 ⌉, and w⌈(n+1)/2⌉ = w⌊(n+1)/2⌋ =
1
2 .

In addition to the above functions, another important example of OWA, which we will use later in this
work, is the centered OWA or cOWA[61].

Example 2.11. The n-dimensional cOWA function is the OWA operator, with weighted vector defined by:

• If n is even, then wj =
2(2j−1)

n2 , for 1 ≤ j ≤ n
2 , and wn/2+i = wn/2−i+1, for 1 ≤ i ≤ n

2 .

• If n is odd, then wj = 2(2j−1)
n2 , for 1 ≤ j ≤ n−1

2 , wn/2+i = wn/2−i+1, for 1 ≤ i ≤ n
2 , and w(n+1)/2 =

1− 2
(n−1)/2∑

j=1
wi.

The OWA functions are defined in terms of a predetermined vector of weights; namely this vector of wights
is fixed previously by the user. In the next section present a generalized form of OWA in order to relax this
situation. The vector of weights will be in function of the vector of inputs x = (x1, . . . xn). To achieve that we
replace, in the OWA expression, the vector of weights by a family of functions, called Weighted functions.
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3 Weighted functions

As mentioned, the OWA functions are means with previously fixed weights. In the literature we can find some
kind of functions that overcome this situation, by providing variable weights. These functions are called here
weighted functions. An important example of that is the Mean of Bajraktarevic, presented in [6].

Definition 3.1 (Mean of Bajraktarevic). Let w(t) = (w1(t), · · · , wn(t)) be a vector of weights functions
wi : [0, 1] → [0,+∞), and let g : [0, 1] → (−∞,+∞) be a strictly monotone function. The mean of
Bajraktarevic is the function:

f(x) = g−1


n∑

i=1
wi(xi)g(xi)

n∑
i=1

wi(xi)


In the case of g(t) = t, the mean of Bajraktarevic is also called Mixture function, in other words, the

mixture functions have the form:

M(x) =

n∑
i=1

wi(xi) · xi
n∑

i=1
wi(xi)

(1)

Generally, the mixture functions are not aggregation functions in general, since they do not always satisfy
monotonicity, however [38, 39, 48] provides sufficient conditions to overcome this situation.

Remark 3.2. Note in Equation (1) that each weight wi(xi) is the value of a single variable function; namely
the weight is the value of a function wi applied to the i-th position of the input vector x = (x1, . . . , xn).
However, this restriction can be relaxed in order to obtain a weight wi(x), i.e. weight which is in function
of the whole input. This generalization of mixture operators were done by Pereira [46, 47] and the resulting
functions were called of Generalized Mixture Functions (GMF).

Although Pereira has introduced GMFs he did not provide a deep investigation about them. In what
follows we provide some results about such functions; their relation with OWA’s, Mixture Functions and
Preaggregations. We finally generalize GMF’s to the notion of Bounded Generalized Mixture Functions
(BGMF) and provide some relations of them with the notions of monotonicity, directional monotonicity,
Weak-dual and Weak-conjugate functions.

3.1 Weighted Averaging Functions

Before defining the notion of Weighted Averaging functions, we need to establish the notion of weight-
function.

Definition 3.3. A finite family of functions Γ = {fi : [0, 1]n → [0, 1] | 1 ≤ i ≤ n} such that
n∑

i=1
fi(x) = 1 is

called family of weight-functions (FWF).

The Generalized Mixture Function, or simply GM, associated to a FWF Γ is the function GMΓ :
[0, 1]n → [0, 1] given by:

GMΓ(x) =
n∑

i=1

fi(x) · xi

In the Examples 3.4-3.10 we present GM functions.
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Example 3.4. Let be Γ =
{
fi(x) =

1
n | 1 ≤ i ≤ n

}
. The GM operator associated to Γ, GMΓ(x), is Arith(x).

Example 3.5. The function Minimum can be obtained from Γ = {fi | 1 ≤ i ≤ n}, where for all x ∈ [0, 1]n,
f(n)(x) = 1 and fi(x) = 0, if i ̸= (n) .

Example 3.6. Similarly, the function Maximum is also of type GM with Γ dually defined.

Example 3.7. For any vector of weights w = (w1, w2, ..., wn), A function OWAw(x) is a GM in which the
weight-function are given by: fi(x) = wp(i), where p : {1, 2, · · · , n} −→ {1, 2, · · · , n} is the permutation,
such that p(i) = j with xi = x(j). For example: If w = (0.3, 0.4, 0.3), then for x = (0.1, 1.0, 0.9) we
have x1 = x(3), x2 = x(1) and x3 = x(2). Thus, f1(x) = 0.3, f2(x) = 0.3, f3(x) = 0.4, and GM(x) =
0.3 · 0.1 + 0.3 · 1.0 + 0.4 · 0.9 = 0.69

Remark 3.8. Example 3.7 shows that any OWA function is GM. However, there are GM functions which are
not OWA:

Example 3.9. Let Γ = {sin(x) · y, 1− sin(x) · y}. The respective GM function is

GM(x, y) = (sin(x) · y) · x+ (1− sin(x) · y) · y,

which is not an OWA function.

The following example shows that the mixture functions are also special types of GM function.

Example 3.10. If w(t) = (w1(t), · · · , wn(t)) is a vector of weight functions wi : [0, 1] → [0,+∞), and

the mixture operator is M(x) =

n∑
i=1

wi(xi)·xi

n∑
i=1

wi(xi)
, then M is also a GM function, with weight-functions given by

fi(x) =
wi(xi)

n∑
i=1

wi(xi)
.

Remark 3.11. Observe that the GM function at Example 3.9 can not be characterized as a mixture function,
since w1 is not a function that depends only of variable x and w2 is not a function that depends only of
variable y.

At this point of paper, we relax the condition
n∑

i=1
fi(x) = 1 to

n∑
i=1

fi(x) ≤ 1, thus obtaining a new family

of generalized mixture functions.

Definition 3.12. Let Γ = {fi : [0, 1]n → [0, 1] | 1 ≤ i ≤ n} such that:

(I)
n∑

i=1
fi(x) ≤ 1, and

(II)
n∑

i=1
fi(1, · · · , 1) = 1, for all i ∈ {1, 2, · · · , n}.

A Bounded Ganeralized Mixture (BGM) operator associated to a Γ is a function BGMΓ : [0, 1]n →
[0, 1] given by:

BGMΓ(x) =

n∑
i=1

fi(x) · xi
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Remark 3.13.

1. Note that GM functions are BGM operators subject to the condition:

(III)
n∑

i=1
fi(x) = 1, for any x ∈ [0, 1]n,

2. Let Γ = {fi(x, y) = x
n : 1 ≤ i ≤ n}. Then, BGMΓ =

n∑
i=1

x2
i
n is not a GM operator, because, for example,

n∑
i=1

fi(0, · · · , 0) = 0.

3. As BGM is a generalized form of GM, it follows that the functions defined in the Examples 3.4-3.10
are also BGM function. In this sense, is worth emphasizing that BGM generalize both: OWA and GM
operators.

Now, we establish several properties of GM and BGM functions.

3.2 Properties of GM and BGM Functions

As we have said previously, GM and BGM are generalized forms of OWA, which in turn belongs to the class of
avegaring functions. However, we can not always guarantee that a BGM is an averaging function, while then
GM functions are averaging function. The next proposition gives us a sufficient condition to achieve that.

Proposition 3.14. If Γ is a FWF with
n∑

i=1
fi(x) = 1, then GMΓ is an averaging function, i.e.:

Min(x) ≤ GMΓ(x) ≤ Max(x)

Proof. For all x = (x1, ..., xn),

Min(x) ≤ xi ≤ Max(x), ∀i = 1, 2, ..., n.

So,

n∑
i=1

fi(x) ·Min(x) ≤
n∑

i=1

fi(x) · xi ≤
n∑

i=1

fi(x) ·Max(x),

but as
n∑

i=1
fi(x) = 1, it follows that

Min(x) ≤
n∑

i=1

fi(x) · xi ≤ Max(x).

□

Remark 3.15. Observe that the restriction of condition
n∑

i=1
fi(x) = 1 can not be removed, i.e., BGM not

always are averaging functions, since for f1(x, y) = x
2 and f2(x, y) = y

2 , we have BGM(0.5, 0.5) = 0.25 <
Min(0.5, 0.5).

Proposition 3.16. Let Γ be a FWF. Then, the BGMΓ is idempotent if, and only, if
n∑

i=1
fi(x, · · · , x) = 1 for

any x ∈ [0, 1].
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Proof. If
n∑

i=1
fi(x) = 1 and x = (x, ..., x), then:

BGMΓ(x) =
n∑

i=1

fi(x) · x = x ·
n∑

i=1

fi(x) = x

Reciprocally, if BGM is an idempotent function and
n∑

i=1
fi(x, · · · , x) < 1 for some x ∈ [0, 1] we have to

BGMΓ(x) =

n∑
i=1

fi(x) · x < x · 1 = x.

Thus, the condition
n∑

i=1
fi(x, · · · , x) = 1 can not be removed. □

Corollary 3.17. Any GM function is idempotent.

Proof. Straightforward.
□

Example 3.18. We can not always guarantee that a BGM is idempotent, because if we take f1(x, y) =
x
2 and

f2(x, y) =
y
2 , then BGM(0.5, 0.5) = 0.25 ̸= 0.5.

Proposition 3.19. If Γ is a FWF invariant under translations, i.e, fi(x1+λ, x2+λ, ..., xn+λ) = fi(x1, x2, ..., xn)
for any x ∈ [0, 1]n, for i ∈ {1, 2, · · · , n}, satisfying 1 and λ ∈ [−1, 1], then BGMΓ is shift-invariant.

Proof. Let x = (x1, ..., xn) ∈ [0, 1]n and λ ∈ [−1, 1] such that (x1 + λ, x2 + λ, ..., xn + λ) ∈ [0, 1]n. then,

BGMΓ(x1 + λ, ..., xn + λ) =
n∑

i=1

fi(x1 + λ, ..., xn + λ) · (xi + λ)

=

n∑
i=1

fi(x1 + λ, ..., xn + λ) · xi +
n∑

i=1

fi(x1 + λ, ..., xn + λ) · λ

=

n∑
i=1

fi(x1, ..., xn) · xi + λ

= BGMΓ(x1, ..., xn) + λ

□
Remark 3.20. The condition 1 is also important to preserve shift-invariance, since if we define f1(x, y) =

f2(x, y) =
|x−y|

2 , for (x, y) ̸= (1, 1), and f1(1, 1) = f2(1, 1) =
1
2 , then f1 and f2 are invariant under transla-

tions, but BGM(0, 0.1) = 0.005 and BGM(0 + 0.1, 0.1 + 0.1) = 0.015 ̸= 0.005 + 0.1.

Proposition 3.21. If Γ is homogeneous of order k (i.e. if each fi is homogeneous of order k), then BGMΓ(x)
is homogeneous of order k + 1.

Proof. Of course that, if λ = 0, then BGMΓ(λx1, ..., λxn) = λf(x1, ..., xn). Now, to λ ̸= 0 we have:

BGMΓ(λx1, ..., λxn) =
n∑

i=1

fi(λx1, ..., λxn) · λxi

= λ ·
n∑

i=1

λkfi(x1, ..., xn)xi

= λk+1 · BGMΓ(x1, ..., xn)

□
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Remark 3.22. Note that if
n∑

i=1
fi(x) = 1, then fi cannot be homogeneous of order k > 0, since

1 =

n∑
i=1

fi(λx1, · · · , λxn) = λk
n∑

i=1

fi(x) = λk,

i.e., there are no GM’s homogeneous of order k > 1. However, if we remove this restriction, then we can
have Γ with homogeneous fis of order k > 0. For example, fi(x) =

xi
n is homogeneous of order 1, and so,

according to Proposition 3.21, BGMΓ is homogeneous of order 2.

The next example shows a GM function which is not a mixture operator.

Example 3.23. Let Γ be defined by

fi(x1, ..., xn) =


1
n , if x1 = · · · = xn = 0
xi

n∑
j=1

xj

, otherwise

Then,

GMΓ(x) =


0, if x1, ..., xn = 0
n∑

i=1
x2
i

n∑
i=1

xi

, otherwise

Observe that this function, like that in Example 3.9, cannot be characterized as a mixture function, since
fi does not depend exclusively from xi. This GMΓ is idempotent, homogeneous and shift-invariant, but is
not monotonic, since GMΓ(0.5, 0.2, 0.1) = 0.375 and GMΓ(0.5, 0.22, 0.2) = 0.368.

Proposition 3.24. The N -dual4, with respect to stantard fuzzy negation5, of a GM function is also a GM
function.

Proof. If Γ is a FWF, then

GMN
Γ (x1, · · · , xn) = 1−

n∑
i=1

fi(1− x1, · · · , 1− xn) · (1− xi)

= 1−
n∑

i=1

fi(1− x1, · · · , 1− xn) +

n∑
i=1

fi(1− x1, · · · , 1− xn) · xi

=

n∑
i=1

fi(1− x1, · · · , 1− xn) · xi

=

n∑
i=1

gi(x1, · · · , xn) · xi,

where gi(x1, · · · , xn) = fi(1− x1, · · · , 1− xn). □

Proposition 3.25. If Γ = {f1, · · · , fn} is a FWF, then ΓR = {fn, · · · , f1} also is a FWF. Besides that,
GMR

Γ = GMΓR

4The N -dual of a function F : [0, 1]n −→ [0, 1] is FN (x1, · · · , xn) = N(F (N(x1), · · · , N(xn)), where N is a fuzzy negation,
i.e., a function decreasing function N : [0, 1] −→ [0, 1] with N(0) = 1 and N(1) = 0.

5The standard fuzzy negation if N(x) = 1− x.
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Proof. Direct from the definition. □
Examples 3.9 and 3.10 show that GM functions encompass both: OWA and Mixture functions, and thus

these functions are special cases GM proposed here. It is also important to note that GM and BGM functions,
as well as Mixture functions, are not generally aggregations since it fails to satisfy the monotonicity condition.
In examples 3.4, 3.5, 3.6, 3.7 and 3.9 the respective GM’s are monotonic, but in Example 3.23 (that we bring
forward) the function there is not monotonic. When the GM is monotonic, obviously, this function is an
aggregation, since the boundary condition is trivially satisfied.

Some conditions for monotonicity of GM functions were studied by Pereira et al. in [46, 47, 48]. In this
work we will not study monotonicity criteria, but a more weakened form, called weak monotonicity or
directional monotonicity.

3.3 Directional Monotonicity

There are many n-ary functions that do not satisfy the monotonicity condition, but its restriction to certain
directions are monotonic functions. In this sense, Wilkin and Beliakov in [57] introduce the concept ofweakly
monotonicity (see also [5]), which was generalized by Bustince et al. in [9], which defines the notion of
directional monotonicity.

Definition 3.26. Let r = (r1, · · · , rn) a not null n-dimentional vector. A function F : [0, 1]n −→ [0, 1] is
r-increasing if fo all x = (x1, · · · , xn) and t > 0 such that (x1 + tr1, · · · , xn + trn) ∈ [0, 1]n, we have

F (x1, · · · , xn) ≤ F (x1 + tr1, · · · , xn + trn),

that is, F is increasing in the direction of vector r.

Definition 3.27. A function F : [0, 1]n −→ [0, 1] is an n-ary preaggregation function (or simply preag-
gregation) if satisfies the boundary condition, F (0, · · · , 0) = 0 and F (1, · · · , 1) = 1, and is r-increasing for
some direction r ∈ [0, 1]n.

In [34], Lucca et al. was presented properties, constructions and application for preaggregations function.
They show that the following functions are examples of preaggregations.

Example 3.28. 1. Mode(x1, · · · , xn), that is (1, 1)-increasing;

2. F (x, y) = x− (max{0, x− y})2, tha is (0, 1)-increasing;

3. The weighted Lehmer mean (with convention 0/0 = 0)

Lλ(x, y) =
λx2 + (1− λ)y2

λx+ (1− λ)y
, where 0 < λ < 1

is (1− λ, λ)-increasing;

4.

A(x, y) =

{
x(1− x), if y ≤ 3/4
1, otherwise

is (0, a)-increasing for any a > 0, but for no other direction;

5.

B(x, y) =

{
y(1− y), if x ≤ 3/4
1, otherwise

is (b, 0)-increasing for any b > 0, but for no other direction.
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Remark 3.29. Any aggregation functions is also a preaggregation function.

Proposition 3.30. If BGMΓ is shift-invariant, then BGMΓ is a preaggregation function (k, k, · · · , k)-increasing.

Proof. Just see that for all x = (x1, x2, · · · , xn) ∈ [0, 1]n and any t > 0 such that (x1 + tk, x2 + tk, · · · , xn +
tk) ∈ [0, 1] we have

BGMΓ(x1 + tk, · · · , xn + tk) = BGMΓ(x1, · · · , xn) + tk,

and so
BGMΓ(x1, · · · , xn) ≤ BGM(x1 + tk, · · · , xn + tk)

□
Corollary 3.31. If Γ is a FWF invariant under translations, i.e, fi(x1+λ, x2+λ, ..., xn+λ) = fi(x1, x2, ..., xn),
for i ∈ {1, 2, · · · , n}, for any x = (x1, · · · , xn) ∈ [0, 1]n and λ ∈ [0, 1] such that (x1 + λ, x2 + λ, ..., xn + λ) ∈
[0, 1]n satisfying 1, BGMΓ is a preaggregation function (k, k, · · · , k)-increasing.

Proof. By Proposition 3.19, BGMΓ is shift-invariant, and so, by Proposition 3.30, BGMΓ is a preaggregation
function (k, k, · · · , k)-increasing. □

In fact, the conditions required by Corollary 3.31 are very strong. In the following proposition, we relax
these conditions:

Proposition 3.32. If Γ is a FWF with fi(x1, · · · , xn) ≤ fi(x1 + λ, · · · , xi + λ), for i ∈ {1, 2, · · · , n}, for
any x = (x1, · · · , xn) ∈ [0, 1]n and λ ∈ [0, 1] such that (x1 + λ, x2 + λ, ..., xn + λ) ∈ [0, 1]n, then BGMΓ is a
preaggregation function (k, k, · · · , k)-increasing.

Proof. For any x = (x1, · · · , xn) ∈ [0, 1]n and λ ∈ [0, 1] such that (x1 + λ, x2 + λ, ..., xn + λ) ∈ [0, 1]n we
observe that

BGMΓ(x1 + λ, ..., xn + λ) =

n∑
i=1

fi(x1 + λ, ..., xn + λ) · (xi + λ)

=

n∑
i=1

fi(x1 + λ, ..., xn + λ) · xi +

n∑
i=1

fi(x1 + λ, ..., xn + λ) · λ

≥
n∑

i=1

fi(x1, ..., xn) · xi + λ

≥ BGMΓ(x1, ..., xn)

□
Example 3.33. Let Γ whose functions are given by

fi(x1, · · · , xn) =


1
n , if x1 = · · · = xn

x(1)−xi
n∑

j=1
(x(1)−xj)

, otherwise .

We can easily prove that satisfies

fi(x1 + λ, x2 + λ, · · · , xn + λ) = fi(x1, x2, · · · , xn).

More generally, for any α ≥ 1

fi(x1, · · · , xn) =


1
n , if x1 = · · · = xn

x(1)−xi
n∑

j=1
(x(1)−xj)α

, otherwise
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is such that
fi(x1, x2, · · · , xn) ≤ fi(x1 + λ, x2 + λ, · · · , xn + λ).

Thus, the corresponding BGM is (k, · · · , k)-increasing. In additon, note that, for α > 1, Γ = {fi} does not

satisfies
n∑

i=1
fi(x) = 1.

We can also establish a criterion analogous to the Proposition 3.32, substituting the vector (k, · · · , k) for
any direction r, as follow:

Proposition 3.34. If Γ is a FWF such that there is a diretional vector r = (r1, r2, · · · , rn) ∈ [0, 1]n with
fi(x1, · · · , xn) ≤ fi(x1 + λ · r1, · · · , xi + λ · rn), for i ∈ {1, 2, · · · , n}, for any x = (x1, · · · , xn) ∈ [0, 1]n and
λ ∈ [0, 1] such that (x1 + λ · r1, x2 + λ · r2, ..., xn + λ · rn) ∈ [0, 1]n, then BGMΓ is a preaggregation function
r-increasing.

Proof. Is similar to what was done in Proposition 3.32. □

Corollary 3.35. If Γ is a FWF such that there is a diretional vector r with ∂fi
∂r (x) ≥ 0 for any fi ∈ Γ and

x ∈ [0, 1]n, then BGMΓ is a preaggregation function r-increasing.

Note that this condition can not be satisfied, in the case that
n∑

i=1
fi(x) = 1, for all x ∈ [0, 1]n, unless that

the functions fi are constant in the direction of vector r, because:

n∑
i=1

fi(x) = 1 =⇒
n∑

i=1

∂fi(x)

∂r
= 0

and so,
∂fi(x)

∂r
≥ 0 =⇒ ∂fi(x)

∂r
= 0

Example 3.36. Obviously, if fi = wi is constant, then BGMΓ is r-increaing for any direction r. Now, given
a direction r = (r1, · · · , rn) ∈ [0, 1]n we can build a r-increaing BGM function defining:

fi(x1, · · · , xn) =

{
0, if min{x1, · · · , xn} = 0
min

{
xi
ri

,1
}

n , otherwise
,

we obtain a BGM r-increasing.

As previously mentioned, both the Aggregation functions (Min,Max,Med,Arith,OWA, · · · ) and gener-
alized mixture functions (and also bounded generalized mixture functions) can be used in many applications.
To finalize this paper we bring an illustrative example of application, where we apply some functions in the
scope of image processing. More precisely, we will use generalized mixture functions in the image reduction
process.

Before presenting this example of application, we propouse a special GM function, which satisfies several
interesting properties, as we will show in this paper, and will be used in the application.

Definition 3.37. Consider the family Γ of functions

fi(x) =


1
n , if x = (x, ..., x)

1
n−1

1− |xi−Med(x)|
n∑

j=1
|xj−Med(x)|

 , otherwise
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Γ is a FWF, with
n∑

i=1
fi(x) = 1 for all x ∈ [0, 1]n, i.e., BGMΓ is a GM, that will be denoted by H. The

computation of H can be performed using the following expressions:

H(x) =


x, if x = (x, ..., x)

1
n−1

n∑
i=1

xi − xi|xi−Med(x)|
n∑

j=1
|xj−Med(x)|

 , otherwise

Example 3.38. Let be n = 5. So, for x = (0.1, 0.25, 0.3, 0, 1) we have

f1(x) = 0.21875, f2(x) = 0.25, f3(x) = 0.2395, f4(x) = 0.198, f5(x) = 0.09375

And

H(x) = 0.249975.

Note that the larger weights occur in the coordinates closest to the median. Besides, if we take the fixed
vector of weights w = (0.21875, 0.25, 0.2395, 0.198, 0.09375), then OWAw(0.1, 0.25, 0.3, 0, 1) = 0.249975 =
H(0.1, 0.25, 0.3, 0, 1). In other words, the function H can be seen as a function that transforms each input x
into the output of an OWA. More precisely,

H(x) = OWA(f1(x),··· ,fn(x))(x)

It is not difficult to see that the above equation holds for all n ∈ N and x ∈ [0, 1]n.
In the next subsection we discuss others properties of the function H.

3.4 Properties of H

In this part of paper we will discuss about the properties of operator H. It is easy to check that
n∑

i=1
fi(x) = 1

for any x ∈ [0, 1]n and therefore, by Propositions 3.14 and 3.16, H is an averaging and idempotent function.
Furthermore,

Proposition 3.39. The weight-functions at Definition 3.37 are invariant under translations and is also
homogeneous of order 0.

Proof. Let x = (x1, ..., xn) ∈ [0, 1]n and λ ∈ [0, 1] such that x′ = (x1 + λ, ..., xn + λ) ∈ [0, 1]n. Then, since
Med(x′) = Med(x) + λ we have, for x ̸= (x, ..., x):

fi(x
′) = 1

n−1

1− |xi+λ−Med(x′)|
n∑

j=1
|xj+λ−Med(x′)|


= 1

n−1

1− |xi+λ−(Med(x)+λ)|
n∑

j=1
|xj+λ−(Med(x)+λ)|


= 1

n−1

1− |xi−Med(x)|
n∑

j=1
|xj−Med(x)|


= fi(x).
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Therefore, (f1(x
′), ..., fn(x

′)) = (f1(x), ..., fn(x)). The case in which x = (x, ..., x) is immediate.
To check the second property, make x′′ = (λx1, ..., λxn), note that Med(x′′) = λMed(x) and for x ̸=

(x, ..., x)

fi(x
′′) = 1

n−1

1− |λxi−Med(λx)|
n∑

j=1
|λxj−Med(λx)|


= 1

n−1

1− |λxi−λMed(x)|
n∑

j=1
|λxj−λMed(x)|


= 1

n−1

1− |λ|·|xi−Med(x)|

|λ|·
n∑

j=1
|xj−Med(x)|


= 1

n−1

1− |xi−Med(x)|
n∑

j=1
|xj−Med(x)|


= fi(x)

Hence, (f1(x
′′), ..., fn(x

′′)) = (f1(x), ..., fn(x)) = f(x). The case in which x = (x, ..., x) is also immedi-
ately. □

Corollary 3.40. H is shift-invariant and homogeneous.

Proof. Straightforward for Propositions 3.19 and 3.21. □
In addition to idempotency, homogeneity and shift-invariance H has the following proprerties.

Proposition 3.41. H has no neutral element.

Proof. Suppose H has a neutral element e, find the vector of weight for x = (e, ..., e, x, e, ..., e). Note that if
n ≥ 3, then Med(x) = e and therefore,

fi(x) = 1
n−1

1− |xi−Med(x)|
n∑

j=1
|xj−Med(x)|


= 1

n−1

1− |xi−e|
n∑

j=1
|xj−e|


= 1

n−1

(
1− |xi−e|

|x−e|

)
.

So,

fi(x) =

{
1

n−1 , if xi = e

0, if xi = x
, to n ≥ 3

i.e.,

f(x) =
(

1
n−1 , ...,

1
n−1 , 0,

1
n−1 , ...,

1
n−1

)
and
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H(x) = (n− 1) · e

n− 1
= e

But since e is a neutral element of H, H(x) = x. Absurd, since we can always take x ̸= e.

For n = 2, we have Med(x) = x+e
2 , where x = (x, e) or x = (e, x). In both cases it is not difficult to show

that f(x) = (0.5, 0.5) and H(x) = x+e
2 . Thus, taking x ̸= e, again we have H(x, e) ̸= x. □

Proposition 3.42. H has no absorbing elements.

Proof. To n = 2, we have H(x) = x1+x2
2 , which has no absorbing elements. Now for n ≥ 3 we have to

x = (a, 0, ..., 0) with Med(x) = 0 therefore,

f1(x) =
1

n− 1

(
1− a

a

)
= 0 and fi(x) =

1

n− 1
, ∀i = 2, ..., n.

therefore,

H(a, 0, ..., 0) = 0 · a+
1

n− 1
· 0 + ...+

1

n− 1
· 0 = a ⇒ a = 0,

but to x = (a, 1, ..., 1) we have to Med(x) = 1. Furthermore,

f1(x) =
1

n− 1

(
1− 1− a

1
− a

)
= 0

and

fi(x) =
1

n− 1
for i = 2, 3, ..., n.

therefore,

H(a, 1, ..., 1) = 0 · a+
1

n− 1
· 1 + ...+

1

n− 1
· 1 = a ⇒ a = 1.

With this we prove that H does note have annihiladors. □

Proposition 3.43. H has no zero divisors.

Proof. Let a ∈ ]0, 1[ and consider x = (a, x2, ..., xn) ∈ ]0, 1]n. In order to have H(x) =
n∑

i=1
fi(x) · xi = 0 we

have fi(x) · xi = 0 for all i = 1, 2, ..., n. But as a ̸= 0 and we can always take x2, x3, ..., xn also different from
zero, then for each i = 1, 2, ..., n there remains only the possibility of terms:

fi(x) = 0 for i = 1, 2, ..., n.

This is absurd, for fi(x) ∈ [0, 1] and
n∑

i=1
fi(x) = 1. like this, H has no zero divisors. □

Proposition 3.44. H does not have one divisors

Proof. Just to see that a ∈ ]0, 1[, we have to H(a, 0, ..., 0) = f1(x).a ≤ a < 1. □

Proposition 3.45. H is symmetric.
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Proof. Let P : {1, 2, ..., n} → {1, 2, ..., n} be a permutation. So we can easily see that

Med(xP (1), xP (2), ..., xP (n)) = Med(x1, x2, ..., xn)

for all x = (x1, x2, ..., xn) ∈ [0, 1]n. We also have to
n∑

i=1
|xP (i)−Med(xP (1), xP (2), ..., xP (n))| =

n∑
i=1

|xi−Med(x)|.

Thus, it suffices to consider the case where (xP (1), xP (2), ..., xP (n)) ̸= (x, x, ..., x). But (xP (1), xP (2), ..., xP (n)) ̸=
(x, x, ..., x) we have to:

H(xP (1), xP (2), ..., xP (n)) = 1
n−1

n∑
i=1

xP (i) −
xP (i)|xP (i)−Med(xP (1),...,xP (n))|

n∑
j=1

|xP (i)−Med(xP (1),...,xP (n))|


=

n∑
i=1

xP (i)

n−1 − 1
n−1 ·

n∑
i=1

xP (i)|xP (i)−Med(x1,...,xn)|
n∑

j=1
|xP (i)−Med(x1,...,xn)|

=

n∑
i=1

xi

n−1 − 1
n−1 ·

n∑
i=1

xP (i)|xP (i)−Med(x1,...,xn)|
n∑

j=1
|xi−Med(x1,...,xn)|

=

n∑
i=1

xi

n−1 − 1
n−1 ·

n∑
i=1

xi|xi−Med(x1,...,xn)|
n∑

j=1
|xi−Med(x1,...,xn)|

= H(x1, ..., xn).

□

Proposition 3.46. If N : [0, 1] −→ [0, 1] is the standard fuzzy negation, then HN = H.

Proof. If x = (x, · · · , x), then

HN (x) = 1−H(1− x, 1− x, · · · , 1− x) = 1− (1− x) = x = H(x)

For x ̸= (x, · · · , x), we have:

HN (x) = 1− 1
n−1

n∑
i=1

1− xi − (1−xi)|1−xi−Med(1−x1,··· ,1−xn)|
n∑

j=1

|1−xi−Med(1−x1,··· ,1−xn)|


= 1− 1

n−1

n∑
i=1

1− xi − (1−xi)|1−xi−1+Med(x1,··· ,xn)|
n∑

j=1

|1−xi−1+Med(x1,··· ,xn)|


= 1− 1

n−1

n∑
i=1

1− xi − (1−xi)|−xi+Med(x1,··· ,xn)|
n∑

j=1
|−xi+Med(x1,··· ,xn)|


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= 1− 1
n−1

n∑
i=1

1− xi − (1−xi)|xi−Med(x1,··· ,xn)|
n∑

j=1

|xi−Med(x1,··· ,xn)|


= 1− 1

n−1

n−
n∑

i=1

xi − xi|xi−Med(x1,··· ,xn)|
n∑

j=1
|xi−Med(x1,··· ,xn)|

−
n∑

i=1

|xi−Med(x1,··· ,xn)|
n∑

j=1
|xi−Med(x1,··· ,xn)|


= 1− 1

n−1

n− 1−
n∑

i=1

xi − xi|xi−Med(x1,··· ,xn)|
n∑

j=1
|xi−Med(x1,··· ,xn)|


= 1

n−1

n∑
i=1

xi − xi|xi−Med(x1,··· ,xn)|
n∑

j=1

|xi−Med(x1,··· ,xn)|


= H(x)

□
Therefore, H satisfies the following properties:

• Idempotence

• Homogeneity

• Shift-invariance

• Symmetry.

• has no neutral element

• has no absorbing elements

• has no zero divisors

• does not have one divisors

• is self dual

Although we have not been able to demonstrate that H is an aggregation function, in the next proposition
we show that H is (k, · · · , k)-increasing (for k > 0), so H is a preaggregation function.

Proposition 3.47. If k > 0, then H is (k, · · · , k)-increasing.

Proof. As H is shift-invariant, its follow of Proposition 3.30 that H is (k, · · · , k)-increasing. □

Corollary 3.48. H is a preaggregation function.

The aggregation functions are very important for computing science, since in many applications the
expected result is a single data, and therefore these applications use an aggregation function to convert this
set of data into a unique output. In fact, a preaggregation can often be applied in place of aggregation.
In this sense, we will apply the function H (which is a GM function) (in an illustrative example) to reduce
images and then we compare the obtained results with the results obtained by some aggregations.



On Generalized Mixture Functions-TFSS-Vol.1, No.2-(2022) 117

4 The Image Reduction by GM functions

In this part of our work we use the GM functions Min, Max, Arith, Med, cOWA and H to build image
reduction operators and is an improvement of the done in [18]. But first, we will introduce some important
concepts of image processing.

Definition 4.1. An image is a matrix m × n, M = A(i, j), where each A(i, j) ∈ [0, 1] represents a pixel.
More specifically, the value A(i, j) is proportional to the light intensity at the considered point.

In essence, a reduction operator reduces a given image m× n to another m′ × n′, such that m′ < m and
n′ < n. For example, 

0.1 0.2 0 0.5
0.3 0.3 0.2 0.8
1 0.5 0.6 0.4
0 0.3 0.5 0.7

 7−→
[

0.1 0
1 0.6

]

There are several possible ways to reduce a given image, as shown in the following example:

Example 4.2. The image

M =


0.8 0.7 0.2 1 0.5 0.5
0.6 0.2 0.3 0.1 1 0
0 0 0.6 0.4 0.9 1
0.1 0.2 0.3 0.4 0.5 0.6

 ,

can be reduced to another 2× 3 by partitioning M in blocks 2× 2 and applying to each block, for example,
the function f(x, y, z, w) = Max(x, y, z, w). In this case, we obtain the image:

M∗ =

[
0.8 1 1
0.2 0.6 1

]
The Figure 1 illustrates the reduction process of an image.

Figure 1: Example of image redction.

In fact, if we apply any other function, we get a new image, usually different from the previous one, but
what is the best?

One possible answer to this question involves a method called magnification or extension (see [27, 62,
63]), which is a method which magnifies the reduced image to another with the same size of the original one.
The magnified image is then compared with the original input image.
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Example 4.3. From M∗ we can build a 4×6 image imply cloning each pixel (also known as nearest neighbor
interpolation), as below: [

x
]
7−→

[
x x
x x

]
Thus, we obtain the following image:

M1 =


0.8 0.8 1 1 1 1
0.8 0.8 1 1 1 1
0.2 0.2 0.6 0.6 1 1
0.2 0.2 0.6 0.6 1 1


This simple magnification method is also called of nearest neighbor interpolation. The Figure 2 illustrates

the magnification process.

Figure 2: Example of magnification.

Given two different reductions of the same image (let’s say M ′ and M∗), We compare the reductions
following the steps: (1) Use a magnification method to magnify M ′ and M∗ for the original size; (2) Compare
each obtained image with the original one, using a some similarity measure.

There are several similarity measures, as for example, the measure PSNR (see [23]), that is calculated as
follows:

PSNR(I,K) = 10 · log10
(

MAX2
I

MSE(I,K)

)
,

where I = I(i, j) and K = K(i, j) are two images, MSE(I,K) = 1
nm

m∑
i=1

n∑
j=1

[I(i, j)−K(i, j)]n and MAXI is

the maximum possible pixel value of pixel.
The degree of similarity between two images is proportional to the value of the PSNR, i.e., how much

larger if the PSNR, more approximated are the analyzed images6.
In what follows, we use the GM functions: Min, Mix, Med, Arith cOWA and H to reduce images in

grayscale7, applying the following method:

6In particular, if the input image are equal, then the MSE value is zero and the PSNR will be infinity.
7The reduction of color images is similar.
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Method 1

1. Reduce the input images using the Min, Max, Arith, Med, cOWA and H;

2. Magnify the reduced images to the original size using the nearest neighbor interpolation;

3. Compare the last image with the original one using the measure PSNR.

Remark 4.4. This is a general method which can be applied to any kind of image. In this work we applied
it to 10 images in grayscale of size 512× 5128 (as shown in Figure 3).

Figure 3: Imput images

In the Tables 1 and 2 (see Appendix) we present the PSNR values between the output images provided
by Method 1 and original inputs.

According to PSNR, Arith provided the higher quality images. However, the reduction operators gener-
ated by H and cOWA provide with us quite similar images to those given by Arith.

Note that although the magnification method by cloning of pixels is a simple and quick method (in
running time) it brings us some limitations. The results obtained by this method are not good, in addition,
the method itself causes that the Arith operator is better than other operators, since by reducing a set of
pixels x1, x2, x3, x4 to a single pixel y, and then compare MSE = (x1, y)

2 + (x2 − y)2 + (x3 − y)2 + (x4 − y)2

(because each pixel y is repeated 4 times in the process of magnification), so of course y = 1
4(x1+x2+x3+x4)

has the lowest measurement error.
For this reason we also analyze two other methods of magnification: (1) Bilinear interpolation and (2)

Bicubic interpolation (see [23, 28, 30, 55]). Thus, we have two other methods: Method 2 and Method 3,
respectively

In Tables 3, 4, 5 and 6 (see Appendix), we present the results obtained with the use of these others
magnification methods.

Tables 1, 2, 3, 4, 5 and 6 (see Appendix) show us that among the analyzed GM, the averaging functions
(Arith, Med, cOWA and H) are responsible for generating better quality images. However it is difficult
to determine the most appropriate function to reduce images, since each particular function may be more
suitable for a certain method of magnification, for example: Arith is closer to magnifying by pixels cloning.

We can also observe that a more complex method of magnification, interpolation, are able to reconstruct
images with higher quality. Obviously, the computational cost (running time) of these methods are also
higher.

8In this paper we made two reductions: using 2× 2 blocks and 4× 4 blocks.
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Ii is worth to emphasize that the reduction with H operator together with magnification by bicubic
interpolation scored the highest quality among all analyzed methods (function together magnification) or
both reduction: In scale as 2× 2 and in scale 4× 4.

This shows that in some applications, the use of a generating function of weights (i.e., a weight-function)
in order to obtain a GM function may be more interesting than the use of a single weight vector.

This idea of replacing the weight vector by a weight function may also be used in others areas of computing,
for example: In decision making and in artificial intelligence. These publications will be investigated in future
work.

5 Final Remarks

In this paper we study two generalized forms of Ordered Weighted Averaging function and Mixture func-
tion, calls respectively of Generalized Mixture and Bounded Generalized Mixture functions. These
functions are defined by weights, which are obtained dynamically from each input vector x ∈ [0, 1]n. We
demonstrated, among other results, that OWA and mixture functions are particular cases of GM and BGM
functions, and thus we obtain that functions such as Arithmetic Mean, Median, Maximum, Minimum and
cOWA are also examples of GM functions.

In the second part of this work, we present some properties as well as constructs and examples of GM func-
tions. In particular we define a special GM function, called H, and show that H satisfies important properties
for image applications: Idempotence, symmetry, homogeneity, shift-invariance, and moreover, it has no zero
divisors and one divisors, and also does not have neutral elements. We further prove that H is a preaggre-
gation function (k, · · · , k)-increasing, and then we use GM functions (Min,Max,Med,Arith, cOWA and H)
to verify the applicability of these functions, in this paper for image reduction.

To determine whether these functions are good reducers of images, we need a method of magnification.
In Method 1, we magnify images by simply cloning the pixels. However this method brings some limitations,
therefore also analyzes the other two magnification methods (bilinear and bicubic interpolation), giving rise
to Methods 2 and 3. This other methods are more suitable, and we see that H is a fine function to perform
this task, using Method 3.

Note that the generalized mixture functions can also be used in others fields of application, for example
in data classification [13] and decision making [49]. In this paper, your focus is on just one of this possibility
of applications. However, other applications will be investigated in future works.
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6 Appendix

Table 1: PSNR values of reconstruction of imagens of Figure 3 by nearest neighbor interpolation. The
underline value represents the second high quality image

USING 2× 2 BLOCKS

Min Max Med Arith cOWA H
Img 01 26,68848 26,60371 30,66996 30,89667 30,73823 30, 75448
Img 02 33,50403 33,46846 37,51525 37,64240 37,57713 37, 58138
Img 03 26,80034 26,74460 30,47904 30,55504 30, 52128 30,51564
Img 04 28,90415 28,83284 32,88120 33,01225 32, 94828 32,94146
Img 05 25,04896 25,04438 28,75582 28,85475 28, 81506 28,79901
Img 06 38,10156 38,07248 42,08612 42,13003 42, 12316 42,11653
Img 07 24,48520 24,38872 28,31229 28,45667 28,35114 28, 37668
Img 08 23,69576 23,73464 27,41557 27,51579 27, 46383 27,45864
Img 09 26,19262 26,09448 30,06427 30,22940 30,11893 30, 13332
Img 10 21,48459 21,41350 25,37475 25,58054 25,43016 25, 45073

Avg 27,49057 27,43978 31,35543 31,48735 31,40872 31, 41279

Table 2: PSNR values of reconstruction of imagens of Figure 1 by nearest neighbor interpolation. The
underline value represents the second high quality image

USING 4× 4 BLOCKS

Min Max Med Arith cOWA H
Img 01 21,37117 20,83960 26,73708 27,07854 27,01270 27, 07067
Img 02 19,70858 19,54290 23,92198 24,07786 24,05762 24, 07478
Img 03 20,46198 20,82576 25,64113 26,16092 26,08186 26, 14607
Img 04 22,59335 22,24354 27,94347 28,26449 28,19574 28, 25700
Img 05 18,86628 19,55278 24,12507 24,68962 24,58713 24, 67322
Img 06 29,48308 29,26559 34,89670 35,11481 35,09436 35, 11023
Img 07 18,95771 18,72670 24,18918 24,55073 24,48373 24, 54269
Img 08 17,71071 18,59348 23,11305 23,54332 23,43522 23, 53119
Img 09 20,97846 20,44416 26,23824 26,53197 26,42064 26, 52562
Img 10 16,47636 16,22205 21,89755 22,22614 22,10356 22, 21825

Avg 20,66077 20,62565 25,87034 26,22384 26,14726 26, 21497
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Table 3: PSNR values of reconstruction of imagens of Figure 3 by bilinear interpolation. The underline
value represents the second high quality image

USING 2× 2 BLOCKS

Min Max Med Arith cOWA H
Img 01 27,25658 27,41249 31, 70137 31,66148 31,64818 31,70944
Img 02 29,07393 29,09065 29,98667 30,00618 29, 99790 29,99295
Img 03 28,07377 27,53953 31,96271 31,87901 31,87085 31, 94673
Img 04 29,70934 29,78913 34,39128 34,28215 34,31414 34, 37504
Img 05 26,30684 25,74955 30,17965 30,08193 30,05530 30, 16533
Img 06 40,09734 39,94107 48,99047 48,55730 48,52986 48, 86710
Img 07 25,10689 25,04408 28, 93328 28,92340 28,89276 28,94254
Img 08 24,63619 24,10410 28, 19100 28,17758 28,16818 28,19312
Img 09 26,60297 26,71398 30,54028 30,56126 30,52693 30, 55733
Img 10 21,93973 21,90280 25,71329 25,74295 25,69402 25, 73353

Avg 27,88036 27,72874 32,05900 31,98732 31,96981 32, 04831

Table 4: PSNR values of reconstruction of imagens of Figure 3 by bilinear interpolation. The underline
value represents the second high quality image

USING 4× 4 BLOCKS

Min Max Med Arith cOWA H
Img 01 21,84394 21,46624 28, 12885 28,03911 28,13262 28,08806
Img 02 20,22210 19,99324 24,09349 24,09114 24, 09696 24,10058
Img 03 21,36383 21,65788 27,34577 27,53279 27,57114 27, 56163
Img 04 23,23057 22,96007 29,81717 29,65596 29, 77096 29,71475
Img 05 19,54307 20,06159 25,32192 25,47922 25, 51400 25,51442
Img 06 30,92215 30,60188 42,72668 41,77064 41, 99358 41,97442
Img 07 19,43662 19,19604 24,96897 25,00413 25,05911 25, 02899
Img 08 18,28578 18,86696 23,87169 24, 09781 24,07356 24,10310
Img 09 21,32747 20,91360 27,09762 27,10526 27,16280 27, 13073
Img 10 16,77848 16,57833 22,58040 22,61488 22, 63949 22,63987

Avg 21,29540 21,22958 27, 59525 27,53909 27,60142 27,58566
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Table 5: PSNR values of reconstruction of imagens of Figure 3 by bicubic interpolation. The underline
value represents the second high quality image

USING 2× 2 BLOCKS

Min Max Med Arith cOWA H
Img 01 27,39667 27,45993 32,53367 32,62657 32,52946 32, 58602
Img 02 30,06149 30,00816 31,28820 31,31873 31, 30611 31,29877
Img 03 28,09952 27,62931 32, 92967 32,90897 32,87767 32,93859
Img 04 29,92114 29,94430 35, 70586 35,70361 35,68906 35,73313
Img 05 26,38597 25,93655 31, 32017 31,30790 31,25508 31,33640
Img 06 40,05229 40,02173 51,35284 51,07478 51,01447 51, 31081
Img 07 25,23188 25,16984 29,85564 29,93609 29,85733 29, 89915
Img 08 24,72669 24,32047 29,10402 29,15066 29,11737 29, 12822
Img 09 26,73252 26,79140 31,27454 31,38274 31,29368 31, 32452
Img 10 22,04218 21,98136 26,39147 26,52171 26,41585 26, 44659

Avg 28,06504 27,92630 33,17561 33, 19318 33,13561 33,20022

Table 6: PSNR values of reconstruction of imagens of Figure 3 by bicubic interpolation. The underline
value represents the second high quality image

USING 4× 4 BLOCKS

Min Max Med Arith cOWA H
Img 01 21,83423 21,39364 28,64265 28,74908 28,80893 28, 78768
Img 02 20,20038 19,88701 24,49596 24, 56989 24,56761 24,57359
Img 03 21,25132 21,55589 27,82091 28, 31402 28,28961 28,32229
Img 04 23,22310 22,89860 30,47704 30,54773 30,60332 30, 59348
Img 05 19,45423 20,06391 25,74518 26, 18606 26,15139 26,20092
Img 06 30,81953 30,48357 44,31891 43,83439 44,03526 44, 05492
Img 07 19,36949 19,11221 25,29211 25,49221 25, 49999 25,50641
Img 08 18,21007 18,91559 24,17857 24,57330 24,49174 24, 56575
Img 09 21,32252 20,85345 27,41366 27, 56839 27,55860 27,58354
Img 10 16,76501 16,53815 22,82004 23, 00025 22,96201 23,01459

Avg 21,24499 21,17020 28,12050 28,28353 28, 29685 28,32032
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