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Abstract. It has been shown in [3] that in the two-dimensional case, the lattices of truth values considered are
pairwise isomorphic, and so are the corresponding families of fuzzy sets. Therefore, each result for one of these types
of fuzzy sets can be directly rewritten for each (isomorphic) type of fuzzy sets. In this paper, we show that there is
a strong connection between weighted graphs and fuzzy graphs. We accomplish this by using lattice isomorphisms.
Consequently, under certain conditions, results for one area can be carried over immediately to the other. Many
situations in fuzzy graph theory do not depend on the weights of the vertices. The situation of providing weights
for the vertices of a weighted graph is also considered. We also consider lattice homomorphisms with an illustration
involving nonstandard analysis. In particular, we consider a nonstandard weighted graph, i.e., a graph where the
weights of the edges are from a nonstandard interval.
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1 Introduction

In [3], it is shown that many well-known generalizations of the concept of fuzzy sets, [8], with two-dimensional
lattices of truth values are pairwise isomorphic and so are the corresponding families of fuzzy sets. Therefore,
each result for one of these types of fuzzy sets can be directly rewritten for each isomorphic type of fuzzy
set. In this paper, we wish to show that this also holds for weighted graphs and fuzzy graphs in certain
circumstances. Many situations in fuzzy graph theory do not depend on the weights of the vertices. The
situation of providing weights for the vertices of a weighted graph is also considered. We also develop some
beginning results for lattice homomorphisms and illustrate the results using the nonstandard interval [0, 1]∗

in nonstandard analysis and the standard unit interval [0, 1].

We begin by reviewing some results from [3]. We let N denote the set of positive integers.

For two partially ordered sets (L1,≤1) and (L2,≤2), a function φ : L1 → L2 is called an order homo-
morphism if it preserves monotonicity, i.e., if x ≤1 y implies φ(x) ≤2 φ(y). If (L1,≤1) and (L2,≤2) are
two lattices, then a function φ : L1 → L2 is called a lattice homomorphism if it preserves finite meets
and joins, i.e., if for all x, y ∈ L1, φ(x ∧1 y) = φ(x) ∧2 φ(y) and φ(x ∨1 y) = φ(x) ∨2 φ(y). Each lattice
homomorphism is an order homomorphism, but not conversely. A lattice homomorphism φ : L1 → L2 is
called an embedding (or monomorphism) if it is injective, an epimorphism if it is surjective, and an
isomorphism if it is bijective, i.e., if it is both an embedding and an epimorphism.

Suppose that (L1,≤1) and (L2,≤2) are isomorphic lattices and that φ : L1 → L2 is a lattice isomorphism
of L1 onto L2. Let the bottom and top elements of (L1,≤1) be denoted by 01 and 11, respectively. Let A1 :
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L1×L1 → L1 be an associative, commutative order homomorphism and define the function A2 : L2×L2 → L2

by
A2(x, y) = φ(A1((φ

−1(x), φ−1(y))).

If A1 is a t-norm, then A2 is a t-norm. If A1 is a t-conorm, then A2 is a t-conorm, [[3], p. 5].
Note that φ−1(A2(x, y)) = A1((φ

−1(x), φ−1(y)) and so φ−1(A2(φ(w), φ(z))) = A1(w, z), where w =
φ−1(x) and z = φ−1(y).

Definition 1.1. Let c be a function of L into L. Here we are considering a lattice (L,∨,∧, 0, 1). Consider
the following conditions:

(1) c(0) = 1 and c(1) = 0 (boundary conditions).

(2) For all a, b ∈ L, if a ≤ b, then c(a) ≥ c(b) (monotonicity).

(3) c is continuous.

(4) c is involutive, i.e., c(c(a)) = a, for all a ∈ L.

If c satisfies conditions (1) and (2), we say that c is a complement on L.

Suppose that φ is a lattice isomorphism of L1 onto L2. Let c1 be a complement on L1. Define c2(x) =
φ(c1(φ

−1(x))) for all x ∈ L2. Then c2(12) = φ(c1(φ
−1(12))) = φ(c1(11)) = φ(01) = 02. Also, c2(02) =

φ(c1(φ
−1(02))) = φ(c1(01)) = φ(11) = 12.

Let x, y ∈ L2 be such that x ≤2 y. Then φ−1(x) ≤1 φ−1(y). Thus c2(x) = φ(c1(φ
−1(x))) ≥2

φ(c1(φ
−1(y)) = c2(y).

Let c2 be a complement of L2. Define c1(x) = φ−1(c2(φ(x))) for all x ∈ L1. Then c1(11) = φ−1(c2(φ(11))) =
φ−1(c2(12)) = φ−1(02) = 01. Also, c1(01) = φ−1(c2(φ(01))) = φ−1(c2(02)) = φ−1(12) = 11.

Let x, y ∈ L1 be such that x ≤1 y. Then φ(x) ≤2 φ(y). Thus c1(x) = φ−1(c2(φ(x))) ≥2 φ−1(c2(φ(y))) =
c1(y).

We have just shown the following result.

Theorem 1.2. c1 is a complement if and only if c2 is a complement.

Note that if c2(x) = φ(c1(φ
−1(x))), then φ−1(c2(x)) = c1(φ

−1(x)) and so φ−1(c2(φ(y))) = c1(φ
−1(φ(y))) =

c1(y), where y = φ−1(x).

Theorem 1.3. c1 is involutive if and only if c2 is involutive.

Proof. Suppose c1 is involutive. Let x ∈ L2. Then

c2(c2(x)) = c2(φ(c1(φ
−1(x)))) = φ(c1(φ

−1(φ(c1(φ
−1(x))))))

= φ(c1(c1(φ
−1(x)))) = φ(φ−1(x)) = x.

The converse is now immediate. □

2 Weighted Graphs

We next apply the results in the previous section to weighted graphs.
Let (V,E,w) be a weighted graph, where V is a finite set of vertices and w is a function of the set of

edges E into the positive real numbers. We assume no loops and at most one edge between two vertices.
Let m ≥ ∨{w(e)|e ∈ E}. We hold m fixed throughout. We also assume m ≥ 1. For all e ∈ E, define
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µ : E → [0, 1] by µ(e) = 1
mw(e). Then G = (V,E, σ, µ) is a fuzzy graph if for all v ∈ V, σ(v) = 1. Consider

(V,E, µ) as a weighted graph. We note below that the lattices associated with (V,E,w) and (V,E, µ) are
isomorphic. (Clearly there one-to-one correspondence between their point sets which preserves adjacency,
namely the identity map of V onto V.)

Define φ : [0,m] → [0, 1] by for all x ∈ [0,m], φ(x) = 1
mx. Then φ is a lattice isomorphism of L1 onto

L2, where L1 = [0,m] and L2 = [0, 1] and ∨ and ∧ are the usual operations of maximum and minimum,
respectively. Note that for all x, y ∈ L1, φ(x∧ y) = x∧y

m = x
m ∧ y

m = φ(x)∧φ(y) and a similar result holds for
∨. Also, φ is continuous and preserves <.

We next consider Definition 1.1 for [0,m].

Theorem 2.1. (See [4]) Let m = 1. If c : [0, 1] → [0, 1] satisfies (2) and (4) of Definition 1.1, then c satisfies
(1) and (3). Also, c is bijective.

Let c satisfy (1) and (2) of Definition 1.1. Define ĉ : [0,m] → [0,m] by for all a ∈ [0,m], ĉ(a) =
φ−1(c((φ(a)). Then ĉ(0) = φ−1(c(0)) = φ−1(1) = m and ĉ(m) = φ−1(c(1)) = φ−1(0) = 0.

Let C = {c| c satisfies (1) and (2) for m = 1} and Ĉ = {ĉ| ĉ satisfies (1) and (2) for m > 1}. Define the
function f of C into Ĉ by for all c ∈ C, f(c) = ĉ, where for all a ∈ [0,m],

ĉ(a) = mc(
a

m
).

We show that f is a one-to-one function of C onto Ĉ. We have that ĉ(0) = mc(0) = m and ĉ(m) =
m(c(1)) = 0. Since m is fixed, that ĉ satisfies (2) holds since c satisfies (2). Hence f maps C into Ĉ. Let ĉ ∈ Ĉ.
Define c : [0, 1] → [0, 1] by for all a ∈ [0, 1], c(a) = 1

m ĉ(ma). Then c(0) = 1
m ĉ(0) = 1 and c(1) = 1

m ĉ(m) = 0.

Thus f maps C onto Ĉ. Now

c1 = c2 ⇔ ∀a ∈ [0,m], c1(
a

m
) = c2(

a

m
)

⇔ ∀a ∈ [0,m],mc1(
a

m
) = mc2(

a

m
)

⇔ ∀a ∈ [0,m], ĉ1(a) = ĉ2(a)

⇔ ĉ1 = ĉ2

⇔ f(c1) = f (c2) .

Theorem 2.2. c is involutive if and only if ĉ is involutive, where f(c) = ĉ.

Proof. Suppose c is involutive. Let a ∈ [0,m]. Then

ĉ(ĉ(a)) = ĉ(m(c(
a

m
)) = m(c(

mc( a
m)

m
) = m(c(c(

a

m
)) = m(

a

m
) = a.

Thus ĉ is involutive.

Conversely, suppose ĉ is involutive. Let a ∈ [0,m]. Then c(c( a
m)) = c( ĉ(a)m ) = ĉ(ĉ(a))

m = a
m . Hence c is

involutive. □

Definition 2.3. Let π : [0,m] × [0,m] → [0,m]. Then π is called a t-norm on [0,m] if the following
conditions hold for all a, b, d ∈ [0,m]:

(1) π(a,m) = a (boundary condition).

(2) b ≤ d implies π(a, b) ≤ π(a, d) (monotonicity).
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(3) π(a, b) = π(b, a) (commutativity).

(4) π(a, π(b, d)) = π(π(a, b), d) (associativity).

Let i be a t-norm on [0, 1]. Define π : [0,m] × [0,m] → [0,m] by for all a, b ∈ [0,m], π(a, b) = mi( a
m , b

m).
Let a ∈ [0,m]. Then π(a,m) = mi( a

m , mm) = m( a
m) = a. Note that π(a, b) = φ(i(φ−1(a), φ−1(b))),where

φ(x) = x
m and x ∈ [0,m]. Note also that φ−1(y) = my, where y ∈ [0, 1]. Check: φ(i(φ−1(y1), φ

−1(y2))) =
φ(i(my1,my2)) =

1
m i(my1,my2).

Let π be a t-norm on [0,m]. Define i : [0, 1] × [0, 1] → [0, 1] by for all a, b ∈ [0, 1], i(a, b) = 1
mπ(ma,mb).

Let a ∈ [0, 1]. Then i(a, 1) = 1
mπ(ma,m) = 1

mma = a.

Suppose for example that i is the t-norm product on [0, 1]. Let a, b ∈ [0,m]. Then π(a, b) = mi( a
m , b

m) =

m a
m

b
m = ab

m .

Definition 2.4. Let ρ : [0,m] × [0,m] → [0,m]. Then π is called a t-conorm on [0,m] if the following
conditions hold for all a, b, d ∈ [0,m]:

(1) ρ(a, 0) = a (boundary condition).

(2) b ≤ d implies ρ(a, b) ≤ ρ(a, d) (monotonicity).

(3) ρ(a, b) = ρ(b, a) (commutativity).

(4) ρ(a, ρ(b, d)) = ρ(ρ(a, b), d) (associativity).

Let u be a t-conorm on [0, 1]. Define ρ : [0,m]× [0,m] → [0,m] by a, b ∈ [0,m], ρ(a, b) = mu( a
m , b

m). Let
a ∈ [0,m]. Then ρ(a, 0) = mu( a

m , 0
m) = m( a

m) = a.
Let ρ be a t-conorm on [0,m]. Define u : [0, 1]× [0, 1] → [0, 1] by for all a, b ∈ [0, 1], u(a, b) = 1

mρ(ma,mb).
Let a ∈ [0, 1]. Then u(a, 0) = 1

mρ(ma, 0) = 1
mma = a.

Suppose for example that u is the t-conorm algebraic sum on [0, 1]. Let a, b ∈ [0,m]. Then ρ(a, b) =
mu( a

m , b
m) = m( a

m + b
m − a

m
b
m) = a+ b− ab

m .
Recall that φ : [0,m] → [0, 1], where for all a ∈ [0,m], φ(a) = a

m is an isomorphism. Also if e1, e2 ∈ E,
then w(e1) ≤ w(e2) if and only if µ(e1) ≤ µ(e2).

Define w ◦ w by for all x, y ∈ V, (w ◦ w)(x, y) = ∨{w(xz) ∧ w(zy)|z ∈ V }. Let w2 = w ◦ w. Suppose n
is a positive integer and that wn has been defined. Define wn+1 to be wn ◦ w. Define w∞ by w∞(x, y) =
∨{wn(x, y)| n = 1, 2, ...}.

Define µ : E → [0, 1], by e ∈ E, µ(e) = 1
mw(e). Then

(µ ◦ µ)(x, y) = ∨{µ(xz) ∧ µ(zy)|z ∈ V }

= ∨{ 1

m
w(xz) ∧ 1

m
w(zy)|z ∈ V }

=
1

m
∨ {w(xz) ∧ w(zy)|z ∈ V }

=
1

m
(w ◦ w)(x, y).

It follows by induction that µn(x, y) = 1
mwn(x, y) for all positive integers n. Thus µ∞(x, y) = 1

mw∞(x, y).

Let xy ∈ E. Let G
′
= (V,E\{xy}, w′) be the weighted subgraph of G = (V,E,w) obtained by deleting

the edge xy from E and defining w′ on E\{xy} by w′(uv) = w(uv) for all uv ∈ E\{xy}. Then xy is called a
bridge in G if ω′∞(uv) < w∞(uv) for some uv ∈ E\{xy}. Clearly, xy is a bridge in G if and only if xy is a
bridge in the fuzzy graph (V,E, σ, µ), where µ(uv) = 1

mw(uv) for all uv ∈ E.
It is now easy to see that the proof of the following result can be copied from the proof of Theorem 9.1,

[[7], p. 90].
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Theorem 2.5. Let (V,E,w) be a weighted graph. Then the following statements are equivalent.

(1) xy is a bridge;

(2) w′∞(xy) < w(xy);

(3) xy is not the weakest edge of any cycle.

We next consider placing weights on the vertices of weighted graphs. Let (V,E,w) be a weighted graph.
Let m ≥ ∨{w(e)|e ∈ E}. Hold m fixed. Define τ : V → [0,m] by for all x ∈ V, τ(x) = ∨{w(xy)|y ∈ V }. Then
for all uv ∈ E,w(uv) ≤ τ(u) ∧ τ(v). That is, (V,E,w, τ) is a weighted graph with a weight on the vertices.
Define σ : V → [0, 1] by for all x ∈ V, σ(x) = 1

mτ(x). Define µ : E → [0, 1], by for all xy ∈ E, µ(xy) = 1
mw(xy).

Since w(x) ≤ τ(x) ∧ τ(y), it follows that µ(xy) ≤ σ(x) ∧ σ(y). That is, (V,E, σ, µ) is a fuzzy graph.

Let (V,E, σ, µ) be a fuzzy graph. Define ρ : V → [0,m], by ∀v ∈ V, ρ(v) = mσ(v). Define w as before,
i.e., w(e) = mµ(e). Then (V,E, ρ, ω) is a weighted graph with a weight on the vertices. Clearly, for all
x, y ∈ V,w(xy) ≤ ρ(x) ∧ ρ(y).

3 Homomorphisms

In this section, we consider lattice homomorphisms of one lattice onto another. Our goal is to illustrate
our results using the nonstandard interval [0, 1]∗ in nonstandard analysis. Consequently, we first review
some basic properties of nonstandard analysis. We follow the approach in [1]. We do not provide a formal
construction. A formal construction can be found in [5, 6].

Let F be a field and < a relation on F . Suppose < satisfies the following properties:

(1) ∀x, y ∈ F such that x ̸= y, either x < y or y < x;

(2) ∀x, y, z ∈ F, x < y and y < z implies x < z;

(3) ∀x, y, z ∈ F, x < y implies x+ z < y + z;

(4) ∀x, y, z ∈ F, x < y and 0 < z implies xz < yz.

Then < is called an order on F and (F,<) is called an ordered field.

Let R denote the field of real numbers. Let R∗ denote a nonstandard universe, [6], with the following
properties:

(1) (R,+, •, 0, 1, <) is an ordered subfield of (R∗,+, •, 0, 1, <);

(2) R∗ has a positive infinitesimal element ε, that is ε ∈ R∗ is such that ε > 0 and ε < r for all positive
real numbers r.

(3) For all n ∈ N and every function f : Rn → R, there is a natural extension f∗ : (R∗)n → R∗. The natural
extensions of the field operations +, • : R2 → R coincide with the operations in R∗. Similarly, for every
A ⊆ Rn, then is a subset A∗ ⊆ (R∗)n such that A∗ ∩ Rn = A.

(4) R∗ equipped with the above assignments of extensions of functions and subsets behaves logically like
R.

Definition 3.1. R∗ is called the ordered field of hyperreals.
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Now ε has an additive inverse −ε. Clearly, −ε is a negative infinitesimal. For every positive real number
r, ε−1 > r. Thus ε−1 is a positive infinite element and −ε−1 is a negative infinite element.

Definition 3.2. • Let Rfin = {x ∈ R∗| |x| ≤ n for some n ∈ N}. Rfin is called the set of finite
hyperreals.

• Let Rinf = R∗\Rfin. Rinf is called the set of infinite hyperreals.

• LetM = {x ∈ R∗| |x| ≤ 1
n for all n ∈ N, n > 0}. M is called the set of infinitesimal hyperreals.

We see that M ⊆ Rfin,R ⊆ Rfin, and M ∩ R = {0}. If δ ∈ M\{0}, then δ−1 /∈ Rfin.

Proposition 3.3. Rfin is a subring of R∗ and M is and ideal of Rfin.

Definition 3.4. Define the relation ≈ on R∗ by for all x, y ∈ R∗, x ≈ y if and only if x− y ∈ M . If x ≈ y,
we say that x and y are infinitely close.

It follows that not only is ≈ an equivalence relation on R∗, but also a congruence relation.

Theorem 3.5. (Existence of Standard Parts) Let r ∈ Rfin. Then there exists a unique s ∈ R such that
r ≈ s. We call s the standard part of r and write st(r) = s.

Corollary 3.6. Rfin = R+M .

Corollary 3.7. Define st : Rfin → R by for all r ∈ R, st(r) = s, where s is the standard part of r. Then st
is a homomorphism of Rfin onto R such that Ker(st) = M .

Let h be a homomorphism of a lattice (L1,≤1) onto a lattice (L2,≤2). If the lattice (L1,≤1) is bounded
with bottom element 01 and top element 11, then (L2,≤2) is bounded, and the bottom and top elements of
(L2,≤2) is 02 = h(01) and 12 = h(11), respectively.

Let (L1,∨1,∧1, 01, 11) and (L2,∨2,∧2, 02, 12) be lattices. (Define <i on Li by for all x, y ∈ Li, x <i y if
and only if x = x ∧i y and x ̸= y, i = 1, 2).

We assume in the following that h is a homomorphism of L1 onto L2.
Define the relation ≈ on L1 by for all x, y ∈ L1, x ≈ y if and only if h(x) = h(y). Then clearly ≈

is an equivalence relation on L1. Now ≈ is also a congruence relation on L1 since h(x ∨1 y) = h(x) ∨2

h(y), h(x ∧1 y) = h(x) ∧2 h(y). (Suppose x ≈ y and x′ ≈ y′. Then h(x) = h(y) and h(x′) = h(y′). Thus
h(x∨1 x

′) = h(x)∨2 h(x
′) = h(y)∨2 h(y

′) = h(y∨1 y
′). Hence x∨1 x

′ ≈ y∨1 y
′. A similar result for ∧1and ∧2.

Let x, y ∈ L1. Suppose x <1 y. Then x = x ∧1 y and x ̸= y and so h(x) = h(x ∧1 y) = h(x) ∧2 h(y). It is
not necessarily the case that h(x) ̸= h(y).

Now x1 ≈ x2 and y1 ≈ y2 ⇔ h(x1) = h(x2) and h(y1) = h(y2). Suppose x1 ≈ x2 and y1 ≈ y2. Then
h(x1 ∨1 y1) = h(x1)∨2 h(y1) = h(x2)∨2 h(y2) = h(x2 ∨1 y2). Thus x1 ∨1 y1 ≈ x2 ∨1 y2. A similar result holds
for ∧. Hence ≈ is a congruence relation.

For all x ∈ L1. Let [x] denote the equivalence class of x with respect to ≈ . Let L∗
1 = {[x]|x ∈ L1}. Define

∨ and ∧ on L∗
1 as follows: For all [x], [y] ∈ L∗

1, [x]∨[y] = [x∨1y] and [x]∧[y] = [x∧1y]. Define f : L1 → L∗
1 by for

all x ∈ L1, f(x) = [x]. Then f is a function of L1 onto L∗
1 such that f(x∨1y) = [x∨1y] = [x]∨[y] = f(x)∨f(y)

and similarly for ∧. Define ≤ on L∗
1 by for all [x], [y] ∈ L∗

1, [x] ≤ [y] if and only if h(x) ≤2 h(y). Then [x] = [y]
if and only if h(x) = h(y). Suppose [x] < [y]. Then h(x) ≤ h(y), but h(x) ̸= h(y), else [x] = [y]. We have L∗

1

is a lattice and f is a homomorphism of L1 onto L∗
1. Define g : L∗

1 → L2 by for all [x] ∈ L∗
1, g([x]) = h(x).

Then [x] = [y] ⇔ x ≈ y ⇔ h(x) = h(y). Thus g is a one-to-one function of L∗
1 into L2. In fact, g maps L∗

1

onto L2 since h is onto L2. Now g ◦ f(x) = g(f(x)) = g([x]) = h(x) for all x ∈ L1. Thus g ◦ f = h. Clearly,
[x] ≤ [y] if and only if g(x) ≤2 g(y). Hence g is a lattice isomorphism of L∗

1 onto L2. Let L
′
1be a sublattice of

L1 such that h|L′
1
is a an isomorphism of L′

1 onto L2. Then for all y ∈ L1, there exists unique x ∈ L′
1 such
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that x ≈ y : Let x ∈ L′
1 be such that h(x) = h(y). (x exists since h maps L′

1 onto L2). Then x is unique since
h is one-to-one on L′

1

Assume L2 ⊆ L1. Let c1 be a complement on L1. Define c2 : L2 → L2 by c2(y) = c1(y), where y ∈ L2.
Assume c1(y) ∈ L2. Then, assuming 01 = 02 and 11 = 12, c2(02) = c1(02) = c1(01) = 11 = 12.

Let c2 be a complement of L2. Define c1 : L1 → L1 by for all x ∈ L1, c1(x) = c2(h(x)). Then, assuming
11 = 12, we have that

c1(01) = c2(h(01)) = c2(02) = 12 = 11.

These assumptions are the case for st, i.e., L1 = [0, 1]∗ and L2 = [0, 1]. In fact, st is the identity map on L1.

Definition 3.8. Let c be a complement on L. We say that c is infinitesimally involutive if for all x ∈
L, c(c(x) ≈ x.

Proposition 3.9. Let L2 be a sublattice of L1 and h a lattice homomorphism of L1 onto L2. Let c2 be a
complement on L2. Define c1 : L1 → L1 by for all x ∈ L1, c1(x) = c2(h(x)). The c1 is a complement on L1.
If c2 is involutive and h is the identity restricted to L2, then c1 is infinitesimally involutive.

Proof. Let x ∈ L1. Then since c2(h(x)) ∈ L2,

c1(c1(x)) = c1(c2(h(x))

= c2(h(c2(h(x)))

= c2(c2(h(x)))

= h(x)

≈ x.

□
Example 3.10. Let L1 = [0, 1]∗ and L2 = [0, 1]. Let h = st. Let c2(x) = 1 − x for all x ∈ L2. Let x ∈ L1.
Then there exists a ∈ [0, 1] and m ∈ M such that x = a + m. Now c1(c1(x)) = c1(c2(h(x))) = c1(c2(a)) =
c1(1− a) = c2(1− a) = a ≈ x, where c1(x) = c2(h(x)).

Let i1 be a t-norm on L1. Define i2 : L2×L2 → L2 by ∀(x2, y2) ∈ L2×L2, i2(x2, y2) = i1(x2, y2). Assume
i1(x2, y2) ∈ L2 and that L2 ⊆ L1. Then i2(y2, 12) = i1(y2, 12) = i1(y2, 11) = y2. Assume 01 = 02 and 11 = 12.
Now i2(02, y2) = i1(02, y2) = i1(01, y2) = 01 = 02.

Let i2 be a t-norm on L2. Define i1 : L1 × L1 → L1 by ∀(x1, y1) ∈ L1 × L1, i1(x1, y1) = i2(h(x1), h(y1)).
Then i1(x1, 11) = i2(h(x1), h(11)) = i2(h(x1), 12) = h(x1) ̸= x1. Assume h(h(x1)) = h(x1). Then h(x1) ≈ x1.
Now, i1(01, y1) = i2(h(01), h(y1)) = i2(02, h(y1)) = 02.

Definition 3.11. i : L×L → L. We say that i satisfies the boundary conditions infinitesimally if i(x, 1) ≈ x
and i(0, x) ≈ 0. We say that i is an infinitesimal t-norm if it satisfies the definition of a t-norm except for
the boundary conditions which it satisfies infintesimally.

An infintesimal t-conorm is defined similarly.

Proposition 3.12. Suppose that L2 is a sublattice of L1 and that h is a homomorphism L1 onto L2. Let i2
be a t-norm on L2. Define i1 : L1 × L1 → L1 by for all (x, y) ∈ L1 × L1, i1(x, y) = i2(h(x), h(y)). If h is the
identity on L2 and h preserves ≤, then i1 is an infinitesimal t-norm on L1.

Proof. Let x, y ∈ L1. Then i1(x, y) = i2(h(x), h(y)) = i2(h(y), h(x)) = i1(y, x). Let x, y, z ∈ L1. Then

i1(x, i1(y, z)) = i2(h(x), h(i1(y, z)) = i2(h(x), h(i2(h(y), h(z)))

= i2(h(x), i2(h(y), h(z))) = i2(i2(h(x), h(y)), h(z))

= i2(h(i2(h(x), h(y)), h(z)) = i1(i2(h(x), h(y)), z)

= i1(i1(x, y), z))
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since L2 ⊆ L1 and h is the identity on L2. Let x ∈ L1. Then i1(x, 11) = i2(h(x), h(11)) = i2(h(x), 12) = h(x).
Now h(x) ∈ L2 and h(h(x) = h(x). Hence h(x) ≈ x. Thus i1(x, 11) ≈ x. Suppose x ≤1 y. Then h(x) ≤2

h(y).Thus i1(z, x) = i2(h(z), h(x)) ≤2 i2(h(z), h(y)) = i1(z, y). □

Example 3.13. Let L1 = [0, 1]∗, L2 = [0, 1], and h = st. Let x, y ∈ L1. Then there exists, a, b ∈ R and
m,m′ ∈ M such that x = a+m and b = b+m′. Now x ≤ y if and only if a+m ≤ b+m′ if and only if (a = b
and m ≤ m′ or a < b). Hence st(x) ≤ st(y) if x ≤ y.

Proposition 3.14. Suppose that L2 is a sublattice of L1 and that h is a homomorphism L1 onto L2. Let i1 be
a t-norm L1 such that i1 maps L2×L2 into L2. Define i2 : L2×L2 → L2 by for all x, y ∈ L2, i2(x, y) = i1(x, y).
If 11 = 12,then i2 is a t-norm on L2.

Proof. Let x ∈ L2. Then i2(x, 12) = i1(x, 12) = i1(x, 11) = x. Let x, y, z ∈ L2. Suppose x ≤2 y. Then x ≤1 y.
Thus i2(z, x) = i1(z, x) ≤1 i1(z, y) = i2(z, y). Hence i2(z, x) ≤2 i2(z, y). The commutative and associative
properties hold for i2 since they hold for i1. □

Proposition 3.15. Suppose that L2 is a sublattice of L1 and that h is a homomorphism L1 onto L2. Let u2
be a t-conorm on L2. Define u1 : L1 × L1 → L1 by for all (x, y) ∈ L1 × L1, u1(x, y) = u2(h(x), h(y)). If h is
the identity on L2 and h preserves ≤, then u1 is an infinitesimal t-conorm on L1.

Proposition 3.16. Suppose that L2 is a sublattice of L1 and that h is a homomorphism L1 onto L2. Let u1
be a t-conorm L1 such that u1 maps L2×L2 into L2. Define u2 : L2×L2 → L2 by for all x, y ∈ L2, u2(x, y) =
u1(x, y). If 01 = 02,then u2 is a t-conorm on L2.

4 Nonstandard Fuzzy Graphs

We next consider a nonstandard weighted graph G = (V,E,w), where w : E → [0,m]∗ and where [0,m]∗ =
{x ∈ R∗|0 ≤ x ≤ m}. Define g : [0,m]∗ → [0, 1]∗, by for all a ∈ [0,m]∗, g(a) = a

m . Then g is a one-to-one
function of [0,m]∗ onto [0, 1]∗. In fact, g is an isomorphism of ([0,m]∗,∨,∧, 0,m) onto ([0, 1]∗,∨,∧, 0, 1) :
g(a ∧ b) = a∧b

m = a
m ∧ b

m = g(a) ∧ g(b) and g(a ∨ b) = a∧∨b
m = a

m ∨ b
m = g(a) ∨ g(b). Also, g is continuous and

preserves <.
Recall that for all x ∈ [0,m]∗, there exist r ∈ R and y ∈ M such that x = r + y and that r is called

the standard part of x, written st(x) = r. As a matter of fact, r ∈ [0,m]. The isomorphism g also preserves
≈: Suppose a, b ∈ [0,m]∗ are such that a ≈ b. Then a − b ∈ M and so a = b + x for some x ∈ M. Now
g(a) = a

m = b+x
m = g(b + x). Now g(b) = b

x and g(b + x) − g(b) = x
m ∈ M. Thus g(b + x) ≈ g(b) and so

g(a) ≈ g(b).
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