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1 Introduction

Digital forensics involve securing and analyzing digital information stored on a computer for use as evidence in
civil, criminal, or administrative cases. Forensics, network forensics, video forensics, and plenty of others are
defined as the application of computer science and investigative procedures for a legal purpose involving the
analysis of digital evidence (information of probative value that is stored or transmitted in binary form) after
proper search authority, chain of keeping, validation with mathematics, use of validated tools, repeatability,
reporting and possible expert presentation. The field of digital forensics can also encompass items such as
research and incident response.

We introduce the notion of forensic dynamic n-valued  Lukasiewicz logic FD Ln (1 < n < ω) which permits
compound investigation built up from given initial investigations and facts as well. Given investigations a
and b, the compound investigations a ∪ b, choice, is performed by performing one of a or b. The compound
investigation a;b, sequence, is performed by performing first a and then b. The compound investigation
a∗, iteration, is performed by performing a one or more times, sequentially. The constant investigation 0
does nothing and does not terminate, whereas the constant action 1, definable as 0∗, does nothing but does
terminate.

Dynamic logic [14, 8] (see also [11] and cited their literature) is a classical formal system for reasoning
about programs. Dynamic logic is a classical modal logic for reasoning about dynamic behavior taking into
account a discrete time. Dynamic logic is an extension of modal logic originally intended for reasoning about
computer programs.

Modal logic is characterized by the modal operators □p asserting that p is necessarily the case, and ♢p
asserting that p is possibly the case. Dynamic logic extends this by associating every action (execution of
the program) a the modal operators [a] and ⟨a⟩, thereby making it a multimodal logic.
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We adapt the dynamic logic, which is presented on the base of classical logic and R-module, to non-
classical finitely valued  Lukasiewicz logic  Ln and R-module, and the investigating group consisting of a set
of investigators with communications between them represented as a Kripke frame, i.e. relational system
- a non-empty set with binary relation on it. The meaning of [a]p is that after performing fact-finding
(investigation) a, i.e. to examine the validity of a hypothesis (proposition), it is necessarily the case that p
holds, that is, a must bring about p. The meaning of ⟨a⟩p is that after performing a it is possible that p, that
is, a might bring about p. These operators are related by [a]p ≡ ¬⟨a⟩¬p and ⟨a⟩p ≡ ¬[a]¬p, analogously to
the relationship between the universal ∀ and existential ∃ quantifiers.

Following D. Kozen [8] and V. Pratt [11], who have been introduced dynamic algebra, we propose the
notion of a forensic dynamic MVn-algebra1 (FDLn-algebra) (1 < n < ω), which integrates an abstract notion
of proposition with an equally abstract notion of investigation. Just as propositions tend to band together
to form MVn-algebras with operations x ⊕ y, and ∼ x, so do experiments organize themselves into regular
algebras, with operations a∪ b, a; b, and a∗. Analogously to the proposition p∨q being the strong disjunction
(the algebraic counterpart of which is x⊕ y), p∨ q being the disjunction of propositions p and q, and ¬p the
negation of p, the investigation a ∪ b is the choice of investigations a or b, a; b, or just ab, is the sequence a
followed by b, and a∗ is the iteration of a indefinitely often.

Just as p ∨ q has natural set theoretic interpretation, namely union, so do a ∪ b, a; b and a∗ have natural
interpretations on such concrete kinds of investigations as additive functions, binary relations, trajectory
sets and languages over regular algebras, to name those regular algebras that are suited to foresinc dynamic
MVn-algebra.

It is natural to think of fact-finding as being able to bring about a proposition (hypothesis about the
fact-findings). We write ⟨a⟩p pronounced ”fact− finding a enables p”, as the proposition that fact-finding
a can bring about proposition p. Then a forensic dynamic MVn-algebra is a MVn-algebra (A,⊕,⊙,∼, 0, 1),
a regular algebra (R,∪, ; ,∗ ), and the enables operation ♢ : R×A→ A.

Suppose now that either p holds, or a can bring about a situation from which a can eventually (by being
iterated) bring about p. Then a can eventually bring about p. That is, p ∨ aa∗p ≤ a∗p. (We write p ≤ q
to indicate that p implies q, defined as p ∨ q = q). In turn, if a can eventually bring about p, then either
p is already the case or a can eventually bring about a situation in which p is not the case but one further
iteration of a will bring about p. That is, a∗p ≤ p ∨ a∗(¬p ∧ ap). [a] is the dual of ⟨a⟩, and [a]p asserts that
whatever a does, p will hold.

We axiomatically define the Forensic Dynamic Lukasiewicz logic, its algebraic counterpart and the corre-
sponding Kripke model which are suitable for digital forensics.

2 Forensic dynamic n-valued  Lukasiewicz logic FD Ln

Forensic dynamic n-valued  Lukasiewicz logic FD Ln is designed for representing and reasoning about propo-
sitional  Lukasiewicz logic expected results (hypothesis) of investigations. Its syntax is based upon two sets
of symbols: a countable set Var (= {p, p1, p2, . . . , q, q1, q2, . . .}) of propositional variables, that encompass
hypotheses, and a countable set Inv (= {a, b, c, ...}) of atomic investigations, that encompass the initial facts
and investigations. So the language L of FD Ln is given by a countable set Var of propositional variables
and a countable set Inv of atomic investigations. We suppose that investigations are performed by some
computer programs. Formulas and investigations FI(L), which we name formulas, over this base are defined
as follows:

• Every propositional variable is a formula;

1MVn-algebras, which are algebraic models of n-valued  Lukasiewicz logic  Ln, where introduced by Grigolia in [6]. The variety
MVn of MVn-algebras is a subvariety of the variety MV [2].
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• ⊥ (false) is a formula;

• If φ is a formula then ¬φ ( notφ ) is a formula;

• If φ and ψ are formulas then (ϕ∨ψ) (∨ is a strong disjunction) is a formula;

• If φ and ψ are formulas then (φ&ψ) (& is a strong conjunction) is a formula;

• If φ and ψ are formulas then (φ ∨ ψ) (φ or ψ) is a formula;

• If a is an investigation and φ is a formula then [a]φ (every made investigation a from the present state
leads to a state where φ is true) is a formula;

• Every atomic investigation is an investigation;

• If a and b are investigations then (a; b) (do a followed by b) is a investigation;

• If a and b are investigations then (a ∪ b) (do a or b, non-deterministically) is an investigation;

• If a is an investigation then a∗ (repeat a a finite, but non-deterministically determined, number of times)
is an investigation.

The other  Lukasiewicz connectives 1,→ and ↔ are used as abbreviations in the standard way (1 ≡
⊥∨¬⊥, p→ q ≡ ¬p∨q, p↔ q ≡ (p→ q) ∧ (q → p)). In addition, we abbreviate ¬[a]¬φ to ⟨a⟩φ (performing
some investigation a from the present state leads to a state where φ is true) as in modal logic. We write an

for a; . . . ; a with n occurrences of a. More formally:

• a1 =df a

• an+1 =df a; an

The axioms of FD Ln are the axioms of  Lukasiewicz logic  L:

(L1) φ→ (ψ → φ),

(L2) (φ→ ψ) → ((ψ → χ) → (φ→ χ)),

(L3) (¬φ→ ¬ψ) → (ψ → φ),

(L4) ((φ→ ψ) → ψ) → (ψ → φ) → φ),

plus the axioms of the logic  Ln, that was given by R. Grigolia [6]:

(Ln5) φn ↔ φn−1,

(Ln6) n(φk) ↔ (k(φk−1))n,

for every integer 2 ≤ k ≤ n− 2 that does not divide n− 1 and for any formulas φ, ψ and any investigation:

Ax0 [a](φ→ ψ) → ([a]φ→ [a]ψ),

Ax1 [a]1 ↔ 1,

Ax2 [a; b]φ↔ [a][b]φ,

Ax3 [a ∪ b]φ↔ [a]φ ∧ [b]φ,

Ax4 [a](φ ∧ ψ) ↔ ([a]φ ∧ [a]ψ).

Ax5 [a∗]φ↔ φ ∧ [a][a∗]φ,

Ax6 φ ∧ [a∗](φ→ [a]φ) → [a∗]φ,

Ax7 [a](φ&φ) ↔ [a]φ&[a]φ,

Ax8 [a](φ ⊻ φ) ↔ [a]φ ⊻ [a]φ.

and closed under the following rules of inference:

(MP) from φ and φ→ ψ infer ψ,

(N) from φ infer [a]φ,

(I) from φ→ [a]φ infer φ→ [a∗]φ.
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3 Forensic dynamic MVn-algebras

An algebra A = (A, 0,¬,⊕) with one binary and one unary and one nullary operations is a MV -algebras if
it satisfies: MV1. (A, 0,⊕) is an abelian monoid

MV2. ¬¬x = x
MV2. x⊕ ¬0 = ¬0
MV3. y ⊕ ¬(y ⊕ ¬x) = x⊕ ¬(x⊕ y).

We set 1 = ¬0 and x ⊙ y = ¬(¬x ⊕ ¬y). We shall write ab for a ⊙ b and an for a⊙ · · · ⊙ a︸ ︷︷ ︸
n times

, for given

a, b ∈ A. Every MV -algebra has an underlying ordered structure defined by

x ≤ y iff ¬x⊕ y = 1.

Then (A;≤, 0, 1) is a bounded distributive lattice. Moreover, the following property holds in any MV -algebra:

xy ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.

An MV -algebra A = (A, 0,¬,⊕) is MVn-algebra if it satisfies the identities: xn = xn−1, n(xk) = (k(xk−1))n

for every integer 2 ≤ k ≤ n− 2 that does not divide n− 1 [6].
Recall that MVn-algebras are algebraic models of n-valued  Lukasiewicz logic  Ln.
The unit interval of real numbers [0, 1] endowed with the following operations:

xx⊕ y = min(1, x+ y), x⊙ y = max(0, x+ y − 1),∼ x = 1 − x,

becomes an MV -algebra [2]. From these operations are defined the lattice operations

x ∨ y = max(x, y) = (x⊙ ∼ y) ⊕ y and x ∧ y = min(x, y) = (∼ x⊕ y) ⊙ x.

It is well known that the MV -algebra S = ([0, 1],⊕,⊙,∼, 0, 1) generate the variety MV of all MV -algebras,
i.e. V(S) = MV. The algebra Sn = ({0, 1/n − 1, ..., n − 2/n − 1, 1},⊕,⊙,∼, 0, 1) generates the subvariety
MVn (1 < n < ω), the algebras of which is called MVn-algebras [6], i.e. V(Sn) = MVn. Notice that
MV = V(

∪∞
i=1 MVn).

The algebra S = ([0, 1],⊙,⇒, 0) (which is functionally equivalent to theMV -algebra defined above), where
a binary operation ⊙ called  Lukasiewicz t-norm and defined as x⊙ y = max{0, x+ y− 1}, for all x, y ∈ [0, 1];
a binary operation ⇒ called the residuum (of the t-norm ⊙) and defined as x⇒ y = min{1, 1 − x+ y}, and
∼ x = x⇒ 0 = 1 − x, x⊕ y =∼ (∼ x⊙ ∼ y) = min(1, x+ y), for all x, y ∈ [0, 1].

Firstly define regular algebras that are also named Kleene algebras. There exist several definitions of
regular algebras. We use J.H. Conway’s definition of regular algebras [3] to whom Kozen follows [8]. A
Kleene algebra is a structure (K,+, ·,∗ , 0, 1) such that (K,+, 0) is a commutative monoid, (K, ·, 1) is a
monoid, and the following laws hold:

a+ a = a, a · (a+ b) = a · a+ a · b,
a · 0 = 0 · a = 0, (a+ b) · c = a · c+ b · c,
1 + a · a∗ = a∗, b+ a · c ≤ c⇒ a∗ · b ≤ c,
1 + a∗ · a = a∗, b+ c · a ≤ c⇒ b · a∗ ≤ c,

where ≤ is the partial order induced by +, that is, a ≤ b⇔ a+ b = b.
For us it is interesting regular algebras represented by algebras of binary relations. Algebras of relations

over a set X: (2X×X ,∪, ; ,∗ , ∅, Id), where ∪ is set-theoretic union, ; is relational composition, ∗ is reflexive-
transitive closure and Id is the identity relation. Notice that this algebra is a complete lattice with respect
to ∪. In the sequel, following Pratt [11], we represent regular algebras as (R,∪, ; ,∗ ).
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Forensic dynamic MVn-algebra, n ∈ Z+, combine MVn-algebra M = (M,⊕,⊙,∼, 0, 1) and regular
algebra R = (R,∪, ; ,∗ ) into a single finitely axiomatized class (M,R,♢) resembling an R-module with scalar
multiplication ♢ : R ×M → M . A forensic dynamic MVn-algebra D = (M,R,♢) satisfies the following
axioms: for any x, y ∈M and a, b ∈ R

1. M is MVn-algebra.
2. a0 = 0.
3. a(x ∨ y) = ax ∨ ay.
4. (a ∪ b)x = ax ∨ bx.
5. (ab)x = a(bx).
6. a(x⊕ x) = ax⊕ ax.
7. a(x⊙ x) = ax⊙ ax.
8. x ∨ aa∗x ≤ a∗x ≤ x ∨ a∗(∼ x ∧ ax).

If in addition a dynamic MVn-algebra satisfies the following condition

9. x?y = x ∧ y,

then it is called test algebra.
Notice that we may think ⟨a⟩x as a function on M . The alternative notation ax is to suggest that we

may think of a itself as a function, in spite of the fact that we may have ax = bx for all x ∈M yet not have
a = b.

In the following instead of a variable x sometimes we will use a propositional variable p. If ap = bp for
all p we call a and b inseparable and write a ≡ b, an equivalence relation which we shall later show to be a
congruence relation on (forensic) dynamic algebras. We call separable any forensic dynamic algebra in which
inseparability is the identity relation [8]. More precisely, forensic dynamic MVn-algebra D = (M,R,♢),
n ∈ Z+, is called separable iff (∀a1, a2 ∈ R)(∃x ∈ M)(a1 ̸= a2 ⇒ a1x ̸= a2x). We let SFDnA denote the
class of separable forensic dynamic MVn-algebras.

On R we define a quasiorder ≤: a ≤ b means that ap ≤ bp for all p. It follows that ≤ on R is reflexive
and transitive but not antisymmetric, and so is a quasiorder. In a separable forensic dynamic MVn-algebra
it becomes a partial order.

Using the axioms 2, 3, 4 and 8, Pratt have proven in [11] that if a ≡ b then a∗ ≡ b∗ and hence ≡ is a
congruence relation on R. Moreover (a) if a ≤ b then a∗ ≤ b∗, (b) a ≤ a∗, (c) a∗ = a∗∗ [11].

Let us consider M as a lattice, and write aS for {as : s ∈ S} for any S ⊂M and a ∈ R. We call a finitely
additive (completely additive) if a(

∨
S) =

∨
a(S) for any finite subset S ⊂ M (for any subset S ⊂ M for

which
∨
S exists). Notice that the regular algebra operations ∪, ; ,∗ preserve finitely additivity (completely

additivity), i.e. if a and b are finite (completely) additive, so are a ∪ b, a; b, a∗ [11].

Example 3.1. Full forensic dynamic MVn-algebras. Given a complete MVn-algebra M = (M,⊕,⊙,∼, 0, 1),
let R be the set of all finitely (resp. completely) additive functions on M , with conditions f(0) = 0,
f(x ⊕ x) = f(x) ⊕ f(x) and f(x ⊙ x) = f(x) ⊙ f(x), and let ♢ : R ×M → M be application of elements of
R to elements of M . We call it the full (completely full) forensic dynamic MVn-algebra on M .

Example 3.2. Functional MVn-algebra. Let W be non-empty set (of states) and

MW = {f : f is a function from W to Sn},

n ∈ Z+, - the set of all functions, which is complete MVn-algebra. More precisely, we have MVn-algebra
(MW ,⊕,⊗,∼, 0, 1), where (f ◦ g)(x) = f(x) ◦ g(x), ∼ f(x) = f(∼ x) with conditions f(x ◦ x) = f(x) ◦ f(x)
where ◦ ∈ {⊕,⊗}, and

R = {r|r : MW →MW is additive (completelly additive) functions}
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with r(f) = r ◦ f . Then the full functional MVn-algebra on W is the completely full forensic dynamic
MVn-algebra on MW .

Remark 3.3. Notice, that the full functional MVn-algebra on W is separable. Indeed, recall that forensic
dynamic MVn-algebra D = (M,R,♢), n ∈ Z+, is called separable iff

(∀a1, a2 ∈ R)(∃x ∈M)(a1 ̸= a2 ⇒ a1x ̸= a2x).

Then, if we take as element x ∈M the constant function 1, then if a1 ̸= a2, then

a11 = a1 ◦ 1 = a1 ̸= a2 = a2 ◦ 1 = a21.

4 Completeness Theorem

Recall that dynamic MVn-algebra D = (M,R,♢) is called separable iff

(∀a1, a2 ∈ R)(∃x ∈M)(a1 ̸= a2 ⇒ ♢(a1, x) ̸= ♢(a2, x)).

In this case x is called a separator for the actions a1 and a2. SFDnA denotes the class of all separable
dynamic MVn-algebras, and Vn denotes the variety generated by SFDnA, i.e. Vn = V(SFDnA).

The notion of heterogeneous algebra and products, subalgebras and homomorphisms of heterogeneous
algebras can be found in [1]. A subalgebra D′ = (M′,R′,♢) of an algebra D = (M,R,♢) is a set of
subsets M ′ ⊂ M,R′ ⊂ R closed under the corresponding operations, and ♢(a′, x′) ∈ M ′ for any a′ ∈ R′ and
x′ ∈ M ′. A homomorphism h : D → D′ is a pair (h1, h2) homomorphisms h1 : M → M ′, h2 : R → R′, and
h(♢(a, x)) = ♢(h1(a), h2(x)). A congruence E on an algebra D is a pair of congruences (E1, E2) on M and
R respectively, and if aE1b and xE2y, then ♢(a, x)E1♢(b, y).

Let Dn be the variety of all forensic dynamic MVn-algebra.

Let F(Var, Inv) denote the absolutely free algebra (or term-algebra) with similarity (2, 2, 1, 0, 0; 2, 2, 1)
and generate by the set of variables and set of investigations. We can restrict the cardinality of the set of
variables (say finite set of variable) and the cardinality of the set of ivestigations (say finite set of investi-
gations). Then we will have finitely generated absolutely free algebra. Denote by F(Varf , Invf ) finitely
generated absolutely free algebra.

Let x, y..., a, b, ..., α, β, ... range over the set of generators in M,R,M∪R respectively, and write M0, R0, D0

for the respective generator sets. Let FVn(M0, R0) denotes the free Vn-algebra (free algebra over Vn) freely
generated by the sets R0 and M0 as free generators of sorts MVn-algebra and actions respectively [5]. We
can represent FVn(M0, R0) as (FMVn(M0),FR(R0),♢).
Notice that (FMVn(M0),FR(R0),♢) is a homomorphic image of the absolutely free term forensic dynamic
MVn-algebra. In other words (FMVn(M0),FR(R0),♢) is a Lindenbaum algebra of the forensic dynamic
Lukasiewicz logic on a finitely many generating sets.

According to well known Birkhoff’s theorem we have

Theorem 4.1. Dn-algebra D = (M,R,♢) is isomorphic to a subdirect product of subdirectly irreducible
Dn-algebras.

According to this theorem (FMVn(M0),FR(R0),♢) is represented as a subdirect product of subdirectly
irreducible Dn-algebras where FMVn(M0) is a subdirect product of finite chain MVn-algebras and FR(R0)
is a separable regular algebras. Notice that when M0 is finite then FMVn(M0) is finite.

Taking into account that the variety of MVn-algebras is locally finite and adapting Segerberg’s technique
of filtration (for modal logic) [14] for dynamic MVn-algebras it holds
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Theorem 4.2. For a free forensic dynamic MVn-algebra FDn(M0, R0) and a finite subset Mg of FMVn(M0),
there exists a forensic dynamic MVn-algebra D = (M,R,♢) and a homomorphism f : FDn(M0, R0) → D
injective on Mg, with f(FDn(M0, R0)) finite and separable.

Theorem 4.3. Every finite separable forensic dynamic MVn-algebra D = (M,R,♢) is isomorphic to a
(finite) functional MVn-algebra.

Proof. Let D = (M,R,♢) be a finite separable forensic dynamic MVn-algebra. Let (W,R, V ) be the Kripke
model such that:

i) W is the set of all additive functions f : M → Sn;
ii) the binary relation R is defined on W by

(u, v) ∈ R if for every formula φ ∈ FMVn(M0) and a ∈ Inv

u([a]φ) = 1 ⇒ v(φ) = 1;

iii) the valuation map V : W ×Var → Sn is defined by

V (u, p) = u(p).

By the fact that every finite MVn-algebra is isomorphic to ta direct product
∏

i∈I Si, where i divides n,
and by separability, D is isomorphic to a subalgebra of the full (hence completely full by the finiteness of M)
forensic dynamic MVn-algebra, which is a functional MVn-algebra by definition. □

From the theorems 1 - 3 we can conclude that the variety Vn coincides with Dn.
Let θ(n) = (θ(n)1, θ(n)2 be an equivalence relation on F(Varf , Invf ) defined as follows: αθ1β iff α → β

and β → α are theorems of FD Ln and aθ2b iff ax = bx for all x ∈M .
It holds

Theorem 4.4. (F(V arf ,Πf )/θ(n) is forensic dynamic MVn-algebra.

Theorem 4.5. (Completeness theorem) A formula φ of forensic dynamic logic FD  Ln is a tautology iff it is
a theorem of the logic.

Proof. It is obvious that if φ is a theorem, then φ is a tautology. Let us suppose that φ is not a theorem. Then
φ/θ(n) ̸= 1 in the Lindenbaum algebra F(Varf , Invf )/θ(n) (n ∈ ω). F(Varf , Invf )/θ(n) is isomorphic to
FVn(M0, R0) for some finite M0 and R0. Then there exists a homomorphism h : FVn(M0, R0) → D with
injection on M0, R0 where D is finite and separable with h(φ/θ(n)) ̸= 1. So, φ is not a tautology. □

5 Kripke semantics

Formulas can be used to describe the properties that hold after the successful investigation. For example,
the formula [a ∪ b]φ means that whenever investigations a or b is successfully finalized, a state is reached
where φ holds, whereas the formula ⟨(a; b)∗⟩φ means that there is a sequence of alternating investigations of
a and b such that a state is reached where φ holds. Semantically speaking, formulas are interpreted by sets
of states and investigations are interpreted by binary relations over states in a Kripke model. More precisely,
the meaning of FD Ln formulas and investigations are interpreted over Kripke models (KM) K = (W,R, V )
where W is a nonempty set of worlds or states, R is a mapping from the set Inv of atomic investigations
into binary relations on W (i.e. R : Inv → r : W 2 → {0, 1}) and V is a mapping from the set Var of atomic
formulas into Sn. Informally, the mapping R assigns to each atomic investigation a ∈ Inv some binary
relation R(a) on W with intended meaning xR(a)y iff there exists an execution of a from x that leads to
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y, whereas the mapping V assigns to each pair (p, x) ∈ V ar ×W , where p ∈ V ar is an atomic formula and
x ∈ W , some element V (p, x) ∈ Sn with intended meaning V (p, x) = 1 iff p is true in x. Given our readings
of 0,¬φ,φ ⊻ψ, [a]φ, a; b, a∪ b, a∗ and φ?, it is clear that R and V must be extended inductively as follows to
supply the intended meanings for the complex investigations and formulas:

• xR(a; b)y iff there exists a world z such that xR(a)z and zR(b)y,

• xR(a ∪ b)y iff xR(a)y or xR(b)y,

• xR(a∗)y iff there exists a non-negative integer n and there exist worlds z0, . . . , zn such that z0 = x,
zn = y and for all k = 1, . . . , n, zk−1R(a)zk,

• xR(φ?)y iff x = y and V (φ, y) = 1,

• V (⊥) = 0.

• V (¬φ, x) = 1 − V (φ, x),

• V (φ ⊻ ψ, x) = V (φ, x) ⊕ V (ψ, x),

• V (φ ∨ ψ, x) = V (φ, x) ∨ V (ψ, x),

• V ([a]φ, x) =
∧
{V (φ, y) : xR(a)y},

• V (⟨a⟩φ, x) =
∨
{V (φ, y) : xR(a)y}.

If V (φ, x) = 1 then we say that φ is satisfied at state x in K, or ”K, x sat φ”.

Now consider a formula φ. We say that φ is valid in K or that K is a model of φ, or ”K ⊨ φ”, iff for all
worlds x, V (φ, x) = 1. φ is said to be valid, or ” ⊨ φ”, iff for all models K, K ⊨ φ. We say that φ is satisfiable
in K or that K satisfies φ, or ”K sat φ”, iff there exists a world x such that V (φ, x) = 1. φ is said to be
satisfiable, or ” sat φ”, iff there exists a model K such that K sat φ. Interestingly, sat φ iff not ⊨ ¬φ, ⊨ φ iff
not sat ¬φ.

Some remarkable formulas of FD Ln are valid.

⊨ [a; b]φ↔ [a][b]φ

⊨ [a ∪ b]φ↔ [a]φ ∨ [b]φ

⊨ [a∗]φ↔ φ ∧ [a][a∗]φ

⊨ [φ?]ψ ↔ (φ→ ψ)

Equivalently, we can write them under their dual form.

⊨ ⟨a; b⟩φ↔ ⟨a⟩⟨b⟩φ
⊨ ⟨a ∪ b⟩φ↔ ⟨a⟩ ∧ ⟨b⟩φ
⊨ ⟨a∗⟩φ↔ φ ∨ ⟨a⟩⟨a∗⟩φ
⊨ ⟨φ?⟩ψ ↔ (φ ∧ ψ).

We define propositional forensic dynamic  Lukasiewicz logic FD Ln as the set of all formulas that are valid
in all Kripke models, i.e.

FD Ln = {φ : |=FD Ln
φ}.

Completeness theorem for classical and non-classical case with respect to Kripke models was proven by
many authors. Adapting the existing methods for FD Ln it is easy to prove the following

Theorem 5.1. (Completeness theorem) The following assertions are equivalent: for any formula φ

i) φ is a theorem of FD  Ln (n ∈ Z+),

ii) φ is valid.

Proof. We give a sketch of the proof.
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i) ⇒ ii). It follows from the immediate inspection, i.e. showing that every axiom Ax0 - Ax8 are valid and
inference rules preserve validity. It is routine to check every axiom and inference rules. But we show validity
of one of them, namely the axiom Ax0. Firstly, notice that the identity∧

i∈I
(xi ⊕ yi) =

∧
i∈I

(xi) ⊕
∧
i∈I

(yi) (#)

holds in the MV -algebra S and, hence, in the MVn-algebra Sn. Let Kn = (W,R, V ) be any Kripke model.
Then V ([a](φ→ ψ) → ([a]φ→ [a]ψ), x) =
V (¬[a](¬φ∨ψ)∨(¬[a]φ∨[a]ψ), x) =
∼ V ([a](¬φ∨ψ), x) ⊕ (∼ V ([a]φ, x) ⊕ V ([a]ψ), x)) =
∼ (

∧
y∈W {∼ V (φ, y) ⊕ V (ψ, y) : xRay}) ⊕ (∼

∧
y∈W {V (φ, y) : xRay} ⊕

∧
y∈W {V (ψ, y) : xRay}). Using (#)

we have
∼ (

∧
y∈W {∼ V (φ, y) ⊕ V (ψ, y) : xRay}) = (∼

∧
y∈W {V (φ, y) : xRay} ⊕

∧
y∈W {V (ψ, y) : xRay}). So,

V ([a](φ→ ψ) → ([a]φ→ [a]ψ), x) = 1.
ii) ⇒ i). This part is the completeness theorem concerning Kripke models. The completeness theorem for

the classical case was given by Segerberg [13], Parikh [10], Kozen and Parikh [9]. In the proof of the theorem,
they mainly use the fact that the set of the subformulas of the formula is finite and by the Boolean combination
on the given subformulas, we also get finite set (because of locally finiteness of Boolean algebras), and then
use filtration method. Since we have locally finiteness of MVn-algebras (which is an algebraic counterpart of
n-valued  Lukasiewicz logic) G. Hansoul and B. Teheux in [7] adapted the Segerberg’s proof for (mono)modal
n-valued  Lukasiewicz logic where they have proved Kripke completeness of (mono)modal n-valued  Lukasiewicz
logic.

Using an abstract version of the modal logic technique of filtration, which is a Kripke structure setting
is the process of dividing a Kripke model of a given formula φ by an equivalence relation on its worlds to
yield a finite Kripke model of φ. Fischer and Ladner [4] showed that filtration could be made to work for
propositional dynamic logic just as well as for modal logic. Prat [12] has extended their result that filtration
does not depend on any special properties of Kripke structures but works for all dynamic logic. Adapting
G. Hansoul and B. Teheux technique of filtration (for  Lukasiewicz modal logic) [7] for (multimodal) dynamic
propositional  Lukasiewicz logic FD Ln we arrive to the assertion (ii) ⇒ (i). □

6 Application

We study logical system and their Kripke semantics (Kripke frames) for an application to the forensic sys-
tem. In turn, the forensic system consists of special kind of investigations interacting between themselves,
depending on the state of an environment, which afterward is predetermined by investigators behavior. So,
their behavior depends on so far as finding facts (evidence) possess full information about the environment
and presented facts.

Our basic aim is to give to the investigators some useful tools for diagnosis about a state of a forensic
system having some initial data. These data represent some properties, which may estimate, that possess
some parts of a forensic system, in particular some evidence being fundamental elements of the forensic
system.

6.1 A fragment of a forensic system as a Kripke Frame

In this section, we try to represent some simple fragment of a forensic system by n-valued Kripke frame with
the following interpretation in forensic models that is different, but similar.

Now we give a naive definition of forensic system FS. A forensic system FS is a set of investigations with
some actions between them. Identifying some investigation with a possible world and an action between
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investigations with the relation between corresponding words we can represent a forensic system FS as a
n-valued descriptive Kripke frame.

FragmFS = (S,Q), where S = {Fact1, ..., Factn, Inv1, ..., Invm}, forms a fragment of a forensic system
with communication between its members which is expressed by some reflexive and transitive binary relation
Q pointed out in Fig. 1. In the sequel, we assume that the binary relation Q is reflexive and transitive.

Now we will give some representation of a fragment of a forensic system by Kripke frame. Let J = (W,R)
be n-valued Kripke frame, where R ⊂ W ×W is a binary reflexive and transitive relation on finite set W
(called the accessibility relation between possible words from W ). By the representation of a forensic system
FragmImS = (S,Q) by Kripke frame J = (W,R) we mean a bijective function φ : S → W such that
(t1, t2) ∈ Q⇒ (φ(t1), φ(t2)) ∈ R.
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6.2 The modal aspects of forensic system

Given a n-valued Kripke frame J which is a representation of a fragment of the forensic system, then we
consider some a forensic system, represented by the Kripke frame J = (W,R),where W is a finite set of
forensic investigations, and let M = (J, e) be n-valued Kripke model and e : V ar×W → Sn. Representing a
Kripke frame as a set of forensic investigations, in addition we can interpret a propositional variable p ∈ V ar
as a sentence about the investigation w ∈W . The value e(p, w) expresses how much p fits a certain property
of w.

We say that w ∈ W , where W is a finite set of investigations, is p-activated if e(p, w) = 1 , it is not
p-activated if e(p, w) = 0, it is p-activated in some degree s ∈ Sn if e(p, w) ∈ Sn − {0, 1}. Note that for
w ∈ W there are finitely many ways to be p-activated for an investigation w. So, for evaluation e we have
the set of points of W (i.e. the set of investigations) such that part of them are activated, part of them is
not activated and part of them is activated to some degree.

A function S : W → Sn is named a state function (or simply state) if for every w,w′ ∈W it holds

(w,w′) ∈ R⇒ (S(w) = 1 ⇒ S(w′) = 1).

Let e : V ar × W → Sn be an evaluation. A formula φ defines a function Se
φ : W → Sn, such that

Se
φ(w) = e(w,φ). We say that a formula φ is labelled by the evaluation e if Se

φ is an state function and denote
such kind of function by Se

φ. The process of transformation of one state function S1 (= Se1
φ ) to an another

function S2 (= Se2
φ ) will be named ”φ− activation”. So, for a formula φ a transferring of the state function

Se1
φ to the state function Se2

φ is a φ-activation of points of W .

We described a forensic system as a Kripke Frame. It means that by Kripke frame we capture just the
relational structure of a forensic system.

This representation of the forensic system neglects some information about the forensic system, that is
some knowledge on the points w are not represented. So to recover such information we give the notion of
forensic system state function (or simply forensic state function of a forensic system). This is done by a
function S defined on all possible worlds to Sn. Of course S satisfies some suitable conditions, which are
essentially compatibility conditions with respect to the relational structure of the forensic system. In this
way we have a more faithful representation of the knowledge about the given forensic system. It is reasonable
to think that to get the value S(w) it is needed some intellectual work (maybe an experiment). We plan
mathematically to study the set of all forensic states. Our aim is to help the investigators to have a formal
and canonical way to explore the possible forensic state (function) of a forensic system. We have a variety of
forensic state functions. Roughly speaking we have any allocation of the elements of Sn with any elements
of W . But we need the allocations which are compatible with n-valued Kripke frame. So we single out such
kinds of forensic state functions which are defined by some logical formulas, say φ, and an evaluation e is
denoted as Se

φ.

Since a forensic system, as defined in the paper, can be associated whit a logic which is complete with
respect to certain Kripke frames, and since forensic system representation gives us a Kripke Frame, we use
formulas of the logic of our Kripke Frame forensic system, to define some forensic states of the forensic system.
Actually we use a formula φ and an evaluation e of φ, in the following way: Se

φ(w) = e(φ,w).

It is worth to note that a single formula φ essentially represents a set of forensic states (investigation),
actually all such states are defined by Se

φ when e varies in the set of all evaluations. In this way a given
formula represents a collection of forensic states of the forensic system. It could be of interest to explore the
possibility of checking whether given a collection of forensic states we can find a formula representing such a
collection.

We defined the Activation function as a function defined on the set of all the forensic System States
with value in the same set. This is a way to represent how changes the forensic information after, say an



70 A. Di Nola, R. Grigolia-TFSS Vol.1, No.2, (2022)

experiment, that produces new information about the forensic state values of all points w. To know facts
about the function means to know facts about possible variations of the forensic state of the system, and to
check whether these variations can be described by formulas.
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