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Abstract. Experts usually express their degrees of belief in their statements by the words of a natural language
(like “maybe”, “perhaps”, etc.). If an expert system contains the degrees of beliefs t(A) and t(B) that correspond
to the statements A and B, and a user asks this expert system whether “A&B” is true, then it is necessary to
come up with a reasonable estimate for the degree of belief of A&B. The operation that processes t(A) and t(B)
into such an estimate t(A&B) is called an &-operation. Many different &-operations have been proposed. Which
of them to choose? This can be (in principle) done by interviewing experts and eliciting a &-operation from them,
but such a process is very time-consuming and therefore, not always possible. So, usually, to choose a &-operation,
we extend the finite set of actually possible degrees of belief to an infinite set (e.g., to an interval [0, 1]), define an
operation there, and then restrict this operation to the finite set. In this paper, we consider only this original finite
set. We show that a reasonable assumption that an &-operation is continuous (i.e., that gradual change in t(A)
and t(B) must lead to a gradual change in t(A&B)), uniquely determines min as an &-operation. Likewise, max
is the only continuous ∨-operation. These results are in good accordance with the experimental analysis of “and”
and “or” in human beliefs.
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1 Introduction

We must represent uncertainty. When we design an expert system, and place the experts’ knowledge
inside the computer, we must somehow describe the fact that experts may have different degrees of belief in
their statements. Some of these statements are believed to be absolutely true, some are true to some extent,
and some are only probably true, but an expert is not sure about that. Usually, experts describe their degrees
of belief by the words from a natural language (like “for sure”, “maybe”, “probably”, etc.) Since there are
only finitely many words in a language, we have only finitely many different degrees of belief.

We must represent these degrees in a computer.

If an expert is absolutely sure about the truth of any statement that he (or anyone else) pronounces, then
we have only two degrees of belief: “absolutely sure” and “absolutely sure that it is wrong”; these two degrees
of belief are just truth values: “true” and “false”. Therefore, in a general case, when different degrees of
belief are allowed, these degrees of belief can be viewed as truth values that characterize different statements.
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We must deal with uncertainties. Representing the truth values inside a computer is not all: we must
be able to process these values. For example, suppose that we know the truth values t(A) and t(B) of two
statements A and B, and the user asks a query “A&B?”. Since we are not sure whether A and B are true,
we are also not sure whether A&B is true or not. Therefore, the only possible answer that we can give to
this query is to describe a (reasonable) degree of belief t(A&B) in A&B. If the only information that we
have about A and B consists of their truth values, then we must somehow produce this reasonable estimate
t(A&B) based on the known values t(A) and t(B). In other words, we must have a function (moreover, an
algorithm) that would transform t(A) and t(B) into t(A&B). If we denote this function by f&, then we can
describe the resulting “reasonable” estimate for t(A&B) as f&(t(A), t(B)).

In case both t(A) and t(B) coincide with “true” or “false”, this function must coincide with the usual
&−operation that is defined on a classical set of truth values {0, 1}. Therefore, this function f& is called an
&-operation.

Likewise, there must exist a function f∨ that corresponds to ∨ and is therefore called an ∨-operation, and
a function f¬ (an ¬−operation) that generalizes “not” to the bigger set of truth values.

Conclusion: an ideal representation of degrees of uncertainty is by finite logic. A set with logical
operations on it (“and”, “or”, and “not”) is usually called a logic. A logic that is a finite set is called a finite
logic. Our finite set of truth values has all these operations, and is therefore a finite logic.

Therefore, an ideal representation of degrees of uncertainty must form a finite logic.

How to choose &- and ∨-operations for finite logics: ideal solution. Since our main objective is to
represent experts’ beliefs in the most adequate manner, it is reasonable to choose &- and ∨-operations so as
to provide the best description of human reasoning with uncertainty. To do this, we must first ask the experts
to estimate their degrees of belief in different statements and their logical combinations. Then, we choose a
function f& as follows: For every pair of degrees of belief a and b, we find all the statements in our record
for which the degree of belief was a (t(A) = a), and all the statement B for which t(B) = b. For different A
and B, we look for the truth values that the experts assigned to the statements A&B. For different A and
B, these truth values may be different; we find the “average” one (e.g., the one that is most frequent) and
use it as f&(a, b).

In a similar way, we can experimentally determine f∨(a, b).

This is (in essence) the method that was originally used to choose &- and ∨-operations in one of the first
successful expert systems MYCIN; see, e.g., [3]. A similar method was efficiently used to produce &- and
∨-operations on finite logic in MILORD system [1, 12].

How are &- and ∨-operations chosen now, if we cannot afford to elicit them from the experts? If
we can afford to perform the above-described procedure, fine, this procedure is the ideal solution to the choice
problem. However, already the authors of MYCIN have noticed that it is very expensive and time-consuming
procedure [3]. So, what to do if we cannot afford it, but still have to choose &- and ∨-operations?

In this case, we need to develop theoretical methods to choose these operations. The authors of MILORD
formulated reasonable conditions that &- and ∨-operations must satisfy [1, 12]. However, there are several
different operations that satisfy all these conditions. Hence, the problem of choice remains.

At present, this choice problem is solved in the following manner. In the majority of actual expert systems
the set of possible truth values is infinite; see, e.g., [3, 13]; MILORD is one of the few exceptions). Usually,
the numbers from the interval [0, 1] are used to represent degrees of belief. The reason for choosing this
interval is very simple: inside the computer, “true” is usually represented as 1, and “false” as 0. So, it is
reasonable to represent all intermediate degrees of belief by real numbers that are intermediate between 0
and 1.

If we assume that all numbers from [0, 1] are possible, then we need to define &- and ∨-operations as
functions from [0, 1] × [0, 1] to [0, 1]. There exist several reasonable approaches that enable us to make a
choice of such a function; see, e.g., [7].
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Formulation of a problem. These approaches provide us with reasonable &- and ∨-operations, but they
essentially depend on the assumption that all numbers from the interval [0, 1] can be truth values. Strictly
speaking, this assumption is not true. Therefore, it is reasonable to formulate the following problem: if we
are unable to elicit these operations from the experts, can we still choose them using only the actual truth
values?
How we are going to solve this problem. In order to solve this problem, we will assume that both &-
and ∨-operations f&(a, b) and f∨(a, b) are “continuous” in the following sense. If we gradually (=without
skipping any intermediate values) increase our degrees of belief a = t(A) and b = t(B), then the resulting
degrees of belief t(A&B) = f&(a, b) and t(A ∨B) = f∨(a, b) must also change gradually.

It turns out that this reasonable demand is satisfied by only one pair of operations: min and max, that
were originally proposed by L. Zadeh [14]; see also [2, 6, 8, 9, 10].

This result is in good accordance with the known experiments [5, 11, 15], according to which in many
situations, min and max describe human reasoning better than other possible &- and ∨-operations.

2 Definitions and the Main Results

Definition 2.1. By a finite logic, we understand a (partially) ordered finite set L that contains two elements
T and F such that F ≤ a ≤ T for every a ∈ L. The elements of L will be called truth values, or degrees of
belief.

Motivation. We consider finitely many truth values, that represent different degrees of belief. Sometimes,
we are certain that a belief expressed by a degree a is stronger than the belief that is expressed by a degree
b. For example, a =“for certain” is stronger than b =“maybe’. We will denote this by a > b. So, on our set
of truth values, there is an ordering relation.

In particular, if we denote the degree of belief that expresses our absolute certainty in A, by T (T from
“true”), and the degree of belief that expresses the absolute belief in ¬A by F (from “false”), then F ≤ a ≤ T
for an arbitrary degree of belief a.

It is possible that for some words that describe uncertainty, there is no clear understanding which of them
corresponds to a greater belief (e.g., it is difficult to compare “probable” and “possible”). Therefore, we do
not require that this ordering is a total (linear) order, it can be only partial.

Definition 2.2. Let L be a finite logic. By an &-operation on L we mean a function f& : L × L → L with
the following properties:

• f&(a, b) ≤ a;

• f&(a, b) = f&(b, a);

• f&(a, F ) = F ;

• if a ≤ a′ and b ≤ b′, then f&(a, b) ≤ f&(a
′, b′).

Motivations.

• The first property is motivated by the following: if we believe in A and B, then we must believe in both
statements A and B; therefore, our belief in A&B is either of the same strength or less strong than
our belief in A.

• The second property is motivated by the fact that “A&B” and “B&A” are equivalent statements, so
it is reasonable to demand that our estimated degree of belief in A&B (= f&(t(A), t(B))) is the same
as the estimated degree of belief in B&A (= f&(t(B), t(A))).
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• The third property expresses the following: if B is false, then “A and B” is false for all A.

• The fourth means that if the degree of belief in A and B increases (i.e., if we found additional reasons
to believe in A or B), then the resulting degree of belief in A&B must either increase, or stay the same.

Comment. This definition is similar to the usual definition of a t-norm (see, e.g., [2, 6, 8, 9, 10]) and to the
definition of an &-operation on a finite logic from [1, 12]. The reader may notice, however, that we do not
require some additional properties that are usually required for a t-norm, like associativity (f&(a, f&(b, c)) =
f&(f&(a, b), c))). The reason is that in our case, as we will see later, it automatically follows from the other
properties.

Definition 2.3. Let L be a finite logic. By an ∨-operation on L we mean a function f∨ : L × L → L with
the following properties:

• f∨(a, b) ≥ a;

• f∨(a, b) = f∨(b, a);

• f∨(a, T ) = T ;

• if a ≤ a′ and b ≤ b′, then f∨(a, b) ≤ f∨(a
′, b′).

Motivations for these demands are similar to the ones given for an &-operation.

Definition 2.4. Let L be a finite logic.

• We say that an element a′ ∈ L immediately follows a (and denote it by a≪ b, or b≫ a) if a < a′, and
there exists no c such that a < c < a′.

• We say that a function f : L→ L is discontinuous if there exist elements a, a′, c such that a≪ a′, and
either f(a) < c < f(a′), or f(a′) < c < f(a).

Motivation. If such values a, a′, c exist, this means that when we gradually increase our degree of belief
from a to a′ (gradually in the sense that we do not skip any intermediate values), then the resulting value
of f “jumps” from f(a) to f(a′), skipping an intermediate value c. So, in this sense, the function f is
discontinuous.

We can use the same definition for a function of two variables.

Definition 2.5. A function f : L × L → L is called discontinuous is there exist the values a, a′, b, b′, c for
which the following three conditions are true:

• a≪ a′, a′ ≪ a, or a = a′;

• b≪ b′, b′ ≪ b, or b = b′;

• f(a, b) < c < f(a′, b′), or f(a′, b′) < c < f(a, b).

Comment.

• The first condition means that a gradually changes into a′ (i.e., either a′ immediately follows a, or a
immediately follows a′, or a′ equals a).

• The second condition means that b gradually changes into b′.

• The third condition means that there is a “gap” between f(a, b) and f(a′, b′).
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Definition 2.6. A function is called continuous if it is not discontinuous.

Comment 1. If a function f is continuous in the intuitive sense of this word, then it cannot have discontinuities
in the sense of Definitions 2.4 and 2.5, and therefore it will be continuous in the sense of Definition 2.6. We do
not claim, however, that an arbitrary function that satisfies Definition 2.6 is intuitively continuous, because
there may be other types of discontinuity. We will prove that this weak continuity is sufficient to select &-
and ∨-operations.
Comment 2. It is worth mentioning that usually in mathematics, continuity is understood as continuity with
respect to some topology. For finite sets, however, this notion is not applicable: on a finite set, we either have
a discrete topology (in which case all functions are continuous), or a topology that is reduced to an ordering
relation, in which case monotonic functions and only they are continuous; see, e.g., [4]. This monotonicity is
not enough for us: we have already included monotonicity in our definitions of &- and ∨-operations, and we
want to formalize the evident fact that some monotonic operations are “continuous” (in an intuitive sense),
and some are not. Hence, we had to use new definitions of continuity.

Now, we are ready to formulate the main results.

Theorem 2.7. If f is a continuous &-operation on a finite logic L, then L is linearly ordered, and f(a, b) =
min(a, b).

Comments.

• For a linearly ordered set, min(a, b) is defined as the smallest of a and b.

• For readers’ convenience all the proofs are given in Section 4.

Theorem 2.8. If f is a continuous ∨-operation on a finite logic L, then L is linearly ordered, and f(a, b) =
max(a, b).

Example 2.9. Let us give an example of an &-operation that is different from min, and show that it is really
discontinuous. As a finite logic, let us take the set of 11 numbers {0, 0.1, 0.2, . . . , 0.9, 1.0} with natural order.
We thus defined L as a subset of the interval [0, 1]. In the same original paper by L. Zadeh [14], another
operation on the interval [0, 1] has been proposed for & : f(a, b) = a ·b. This operation, unlike min, cannot be
directly applied to the chosen values, because, e.g., 0.6 · 0.6 = 0.36, and the number 0.36 does not belong to
the set of 11 chosen values. This difficulty is, however, easy to overcome: we can take as f(a, b) the number
from L that is the closest to a ∗ b (and if there are two closest numbers, like 0.2 and 0.3 for 0.25 = 0.5 · 0.5,
choose the biggest of these two). For this operation, we will have f(0.6, 0.6) = 0.4, f(0.3, 0.5) = 0.2, etc.

Let us now consider the case when we have two statements A and B, and our degree of belief in each of
them is equal to 0.9. Then, our degree of belief in A&B is equal to f(0.9, 0.9) = 0.8. In the chosen set L,
1.0 immediately follows 0.9, which means that an increase in the degree of belief from 0.9 to 1.0 can be called
gradual. So, we can consider the possibility that our degrees of belief in both A and B gradually increase
from 0.9 to 1.0. After this increase, the degree of belief in A&B becomes equal to f(1.0, 1.0) = 1.0. So, we
gradually increased our degrees of belief in A and B, but the resulting degree of belief in A&B “jumped”
from 0.8 to 1.0, skipping the value 0.9. Hence, this function f is discontinuous.

In Definition 2.5, we can thus take a = b = 0.9, a′ = b′ = 1.0, and c = 0.9.

3 Operations that Correspond to Negation and Implication

In Section 2, we described continuous “and” and “or” operations, and concluded that L must be linearly
ordered. Let us now describe continuous operations with degrees of belief that correspond to other logical
connectives.
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Definition 3.1. By a ¬-operation on L we mean a function f : L→ L such that f(T ) = F and f(F ) = T .

Motivation. This condition simply means that if A is absolutely true, then ¬A is absolutely false, and vice
versa.

Theorem 3.2. If L = {F = a0 < a1 < a2 < . . . < an = T} is a linearly ordered finite logic, and f is a
continuous ¬-operation on L, then f(ai) = an−i.

Comment. We can represent this result in a manner that is closer to the traditional representation of
uncertainty, if we describe each degree of belief ai by a real number i/n. Then, for each truth value a,
f¬(a) = 1− a. This is exactly the operation originally proposed by Zadeh. In other words, not only the &-
and ∨-operations initially proposed by Zadeh are the only continuous &- and ∨-operations, but his negation
operation is the only continuous “not”-operation on a finite logic.

Let us now describe the implication operations.

Definition 3.3. Let L be a finite logic. By a →-operation on L we mean a function f→ : L × L → L with
the following properties:

• f→(F, a) = T ;

• f→(T, a) = a;

• f→(a, T ) = T ;

• f→(a, a) = 1;

• if a ≤ a′, then f→(a, b) ≥ f→(a′, b).

Motivations. The intended meaning of the function f→(a, b) is as follows: if we know the degrees of belief
a = t(A) and b = t(B) in some statements A and B, then f→(a, b) is a reasonable degree of belief in the
statement A→ B (“A implies B”). With this interpretation in mind:

• The first of the above properties states that anything follows from a false statement.

• The second one states that to believe that A follows from an absolutely true statement is the same as
to believe that A is true, and therefore, the corresponding degrees of belief must coincide.

• The third condition means that a true statement follows from everything.

• The fourth that for any statement A, A follows from A (and therefore, the degree of belief in A → A
must be equal to T ).

• The last condition is related to the third one: Namely, the third one says that if A is false, then A→ B
is always true. Therefore, if for some reason our degree of belief in statement A decreases (from a′ to
a), then our belief that A can be false will correspondingly increase. Therefore, our degree of belief
that A→ B is true, will also increase. Hence, it is reasonable to demand that f→(a′, b) ≤ f→(a, b).

Theorem 3.4. If L = {F = a0 < a1 < . . . < an = T} is a linearly ordered finite logic, and f is a continuous
→-operation on L, then f(ai, aj) = amin(n,n+j−i)

Comment. If we describe ai by a real number i/n, then this →-operation turns into f(a, b) = min(1, 1+b−a).
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4 Proofs

Proof of Theorem 2.7.

1◦. Let us first prove that every element a ∈ L can be connected to T by a finite chain T = a0 ≫ a1 ≫ . . .≫
ak = a (k ≥ 0).

Indeed, if a = T , then we already have a chain, with k = 0.

If a ̸= T , then according to our definition of a finite logic, we have a < T . If a≪ T , then we have a chain
a0 = T , a1 = a. If a ̸≪ T , then, according to the definition of ≪, it means that there exists a c such that
T > c > a. If T ≫ c, and c ≫ a, then we have the desired chain. Else, we can insert additional elements in
between them, etc.

On each step of this procedure, we either have a chain, or we can insert more elements into a sequence
T = a0 > a1 > . . . > an = a. Since there are only finitely many elements in the set L, and all ai are different,
this insertion cannot go on forever. Therefore, sooner or later, it will stop, and we will get the desired chain.

2◦. Let us now prove that f(a, a) = a for every a ∈ L.

Indeed, suppose that a ∈ L is given. According to 1◦, there exists a chain T = a0 ≫ a1 ≫ . . .≫ ak = a that
connects T and a.

If k = 0, then a = T , and f(T, T ) = T follows from the properties of an &-operation.

So, we can assume that k > 0. We will prove that f(a, a) = a by reduction to a contradiction. Indeed,
suppose that f(a, a) ̸= a. Hence, f(a0, a0) = a0, and f(ak, ak) ̸= ak. Let us denote by p the smallest integer
for which f(ap, ap) ̸= ap. From this definition of p it follows, in particular, that f(ap−1, ap−1) = ap−1.

Since f is an &-operation, we can conclude that f(ap, ap) ≤ ap. Since f(ap, ap) ̸= ap (by choice of p), we
conclude that f(ap, ap) < ap.

Therefore, we have ap ≪ ap−1, and f(ap, ap) < ap < ap−1 = f(ap−1, ap−1), i.e., f is discontinuous (here,
a = b = ap, a

′ = b′ = ap−1, and c = ap). However, we assumed that f is continuous.

This contradiction proves that f(a, a) cannot be different from a, so f(a, a) = a for all a.

3◦. Let us prove that L is linearly ordered, i.e., for every two elements a, b ∈ L, either a = b, or a < b, or
b < a.

Indeed, let us take a, b ∈ L. Following 1◦, we will form chains T = a0 ≫ a1 ≫ . . . ≫ ak = a, and
T = b0 ≫ b1 ≫ . . .≫ bl = b. Let us denote by p the biggest integer for which ap and bp are both defined and
equal to each other (ap = bp).

3.1◦. If p = k = l, then a = ak = ap = bp = bl = b, i.e., a = b.

3.2◦. If p = k ̸= l, then a = ak = bp ≫ bp+1 ≫ . . .≫ bl = b, therefore a > bp+1 > . . . > bl = b, and a > b.

3.3◦. Likewise, if p = l ̸= k, then b > a.

3.4◦. Let us prove that the remaining case when p < k and p < l, is impossible.

Indeed, in this case, both ap+1 and bp+1 are defined and different from each other. Since f is an &-operation,
we can conclude that f(ap+1, bp+1) ≤ ap+1 and f(ap+1, bp+1) = f(bp+1, ap+1) ≤ bp+1.

The first inequality means that we have two possibilities: f(ap+1, bp+1) = ap+1, and f(ap+1, bp+1) < ap+1.
We will show that in both cases, we have a contradiction.

3.4.1◦. Suppose first that f(ap+1, bp+1) = ap+1. We already know that f(ap+1, bp+1) ≤ bp+1, so ap+1 ≤ bp+1.
We chose p in such a way that ap+1 ̸= bp+1 (and ap = bp), therefore ap+1 < bp+1. So, ap+1 < bp+1 < bp = ap.
The existence of the intermediate value bp+1 contradicts the assumption that ap+1 ≪ ap. So, in this case, we
have a contradiction.

3.4.2◦. Let us now consider the case when f(ap+1, bp+1) < ap+1. Since ap = bp (because of our choice of
p), and f(a, a) = a for all a (this we have proved), we have f(ap, bp) < ap+1 < ap = f(ap, ap) = f(ap, bp).
Therefore, in this case, ap+1 ≪ ap, bp+1 ≪ ap, and f(ap+1, bp+1) < ap+1 < f(ap, bp). Hence, we have a proof
that f is discontinuous (with a = ap+1, b = bp+1, a

′ = ap, b
′ = bp, and ap+1 = c). This contradicts to our

assumption that f is continuous.
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3.4.3◦. Summarizing: in both cases the assumption that p < k and p < l led us to a contradiction. So, either
p = k, or p = l, in which cases, as we have already proved, either a = b, or a < b, or b < a.

We have thus proved that L is linearly ordered.
4◦. It now remains to prove that f(a, b) = min(a, b) for all a, b.
Since L is finite and linearly ordered, we can order all its elements into a sequence

F = a0 < a1 < . . . < an−1 < an = T.

So, each element of L has the form ai, and ai < aj if and only if i < j.
In these terms, it is necessary to prove that f(ai, aj) = amin(i,j).

4.1◦. If i = j, this follows from 2◦.
4.2◦. Let us now consider the case, when i < j, and prove that in this case, f(ai, aj) = ai.

Let us fix j. For every i, the value of f(ai, aj) ∈ L is equal to ak for some k. Let us denote this k by
ϕ(i). So, in these denotations, f(ai, aj) = aϕ(i). The desired equality can be then expressed as ϕ(i) = i for
all i ≤ j.

We already know the value of this function ϕ(i) for i = 0 and i = j: Indeed, since f is an &-operation,
we have f(T, aj) = T , i.e., in our notations, f(a0, aj) = a0, hence ϕ(0) = 0. From 2◦, it follows that
f(aj , aj) = aj , so ϕ(j) = j.

Since f is an &-operation, it is monotonically non-decreasing, hence ϕ is also non-decreasing:

0 = ϕ(0) ≤ ϕ(1) ≤ ϕ(2) ≤ . . . ≤ ϕ(j) = j.

Since ai ≪ ai+1, and f is continuous, there cannot be a gap between F (ai) and F (ai+1). Therefore, for
each i, we must either have ϕ(i+ 1) = ϕ(i), or ϕ(i+ 1) = ϕ(i) + 1. Since

j = j − 0 = ϕ(j)− ϕ(0) =

(ϕ(j)− ϕ(j − 1)) + . . .+ (ϕ(2)− ϕ(1)) + (ϕ(1)− ϕ(0)),

the number j is the sum of j differences, each of which is ≤ 1. If one of these differences was equal to 1, then
the entire sum would be smaller than j. Since this sum is equal to j, none of these differences can be smaller
than 1. Therefore, ϕ(i+ 1)− ϕ(i) = 1 for all i. This equality is equivalent to ϕ(i+ 1) = ϕ(i) + 1.

So, we have ϕ(0) = 0, and ϕ(i+1) = ϕ(i)+1 for all i < j. From this, we can conclude (using mathematical
induction), that ϕ(i) = i for all i < j. By definition of ϕ this means that f(ai, aj) = aϕ(i) = ai, i.e., that
f(a, b) = min(a, b).

If i > j, then the desired equality follows from the fact that f is commutative (f(ai, aj) = f(aj , ai)), and
so this case is reduced to the previous one. Q.E.D.
Comment. The ideas of this proof are similar to the proofs from [1, 12].
Proof of Theorem 2.8 is similar, with the only difference that we must use F instead of T , > instead of
<, and ≪ instead of ≫.
Proof of Theorem 3.2. For every ai ∈ L, f(ai) = ak for some k. Let us denote this k by ψ(i). In
these terms, f(ai) = aψ(i). The definition of a negation operation means that ψ(0) = n, and ψ(n) = 0.
Continuity means that for each i, since ai ≪ ai+1, there cannot be anything in between aψ(i) = f(ai) and
aψ(i+1) = f(ai+1). In other words, there cannot be anything in between ψ(i) and ψ(i + 1). So, ψ(i) and
ψ(i+ 1) must either coincide, or be neighbors: |ψ(i+ 1)− ψ(i)| ≤ 1. In particular, ψ(i+ 1)− ψ(i) ≥ −1.

Now, the difference ψ(n)− ψ(0) = 0− n = −n can be represented as

−n = ψ(n)− ψ(0) = (ψ(n)− ψ(n− 1)) + . . .+ (ψ(2)− ψ(1)) + (ψ(1)− ψ(0)).

So, −n is represented as the sum of n terms each of which is ≥ −1. If one of them was greater than −1, then
the entire sum would have been greater than −n. Since this sum is equal to −n, we can conclude that all the
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terms in this sum are exactly equal to −1: ψ(i+1)−ψ(i) = −1. Therefore, ψ(0) = n, and ψ(i+1) = ψ(i)−1
for all i. From these two conditions, one can easily conclude that ψ(i) = n− i. Hence, f(ai) = aψ(i) = an−i.
Q.E.D.

Proof of Theorem 3.4. For every i and j, the value f(ai, aj) belongs to L and is, therefore, equal to ak
for some k. Let us denote this k by h(i, j), so that f(ai, aj) = ah(i,j).

We will consider two cases: i ≤ j, and i > j.

1◦. Let us first assume that i ≤ j.

According to the definition of an →-operation, f(aj , aj) = T = an, and f(F, aj) = f(a0, aj) = T = an.
In terms of h, it means that h(j, j) = n, and h(0, j) = n. From the fifth property of an →-operation, we can
conclude that

h(0, j) ≥ h(1, j) ≥ . . . ≥ h(j − 1, j) ≥ h(j, j).

Since h(0, j) = h(j, j) = n, we can conclude that all the terms in this inequality are equal to n, i.e., h(i, j) = n
if i ≤ j.

2◦. Let us now consider the case when i > j.

According to the definition of a →-operation, for every j, we have f(T, aj) = aj , and f(aj , aj) = 1.
In terms of h, this turns into h(n, j) = j and h(j, j) = n. Since f is continuous, we can conclude (just
like we did in the proofs of Theorems 1 and 3) that |h(i + 1, j) − h(i, j)| ≤ 1. So, the difference between
h(n, j) and h(j, j) that is equal to j − n = −(n − j), can be represented as the sum of n − j differences
h(i+ 1, j)− h(i, j) (j ≤ i < n), each of which is ≥ −1. If one of these differences was > −1, then the entire
sum would be > −(n − j). Therefore, all these difference are equal to −1. So, h(j, j) = n, and for i ≥ j,
h(i+ 1, j) = h(i, j)− 1. Therefore, for i ≥ j, we have h(i, j) = n− (i− j) = n+ j − i.

3◦. Combining the cases i ≤ j and i > j, we get the desired formula. Q.E.D.

5 Conclusions

Experts use words from natural languages to describe their degree of belief in their statements (e.g., “prob-
ably”, “for sure”, etc). If we want to use these degrees of belief in a computer-based expert system, we must
be able to estimate the degree of belief in A&B based on the known degrees of belief in A and B. The
function that performs this estimate is called an &-operation. The best way to choose an &-operation is to
elicit and analyze the experts’ degrees of belief in statements A&B for different A and B. However, this
ideal procedure is very expensive and time-consuming, and is, therefore, in some cases not affordable. For
such cases, when we cannot make an empirically justified choice of an &-operation, we need a theoretically
justified choice.

In this paper, we formalize the natural demand that gradual changes in t(A) and t(B) must lead to gradual
changes in our estimate for t(A&B) (we call it continuity). We show that the only continuous &-operation
is min(a, b). Likewise, the only continuous ∨-operation is max(a, b), the only continuous “not”-operation
corresponds to f(a) = 1− a, etc.
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