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Abstract. Given a fuzzy subgroup µ of a group G, x▷u y if and only if µ(xy) < µ(yx) defines a directed relation
with an associated digraph (G,▷u). We consider (µ, ν)-homomorphisms φ : (G,µ) → (H, ν) where µ and ν are
fuzzy subgroups of G and H respectively and the preservation of properties of the digraphs (G,▷u) several of which
are also noted here, e.g., (G,▷u) is an anti-chain if and only if µ is a fuzzy normal subgroup of the group G.
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1 Introduction

In this paper, we show that given a fuzzy subgroup µ of a group G, letting x▷u y if and only if µ(xy) < µ(yx)
defines a directed relation with an associated digraph (G,▷u) whose properties are related to both µ and the
underlying group G. The associated digraph has a multitude of natural invariants associated with it, e.g.,
the adjacency matrix and its eigenvalues, the adjacency algebra and its dimension over the field of rationals,
the radius, the diameter, and any other of the “standard” structures derived from such graphs. One can thus
proceed to make a deeper study of the subject than we do here, where we mostly indicate some elementary
properties of (G,▷u) as they relate to µ itself. Included in the fact that (G,▷u) is an anti-chain if and only if
µ is a fuzzy normal subgroup of the group G. Furthermore we explore the consequences of homomorphisms
induced on the digraphs (G,▷u) and (H,▷v) by (µ, ν)-homomorphisms φ : (G,µ) → (H, ν) to some extent
including the effects on the (shortest) distance functions for these graphs, noting that distances shrink in
general. For general references on fuzzy group theory we refer to [3, 5, 6].

2 Preliminaries

Rosenfeld [12] has defined fuzzy subgroupoid and fuzzy subgroups in the following way.

Definition 2.1. ([3]) Let G be a group. A fuzzy set µ of G is said to be a fuzzy subgroup of G, if for all x, y
in G,

(i) µ(xy) ≥ min{µ(x), µ(y)},

(ii) µ(x−1) ≥ µ(x).
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The following properties of fuzzy subgroups of a group G have been noted by many authors [2, 4, 7].

Proposition 2.2. Let µ be any fuzzy subgroup of a group G with identity e. Then the following statements
are true:

(i) µ(x−1) = µ(x) ≤ µ(e) for all x ∈ G,

(ii) µ(xy) = µ(y) for all y ∈ G ⇐⇒ µ(x) = µ(e), where x ∈ G,

(iii) if µ(x) < µ(y) for some x, y ∈ G, then µ(xy) = µ(x) = µ(yx).

Proposition 2.3. ([3]) Let G be a group and A ⊆ G. Then A is a subgroup of G if and only if the
characteristic function χA of A is a fuzzy subgroup of G.

Neggers and Kim in [8, 9, 10, 11] studied some relations between posets and several algebraic structures,
e.g., semigroups, BCK-algebras, and associative algebras.

3 Fuzzy subgroups and digraphs

Given a fuzzy subgroup of a group (G, ·), let

x▷u y ⇐⇒ µ(x · y) < µ(y · x)

denote the µ-product relation associated with fuzzy subgroup µ of G. This relation can be viewed as a digraph
on G induced by the fuzzy subgroup µ.

Proposition 3.1. Let G be a group and H be a subgroup of G. If χH is the characteristic function of H,
then H is a normal subgroup of G if and only if the relation ▷χH is trivial.

Proof. Assume that H is not a normal subgroup of G and let x ∈ G. Then xyx−1 ̸∈ H for some y ∈ H. If
u := yx−1 then ux = (yx−1)x = y ∈ H and xu = x(yx−1) ̸∈ H and hence χH(xu) = 0 < 1 = χH(ux), i.e.,
x ▷χH u. This means that ▷χH is not a trivial relation, a contradiction. Conversely, assume ▷χH is not a
trivial relation. Then x▷χH y for some x, y ∈ G, and hence χH(xy) = 0, χH(yx) = 1. Thus xy ̸∈ H, yx ∈ H.
Since H ▷G, xy = x(yx)x−1 ∈ H, a contradiction. □

Notice that a fuzzy subgroup µ of a group G is said to be fuzzy normal ([4]), if µ(xy) = µ(yx) for all
x, y ∈ G. This means precisely that the fuzzy subgroup µ of G is fuzzy normal provided the relation ▷u is
trivial. Thus we may consider the digraph naturally associated with (G,▷u) as a “measure” of the “amount”
the fuzzy subgroup µ of G strays from being a fuzzy normal subgroup. If x▷u y then µ(xy) < µ(yx), and thus
by Proposition 2.2 (iii) it follows that µ(x) < µ(y) and µ(y) < µ(x) are both impossible, so that µ(x) = µ(y).
We conclude that:

Proposition 3.2. If µ is a fuzzy subgroup of a group G, then µ is constant on each component of the digraph
(G,▷u).

Example 3.3. Let G := {e, a, a2, a3, b, ab, a2b, a3b} be the octic group, where a4 = e = b2 and ba = a−1b. If
we define a fuzzy subset µ : G → [0, 1] by µ(e) > µ(a2) > µ(a) = µ(a3) > µ(b) = µ(ab) = µ(a2b) = µ(a3b),
then µ is a fuzzy subgroup of G ([3]). Since there are no x, y ∈ G such that µ(xy) < µ(yx), the digraph
(G,▷u) is an anti-chain.
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Example 3.4. Consider the alternating group

A4 := {e, (12)(34), (13)(24), (14)(23), (123), (132), (142), (124), (234), (243), (134), (143)}.
Define a fuzzy subset µ on A4 by µ(e) = 1, µ((12)(34)) = 1/2, µ((14)(23)) = µ((13)(24)) = 1/3,

µ((ijk)) = 0, where i, j, k ∈ {1, 2, 3, 4}. Then µ is a fuzzy subgroup of A4 ([1]). It is easy to check that
(234)▷u (123), (123)▷u (143), (142)▷u (234), (143)▷u (142), (132)▷u (243), (134)▷u (132), (243)▷u (124)
and (124)▷u (134). From this relation we get the following diagram:

..
(142)

.

(143)

.
(234)

.

(123)

.
(132)

.

(134)

.
(243)

.

(124)

.
e

.

(13)(24)

.
(12)(34)

.

(14)(23)

(A4,▷u)

If x is an isolated point of the digraph (G,▷u), then d−(x) = d+(x) = 0, i.e., the in-degree and the
out-degree are both equal to 0. Thus, µ(xy) = µ(yx) for all y ∈ G, and although this does not mean that x
is in the center Z(G) of G, it follows that x has properties “somewhat like those in the center”. Thus, let
Zµ(G) denote the collection of all isolated points of the digraph (G,▷u). Then it follows that Zµ(G) contains
Z(G) and also that:

Theorem 3.5. Let G be a group with identity e. If µ is a fuzzy subgroup of G, then Zµ(G) is a subgroup of
G.

Proof. Clearly, e ∈ Zµ(G). Let x, y ∈ Zµ(G). For any z ∈ G, µ(z(xy)) = µ((zx)y) = µ(y(zx)) = µ((yz)x).
Since x ∈ Zµ(G), µ((yz)x) = µ(x(yz)) = µ((xy)z). It follows that xy ∈ Zµ(G).

Let x ∈ Zµ(G). Given y ∈ G, by Proposition 2.2(i), we obtain µ(x−1y) = µ((x−1y)−1) = µ(y−1x) =
µ(xy−1) = µ((xy−1)−1) = µ(yx−1). Hence x−1 ∈ Zµ(G). This proves the theorem. □

Theorem 3.6. A fuzzy subgroup µ of a group G is fuzzy normal if and only if G = Zµ(G).

Proof. If µ is a fuzzy normal subgroup of G, then µ(xy) = µ(yx) for all x, y, whence ▷u is trivial and (G,▷u)
is an anti-chain. Since Zµ(G) is precisely the collection of all isolated points of (G,▷u), we obtain that if
Zµ(G) = G. Assume G = Zµ(G). Then every element x of G is an isolated point of (G,▷u), i.e., x▷u y does
not hold for any y ∈ G. It follows that µ(xy) = µ(yx) for all y ∈ G. Hence µ is fuzzy normal. □

Let G be a group, and let F (G) be the set of all fuzzy subgroups of G. Then we pose the following
conjecture:

Conjecture. Z(G) = ∩µ∈F (G)Zµ(G).

Given a digraph (G,▷µ), let |G| = n < ∞. Define a polynomial P ((G,▷µ); z) =
∑n−1

i=0 |G|izi, where
|G|i = |{x0 ▷ x1 ▷ · · · ▷ xi}| is the number of vertices of length i ≥ 1 and |G|0 = |Zµ(G)|. We call
P ((G,▷u); z) the directed polynomial of the directed graph (G,▷u).

Example 3.7. The directed graph (A4,▷u) of Example 3.4 has the directed polynomial 2z4 + 4.
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4 (µ, ν)-homomorphisms for fuzzy subgroups

We denote (G,µ) the group G and a fuzzy subgroup µ : G→ [0, 1]. Let (G,µ) and (H, ν) be fuzzy subgroups
µ and ν of G and H respectively. A map φ : G→ H is said to be a (µ, ν)-homomorphism if, for all x, y ∈ G,

(i) µ(x) < µ(y) implies ν(φ(x)) < ν(φ(y)),

(ii) µ(x) = µ(y) implies ν(φ(x)) = ν(φ(y)),

(iii) ν(φ(xy)) = ν(φ(x)φ(y)).

Proposition 4.1. Let G,H be groups and let µ := χS be a characteristic function of S(⊆ G) and let ν := χT

be a characteristic function of T (⊆ H). If φ : G → H is a (µ, ν)-homomorphism, then (i) φ(S) ⊆ T ; (ii)
φ(G \ S) ⊆ H \ T .

Proof. If µ(x) < µ(y), then µ(x) = 0 and µ(y) = 1, i.e., x ̸∈ S and y ∈ S. Since φ is a (µ, ν)-homomorphism,
we obtain ν(φ(x)) < ν(φ(y)). It follows that ν(φ(x)) = 0 and ν(φ((y)) = 1, i.e., φ(x) ̸∈ T, φ(y) ∈ T , which
proves the proposition. □

Let µ be a fuzzy subset of a group G and let ▷u be the µ-product relation on G and let x, y ∈ G. We
denote an edge x→ y if x▷u y. Then (G,→) = (G,▷u) is a digraph.

Given a digraph D, we denote the set of all vertices of D by V (D), and denote the set of all edges of D
by A(D). Let D,H be digraphs. A map φ : V (D) → V (H) is called a graph homomorphism if it preserves
edges, i.e., if x→ y ∈ A(D) then φ(x) → φ(y) ∈ A(H).

Proposition 4.2. If φ : G→ H is a (µ, ν)-homomorphism, then x▷u y implies φ(x)▷v φ(y), i.e., φ induces
a graph homomorphism φ̃ : (G,▷u) → (H,▷v).

Proof. If x ▷u y, then µ(xy) < µ(yx). Since φ is a (µ, ν)-homomorphism, we obtain ν(φ(x)φ(y)) =
ν(φ(xy)) < ν(φ(yx)) = ν(φ(y)φ(x)) and therefore φ(x)▷v φ(y). □

Proposition 4.3. If φ : (G,µ) → (H, ν) is both a (µ, ν)-homomorphism and a group homomorphism, and
ψ : (H, ν) → (K, γ) is a (ν, γ)-homomorphism, then ψ ◦ φ : (G,µ) → (K, γ) is a (µ, ψ)-homomorphism.

Proof. Straightforward. □
If d(x, y) represents the shortest distance from vertices x to y in (G,▷u) and if φ : (G,µ) → (H, ν) is an

onto (µ, ν)-homomorphism, then the shortest path in (G,▷u) from x to y maps to a path in (H, ν) from φ(x)
to φ(y) which map or may not be shortest. As a consequence, we find that d(φ(x), φ(y)) ≤ d(x, y). Thus,
various “distance-related parameters”, diameter, radius, etc. are shrunk by this process.

A (µ, ν)-homomorphism φ : (G,µ) → (H, ν) is said to be a d-isometry if for all x, y ∈ G, d(x, y) =
d(φ(x), φ(y)). A (µ, ν)-homomorphism φ : (G,µ) → (H, ν) is said to be an (µ, ν)-isomorphism if φ is a
bijective function.

Theorem 4.4. If φ : (G,µ) → (H, ν) is a (µ, ν)-isomorphism, then φ−1 : (H, ν) → (G,µ) is a (ν, µ)-
isomorphism.

Proof. (i) Let ν(α) < ν(β). Since φ is a bijective function, there are a, b ∈ G such that φ(a) = α, φ(b) = β.
Assume µ(φ−1(α)) ≥ µ(φ−1(β)). If µ(φ−1(α)) = µ(φ−1(β)), then ν(φ(φ−1(α))) = ν(φ(φ−1(β))), i.e., ν(α) =
ν(β), a contradiction. If µ(φ−1(α)) > µ(φ−1(β)), then ν(φ(φ−1(α))) > ν(φ(φ−1(β))), i.e., ν(β) < ν(α), a
contradiction. Hence we obtain µ(φ−1(α)) < µ(φ−1(β)).

(ii) Assume that there are α, β ∈ H such that ν(α) = ν(β), µ(φ−1(α)) ̸= µ(φ−1(β)). If we let α := φ(a), β :=
φ(b), then µ(a) ̸= µ(b). If µ(a) < µ(b), then ν(φ(a)) < ν(φ(b)), since φ is a (µ, ν)-homomorphism. It follows
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that ν(φ(a)) < ν(φ(b)), i.e., ν(α) < ν(β), a contradiction. If µ(b) < µ(a), then it leads to a contraction that
ν(β) < ν(α), a contradiction.
(iii) Assume that there are p, q ∈ H such that µ(φ−1(pq)) ̸= µ(φ−1(p)φ−1(q)). If we let φ(a) = p, φ(b) = q,
then µ(φ−1(pq)) ̸= µ(ab). If µ(φ−1(pq)) ̸< µ(ab), then ν(φ(φ−1(pq)) < ν(φ(ab)) = ν(φ(a)φ(b)), since
φ is a (µ, ν)-homomorphism. It follows that ν(pq) < ν(φ(a)φ(b)) = ν(pq), a contradiction. The case
ν(φ(φ−1(pq)) > ν(φ(ab)) also leads to a contradiction. This proves that φ−1 : (H, ν) → (G,µ) is a (ν, µ)-
homomorphism. □

Corollary 4.5. If φ : (G,µ) → (H, ν) is a (µ, ν)-isomorphism, then φ is a d-isometry.

Proof. It follows from Theorem 4.4 that

d(x, y) ≥ d(φ(x), φ(y)) ≥ d(φ−1(φ(x)), φ−1(φ(y)) = d(x, y),

for all x, y ∈ G. □

5 Conclusions

In this paper we defined a directed relation with an associated digraph (G,▷u) for any fuzzy subgroup µ of
a group G, and obtained that if µ is a fuzzy subgroup of G, then the collection of all isolated points of the
digraph (G,▷u) forms a subgroup of G. By introducing the notion of (µ, ν)-homomorphism, we discussed
graph homomorphisms of digraphs. In the consequence of research, intuitionistic fuzzy theory, hesitant fuzzy
theory and soft set theory can be applied to the fuzzy subgroups and digraphs also.
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