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Abstract. Orthomodular lattices generalize the Boolean algebras; they have arisen in the study of quantum
logic. Quantum-MV algebras were introduced as non-lattice theoretic generalizations of MV algebras and as non-
idempotent generalizations of orthomodular lattices.

In this paper, we continue the research in the “world” of involutive algebras of the form (A,⊙,−, 1), with
1− = 0, 1 being the last element. We clarify now some aspects concerning the quantum-MV (QMV) algebras as
non-idempotent generalizations of orthomodular lattices. We study in some detail the orthomodular lattices (OMLs)
and we introduce and study two generalizations of them, the orthomodular softlattices (OMSLs) and the ortho-
modular widelattices (OMWLs). We establish systematically connections between OMLs and OMSLs/OMWLs
and QMV, pre-MV, metha-MV, orthomodular algebras and ortholattices, orthosoftlattices/orthowidelattices - con-
nections illustrated in 22 Figures. We prove, among others, that the transitive OMLs coincide with the Boolean
algebras, that the OMSLs coincide with the OMLs, that the OMLs are included in OMWLs and that the OMWLs
are a proper subclass of QMV algebras. The transitive and/or the antisymmetric case is also studied.
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1 Introduction

The algebraists work usually with the commutative additive groups and with the positive (right) cone of
a partially-ordered commutative group (G,≤,+,−, 0), where there are essentially a sum ⊕ = + and an
element 0. Sometimes, the negative (left) cone is needed also, where there are essentially a product ⊙ = +
and an element 1 = 0. They work with algebras that have associated an (pre-order) order relation, which
usually does not appear explicitly in the definitions. The presence of the (pre-order) order relation implies
the presence of the (generalized) duality principle. Thus, each algebra has a dual one, the (pre-order) order
relation has a dual one. We have given names to the dual algebras [14], [16], [15]: “left” algebra and “right”
algebra, names connected with the left-continuity of a t-norm and with the right-continuity of a t-conorm,
respectively. Hence, the algebraists usually work with the commutative right-unital magmas.

By the contrary, the logicians work with the logic of truth, where the truth is represented by 1, and there
is essentially one implication; we could name this logic “left-logic”. One can imagine also a “right-logic”, as
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a logic of false, where the false is represented by 0 and there is a “right-implication”. Hence, the logicians
usually work with the commutative left-algebras of logic.

In this paper, regarding from (algebras of) logic side, we shall work with left-algebras (left-unital magmas)
as principal algebras, therefore, the unital magmas will be defined multiplicatively.

Thus, the commutative algebraic structures connected directly or indirectly with classical/ nonclassical
logics belong to two parallel “worlds”:

1. the “world” of (left) algebras of logic, where there are essentially one implication, → (two, in the
non-commutative case), and an element 1 (that can be the last element); the algebras (A,→, 1), verifying the
basic property (M): 1 → x = x, are called M algebras [16], [15]; an internal binary relation can be defined

by: x ≤ y
def.⇐⇒ x → y = 1 (≤ can be a pre-order, an order, or even a lattice order); algebras belonging to

this “world” are [17], [16], [15]: the bounded MEL, BE and aBE, pre-BCK algebras, BCK algebras, bounded
BCK algebras, BCK(P) algebras, Hilbert algebras, Wajsberg algebras, implicative-Boolean algebras, etc. A
“Big map” (hierarchy of algebras of logic) is presented in ([15], Figure 1).

2. the “world” of (left) algebras, where there are essentially a product, ⊙, and an element 1 (that can be
the last element); the algebras (A,⊙, 1), verifying the corresponding basic properties (PU): 1 ⊙ x = x and
(Pcomm): x ⊙ y = y ⊙ x, are called commutative unital magmas; in algebras with an additional operation,
(A,⊙,−, 1), an internal binary relation can be defined by: x ≤m y ⇐⇒ x ⊙ y− = 0 (≤m can be a pre-
order, an order, or even a lattice order), where ‘m’ comes from ‘magma’; algebras belonging to this “world”
are [16], [15]: the m-MEL, m-BE and m-aBE, m-pre-BCK algebras, m-BCK algebras, pocrims, (bounded)
lattices, residuated lattices, BL algebras, MTL algebras, NM algebras, MV algebras, Boolean algebras, etc.
A corresponding “Big map” (hierarchy of algebras) is presented in ([15], Figure 10).

Between the two parallel “worlds” there are some connections, as for example: the equivalence between
BCK(P) algebras and pocrims, in the non-involutive case, and the definitional equivalence between Wajsberg
algebras and MV algebras, in the involutive case ((x−)− = x). In [15], Theorems 9.1 and 9.3 connect the two
“worlds” in the involutive case.

Beside the classical and non-classical logics, there exist the quantum logics. Examples of algebraic struc-
tures connected with quantum logics (= quantum structures/ algebras) are the bounded implicative (im-
plication) lattices, the De Morgan algebras, the ortholattices, the orthomodular lattices, the quantum-MV
algebras, etc.

The ortholattice is an important example of sharp structure (which satisfies the noncontradiction principle)
from sharp quantum theory [4] (Birkhoff, 1967; Kalmbach, 1983).

Orthomodular lattices (particular ortholattices) generalize the Boolean algebras. They have arisen, cf.
[25], “in the study of quantum logic, that is, the logic which supports quantum mechanics and which does not
conform to classical logic. As noted by Birkhoff and von Neumann in 1936 [2], the calculus of propositions
in quantum logic “is formally indistinguishable from the calculus of linear subspaces [of a Hilbert space] with
respect to set products, linear sums and orthogonal complements” in the role of and, or and not, respectively.
This has led to the study of the closed subspaces of a Hilbert space, which form an orthomodular lattice
in contemporary terminology. As often happens in algebraic logic, the study of orthomodular lattices has
tremendously developed, both for their interest in logic and for their own sake, see Kalmbach [23]”.

Quantum-MV algebras (or QMV algebras) were introduced by Roberto Giuntini in [11] (see also [9],
[8], [12], [10], [13], [7], [6]), as non-lattice theoretic generalizations of MV algebras and as non-idempotent
generalizations of orthomodular lattices.

The connections between algebras of logic/ algebras and quantum algebras were not very clear. But, in
papers [15], [20], [21], we established important connections, by redefining equivalently the bounded involutive
lattices and De Morgan algebras as involutive m-MEL algebras, the ortholattices, the MV, the Boolean
algebras and the quantum-MV algebras as involutive m-BE algebras, verifying some properties, and then
putting all of them on the involutive “Big map”; thus, we have proved that the quantum algebras belong, in
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fact, to the “world” of algebras (involutive commutative unital magmas).

In this paper, we continue the research from [21], [18], based on [22], [20], [15], in the “world” of involutive
algebras of the form (A,⊙,−, 1), with 1− = 0, 1 being the last element. We clarify now some aspects con-
cerning the quantum-MV algebras as non-idempotent generalizations of orthomodular lattices. We study the
orthomodular lattices and we introduce and study two generalizations of them, the orthomodular softlattices
and the orthomodular widelattices - in connection with the lattices/ ortholattices and their two generaliza-
tions, the softlattices/ orthosoftlattices and the widelattices/ orthowidelattices, generalizations introduced in
[22]. Many results were obtained by the powerful computer program Prover9/Mace4 (version DEC. 2007)
created by William W. McCune (1953− 2011) [24]. By lack of space, we shall not present here the examples
we have. This paper, like [15], [20], [22], [21], [18], presents the facts in the same unifying way, which consists
in fixing unique names for the defining properties, making lists of these properties and then using them for
defining the different algebras and for obtaining results.

The paper is organized as follows.

In Section 2 (Preliminaries), we recall the notions and the results necessary for making the paper
self-contained as much as possible.

In Section 3 (Orthomodular lattices), we study in some detail the orthomodular lattices (OMLs), that
are QMV algebras. We establish connections between OMLs and QMV, pre-MV, metha-MV, orthomodular
(OM) algebras and ortholattices (OLs), connections illustrated in Figures 3 − 8. We prove that the anti-
symmetric OMLs and the transitive OMLs coincide with the Boolean algebras and that transitive OLs are
included in transitive metha-MV algebras. We introduce the new notion of modular algebra and we prove
that the modular algebras coincide with the modular ortholattices.

In Section 4 (Orthomodular softlattices, widelattices), based on the two generalizations of OLs: the
orthosoftlattices (OSLs) and the orthowidelattices (OWLs), introduced in [22], we introduce and study, in
separate subsections, two corresponding generalizations of OMLs: the orthomodular softlattices (OMSLs) and
the orthomodular widelattices (OMWLs). We establish connections between OMSLs/OMWLs and QMV,
pre-MV, metha-MV, OM algebras and OLs, OSLs/OWLs, connections illustrated in Figures 9− 15/16− 22,
respectively. We prove that the OMLs coincide with the OMSLs and that transitive OSLs are included in
transitive metha-MV algebras. We also prove that the OMLs are included in OMWLs, which in turn are
included in QMV algebras too, and that transitive OWLs are included in transitive metha-MV algebras,
hence that transitive OMWLs are included in transitive QMV algebras.

2 Preliminaries

2.1 The “Big map” of algebras

Recall from [15] the following:

Let AL = (AL,⊙,− = −L
, 1) be an algebra of type (2, 1, 0) and define 0

def.
= 1−. Define an internal binary

relation ≤m on AL by: for all x, y ∈ AL,

(m-dfrelP) x ≤m y
def.⇐⇒ x⊙ y− = 0.

Consider the following list m-A of basic properties that can be satisfied by AL [15]:

(PU) 1⊙ x = x = x⊙ 1 (unit element of product, the identity),
(Pcomm) x⊙ y = y ⊙ x (commutativity of product),
(Pass) x⊙ (y ⊙ z) = (x⊙ y)⊙ z (associativity of product);

(Neg1-0) 1− = 0,
(Neg0-1) 0− = 1;
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(m-An) (x⊙ y− = 0 and y ⊙ x− = 0) =⇒ x = y (antisymmetry),
(m-B) [(x⊙ y−)− ⊙ (x⊙ z)]⊙ (y ⊙ z)− = 0,
(m-BB) [(z ⊙ x)− ⊙ (y ⊙ x)]⊙ (y ⊙ z−)− = 0,
(m-*) x⊙ y− = 0 =⇒ (z ⊙ y−)⊙ (z ⊙ x−)− = 0,
(m-**) x⊙ y− = 0 =⇒ (x⊙ z)⊙ (y ⊙ z)− = 0,

(m-L) x⊙ 0 = 0 (last element),
(m-Re) x⊙ x− = 0 (reflexivity),
(m-Tr) (x⊙ y− = 0 and y ⊙ z− = 0) =⇒ x⊙ z− = 0 (transitivity),

etc.

Dually, let AR = (AR,⊕,− = −R
, 0) be an algebra of type (2, 1, 0) and define 1

def.
= 0−. Define an internal

binary relation ≥m on AR by: for all x, y ∈ AR,

(m-dfrelS) x ≥m y
def.⇐⇒ x⊕ y− = 1.

The list of dual properties is omitted.

Recall from [15] the definitions of the following algebras needed in this paper (the dual ones are omitted):

Let AL = (AL,⊙,−, 1) be an algebra of type (2, 1, 0) through this paper. Define 0
def.
= 1− (hence (Neg1-0)

holds) and suppose that 0− = 1 (hence (Neg0-1) holds too). We say that AL is a [15]:

- left-m-MEL algebra, if (PU), (Pcomm), (Pass), (m-L) hold;

- left-m-BE algebra, if (PU), (Pcomm), (Pass), (m-L), (m-Re) hold;

- left-m-pre-BCK algebra, if (PU), (Pcomm), (Pass), (m-L), (m-Re) and (m-BB) hold;

- left-m-BCK algebra, if (PU), (Pcomm), (Pass), (m-L), (m-Re), (m-An) and (m-BB) hold.

Denote by m-MEL, m-BE, m-pre-BCK, m-BCK these classes of left-algebras, respectively.

In ([15], Figure 10), the “Big map”, connecting the commutative unital magmas, including these algebras,
was drawn.

We say that AL is [15] reflexive, if ≤m is reflexive (i.e. (m-Re) holds); transitive, if ≤m is transitive (i.e.
(m-Tr) holds); antisymmetric, if ≤m is antisymmetric (i.e. (m-An) holds). If X is a class of algebras, we shall
denote by tX (aX, atX=taX) the subclass of all transitive (antisymmetric, transitive and antisymmetric,
respectively) algebras of X.

We say that an algebra is involutive, if it verifies (DN) ((x−)− = x or x= = x). If X is a class of
algebras, we shall denote by X(DN) the subclass of all involutive algebras of X. By ([15], Theorem 6.12), in
any involutive m-BE algebra we have the equivalences: (m-BB) ⇔ (m-B) ⇔ (m-**) ⇔ (m-*) ⇔ (m-Tr).

Note that: m-pre-BCK(DN) = pre-m-BCK(DN) (= m-tBE(DN)).

Any left-m-BCK algebra is involutive, by ([15], Theorem 6.13). We write: m-BCK= m-BCK(DN)

(= m-taBE(DN)). Note that a (involutive) m-BCK algebra satisfies all the properties in the list m-A of
properties and, additionally, (DN) and other properties.

Note that the binary relation ≤m is only reflexive in m-BE(DN), it is a pre-order in m-pre-BCK(DN)

and it is an order in m-BCK.

2.1.1 Involutive m-MEL algebras

Let AL = (AL,⊙,−, 1) be an involutive left-m-MEL algebra. Because of the axiom (DN), we have introduced
in [20] the new operation sum, ⊕, the dual of product, ⊙, by: for all x, y ∈ AL,

x⊕ y
def.
= (x− ⊙ y−)−. (1)

Then, (AL,⊕,−, 0) is an involutive right-m-MEL algebra.

Proposition 2.1. (See ([6], Proposition 2.1.2), in dual case, [9])
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Let AL = (AL,⊙,−, 1) be an involutive left-m-MEL algebra. We have:

0⊕ x = x = x⊕ 0, i.e. (SU) holds, (2)

x⊕ y = y ⊕ x, i.e. (Scomm) holds, (3)

x⊕ (y ⊕ z) = (x⊕ y)⊕ z, i.e. (Sass) holds, (4)

x⊕ 1 = 1, i.e. (m− LR) holds; (5)

(x⊕ y)− = x− ⊙ y− (De Morgan law 1), (6)

(x⊙ y)− = x− ⊕ y− (De Morgan law 2), and hence (7)

x⊙ y = (x− ⊕ y−)−. (8)

Beside the old, natural binary relation ≤m and its dual ≥m, we have introduced in [20] a new binary
relation:
(m-dfP) x ≤P

m y
def.⇐⇒ x⊙ y = x and, dually,

(m-dfS) x ≥S
m y

def.⇐⇒ x⊕ y = x.
By ([20], Proposition 3.11), ≤P

m is antisymmetric and transitive and 0 ≤P
m x ≤P

m 1, for any x.

Proposition 2.2. ([20], Proposition 3.14)

Let AL = (AL,⊙,−, 1) be an involutive left-m-MEL algebra. If (m-Pimpl) holds, then:
(1) the order relation ≤P

m is a lattice order (denoted by ≤O
m),

(2) x ≤P
m y ⇐⇒ y ≥S

m x,
(3) x ≤P

m y =⇒ y− ≤P
m x−.

With the notations from this subsection, the definition of MV algebras [3], [5] becomes [15]:

Definition 2.3. (The dual one is omitted)

A left-MV algebra is an algebra AL = (AL,⊙,− = −L
, 1) of type (2, 1, 0) verifying (PU), (Pcomm), (Pass),

(m-L), (DN) and:
(∧m-comm) (x− ⊙ y)− ⊙ y = (y− ⊙ x)− ⊙ x.

We recall the following important remark, which was the motivation of paper [15]:
The left-MV algebra is just the involutive left-m-MEL algebra verifying (∧m-comm).

We have denoted by MV the class of all left-MV algebras.

2.1.2 Involutive m-BE algebras

Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then, (AL,⊕,−, 0) is an involutive right-m-BE
algebra.

Remark 2.4. (See ([15], Theorem 6.21 ) (The dual one is omitted)

Since (∧m-comm) implies (m-Re), by ([15], (mB1)), it follows that any left-MV algebra is in fact an
involutive left-m-BE algebra verifying (∧m-comm). And since (∧m-comm) implies also (m-An) and
(m-BB) (⇐⇒ . . . (m-Tr)), by ([15], (mB2), (mCBN1)), respectively, it follows that any left-MV algebra
is in fact a left-m-BCK algebra, i.e. we have:

MV ⊂ m−BCK = m−BCK(DN) (= m− taBE(DN)).
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We have introduced in [21], in an involutive left-m-MEL algebra AL = (AL,⊙,−, 1), the following new
operations:

x ∧M
m y

def.
= (x− ⊙ y)− ⊙ y

(Pcomm)
= y ⊙ (y ⊙ x−)− and, dually, (9)

x ∨M
m y

def.
= (x− ∧M

m y−)− = [(x⊙ y−)− ⊙ y−]− = y ⊕ (y ⊕ x−)− (10)

and

x ∧B
m y

def.
= (y− ⊙ x)− ⊙ x

(Pcomm)
= x⊙ (x⊙ y−)− = y ∧M

m x and, dually, (11)

x ∨B
m y

def.
= (x− ∧B

m y−)− = ((y ⊙ x−)− ⊙ x−)− = x⊕ (x⊕ y−)− = y ∨M
m x. (12)

Proposition 2.5. (See [6], Proposition 2.1.2, in dual case) ([21], Proposition 3.2)
Let AL = (AL,⊙,−, 1) be an involutive left-m-MEL algebra. We have:

x ∧M
m 1 = x = 1 ∧M

m x, x ∧M
m 0 = 0, (13)

x ∨M
m 0 = x = 0 ∨M

m x, x ∨M
m 1 = 1, (14)

(x ∨M
m y)− = x− ∧M

m y− (De Morgan law 1), (15)

(x ∧M
m y)− = x− ∨M

m y− (De Morgan law 2), and hence (16)

x ∧M
m y = (x− ∨M

m y−)−. (17)

Proposition 2.6. (See ([6], Proposition 2.1.2), in dual case) ([21], Proposition 3.3)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. We have:

if x⊙ y = 1, then x = y = 1; (18)

if x ∧M
m y = 1, then x = y = 1, (19)

0 ∧M
m x = 0, (20)

1 ∨M
m x = 1, (21)

x ∧M
m x = x, x ∨M

m x = x. (22)

Beside the old, natural binary relation ≤m and its dual ≥m, we have introduced in [21] two new binary
relations: for all x, y ∈ AL,

(m-dfWM) x ≤M
m y

def.⇐⇒ x ∧M
m y = x and, dually,

(m-dfVM) x ≥M
m y

def.⇐⇒ x ∨M
m y = x,

and
(m-dfWB) x ≤B

m y
def.⇐⇒ x ∧B

m y = x (⇐⇒ y ∧M
m x = x) and, dually,

(m-dfVB) x ≥B
m y

def.⇐⇒ x ∨B
m y = x (⇐⇒ y ∨M

m x = x).

Proposition 2.7. ([21], Proposition 3.6)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. We have:

(1) x ≤m y ⇐⇒ x ≤B
m y and, dually

(1’) x ≥m y ⇐⇒ x ≥B
m y.

(2) If (∧m-comm) holds (i.e. x ∧M
m y = y ∧M

m x), then
x ≤m y (⇐⇒ x ≤B

m y) ⇐⇒ x ≤M
m y.

(2’) If (∧m-comm) holds, then (∨m-comm) holds (i.e. x ∨M
m y = y ∨M

m x) and
x ≥m y (⇐⇒ x ≥B

m y) ⇐⇒ x ≥M
m y.
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Remark 2.8. ([21], Remark 3.7)
The equivalence ≤m ⇐⇒ ≤B

m implies that ≤m is an order relation if and only if ≤B
m is an order relation.

But, it does not imply that if ≤m is a lattice order, then ≤B
m is a lattice order too with respect to ∧B

m,∨B
m -

see the examples in the last section.

Corollary 2.9. (See [6], Corollary 2.1.3 and [21], Corollary 3.9)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then, the binary relation ≤M

m is reflexive

and antisymmetric and 0 ≤M
m x ≤M

m 1, for all x ∈ AL, where 0
def.
= 1−.

2.2 Ortholattices, orthosoftlattices and orthowidelattices

Definition 2.10. An algebra A = (A,∧,∨) or, dually, A = (A,∨,∧), of type (2, 2), will be said to be a
(Dedekind) lattice, if the following properties hold [1]: for all x, y, z ∈ A,
(m-Wid) (idempotency of ∧) x ∧ x = x,
(m-Wcomm) (commutativity of ∧) x ∧ y = y ∧ x,
(m-Wass) (associativity of ∧) x ∧ (y ∧ z) = (x ∧ y) ∧ z,
(m-Wabs) (absorption of wedge over vee) x ∧ (x ∨ y) = x, and also
(m-Vid) (idempotency of ∨) x ∨ x = x,
(m-Vcomm) (commutativity of ∨) x ∨ y = y ∨ x,
(m-Vass) (associativity of ∨) (x ∨ y) ∨ z = x ∨ (y ∨ z),
(m-Vabs) (absorption of vee over wedge) x ∨ (x ∧ y) = x,

where “W” comes from “wedge” (the LATEX command for the meet symbol) and “V” comes from “vee” (the
LATEX command for the join symbol).

Moreover, if there exist 0, 1 ∈ A such that: for all x ∈ A,
(m-WU) 1 ∧ x = x and, dually,
(m-VU) 0 ∨ x = x,
then A is said to be a bounded (Dedekind) lattice (with last element 1 and first element 0) and is denoted
by A = (A,∧,∨, 0, 1) or, dually, by A = (A,∨,∧, 0, 1).

Naming convention for the dual lattices: (A,∧,∨) is the left-lattice and (A,∨,∧) is the right-lattice
(names coming from the left-continuity of a t-norm and the right-continuity of a t-conorm; see more on left-
and right- algebras in [14]).

We have analysed the ortholattices in [15], [20]. Recall the following definition:

Definition 2.11. (See [25], [4]) (Definition 1) (The dual one is omitted)

A left-ortholattice, or a left-OL for short, is an algebra AL = (AL,∧,∨,− = −L
, 0, 1) such that the

reduct (AL,∧,∨, 0, 1) is a bounded (Dedekind) left-lattice and the unary operation − satisfies (DN), (DeM1)
((x ∨ y)− = x− ∧ y−), (DeM2) ((x ∧ y)− = x− ∨ y−) and the complementation laws:
(m-WRe) x ∧ x− = 0 (noncontradiction principle) and, dually,
(m-VRe) x ∨ x− = 1 (excluded middle principle).

We have denoted by OL the class of all left-ortholattices.
Since, in a lattice, the absorption laws (m-Wabs) and (m-Vabs) are not independent (they imply the

idempotency laws (m-Wid) and (m-Vid)), we have introduced in [22] the following two dual independent
absorption laws:
(m-Wabs-i) x ∧ (x ∨ x ∨ y) = x and, dually,
(m-Vabs-i) x ∨ (x ∧ x ∧ y) = x (dual laws of independent absorption).

We have proved that the system of eight axioms: L8-i = {(m-Wid), (m-Vid), (m-Wcomm), (m-Vcomm),
(m-Wass), (M-Vass), (m-Wabs-i), (m-Vabs-i)} is equivalent with the “standard” system L8 of axioms for
lattices from Definition 2.10 ([22], Theorem 3.2).
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We have then introduced in [22] the following two generalizations of lattices/ bounded lattices.

Definition 2.12. (The dual ones are omitted) ([22], Definition 3.3)
(1) A left-softlattice is an algebra AL = (AL,∧,∨) of type (2, 2) such that the axioms (m-Wid), (m-Vid),
(m-Wcomm), (m-Vcomm), (m-Wass), (m-Vass) are satisfied.
(2) A bounded left-softlattice is an algebra AL = (AL,∧,∨, 0, 1) of type (2, 2, 0, 0) such that the reduct
(AL,∧,∨) is a left-softlattice and the elements 0 and 1 verify the axioms: for all x ∈ AL,
(m-WU) 1 ∧ x = x, (m-VU) 0 ∨ x = x,
(m-WL) 0 ∧ x = 0, (m-VL) 1 ∨ x = 1.

Definition 2.13. (The dual ones are omitted) ([22], Definition 3.9)
(1’) A left-widelattice is an algebra AL = (AL,∧,∨) of type (2, 2) such that the axioms (m-Wcomm), (m-
Vcomm), (m-Wass), (m-Vass), (m-Wabs-i), (m-Vabs-i) are satisfied.
(2’) A bounded left-widelattice is an algebra AL = (AL,∧,∨, 0, 1) of type (2, 2, 0, 0) such that the reduct
(AL,∧,∨) is a left-widelattice and the elements 0 and 1 verify the axioms: for all x ∈ AL,
(m-WU) 1 ∧ x = x, (m-VU) 0 ∨ x = x.

We have introduced in [22] the following two generalizations of OLs.

Definition 2.14. (Definition 1) (The dual one is omitted) ([22], Definition 5.1)

A left-orthosoftlattice, or a left-OSL for short, is an algebra AL = (AL,∧,∨,− = −L
, 0, 1) such that the

reduct (AL,∧,∨, 0, 1) is a bounded left-softlattice (Definition 2.12) and the unary operation − satisfies (DN),
(DeM1), (DeM2) and (m-WRe), (m-VRe).

Definition 2.15. (Definition 1) (The dual one is omitted) ([22], Definition 5.6)

A left-orthowidelattice, or a left-OWL for short, is an algebra AL = (AL,∧,∨,− = −L
, 0, 1) such that the

reduct (AL,∧,∨, 0, 1) is a bounded left-widelattice (Definition 2.13) and the unary operation − satisfies (DN),
(DeM1), (DeM2) and (m-WRe), (m-VRe).

We have denoted by OSL the class of all left-OSLs and by OWL the class of all left-OWLs.
Consider the following properties (the dual ones are omitted):

(m-Pimpl) [(x⊙ y−)− ⊙ x−]− = x,
(G) x⊙ x = x,
(m-Pabs-i) x⊙ (x⊕ x⊕ y) = x.

Proposition 2.16. ([22], Proposition 3.15)
Let AL = (AL,⊙,−, 1) be an involutive left-m-MEL algebra. Then,

(m− Pimpl) ⇐⇒ (G) + (m− Pabs− i).

We have obtained the following equivalent definitions.

Definition 2.17. (Definition 2) (The dual ones are omitted)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. AL is a:

- left-ortholattice (left-OL), if (m-Pimpl) holds ([20], Definition 4.15),
- left-orthosoftlattice (left-OSL), if (G) holds ([22], Definition 5.3),
- left-orthowidelattice (left-OWL), if (m-Pabs-i) holds ([22], Definition 5.8),

i.e. OL = m-BE(DN) + (m-Pimpl), OSL = m-BE(DN) + (G), OWL = m-BE(DN) + (m-Pabs-i).

Hence, we have:
OL = OSL ∩ OWL, (23)

i.e. we have the representation from Figure 1, useful in the sequel.
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m-BE(DN)

(m-Pimpl)

OL

(m-Pabs-i)

OWL (G)

OSL

Figure 1: Resuming connection between OSL, OWL and OL

Theorem 2.18. ([20], Theorem 4.16) We have: aOL = OL + (m-An) = Boole.

Finally, recall that [22]: taOSL = Boole.

2.3 Boolean algebras

Definition 2.19. (Definition 1) (The dual one is omitted)
A left-Boolean algebra is a bounded (Dedekind) left-lattice that is distributive and complemented, i.e. is

an algebra AL = (AL,∧,∨,− = −L
, 0, 1) verifying: (m-Wid), (m-Wcomm), (m-Wass), (m-Wabs), (m-WU),

(m-Wdis), (m-WRe) and, dually, (m-Vid), (m-Vcomm), (m-Vass), (m-Vabs), (m-VU), (m-Vdis), (m-VRe),
where:
(m-Wdis) z ∧ (x ∨ y) = (z ∧ x) ∨ (z ∧ y),
(m-Vdis) z ∨ (x ∧ y) = (z ∨ x) ∧ (z ∨ y).

We have denoted by Boole the class of all left-Boolean algebras.
Consider the following properties (the dual ones are omitted):

(m-Pdiv) x⊙ (x⊙ y−)− = x⊙ y,
(m-Pdis) z ⊙ (x⊕ y) = (z ⊙ x)⊕ (z ⊙ y).

We have obtained the following equivalent definitions.

Definition 2.20. (Definitions 2 and 3) (The dual ones are omitted)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. AL is a:

- left-Boolean algebra, if (m-Pdiv) holds ([20], Definition 4.19) or, equivalently,
- left-Boolean algebra, if (m-Pdis) holds ([20], Definition 4.21),
i.e. Boole = m-BE(DN) + (m-Pdiv) = m-BE(DN) + (m-Pdis).

2.4 QMV algebras. OM, PreMV, MMV algebras. MV algebras

Consider the following properties (the dual ones are omitted):
(Pqmv) x⊙ [(x− ∨M

m y) ∨M
m (z ∨M

m x−)] = (x⊙ y) ∨M
m (x⊙ z),

(Pom) (x⊙ y)⊕ ((x⊙ y)− ⊙ x) = x or, equivalently, x ∨M
m (x⊙ y) = x,

(Pmv) x⊙ ((x− ⊙ y−)− ⊙ y−)− = x⊙ y or, equivalently, x⊙ (x− ∨M
m y) = x⊙ y,

(∆m) (x ∧M
m y)⊙ (y ∧M

m x)− = 0.
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Definition 2.21. (The dual ones are omitted)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. AL is a:

- left-quantum-MV algebra (left-QMV algebra), if (Pqmv) holds ([21], Definition 3.10),
- left-orthomodular algebra (left-OM algebra), if (Pom) holds ([21], Definition 4.1),
- left-pre-MV algebra (left-PreMV algebra), if (Pmv) holds ([21], Definition 4.1),
- left-metha-MV algebra (left-MMV algebra), if (∆m) holds ([21], Definition 4.1).

We have denoted by QMV, OM, PreMV, MMV the corresponding classes of left-algebras. Hence, we
have:
QMV = m-BE(DN) + (Pqmv), OM = m-BE(DN) + (Pom),
PreMV = m-BE(DN) + (Pmv), MMV = m-BE(DN) + (∆m).

Theorem 2.22. [21] Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,
(1) (Pqmv) ⇐⇒ (Pmv) + (Pom), i.e. QMV = PreMV ∩ OM,
(2) (Pmv) =⇒ (∆m), i.e. PreMV ⊂ MMV,
(3) (Pqmv) ⇐⇒ (∆m) + (Pom), i.e. QMV = MMV ∩ OM.

The connections between these algebras, and the transitive ones, were established in [21] (see Figure 2).

m-BE(DN)

m-pre-BCK(DN)

QMV

(Pqmv)

(∆m)

MMV

(Pmv)

PreMV

(Pom)

OM

(m-Tr) ⇐⇒ . . . ⇐⇒ (m-BB)

tQMVtMMV tPreMV tOM

Figure 2: Resuming connections between OM, PreMV, MMV, QMV and (m-Tr)

Proposition 2.23. ([21], Proposition 3.22)
Let AL = (AL,⊙,−, 1) be a left-QMV algebra verifying (G). Then:

(1) ≤P
m is reflexive also, hence it is an order relation.

(2) We have the equivalence:
(x⊙ y = x ⇐⇒) x ≤P

m y ⇐⇒ x ≤M
m y (⇐⇒ x ∧M

m y = x).

Theorem 2.24. [21] We have:
aPreMV = aMMV = aQMV = atQMV = taQMV = MV and MV ⊂ taOM.

Recall, finally, some properties of OM algebras.

Proposition 2.25. ([18], Proposition 3.1)
Let AL = (AL,⊙,−, 1) be a left-OM algebra. We have:

x⊙ (y ∨M
m x−) = x⊙ y, (24)
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x ≤M
m y =⇒ y− ≤M

m x− (order − reversibility of −), (25)

x ≤M
m y =⇒ x⊕ z ≤M

m y ⊕ z (monotonicity of ⊕), (26)

x ≤M
m y =⇒ x⊙ z ≤M

m y ⊙ z (monotonicity of ⊙). (27)

Corollary 2.26. ([18], Corollary 3.7)

Let AL = (AL,⊙,−, 1) be a left-OM algebra. The binary relation ≤M
m is an order relation.

3 Orthomodular lattices

Recall the following definition [25].

Definition 3.1. (Definition 1) (The dual one is omitted)

A left-orthomodular lattice or an orthomodular left-lattice, or a left-OML for short, is a left-OL AL =
(AL,∧,∨,−, 0, 1) verifying: for all x, y ∈ AL,
(Wom) (x ∧ y) ∨ ((x ∧ y)− ∧ x) = x.

Denote by OML the class of all left-OMLs .

Following the equivalent Definition 2 of a left-OL (see Definition 2.17), we obtain immediately the equiv-
alent definition:

Definition 3.2. (Definition 2) (The dual one is omitted)

A left-orthomodular lattice (left-OML) is an involutive left-m-BE algebra AL = (AL,⊙,−, 1) verifying
(m-Pimpl) and (Pom), i.e.

OML = m−BE(DN) + (m− Pimpl) + (Pom) = OL ∩ OM. (28)

Further, we shall work with Definition 2 of left-OMLs. Hence, we have the connections from Figure 3.

m-BE(DN)

(Pom)

(m-Pimpl)
OL

OML
OM

Figure 3: Resuming connections between OL, OML and OM

Recall ([6], Corollary 2.3.13) that:

OML ⊂ QMV, (29)

the inclusion being strict, since there are examples of QMV algebras not verifying (m-Pimpl).

Proposition 3.3. Let AL = (AL,⊙,−, 1) be a left-OML. We have the equivalence:

(x⊙ y = x
def.⇐⇒) x ≤P

m y ⇐⇒ x ≤M
m y (

def.⇐⇒ x ∧M
m y = x).
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Proof. Suppose x ≤P
m y, i.e. x⊙ y = x. Then,

x ∧M
m y

(9)
= (x− ⊙ y)− ⊙ y = ((x⊙ y)− ⊙ y)− ⊙ y

(DN)
= (((x−)− ⊙ y)− ⊙ y)− ⊙ y

(9)
= (x− ∧M

m y)− ⊙ y
(16)
= ((x−)− ∨M

m y−)− ⊙ y
(m−Wcomm),(DN)

= y ⊙ (x ∨M
m y−)

(24)
= y ⊙ x = x⊙ y = x, since OML ⊂ OM.

Conversely, suppose x ≤M
m y, i.e. x ∧M

m y = x, i.e. (x− ⊙ y)− ⊙ y = x. Then,

x⊙ y = ((x− ⊙ y)− ⊙ y)⊙ y
(m−Wass)

= (x− ⊙ y)− ⊙ (y ⊙ y)
(G)
= (x− ⊙ y)− ⊙ y

(9)
= x ∧M

m y = x, since (m-Pimpl) implies (G), by Proposition 2.16. □

3.1 Connections between OML and PreMV, QMV, MMV, OM, OL

• OML + (Pmv) (Connections between OML and PreMV)

We establish the connections between the OMLs and the pre-MV algebras verifying (m-Pimpl).

Proposition 3.4. (See Proposition 4.3)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(Pom) + (m− Pimpl) =⇒ (Pmv).

Proof. Since (m-Pimpl) ([(x⊙y−)−⊙x−]− = x) is equivalent to (x⊙y−)⊕x = x, hence (by taking X := x−)
to (x− ⊙ y−)⊕ x− = x−, we obtain:
x⊙ (x− ∨M

m y) = x⊙ ((x− ⊙ y−)− ⊙ y−)− = (x− ⊕ ((x− ⊙ y−)− ⊙ y−)=)−

(DN)
= (x− ⊕ ((x− ⊙ y−)− ⊙ y−))−

(m−Pimpl),(Scomm)
= ((x− ⊕ (x− ⊙ y−))⊕ ((x− ⊙ y−)− ⊙ y−))−

(Sass),(Pcomm)
= (x− ⊕ ((y− ⊙ x−)⊕ ((y− ⊙ x−)− ⊙ y−)))−

(Pom)
= (x− ⊕ y−)− = x⊙ y. □

Note that Proposition 3.4 says: OML ⊂ PreMV, which follows by (29).
The following converse of Proposition 3.4 also holds:

Proposition 3.5. Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra, Then,

(Pmv) + (m− Pimpl) =⇒ (Pom).

Proof. (Following a proof by Prover 9 of length 25, lasting 0.11 seconds)
We know that (m-Pimpl) implies (G), and (G) implies:

(a) x⊙ (y ⊙ x) = y ⊙ x;

indeed, x⊙ (y ⊙ x)
(Pcomm),(Pass)

= y ⊙ (x⊙ x)
(G)
= y ⊙ x.

Then, (m-Pimpl) (((x⊙ y−)− ⊙ x−)− = x) implies, taking Y := y− and using (DN) and (Pcomm):
(b) (x− ⊙ (y ⊙ x)−)− = x and
(b′) x− ⊙ (x⊙ y)− = x−.

On the other hand, (Pmv) (x⊙ (y− ⊙ (x− ⊙ y−)−)− = x⊙ y) implies, by (Pcomm):
(c) x⊙ (y− ⊙ (y− ⊙ x−)−)− = x⊙ y.

Now, by (a), (b) and (c), we obtain:
(d) x⊙ (x⊙ (y ⊙ x)−)− = y ⊙ x;
indeed, in (c), take Y := y ⊙ x and X := x, to obtain:

(x) x⊙ ((y ⊙ x)− ⊙ ((y ⊙ x)− ⊙ x−)−)− = x⊙ (y ⊙ x)
(a)
= y ⊙ x;

since in (x), ((y ⊙ x)− ⊙ x−)−
(Pcomm)

= (x− ⊙ (y ⊙ x)−)−
(b)
= x,
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it follows that (x) becomes:
(x′) x⊙ ((y ⊙ x)− ⊙ x)− = y ⊙ x, i.e. (d) holds, by (Pcomm).

Now, by (b′), (d), we obtain:
(e) (x⊙ y)− ⊙ (x⊙ (x⊙ y)−)− = x−;
indeed, in (d), take X := (x⊙ y)− and Y := x− to obtain:
(y) (x⊙ y)− ⊙ ((x⊙ y)− ⊙ (x− ⊙ (x⊙ y)−)−)− = x− ⊙ (x⊙ y)−;

but, in (y), x− ⊙ (x⊙ y)−
(b′)
= x−, hence (y) becomes:

(y′) (x⊙ y)− ⊙ ((x⊙ y)− ⊙ x=)− = x−, which becomes, by (DN):
(y′′) (x⊙ y)− ⊙ ((x⊙ y)− ⊙ x)− = x−, which becomes, by (DN) and (Pcomm):
((x⊙ y)− ⊙ (x⊙ (x⊙ y)−)−)− = x, that is (Pom). □

Note that Proposition 3.5 says: PreMV ∩ OL ⊂ OM.
By Propositions 3.4 and 3.5, we obtain:

Theorem 3.6. Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra, Then,

(m− Pimpl) =⇒ ((Pom) ⇐⇒ (Pmv))

or

(m− Pimpl) + (Pom) ⇐⇒ (Pmv) + (m− Pimpl),

i.e. OMLs coincide with pre-MV algebras verifying (m-Pimpl).

Hence, Theorem 3.6 says:

OML = PreMV + (m− Pimpl) = PreMV ∩ OL. (30)

• OML + (Pqmv) (Connections between OML and QMV)

We establish now the connection between the OMLs and the QMV algebras verifying (m-Pimpl).

Proposition 3.7. Let AL = (AL,⊙,−, 1) be a left-OML. Then, AL is a left-QMV algebra verifying (m-
Pimpl).
(i.e. in an involutive m-BE algebra, (Pom) + (m-Pimpl) =⇒ (Pqmv).)

Proof. Since AL is a left-OML, it is an involutive m-BE algebra verifying (m-Pimpl) and (Pom) (Definition
2). By Theorem 3.4, it verifies (Pmv) also. Hence, AL is a left-QMV algebra verifying (m-Pimpl). □

Note that Proposition 3.7 says: OML ⊂ QMV, which is (29). Note also that Proposition 3.4 follows
from Proposition 3.7, since (Pqmv) =⇒ (Pmv).

The following converse of Proposition 3.7 also holds.

Proposition 3.8. Let AL = (AL,⊙,−, 1) be a left-QMV algebra verifying (m-Pimpl). Then, AL is a left-
OML.
(i.e. in an involutive m-BE algebra, (Pqmv) + (m-Pimpl) =⇒ (Pom).)

Proof. SinceAL is a left-QMV algebra verifying (m-Pimpl), it is an involutive m-BE algebra verifying (Pqmv)
(hence (Pom), (Pmv) ) and (m-Pimpl). Hence, AL is an involutive m-BE algebra verifying (m-Pimpl) and
(Pom), i.e. it is a left-OML. □

Note that Proposition 3.8 says: QMV ∩ OL ⊂ OM. Note also that Proposition 3.8 follows from Propo-
sition 3.5.

By Propositions 3.7 and 3.8, we obtain:
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Theorem 3.9. Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra. Then,

(m− Pimpl) =⇒ ((Pom) ⇔ (Pqmv))

or

(m− Pimpl) + (Pom) ⇐⇒ (Pqmv) + (m− Pimpl)

i.e. orthomodular lattices coincide with QMV algebras verifying (m-Pimpl).

Hence, Theorem 3.9 says:

OML = QMV + (m− Pimpl) = QMV ∩ OL. (31)

By the previous results (28), (29), (30) and (31), we obtain the connections from Figure 4.

m-BE(DN)

QMV

(Pmv)
(Pom)

(m-Pimpl)

OL

OML

PreMV
OM

Figure 4: Resuming connections between QMV, PreMV, OM, OL and OML

• OML + (∆m) (Connections between OML and MMV)

Proposition 3.10. Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra. Then,

(Pom) + (m− Pimpl) =⇒ (∆m).

Proof. By Proposition 3.4, (Pom) + (m-Pimpl) imply (Pmv) and (Pmv) implies (∆m). □
Note that Proposition 3.10 says: OML ⊂ MMV. which follows also by (29). Note also that Proposition

3.7 follows also from Proposition 3.10, since (Pom) + (∆m) imply (Pqmv) and that Proposition 3.10 follows
from Proposition 3.7, since (Pqmv) implies (∆m).

Remark 3.11. The following converse of Proposition 3.10 ((∆m) + (m-Pimpl) =⇒ (Pom)) does not hold:
there are examples of involutive m-BE algebras verifying (∆m) and (m-Pimpl) and not verifying (Pom).

By the previous Remark, from the connections from Figure 4, we obtain the connections from Figure 5.
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m-BE(DN)

(Pqmv)

QMV

(∆m)

MMV

(Pmv)

PreMV

(Pom)

OM

(m-Pimpl)

OL

OML

Figure 5: Resuming connections between QMV, PreMV, MMV, OM, OL and OML

Remark 3.12. Let AL = (AL,⊙,−, 1) be a left-OL (Definition 2). Note that:
- the initial binary relation, ≤m (x ≤m y ⇐⇒ x ⊙ y− = 0), is only reflexive ((m-Re) holds, by definition of
m-BE algebra);
- the binary relation ≤M

m (x ≤M
m y ⇐⇒ x ∧M

m y = x) is only reflexive and antisymmetric;
- the binary relation ≤P

m (x ≤P
m y ⇐⇒ x ⊙ y = x) is a lattice order, with respect to ∧ = ⊙, ∨ = ⊕,

denoted ≤O
m, by Proposition 2.2.

Remark 3.13. Let AL = (AL,⊙,−, 1) be a left-OML (Definition 2). Note that:
- The initial binary relation, ≤m (x ≤m y ⇐⇒ x⊙ y− = 0), is only reflexive;
- The binary relation ≤M

m (x ≤M
m y ⇐⇒ x ∧M

m y = x) is an order, by Corollary 2.26, but not a lattice
order with respect to ∧M

m , ∨M
m , since ∧M

m is not commutative;
- The binary relation ≤P

m (x ≤P
m y ⇐⇒ x ⊙ y = x) is a lattice order, with respect to ∧ = ⊙, ∨ = ⊕,

denoted ≤O
m, by Proposition 2.2;

- We have the equivalence ≤O
m⇐⇒≤M

m , by Proposition 2.23; consequently, the tables of ∧ and ∧M
m are different,

but they coincide for the comparable elements of AL (with respect to ≤O
m and ≤M

m , respectively).

3.2 The transitive and/or antisymmetric case

3.2.1 Antisymmetric orthomodular lattices: aOML = Boole

Denote by aOML the class of all antisymmetric left-OMLs. We prove that aOML does not exist as a proper
class:

Theorem 3.14. We have:
aOML = Boole.

Proof. aOML = m-BE(DN) + (m-Pimpl) + (Pom) + (m-An) = OL + (Pom) + (m-An) = Boole + (Pom)
= Boole, by Theorem 2.18. □

Remark: We have:

OML ⊂ QMV and aOML = Boole ⊂ aQMV = MV.
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3.2.2 Transitive orthomodular lattices: tOML = Boole

Denote by tOML the class of all transitive left-OMLs. We shall prove that tOML does not exist as a proper
class (tOML = Boole, by Theorem 3.16).

Theorem 3.15. Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(Pom) + (m− Pimpl) + (m−BB) =⇒ (m−An).

Proof. (By Prover9, in 0.03 seconds, the length of the proof being 32)
Suppose: (i) c1 ⊙ c−2 = 0 and (j) c2 ⊙ c−1 = 0; we have to prove that c1 = c2.
First, (Pom): (x⊙ y)⊕ ((x⊙ y)− ⊙ x) = x means

[(x⊙ y)− ⊙ ((x⊙ y)− ⊙ x)−]− = x, hence by (Pcomm), (DN):

(x⊙ y)− ⊙ (x⊙ (x⊙ y)−)− = x−. (32)

Second, (m-BB): [(x⊙ y)− ⊙ (z ⊙ y)]⊙ (z ⊙ x−)− = 0, means, by (Pass):

(x⊙ y)− ⊙ [z ⊙ (y ⊙ (z ⊙ x−)−)] = 0. (33)

Take x := c−2 , y := c1, z := x in (33) to obtain:
(c−2 ⊙ c1)

− ⊙ [x⊙ (c1 ⊙ (x⊙ c2)
−)] = 0, hence by (i), (Neg0-1), (PU):

x⊙ (c1 ⊙ (x⊙ c2)
−) = 0, hence, by (Pass), (Pcomm):

c1 ⊙ (x⊙ (c2 ⊙ x)−) = 0. (34)

Since (p-Pimpl) implies (G), then (G) (x ⊙ x = x) implies x ⊙ y = (x ⊙ x) ⊙ y
(Pass)
= x ⊙ (x ⊙ y), hence

we have:
x⊙ (x⊙ y) = x⊙ y. (35)

Take now x := c1 in (34) to obtain: c1 ⊙ (c1 ⊙ (c2 ⊙ c1)
−) = 0, hence by (35) and (Pcomm):

c1 ⊙ (c1 ⊙ c2)
− = 0. (36)

Take now x := c1, y := c2 in (32) to obtain:
(c1 ⊙ c2)

− ⊙ (c1 ⊙ (c1 ⊙ c2)
−)− = c−1 ; then, by (36), (Neg0-1), (PU), we obtain:

(c1 ⊙ c2)
− = c−1 , hence (37)

c1 ⊙ c2 = c1. (38)

Now, from (m-Pimpl): [(x⊙ y−)− ⊙ x−]− = x, we obtain by (Pcomm) and for y := y−:

[x− ⊙ (y ⊙ x)−]− = x. (39)

Take now x := c2, y := c1 in (39) to obtain: [c−2 ⊙ (c1 ⊙ c2)
−]− = c2, hence, by (37), [c−2 ⊙ c−1 ]

− = c2,
hence, by (Pcomm):

(c−1 ⊙ c−2 )
− = c2, hence (40)

c−1 ⊙ c−2 = c−2 . (41)

Finally, take x := c−1 , y := c−2 in (32) to obtain: (c−1 ⊙ c−2 )
− ⊙ (c−1 ⊙ (c−1 ⊙ c−2 )

−)− = c1; hence, by (40),
we obtain:
c2 ⊙ (c−1 ⊙ c2)

− = c1; hence, by (j), (Pcomm), (Neg0-1) and (PU), we obtain: c2 = c1. □
Note that Theorem 3.15 says: tOML ⊂ m-aBE(DN). Hence, tOML ⊂ taOML. But taOML = aOML

+ (m-Tr) = Boole + (m-Tr) = Boole, by Theorem 3.14. It follows that tOML = Boole. Thus, we have
proved Theorem 3.16:
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Theorem 3.16. We have:
tOML = Boole. (42)

3.2.3 The transitive and antisymmetric case

If we make the following table:

No. (m-Tr) (m-Pimpl) (Pqmv) Type of m-BE(DN) algebra

(1) 0 0 0 proper m-BE(DN)

(2) 0 0 1 proper QMV
(3) 0 1 0 proper OL
(4) 0 1 1 proper OM

(5) 1 0 0 proper m-pre-BCK(DN)

(6) 1 0 1 proper tQMV
(7) 1 1 0 proper tOL
(8) 1 1 1 tOML = aOML = Boole

then, we obtain the resuming connections from Figures 6 and 7.

m-BE(DN)

(1)
(m-Tr) ⇐⇒ . . . ⇐⇒ (m-BB)

tQMV
(6)

OML
(4)

tOL
(7)

QMV
(2)

(Pqmv)

OL
(3) (m-Pimpl)

m-pre-BCK(DN)

(5)

Figure 6: Resuming connections in m-BE(DN)
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Figure 7: Resuming connections in this section

3.2.4 The transitive case: tOL ⊂ tMMV

Theorem 3.17. Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(m− Pimpl) + (m−BB) =⇒ (∆m).

Proof. Since (m-Pimpl) implies (m-Pabs-i) and since, by ([22], Theorem 5.13), (m-Pabs-i) + (m-BB) imply
(∆m), it follows that (m-Pimpl) + (m-BB) imply (∆m). □

Note that Theorem 3.17 says: tOL ⊂ MMV, hence tOL ⊂ tMMV, since (m-BB) ⇔ (m-Tr). Now, by
Theorems 3.16 and 3.17, from the connections from Figure 5, we obtain the connections from Figure 8.
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m-pre-BCK(DN) (= m-tBE(DN))

tQMV

(Pqmv)

(∆m)

tMMV

(Pmv)

tPreMV

(Pom)

tOM

(m-Pimpl)

tOL

Figure 8: Resuming connections between tQMV, tPreMV, tMMV, tOM and tOL

3.3 Modular algebras: MOD ⊂ OML

Recall the following definitions [25]:
(i) A latice (L,∧,∨) is modular, if for all x, y, z ∈ L,

(Wmod) x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨ (x ∧ z) and, dually,
(i′) the dual latice (L,∨,∧) is modular, if for all x, y, z ∈ L,

(Vmod) x ∨ (y ∧ (x ∨ z)) = (x ∨ y) ∧ (x ∨ z).

Definition 3.18. (Definition 1) (The dual case is omitted) [25]
A modular left-ortholattice is a left-OL AL = (AL,∧,∨,−, 0, 1) whose lattice (AL,∧,∨) is modular.

We shall denote by MODOL the class of all modular left-ortholattices.
Recall also [25] that any modular ortholattice is an orthomodular lattice, i.e.

MODOL ⊂ OML. (43)

Following the equivalent definition of OLs, we obtain the following equivalent definition.

Definition 3.19. (Definition 2) (The dual one is omitted)
A modular left-ortholattice is an involutive left-m-BE algebra (AL,⊙,−, 1) verifying (m-Pimpl) and (Pmod),

where: for all x, y, z ∈ AL,
(Pmod) x⊙ (y ⊕ (x⊙ z)) = (x⊙ y)⊕ (x⊙ z), i.e.
MODOL = m-BE(DN) + (m-Pimpl) + (Pmod) = OL + (Pmod).

Then, we introduce the following notion:

Definition 3.20.
(i) A left-modular algebra or a modular left-algebra, or a left-MOD algebra for short, is an involutive

left-m-BE algebra AL = (AL,⊙,− = −L
, 1) verifying: for all x, y, z ∈ AL,

(Pmod) x⊙ (y ⊕ (x⊙ z)) = (x⊙ y)⊕ (x⊙ z).
(i′) Dually, a right-modular algebra or a modular right-algebra, or a right-MOD algebra for short, is an

involutive right-m-BE algebra AR = (AL,⊕,− = −R
, 0) verifying: for all x, y, z ∈ AR,

(Smod) x⊕ (y ⊙ (x⊕ z)) = (x⊕ y)⊙ (x⊕ z).
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We shall denote by MOD the class of all left-MOD algebras and by MODR the class of all right-MOD
algebras. Hence, MOD = m-BE(DN) + (Pmod).

Then,
MODOL = OL+ (Pmod) = OL ∩ MOD. (44)

Proposition 3.21. (The dual one is omitted)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(Pmod) =⇒ (Pom).

Proof. (Following a proof by Prover9 of length 14, lasting 0.05 seconds)
(Pmod), i.e. x⊙ (y ⊕ (x⊙ z)) = (x⊙ y)⊕ (x⊙ z), is equivalent with

(a) x⊙ (y− ⊙ (x⊙ z)−)− = ((x⊙ y)− ⊙ (x⊙ z)−)−, i.e. with:
(a′) ((x⊙ y)− ⊙ (x⊙ z)−)− = x⊙ (y− ⊙ (x⊙ z)−)−.

Then,

((x⊙ y)− ⊙ (x⊙ z)−)−
(Pcomm)

= ((x⊙ z)− ⊙ (x⊙ y)−)−
(a′)
= x⊙ (z− ⊙ (x⊙ y)−)−,

hence we obtain:
(b) x⊙ (y− ⊙ (x⊙ z)−)− = x⊙ (z− ⊙ (x⊙ y)−)−.
Take now Z := (x⊙ y)− in (b) to obtain:
x⊙ (y− ⊙ (x⊙ (x⊙ y)−)−)− = x⊙ ((x⊙ y)= ⊙ (x⊙ y)−)−

(DN)
= x⊙ ((x⊙ y)⊙ (x⊙ y)−)−

(m−Re)
= x⊙ 0−

(Neg0−1)
= x⊙ 1

(PU)
= x;

hence, we have:
(c) x⊙ (y− ⊙ (x⊙ (x⊙ y)−)−)− = x.

Now, (Pom), i.e. (x⊙ y)⊕ ((x⊙ y)− ⊙ x) = x, is equivalent with:
(d) ((x⊙ y)− ⊙ ((x⊙ y)− ⊙ x)−)− = x, which by (Pcomm) means:
(d′) ((x⊙ y)− ⊙ (x⊙ (x⊙ y)−)−)− = x;
hence, we must prove that (d’) holds.

Indeed, ((x⊙ y)− ⊙ (x⊙ (x⊙ y)−)−)−
(a′)
= x⊙ (y− ⊙ (x⊙ (x⊙ y)−)−)−

(c)
= x, hence (d’) holds, i.e. (Pom)

holds. □
Note that Proposition 3.21 says: MOD ⊂ OM.

Proposition 3.22. (The dual one is omitted)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(Pmod) =⇒ (m− Pimpl).

Proof. (Following a proof by Prover9 of length 16, lasting 0.00 seconds)
(Pmod), i.e. x⊙ (y ⊕ (x⊙ z)) = (x⊙ y)⊕ (x⊙ z), is equivalent with

(a) x⊙ (y− ⊙ (x⊙ z)−)− = ((x⊙ y)− ⊙ (x⊙ z)−)−, i.e. with:
(a′) ((x⊙ y)− ⊙ (x⊙ z)−)− = x⊙ (y− ⊙ (x⊙ z)−)−.

Now, take in (a’) Y := 1 and Z := y to obtain, by (PU), (Neg1-0), (Pcomm), (m-L):

(x−⊙(x⊙y)−)− = ((x⊙1)−⊙(x⊙z)−)−
(a′)
= x⊙(1−⊙(x⊙z)−)− = x⊙(0⊙(x⊙z)−)− = x⊙0− = x⊙1 = x,

hence:
(b) (x− ⊙ (x⊙ y)−)− = x.

Note that (m-Pimpl), i.e. ((x⊙ y−)− ⊙ x−)− = x, follows from (b), by (Pcomm). □
Note that Proposition 3.22 says: MOD ⊂ OL, hence, MOD = OL ∩ MOD

(44)
= MODOL. Thus, we

have:
MOD = MODOL. (45)

By Propositions 3.21 and 3.22, we obtain obviously:
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Theorem 3.23. (The dual one is omitted)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(Pmod) =⇒ (Pom) + (m− Pimpl).

By above Theorem 3.23, which says: MOD ⊂ OM ∩ OL = OML, by (28), we reobtain immediately
the recalled known result from (43): MODOL (= MOD) ⊂ OML ( ⊂ OL).

Recall [25] that the inclusion is strict.
Since OML ⊂ QMV, by (28), we obtain:

MOD (= MODOL) ⊂ OML ⊂ QMV. (46)

Hence, we have:
aMOD = aOML = Boole ⊂ aQMV = MV and (47)

tMOD = tOML = Boole ⊂ tQMV. (48)

Remark 3.24. Recall that any OL that is distributive is a Boolean algebra, by definitions. Consequently,
any OML that is distributive is a Boolean algebra and any modular algebra that is distributive is a Boolean
algebra.

4 Orthomodular softlattices, widelattices

Starting from the two generalizations of ortholattices (OL): the orthosoftlattices (OSL) and the orthowide-
lattices (OWL) (Definition 2.17 and Figure 1), we introduce, in separate subsections, two corresponding
generalizations of orthomodular lattices (OMLs): the orthomodular softlattices and the orthomodular wide-
lattices.

4.1 Orthomodular softlattices: OMSL

We introduce the following notion.

Definition 4.1. (Definition 1) (The dual one is omitted)
A left-orthomodular softlattice or an orthomodular left-softlattice, or a left-OMSL for short, is a left-OSL

AL = (AL,∧,∨,−, 0, 1) verifying: for all x, y ∈ AL,
(Wom) (x ∧ y) ∨ ((x ∧ y)− ∧ x) = x.

Denote by OMSL the class of all left-OMSLs. Following the equivalent Definition 2 of a left-OSL (see
Definition 2.17), we obtain immediately an equivalent definition:

Definition 4.2. (Definition 2) (The dual one is omitted)
A left-OMSL is a left-OSL verifying (Pom), i.e. is an involutive left-m-BE algebra AL = (AL,⊙,−, 1)

verifying (G) and (Pom), i.e.

OMSL = m−BE(DN) + (G) + (Pom) = OSL ∩ OM. (49)

Further, we shall work with Definition 2 of left-OMSLs. Hence, we have the connections from Figure 9.
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m-BE(DN)

(Pom)

(G)
OSL

OMSL
OM

Figure 9: Resuming connections between OSL, OMSL and OM

Denote by tOMSL the class of all transitive left-OMSLs. We shall prove that OMSL and tOMSL do
not exist (as proper classes) (OMSL = OML, by (53), hence tOMSL = Boole, by Theorem 3.16).

4.1.1 Connections between OMSL and PreMV, QMV, MMV, OM, OSL

• OMSL + (Pmv) (Connections between OMSL and PreMV)

We establish the connections between the OMSLs and the pre-MV algebras verifying (G).

Proposition 4.3. (See Proposition 3.4)

Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra, Then,

(Pom) + (G) =⇒ (Pmv).

Proof. (following a proof by Prover9, of length 24, lasting 0.36 seconds)

First, from (Pom) (((x⊙ y)− ⊙ (x⊙ (x⊙ y)−)−)− = x), by (DN), we obtain:
(a) (x⊙ y)− ⊙ (x⊙ (x⊙ y)−)− = x−.
Then, (a) implies:
(b) x− ⊙ (x⊙ y)− = x−;

indeed, x− ⊙ (x⊙ y)−
(Pcomm)

= (x⊙ y)− ⊙ x−

(a)
= (x⊙ y)− ⊙ ((x⊙ y)− ⊙ (x⊙ (x⊙ y)−)−)
(Pass)
= ((x⊙ y)− ⊙ (x⊙ y)−)⊙ (x⊙ (x⊙ y)−)−

(G)
= (x⊙ y)− ⊙ (x⊙ (x⊙ y)−)−

(a)
= x−.

Then, (b) implies (c), by (DN):
(c) x⊙ (x− ⊙ y)− = x.

On the other hand, (a) implies (d), by interchanging x with y:
(d) (y ⊙ x)− ⊙ (y ⊙ (y ⊙ x)−)− = y−,
and (d) implies (e), by taking X := x− and by (Pcomm):
(e) (x− ⊙ y)− ⊙ (y ⊙ (x− ⊙ y)−)− = y−.

Finally, (c) and (e) imply:
(f) x⊙ y− = x⊙ (y ⊙ (x− ⊙ y)−)−;

indeed, x⊙ y−
(e)
= x⊙ ((x− ⊙ y)− ⊙ (y ⊙ (x− ⊙ y)−)−)

(Pass)
= (x⊙ (x− ⊙ y)−)⊙ (y ⊙ (x− ⊙ y)−)−

(c)
= x⊙ (y ⊙ (x− ⊙ y)−)−; thus, (f) holds.
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By taking Y := y− in (f), we obtain, by (DN):
x⊙ y = x⊙ (y− ⊙ (x− ⊙ y−)−)−, that is (Pmv). □

Note that Proposition 3.4 follows from Proposition 4.3, since (m-Pimpl) implies (G). Note also that
Proposition 4.3 says: OMSL ⊂ PreMV.

The following converse of Proposition 4.3 also holds:

Proposition 4.4. (See Proposition 3.5)
Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra. Then,

(Pmv) + (G) =⇒ (Pom).

Proof. (following a proof by Prover9, of length 27, lasting 0.12 seconds)
From (Pmv) ( x⊙ (y− ⊙ (x− ⊙ y−)−)− = x⊙ y), by taking Y := y− and by (DN), we obtain:

(a) x⊙ (y ⊙ (x− ⊙ y)−)− = x⊙ y−.
On the other hand, from (G) (x⊙ x = x), we obtain:

(b) x⊙ (x⊙ y) = x⊙ y);

indeed, x⊙ (x⊙ y)
(Pass)
= (x⊙ x)⊙ y

(G)
= x⊙ y; hence, by (Pcomm), we obtain:

(b′) x⊙ (y ⊙ x) = y ⊙ x.
Now, from (b) and (a) we obtain:

(c) x⊙ (x− ⊙ y)− = x;
indeed, in (a), take X := x and Y := x− ⊙ y to obtain:
(x) x⊙ ((x− ⊙ y)⊙ (x− ⊙ (x− ⊙ y))−)− = x⊙ (x− ⊙ y)−;

but, the part from (x): x− ⊙ (x− ⊙ y)
(b)
= x− ⊙ y, hence (x) becomes:

(x′) x⊙ ((x− ⊙ y)⊙ (x− ⊙ y)−)− = x⊙ (x− ⊙ y)−,
which by (m-Re) and (Neg0-1) becomes:
(x′′) x⊙ 1 = x⊙ (x− ⊙ y)−,
which, by (PU), becomes (c).

Now, from (c), by (Pcomm), we obtain:
(c′) x⊙ (y ⊙ x−)− = x and
from (c), by taking X := x− we obtain:
(c′′) x− ⊙ (x⊙ y)− = x−.

Now, from (c′) and (a), we obtain:
(d) x⊙ (x⊙ (y ⊙ x)−)− = y ⊙ x;
indeed, in (a), take X := x and Y := (y ⊙ x=)− to obtain:
(y) x⊙ ((y ⊙ x=)− ⊙ (x− ⊙ (y ⊙ x=)−)−)− = x⊙ (y ⊙ x=)=;

but, the part from (y) x− ⊙ (y ⊙ x=)−
(c′)
= x−, hence (y) becomes, by (DN):

(y′) x⊙ ((y ⊙ x)− ⊙ x=)− = x⊙ (y ⊙ x);
but (y′), by (DN) and (b′) becomes:
(y′′) x⊙ ((y ⊙ x)− ⊙ x)− = y ⊙ x;
and (y′′), by (Pcomm), becomes (d).

Now, from (c′′) and (d), we obtain:
(e) (x⊙ y)− ⊙ (x⊙ (x⊙ y)−)− = x−;
indeed, in (d), take X := (x⊙ y)− and Y := x− to obtain:
(u) (x⊙ y)− ⊙ ((x⊙ y)− ⊙ (x− ⊙ (x⊙ y)−)−)− = x− ⊙ (x⊙ y)−;

but, the parts from (u) x− ⊙ (x⊙ y)−
(c′′)
= x−, hence (u) becomes:

(u′) (x⊙ y)− ⊙ ((x⊙ y)− ⊙ x=)− = x−,
which by (DN) and (Pcomm) becomes:
(x⊙ y)− ⊙ (x⊙ (x⊙ y)−)− = x−, that is (e).
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Finally, from (e), by (DN), we obtain:
((x⊙ y)− ⊙ (x⊙ (x⊙ y)−)−)− = x, that is (Pom). □

Note that Proposition 3.5 follows from Proposition 4.4, since (m-Pimpl) =⇒ (G). Note also that Propo-
sition 4.4 says: PreMV ∩ OSL ⊂ OM.

By Propositions 4.3 and 4.4, we obtain:

Theorem 4.5. (See Theorem 3.6)
Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra. Then,

(G) =⇒ ((Pom) ⇔ (Pmv))

or

(G) + (Pom) ⇐⇒ (Pmv) + (G),

i.e. OMSLs coincide with pre-MV algebras verifying (G).

Hence, Theorem 4.5 says:

OMSL = PreMV + (G) = PreMV ∩ OSL. (50)

Note that Theorem 3.6 follows from Theorem 4.5, since (m-Pimpl) implies (G).

• OMSL + (Pqmv) (Connections between OMSL and QMV)

We establish now the connection between the OMSLs and the QMV algebras verifying (G).

Proposition 4.6. (See Proposition 3.7)
Let AL = (AL,⊙,−, 1) be a left-OMSL. Then, AL is a left-QMV algebra verifying (G).

(i.e. in an involutive m-BE algebra, (Pom) + (G) =⇒ (Pqmv).)

Proof. Since AL is a left-OMSL, it is an involutive m-BE algebra verifying (G) and (Pom) (Definition 2).
By Proposition 4.3, it verifies (Pmv) also. Hence, AL is a left-QMV algebra verifying (G). □

Note that Proposition 4.6 says:
OMSL ⊂ QMV, (51)

the inclusion being strict, since there are examples of QMV algebras not verifying (G). Note also that
Proposition 3.7 follows from Proposition 4.6 and also that Proposition 4.3 follows from Proposition 4.6, since
(Pqmv) implies (Pmv).

The following converse of Proposition 4.6 holds.

Proposition 4.7. (See Proposition 3.8)
Let AL = (AL,⊙,−, 1) be a left-QMV algebra verifying (G). Then, AL is a left-OMSL.

(i.e. in an involutive m-BE algebra, (Pqmv) + (G) =⇒ (Pom).)

Proof. Since AL is a left-QMV algebra verifying (G), it is an involutive m-BE algebra verifying (Pmv),
(Pom) and (G) (Definition 2). Hence, AL is an involutive m-BE algebra verifying (G) and (Pom), i.e. it is a
left-OMSL. □

Note that Proposition 4.7 says: QMV ∩ OSL ⊂ OM. Note also that Proposition 3.8 follows from
Proposition 4.7, since (m-Pimpl) implies (G), and also that Proposition 4.7 follows from Proposition 4.4,
since (Pqmv) implies (Pmv).

By Propositions 4.6 and 4.7, we obtain:
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Theorem 4.8. (See Theorem 3.9)
Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(G) =⇒ ((Pom) ⇔ (Pqmv))

or

(G) + (Pom) ⇐⇒ (Pqmv) + (G)

i.e. orthomodular softlattices coincide with QMV algebras verifying (G).

Hence, Theorem 4.8 says:

OMSL = QMV + (G) = QMV ∩ OSL. (52)

Note that Theorem 3.9 follows from Theorem 4.8, since (m-Pimpl) implies (G).
By the previous results (49), (50), (51) and (52), we obtain the connections from Figure 10.

m-BE(DN)

QMV

(Pmv)
(Pom)

(G)

OSL

OMSL

PreMV
OM

Figure 10: Resuming connections between QMV, PreMV, OM, OSL and OMSL

• OMSL + (∆m) (Connections between OMSL and MMV)

Proposition 4.9. Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra, Then,

(Pom) + (G) =⇒ (∆m).

Proof. By Proposition 4.3, (Pom) + (G) implies (Pmv) and (Pmv) implies (∆m). □
Note that Proposition 4.9 says: OMSL⊂MMV. Note also that Proposition 3.10 follows from Proposition

4.9, since (m-Pimpl) implies (G), that Proposition 4.6 follows from Proposition 4.9, since (Pom) + (∆m) imply
(Pqmv), and that Proposition 4.9 follows also from Proposition 4.6, since (Pqmv) implies (∆m).

Remark 4.10. The following converse of Proposition 4.9 ((∆m) + (G) =⇒ (Pom)) does not hold: there are
examples of involutive m-BE algebras verifying (∆m) and (G) and not verifying (m-Pimpl) and (Pom).

By the previous Remark, from the connections from Figure 10, we obtain the connections from Figure 11.
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m-BE(DN)

(Pqmv)

QMV

(∆m)

MMV

(Pmv)

PreMV

(Pom)

OM

(G)

OSL

OMSL

Figure 11: Resuming connections between QMV, PreMV, MMV, OM, OSL and OMSL

4.1.2 OMSL = OML

Proposition 4.11. We have:
(mPom1) (Pom) + (Pcomm) + (Neg0-1) + (PU) + (DN) =⇒ (m-Re) [21]
(mPom2) (Pom) + (G) + (Pass) + (DN) =⇒ (m-Pimpl).

Proof. (mPom2) : (By Prover9, in 0.01 seconds, the length of the proof being 15)

First, we have: (a) x⊙ y
(G)
= (x⊙ x)⊙ y

(Pass)
= x⊙ (x⊙ y).

Then, in (a), takeX := (x⊙y)− and Y := ((x⊙y)−⊙x)− to obtain: (b)X⊙Y = (x⊙y)−⊙((x⊙y)−⊙x)−
(Pom)
=

x−. Then, x− = X⊙Y
(a)
= X⊙ (X⊙Y )

(b)
= X⊙x− = (x⊙y)−⊙x−; hence, ((x⊙y)−⊙x−)− = (x−)−

(DN)
= x,

i.e. (m-Pimpl) holds. □
We know already, by Proposition 2.16, that:

Proposition 4.12. Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(m− Pimpl) =⇒ (G),

i.e. OL ⊂ OSL.

Proposition 4.13. Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(Pom) + (G) =⇒ (m− Pimpl),

i.e. OMSL ⊂ OL.

Proof. By (mPom2). □
By Propositions 4.12 and 4.13, we obtain:
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Theorem 4.14. Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(Pom) =⇒ ((m− Pimpl) ⇔ (G))

or

(Pom) + (m− Pimpl) ⇐⇒ (Pom) + (G).

By Theorem 4.14 and the equivalent definitions (Definition 2) of left-OMLs and of left-OMSLs, we obtain:
OML= OM + (G) = OSL + (Pom) = OSL ∩ OM = OMSL, by (49). Hence, we have:

OMSL = OML. (53)

By (28), (49) and (53), we obtain the connections from Figure 12.

m-BE(DN)

(Pom)

OM

(G)

OSL

(m-Pimpl)
OL

OML
=OMSL

Figure 12: Resuming connections between OML = OMSL, OL, OSL and OM

Finally, since OML = OMSL, it follows, by Theorems 3.9 and 4.8:

Corollary 4.15. We have:

OML = OMSL = QMV + (m− Pimpl) = QMV ∩OL = QMV + (G) = QMV ∩OSL. (54)

Corollary 4.16. (See [6], Theorem 2.3.12)
Let AL = (AL,⊙,−, 1) be a left-QMV algebra. Consider the set of all idempotent elements of AL (i.e.

elements verifying (G)):
Id(AL) = {x ∈ AL | x⊙ x = x}.

Then, (Id(AL),⊙,−, 1) is a left-OML.

Proof. Note that (Id(AL),⊙,−, 1) is a subalgebra of AL verifying (G). Then apply above Corollary 4.15.
□

Moreover,
- There are examples of involutive m-BE algebras verifying (G) and not verifying (∆m), (m-Pimpl) and
(Pom);
- There are examples of involutive m-BE algebras verifying (m-Pimpl) and not verifying (∆m) and (Pom).

By the connections from Figures 4, 10 and 12, we obtain the connections from Figure 13.
By the connections from Figures 5, 11 and 13, we obtain the connections from Figure 14.
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m-BE(DN)

QMVPreMV
OM

(Pmv)
(Pom)

(G)

OSL

(m-Pimpl)

OL

OML
=OMSL

Figure 13: Resuming connections between QMV, PreMV, OSL, OL, OM and OML = OMSL

m-BE(DN)

QMV

(∆m)

MMV

(Pmv)

PreMV

(Pom)

OM

(G)

OSL

(m-Pimpl)

OL

OML
=OMSL

Figure 14: Resuming connections between QMV, PreMV, MMV, OL, OSL and OML = OMSL
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4.1.3 The transitive case: tOSL ⊂ tMMV

Theorem 4.17. Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(G) + (m−BB) =⇒ (∆m).

Proof. (following a proof by Prover9 in 10.75 seconds, the length of the proof being 28)

First, (G) (x⊙ x = x) implies:

x⊙ (x⊙ y) = x⊙ y. (55)

Indeed, x⊙ (x⊙ y)
(Pass)
= (x⊙ x)⊙ y

(G)
= x⊙ y.

Second, (m-BB) ([(x⊙ y)− ⊙ (z ⊙ y)]⊙ (z ⊙ x−)− = 0) implies:

x⊙ (y ⊙ ((x⊙ z−)− ⊙ (z ⊙ y)−)) = 0. (56)

Indeed, interchange x with z in (m-BB) to obtain:
(x) [(z ⊙ y)− ⊙ (x⊙ y)]⊙ (x⊙ z−)− = 0;
then, in (x), apply (Pass) and (Pcomm) to obtain:
(x′) [(x⊙ y)⊙ (x⊙ z−)−]⊙ (z ⊙ y)− = 0;
then apply (Pass) to obtain (56).

Also (m-BB) ([(x⊙ y)− ⊙ (z ⊙ y)]⊙ (z ⊙ x−)− = 0) implies:

(x⊙ y)− ⊙ (z ⊙ (x⊙ (z ⊙ y−)−)) = 0. (57)

Indeed, interchange x with y in (m-BB) to obtain, by (Pcomm):
[(x⊙ y)− ⊙ (z ⊙ x)]⊙ (z ⊙ y−)− = 0;
then apply (Pass) to obtain (57).

Now, from (57), we obtain:

x⊙ (y ⊙ (x⊙ (y− ⊙ z)−)−) = 0. (58)

Indeed, in (57) take X := x and Y := x− ⊙ y to obtain:
(y) (x⊙ (x− ⊙ y))− ⊙ (z ⊙ (x⊙ (z ⊙ (x− ⊙ y)−)−)) = 0;

but, in (y), x⊙ (x− ⊙ y)
(Pass)
= (x⊙ x−)⊙ y

(m−Re)
= 0⊙ y

(Pcomm)
= y ⊙ 0

(m−L)
= 0, hence (y) becomes:

(y′) 0− ⊙ (z ⊙ (x⊙ (z ⊙ (x− ⊙ y)−)−)) = 0,
which by (Neg0-1) and (PU) becomes:
(y′′) z ⊙ (x⊙ (z ⊙ (x− ⊙ y)−)−) = 0;
now, in (y”) take X := y, Y := z and Z := x to obtain:
x⊙ (y ⊙ (x⊙ (y− ⊙ z)−)−) = 0, that is (58).

Now, from (58) and (55), we obtain:

x⊙ (x⊙ (y ⊙ x−)−)− = 0. (59)

Indeed, in (55) take X := x and Y := (x⊙ (x− ⊙ y)−)− to obtain:
(u) x⊙ (x⊙ (x⊙ (x− ⊙ y)−)−) = x⊙ (x⊙ (x− ⊙ y)−)−;
also in (58) take X := x, Y := x and Z := y to obtain:
(v) x⊙ (x⊙ (x⊙ (x− ⊙ y)−)−) = 0;
then, (u) becomes, by (v):
(u′) 0 = x⊙ (x⊙ (x− ⊙ y)−)−,
which by (Pcomm) becomes (59).
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Now, from (m-BB) and (59) we obtain:

x⊙ (y ⊙ (x⊙ ((z ⊙ x−)− ⊙ y))−) = 0. (60)

Indeed, in (m-BB) ([(x ⊙ y)− ⊙ (z ⊙ y)] ⊙ (z ⊙ x−)− = 0) take X := x ⊙ (y ⊙ x−)−, Y := z and Z := x to
obtain:
(w) [((x⊙ (y ⊙ x−)−)⊙ z)− ⊙ (x⊙ z)]⊙ (x⊙ (x⊙ (y ⊙ x−)−)−)− = 0;
but, in (w), the part x⊙ (x⊙ (y ⊙ x−)−)− = 0, by (59); hence, (w) becomes:
(w′) [((x⊙ (y ⊙ x−)−)⊙ z)− ⊙ (x⊙ z)]⊙ 0− = 0,
which by (Neg0-1) and (PU) becomes:
(w′′) ((x⊙ (y ⊙ x−)−)⊙ z)− ⊙ (x⊙ z) = 0,
which by (Pcomm), (Pass) becomes:
(w′′′) (x⊙ z)⊙ (x⊙ ((y ⊙ x−)− ⊙ z))− = 0,
which by interchanging y with z and by (Pass) becomes:
x⊙ (y ⊙ (x⊙ ((z ⊙ x−)− ⊙ y))−) = 0, that is (60).

Now, from (56) and (60), we obtain:

(x⊙ (x⊙ y−)−)⊙ (y ⊙ (y ⊙ x−)−)− = 0. (61)

Indeed, in (60), take X := x, Y := (x⊙ y−)− ⊙ (y ⊙ (z ⊙ x−)−)− and Z := z to obtain:
(z) x⊙ (((x⊙ y−)− ⊙ (y ⊙ (z ⊙ x−)−)−)⊙ (x⊙ ((z ⊙ x−)− ⊙ Y ))−) = 0,
where the part of (z):

A
notation

= x⊙ ((z ⊙ x−)− ⊙ Y ) = x⊙ ((z ⊙ x−)− ⊙ ((x⊙ y−)− ⊙ (y ⊙ (z ⊙ x−)−)−)) = 0;
indeed, in (56) take X := x, Y := (z ⊙ x−)− and Z := y to obtain:
x⊙ ((z ⊙ x−)− ⊙ ((x⊙ y−)− ⊙ (y ⊙ (z ⊙ x−)−)−)) = 0, i.e. A = 0;
hence, (z) becomes:
(z′) x⊙ (((x⊙ y−)− ⊙ (y ⊙ (z ⊙ x−)−)−)⊙ 0−) = 0;
then, by (Neg0-1) and (PU), (z′) becomes:
(z′′) x⊙ ((x⊙ y−)− ⊙ (y ⊙ (z ⊙ x−)−)−) = 0,
and (z′′) by (Pass) and by taking z = y becomes:
(x⊙ (x⊙ y−)−)⊙ (y ⊙ (y ⊙ x−)−)− = 0, that is (61).

Finally, from (61), by interchanging x with y, we obtain:
(y ⊙ (y ⊙ x−)−)⊙ (x⊙ (x⊙ y−)−)− = 0, that is (∆m). □

Note that Theorem 4.17 says: tOSL ⊂ MMV. Hence, tOSL ⊂ tMMV.
Note also that Theorem 3.17 follows from Theorem 4.17, since (m-Pimpl) implies (G).
By Theorems 3.17 and 4.17 and by the connections from Figures 8 and 14, we obtain the connections

from Figure 15.
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m-pre-BCK(DN)

tQMV

(Pqmv)

(∆m)

tMMV

(Pmv)

tPreMV

(Pom)

tOM

(G)

tOSL

(m-Pimpl)

tOL

Figure 15: Resuming connections between tQMV, tMMV, tOSL and tOL

4.2 Orthomodular widelattices: OMWL

We introduce the following notion.

Definition 4.18. (Definition 1) (The dual one is omitted)
A left-orthomodular widelattice or an orthomodular left-widelattice, or a left-OMWL for short, is a left-

OWL verifying: for all x, y ∈ AL,
(Wom) (x ∧ y) ∨ ((x ∧ y)− ∧ x) = x.

Denote by OMWL the class of all left-OMWLs. Following the equivalent Definition 2 of a left-OWL (see
Definition 2.17), we obtain immediately an equivalent definition:

Definition 4.19. (Definition 2) (The dual one is omitted)
A left-OMWL is a left-OWL verifying (Pom), i.e. is an involutive left-m-BE algebra AL = (AL,⊙,−, 1)

verifying (m-Pabs-i) and (Pom), i.e.

OMWL = m−BE(DN) + (m− Pabs− i) + (Pom) = OWL ∩ OM. (62)

Further, we shall work with Definition 2 of OMWLs. Hence, we have the connections from Figure 16.
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m-BE(DN)

(Pom)

(m-Pabs-i)
OWL

OMWL
OM

Figure 16: Resuming connections between OWL, OMWL and OM

4.2.1 Connections between OMWL and PreMV, QMV, MMV, OM, OWL

• OMWL + (Pmv) (Connections between OMWL and PreMV)

The next Proposition 4.21 (saying that (Pom) and (m-Pabs-i) imply (Pmv)) was proved by Prover9 in
17.06 seconds and the proof produced by Prover9 has the length 23. We divide the proof produced by Prover9
into the proof of Lemma 4.20 and Proposition 4.21.

Lemma 4.20. Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra verifying (Pom) (i.e. an OM algebra).
Then, we have:

(x⊙ y)− ⊙ (y ⊙ (y ⊙ x)−)− = y−, (63)

(x⊙ y)− ⊙ [(y ⊙ (y ⊙ x)−)− ⊙ z] = y− ⊙ z, (64)

(x⊙ (y ⊙ z))− ⊙ (x⊙ (y ⊙ (x⊙ (y ⊙ z))−))− = (x⊙ y)−, (65)

(x⊙ y)− ⊙ (z ⊙ (x⊙ (x⊙ y)−)−) = z ⊙ x−, (66)

(x⊙ y−)− ⊙ [(y ⊙ z)− ⊙ (x⊙ (x⊙ y−)−)]− = ((y ⊙ z)− ⊙ x)−. (67)

Proof. (63): From (Pom), by interchanging x with y and by (Pcomm).
(64): From (63), by “multiplying” by z.
(65): From (Pom), taking X := x⊙ y and Y := z and by (Pass).
(66): By “multiplying” (Pom) by z, and by (Pcomm), (Pass).
(67): In (65), take X := (y ⊙ z)−, Y := x, Z := (y ⊙ (y ⊙ z)−)− to obtain:

[(y⊙z)−⊙(x⊙(y⊙(y⊙z)−)−)]−⊙[(y⊙z)−⊙(x⊙[(y⊙z)−⊙(x⊙(y⊙(y⊙z)−)−)]−)]− = ((y⊙z)−⊙x)−. (68)

On the other hand, in (66), take X := y, Y := z, Z := x to obtain:

(y ⊙ z)− ⊙ (x⊙ (y ⊙ (y ⊙ z)−)−) = x⊙ y−. (69)

Now, from (68), by (69), we obtain:
(x⊙ y−)− ⊙ ((y ⊙ z)− ⊙ (x⊙ (x⊙ y−)−))− = ((y ⊙ z)− ⊙ x)−, i.e. (67) holds. □

Proposition 4.21. (See Proposition 3.4)
Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra. Then,

(Pom) + (m− Pabs− i) =⇒ (Pmv).
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Proof. (By Prover9)
• First, from (m-Pabs-i) (x⊙ (x− ⊙ (x− ⊙ y−))− = x), by taking Y := y−, we obtain:

x⊙ (x− ⊙ (x− ⊙ y))− = x. (70)

• Now, we prove:
x⊙ (y ⊙ (y− ⊙ ((x⊙ y)− ⊙ z))−) = x⊙ y. (71)

Indeed, in (70), take X := x⊙ y, Y:= (y ⊙ (y ⊙ x)−)− ⊙ z to obtain:

(x⊙ y)⊙ ((x⊙ y)− ⊙ ((x⊙ y)− ⊙ [(y ⊙ (y ⊙ x)−)− ⊙ z]))− = x⊙ y. (72)

Now, from (72), by (64), we obtain:

(x⊙ y)⊙ ((x⊙ y)− ⊙ (y− ⊙ z))− = x⊙ y. (73)

From (73), by (Pass), (Pcomm), we obtain:
x⊙ (y ⊙ (y− ⊙ ((x⊙ y)− ⊙ z))−) = x⊙ y, i.e. (71) holds.

• Now, we prove:
x⊙ (y− ⊙ (y ⊙ ((y ⊙ z)− ⊙ x)−)−) = x⊙ y−. (74)

Indeed, in (71), take X := x, Y := y−, Z := [(y ⊙ z)− ⊙ (x⊙ (x⊙ y−)−)]− to obtain:

x⊙ (y− ⊙ (y ⊙ ((x⊙ y−)− ⊙ [(y ⊙ z)− ⊙ (x⊙ (x⊙ y−)−)]−))−) = x⊙ y−. (75)

From (75), by (67), we obtain:
x⊙ (y− ⊙ (y ⊙ ((y ⊙ z)− ⊙ x)−)−) = x⊙ y−, i.e. (74) holds.

• Now, we prove:
x− ⊙ (y ⊙ (y ⊙ x)−)− = x− ⊙ y−. (76)

Indeed, in (74), take X := (x⊙ (x⊙ y)−)−, Y := y, Z := x to obtain:

(x⊙ (x⊙ y)−)− ⊙ (y− ⊙ [y ⊙ ((y ⊙ x)− ⊙ (x⊙ (x⊙ y)−)−)−]−) = (x⊙ (x⊙ y)−)− ⊙ y−. (77)

In (63), take X := y, Y := x, to obtain:

(y ⊙ x)− ⊙ (x⊙ (x⊙ y)−)− = x−. (78)

Then, from (77), by (78), we obtain:

(x⊙ (x⊙ y)−)− ⊙ (y− ⊙ (y ⊙ x=)−) = (x⊙ (x⊙ y)−)− ⊙ y−. (79)

From (79), by (DN), we obtain:
(x⊙ (x⊙ y)−)− ⊙ (y− ⊙ (y ⊙ x)−) = (x⊙ (x⊙ y)−)− ⊙ y−, hence, by (Pcomm), (Pass), we obtain:
y− ⊙ ((x⊙ y)− ⊙ ((x⊙ y)− ⊙ x)−) = (x⊙ (x⊙ y)−)− ⊙ y−, hence by (Pom), we obtain:
y− ⊙ x− = (x⊙ (x⊙ y)−)− ⊙ y−, hence, by interchanging x, y, we obtain:
x− ⊙ y− = (y ⊙ (y ⊙ x)−)− ⊙ x−, hence, by (Pcomm), x− ⊙ (y ⊙ (y ⊙ x)−)− = x− ⊙ y−, i.e. (76) holds.

• Now, finally, from (76), by X := x−, Y := y− and (DN), (Pcomm), we obtain:
x⊙ ((x− ⊙ y−)− ⊙ y−)− = x⊙ y, i.e. (Pmv) holds. □

Note that Proposition 3.4 follows from Proposition 4.21, since (m-Pimpl) implies (m-Pabs-i).
Note also that Proposition 4.21 says: OMWL ⊂ PreMV.

Remark 4.22. The following converse of Proposition 4.21 ((Pmv) + (m-Pabs-i) =⇒ (Pom)) does not hold:
there are examples of involutive m-BE algebras verifying (Pmv) and (m-Pabs-i) and not verifying (Pom).
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• OMWL + (Pqmv) (Connections between OMWL and QMV)

We establish now the connection between the OMWLs and the QMV algebras verifying (m-Pabs-i).

Proposition 4.23. (See Proposition 3.7)
Let AL = (AL,⊙,−, 1) be a left-OMWL. Then, AL is a left-QMV algebra verifying (m-Pabs-i).

(i.e. in an involutive m-BE algebras, (Pom) + (m-Pabs-i) =⇒ (Pqmv).)

Proof. Since AL is a left-OMWL, it is an involutive m-BE algebra verifying (m-Pabs-i) and (Pom) (Definition
2). By Proposition 4.21, it verifies (Pmv) also. Hence, AL is a left-QMV algebra verifying (m-Pabs-i). □

Note that Proposition 4.23 says:
OMWL ⊂ QMV, (80)

the inclusion being strict since there are examples of QMV algebras not verifying (m-Pabs-i). Note also that
Propositions 3.7 and 4.21 follow from Proposition 4.23.

The following converse of Proposition 4.23 holds.

Proposition 4.24. (See Proposition 3.8)
Let AL = (AL,⊙,−, 1) be a left-QMV algebra verifying (m-Pabs-i). Then, AL is a left-OMWL.

(i.e. in involutive m-BE algebras, (Pqmv) + (m-Pabs-i) =⇒ (Pom).)

Proof. Since AL a left-QMV algebra verifying (m-Pabs-i), it is an involutive left-m-BE algebra verifying
(Pqmv) (hence (Pmv), (Pom)) and (m-Pabs-i) (Definition 2). Hence, AL is an involutive m-BE algebra
verifying (m-Pabs-i) and (Pom), i.e. it is a left-orthomodular widelattice. □

Note that Proposition 4.24 says: QMV ∩ OWL ⊂ OM. Note also that Proposition 3.8 follows from
Proposition 4.24, since (m-Pimpl) =⇒ (m-Pabs-i).

By Propositions 4.23 and 4.24, we obtain:

Theorem 4.25. (See Theorem 3.9)
Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra. Then,

(m− Pabs− i) =⇒ ((Pom) ⇔ (Pqmv))

or

(m− Pabs− i) + (Pom) ⇐⇒ (Pqmv) + (m− Pabs− i),

i.e. orthomodular widelattices coincide with QMV algebras verifying (m-Pabs-i).

Note that Theorem 4.25 says:

OMWL = QMV + (m− Pabs− i) = QMV ∩ OWL. (81)

Note also that Theorem 3.9 follows from Theorem 4.25.
By (62), (81) and Remark 4.22, we obtain the connections from Figure 17.
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m-BE(DN)

QMVPreMV

(Pmv)
(Pom)

OMWL OM

(m-Pabs-i)

OWL

Figure 17: Resuming connections between QMV, PreMV, OWL, OM and OMWL

• OMWL + (∆m) (Connections between OMWL and MMV)

Proposition 4.26. (See Proposition 3.10)
Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra. Then,

(Pom) + (m− Pabs− i) =⇒ (∆m).

Proof. By Proposition 4.21, (Pom) + (m-Pabs-i) imply (Pmv) and (Pmv) implies (∆m), thus (Pom) +
(m-Pabs-i) imply (∆m). □

Note that Proposition 4.26 says: OMWL ⊂ MMV.
Note also that Proposition 3.10 follows from Proposition 4.26, since (m-Pimpl) implies (m-Pabs-i), that

Proposition 4.23 follows also from Proposition 4.26, since (Pom) + (∆m) imply (Pqmv), and that Proposition
4.26 follows also from Proposition 4.23, since (Pqmv) implies (∆m).

Remark 4.27. The following converse of Proposition 4.26 ((∆m) + (m-Pabs-i) =⇒ (Pom)) does not hold:
there are examples of involutive m-BE algebras verifying (∆m) and (m-Pabs-i) and not verifying (m-Pimpl)
and (Pom).

By the previous Remark and by the connections from Figure 17, we obtain the connections from Figure
18.
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m-BE(DN)
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MMV
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(Pom)

OMWL

OM

(m-Pabs-i)

OWL

Figure 18: Resuming connections between QMV, PreMV, MMV, OWL and OMWL

4.2.2 OML ⊂ OMWL

We know (by Proposition 2.16) that:

Proposition 4.28. Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(m− Pimpl) =⇒ (m− Pabs− i),

i.e. OL ⊂ OWL.

Proposition 4.29. Let AL = (AL,⊙,−, 1) be an involutive left-m-BE algebra. Then,

(Pom) + (G) =⇒ (m− Pabs− i).

Proof. By Proposition 4.13, (Pom) + (G) imply (m-Pimpl), and by Proposition 4.28, (m-Pimpl) implies
(m-Pabs-i). □

Note that Proposition 4.29 follows from Proposition 4.13.
Note also that Proposition 4.29 says: OML (= OMSL ) ⊂ OWL, hence,

OML (= OMSL) ⊂ OMWL, (82)

the inclusion being strict, since there are examples of OMWLs not verifying (G).
Note also that OML (= OMSL) ⊂ OMWL means (see 23):

OML = OMSL ∩ OMWL.

By (28), (62) and (82), we obtain the connections from the Figure 19.
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m-BE(DN)
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OM

(m-Pabs-i)
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Figure 19: Resuming connections between OMWL, OML, OL, OWL and OM

Since OML = OMSL ⊂ OMWL, by Theorems 4.14 and 4.29, and OMWL ⊂ QMV, by (80), we
obtain:

MOD ⊂ OML = OMSL ⊂ OMWL ⊂ QMV.

By the connections from Figures 4, 17 and 19, we obtain the connections from Figure 20.

m-BE(DN)

QMV

(Pmv)

PreMV (Pom)

OMOMWL

(m-Pabs-i)

OWL

(m-Pimpl)

OL

OML
=OMSL

Figure 20: Resuming connections between QMV, PreMV, OML, OWL, OL, OM and OMWL

By the connections from Figures 5, 18 and 20, we obtain the connections from Figure 21.
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m-BE(DN)

QMV

(∆m)

MMV

(Pmv)

PreMV
(Pom)

OMOMWL

(m-Pabs-i)

OWL

(m-Pimpl)

OL

OML
=OMSL

Figure 21: Resuming connections between QMV, PreMV, MMV, OML, OL, OWL and OMWL

4.2.3 The transitive and/or antisymmetric case

• The transitive case: tOWL ⊂ tMMV

Denote by tOMWL the class of all transitive left-OMWLs.

Theorem 4.30. (See Theorem 4.17)
Let AL = (AL,⊙,−, 1) be an involutive m-BE algebra. Then,

(m− Pabs− i) + (m−BB) =⇒ (∆m).

Note that this theorem is Theorem 5.13 from [22], proved by Prover9. It says that: tOWL ⊂ MMV.
Hence, tOWL ⊂ tMMV.

If, additionally, (Pom) holds, then, as expected: tOMWL ⊂ tQMV.
Note that Theorem 3.17 follows also from Theorem 4.30, since (m-Pimpl) implies (m-Pabs-i).
By (42), by Theorems 3.17 and 4.30 and the connections from Figure 21, we obtain the connections from

Figure 22.
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tOWL

(m-Pimpl)

tOL

Figure 22: Resuming connections between tQMV, tMMV, tOWL and tOL

• The transitive and the antisymmetric case

Denote by aOMWL the class of all antisymmetric left-OMWLs.

Theorem 4.31. We have:
aOMWL = taOMWL.

Proof. Since OMWL ⊂ QMV, by adding (m-An), we obtain: aOMWL ⊂ aQMV = MV, by Theorem
2.24, and since any MV algebra verifies (m-Tr), it follows that aOMWL = taOMWL. □

While tOMWL ⊂ tOWL, we obtain the following results.

Theorem 4.32. We have:
(i) taOWL ⊂ MV; (ii) taOMWL ⊂ MV; (iii) taOWL = taOMWL.

Proof. (i) Since tOWL ⊂ tMMV, by applying (m-An), we obtain:
taOWL ⊂ taMMV = MV, by Theorem 2.24.

(ii) Since tOMWL ⊂ tQMV, by applying (m-An), we obtain:
taOMWL ⊂ taQMV = MV, by Theorem 2.24.

(iii) Since any MV algebra verifies (Pom), it follows by (i) that taOWL = taOMWL. □

Theorem 4.33. We have:
taOWL = taOMWL = aOMWL ⊂ MV.

Proof. By Theorems 4.31, 4.32. □
• Final remarks We have:

tOMWL ⊂ tQMV

(m-An) ↓ ↓ (m-An)

taOMWL = taOWL ⊂ MV.
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The tOMWLs (inside the tQMV algebras) will be deeply analysed in next paper [19], in connection with
the taOWLs (inside the MV algebras).
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Computing, Editor Adrian Rezuş, College Publications, United Kingdom, (2020).

[16] A. Iorgulescu, Implicative-groups vs. groups and generalizations, Matrix Rom, Bucharest, (2018).

[17] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras, Parts I and II (Dedicated to
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