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1 Introduction

There are usually two ways in which convergence in topology is studied. One way makes use of so-called
nets or Moore-Smith sequences. These were introduced by Moore and Smith [24] and made popular with
the textbook of Kelley [17]. The other way uses filters and these were introduced by Cartan [4] and made
popular e.g. by Kowalsky [18] and Bourbaki [3]. Bartle pointed out that both notions are equivalent in the
sense that a definition, proposition, or proof based on nets can also be given using filters and vice versa [1].

In the lattice-valued case — for different lattice backgrounds — both approaches have been generalized
and used from the very beginning of fuzzy topology. Lowen [22] developed a convergence theory based on
prefilters and at around the same time, Pu and Liu [25] developed a convergence theory using fuzzy nets. The
relationship between these two approaches was clarified in [23]. Höhle developed a theory of ⊤-filters [10] and
L-filters [11, 12]. Convergence theories based on this concept were developed e.g. in [14, 15, 5, 20]. A further
notable contribution is due to Yao [28] who defined and studied LM -nets and discussed the relationship to
LM -filters.

Recently, new interest in Höhle’s ⊤-filters evolved [7, 29, 31] as they can be used for a convergence theory
for strong L-topological spaces [5, 32] or conical neighborhood spaces [21, 19]. They are also applied to study
probabilistic uniform spaces [10, 7, 30] and ⊤-uniform convergence spaces [16].

In this paper, we provide a suitable theory of ⊤-nets and show with examples that this concept can also
be fruitfully applied in cases where ⊤-filters have been used so far. In this sense, we again obtain equivalence
between ⊤-nets and ⊤-filters.

The paper is organized as follows. In a preliminary section, we describe the lattice context used in this
paper and collect the basic underlying theory and results that we use later on. The next section gives the
new concepts of a ⊤-net and — most important for the equivalence mentioned above — the definition of
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a ⊤-subnet. The relationship between ⊤-nets and ⊤-filters is developed. This is followed by a section on
applications of both ⊤-nets and ⊤-filters in the theory of strong L-topological spaces and a section on a
diagonal principle based on ⊤-nets. Then we briefly glimpse the use of ⊤-sequences and finally we draw some
conclusions.

2 Preliminaries

Let (L,≤) be a complete lattice with distinct top and bottom elements ⊤ ̸= ⊥. We can define the well-below
relation α◁ β if for all subsets D ⊆ L such that β ≤

∨
D there is δ ∈ D such that α ≤ δ. A complete lattice

is completely distributive if and only if we have α =
∨
{β : β◁α} for any α ∈ L, [26]. For more details and

results on lattices, we refer to [9].
The triple L = (L,≤, ∗), where (L,≤) is a complete lattice with order relation ≤, is called a commutative

and integral quantale if (L, ∗) is a commutative semigroup with the top element of L as the unit, i.e. α∗⊤ = α
for all α ∈ L, and ∗ is distributive over arbitrary joins, i.e. (

∨
i∈J αi) ∗ β =

∨
i∈J(αi ∗ β), see e.g. [13].

In a quantale, we can define an implication by α → β =
∨
{δ ∈ L : α ∗ δ ≤ β}. Then δ ≤ α → β ⇐⇒

δ∗α ≤ β. A commutative and integral quantale is an MV-algebra [11] if (α → β) → β = α∨β for all α, β ∈ L.
We will in this paper always assume that L = (L,≤, ∗) is a commutative and integral quantale and that

the lattice (L,≤) is completely distributive with the additional property that α, β◁⊤ implies α∨ β◁⊤, see
[8]. While for a good part of the theory the weaker assumption ⊤ =

∨
{α : α◁⊤} is sufficient we will need

the complete distributivity in particular for the concept of a ⊤-subnet and here, for the important Theorem
3.7.

An L-set in X is a mapping a : X −→ L and we denote the set of L-sets in X by LX . The lattice
operations are extended pointwisely from L to LX .

For a, b ∈ LX we denote [a, b] =
∧

x∈X(a(x) → b(x)). [·, ·] is sometimes called the fuzzy inclusion order
[2]. We collect some of the properties that we will need later.

Lemma 2.1. Let a, a′, b, b′, c ∈ LX , d ∈ LY and let φ : X −→ Y be a mapping. Then

(i) a ≤ b if and only if [a, b] = ⊤;

(ii) a ≤ a′ implies [a′, b] ≤ [a, b] and b ≤ b′ implies [a, b] ≤ [a, b′];

(iii) [a, c] ∧ [b, c] = [a ∨ b, c];

(iv) [φ(a), d] = [a, φ←(d)].

Definition 2.2. [29, 10]
A subset F ⊆ LX is called a ⊤-filter if

(⊤-F1)
∨

x∈X b(x) = ⊤ for all b ∈ F;

(⊤-F2) a, b ∈ F implies a ∧ b ∈ F;

(⊤-F3)
∨

b∈F[b, c] = ⊤ implies c ∈ F.

We denote the set of all ⊤-filters on X by F⊤L (X).

Example 2.3. For x ∈ X, [x] = {a ∈ LX : a(x) = ⊤} is a ⊤-filter.

Definition 2.4. [29, 10] A subset B ⊆ LX is called a ⊤-filter base if

(⊤-B1)
∨

x∈X b(x) = ⊤ for all b ∈ B;
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(⊤-B2) a, b ∈ B implies
∨

c∈B[c, a ∧ b] = ⊤.

For a ⊤-filter base B, [B] = {a ∈ LX :
∨

b∈B[b, a] = ⊤} is the ⊤-filter generated by B.

It is well-known, that for a ⊤-filter F ∈ F⊤L (X) and a mapping φ : X −→ Y , the set B = {φ(a) : a ∈ F}
is a ⊤-filter base on Y and we denote φ(F) the generated ⊤-filter on Y , the image of F under φ, see [10].

3 ⊤-nets and their relation to ⊤-filters

A directed set (D,≺) is a nonvoid set with a reflexive and transitive relation which satisfies moreover that
for d, e ∈ D there is f ∈ D such that d, e ≺ f . We will also often write e ≻ d for d ≺ e.

We denote L∗ = L \ {⊥}. Let (D,≺) be a directed set. We consider two mappings sX : D −→ X and
sL : D −→ L∗. If

∨
d≺e sL(e) = ⊤ for all d ∈ D, then we call the pair s = (sX , sL) : D −→ X × L∗ a ⊤-net

in X.

Example 3.1. A constant ⊤-net with value x ∈ X is defined by cx : D −→ X×L∗, cxX(d) = x and cL(d) = ⊤
for all d ∈ D.

Theorem 3.2. Let s = (sX , sL) : D −→ X × L∗ be a ⊤-net in X.

(i) The set Bs = {bsd : d ∈ D}, with bsd =
∨

d≺e sL(e) ∗ ⊤sX(e) a “tail” of the ⊤-net s, is a ⊤-filter basis.

(ii) For the generated ⊤-filter Fs = [Bs] we have a ∈ Fs if and only if∨
d∈D

∧
d≺e

(sL(e) → a(sX(e))) = ⊤.

Proof. We first show (1). We have
∨

z∈X bd(z) ≥
∨

d≺e bd(sX(e)) =
∨

d≺e sL(e) = ⊤ for each d ∈ D and
hence (⊤-B1) is satisfied. For (⊤-B2), let bd, be ∈ Bs. For d, e ∈ D there is f ∈ D with d, e ≺ f . Then
bf ≤ bd ∧ be and we conclude

∨
b∈Bs

[b, bd ∧ be] ≥ [bf , bd ∧ be] = ⊤.

To show (2), we note that for d ∈ D and a ∈ LX we have

[bd, a] =
∧
z∈X

(bd(z) → a(z)) =
∧
z∈X

∧
d≺e

(sL(e) ∗ ⊤sX(e)(z) → a(z)) =
∧
d≺e

sL(e) → a(sX(e)).

□
It is a simple exercise to show that Fcx = [x] for a constant ⊤-net.

Remark 3.3. For the special case that (D,≺) = (IN,≤) we obtain the concept of a ⊤-sequence.

Proposition 3.4. Let s = (sX , sL) : D −→ X×L∗ be a ⊤-net and let φ : X −→ Y be a mapping. We define
the image of s under φ by φ(s) = (φ ◦ sX , sL) : D −→ Y × L∗. Then Fφ(s) = φ(Fs).

Proof. We have a ∈ φ(Fs) if and only if φ←(a) ∈ Fs. This is equivalent to

⊤ =
∨
d∈D

∧
d≺e

(sL(e) → φ←(a)(sX(e))) =
∨
d∈D

∧
d≺e

(sL(e) → a(φ ◦ sX(e))),

i.e. to a ∈ Fφ(s). □
Let now F ∈ F⊤L (X) be a ⊤-filter. We define

DF = {((x, α), f) : ⊥ ̸= α◁⊤, f ∈ F, f(x) ≥ α}

and for ((x, α), f), ((y, β), g) ∈ DF we define ((x, α), f) ≺ ((y, β), g) if and only if g ≤ f .
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Proposition 3.5. Let F ∈ F⊤L (X). Then (DF,≺) is a directed set.

Proof. We note thatDF is not empty because F is a ⊤-filter. The reflexivity and transitivity of ≺ are obvious.
Let d1 = ((x, α), f), d2 = ((y, β), g) ∈ DF. Then f, g ∈ F and f(x) ≥ α ̸= ⊥ and g(y) ≥ β ̸= ⊥ and α, β ◁⊥.
Then f ∧ g ∈ F and, by our assumption on the quantale, also α ∨ β ◁ ⊤. From α ∨ β ◁ ⊤ =

∨
z∈X f ∧ g(z)

we conclude that there is z ∈ X such that α ∨ β ≤ f ∧ g(z). Hence, d3 = ((z, α ∨ β), f ∧ g) ∈ DF and clearly
d1, d2 ≺ d3. □

We define now the mapping sF : DF −→ X × L∗ by sF((x, γ), f) = (x, γ). For simplicity, we denote
sF = (sX , sL). We note that if ((x, α), f) ∈ DF, then, as f ∈ F, for each β ◁⊤, we have

∨
z∈X f(z) = ⊤▷ β

and thus there is zβ ∈ X such that f(zβ) ≥ β. Therefore ((zβ, β), f) ∈ DF and clearly ((x, α), f) ≺ ((zβ, β), f).
We conclude ∨

((x,α),f)≺((Y,β),g)

sL((y, β), g) ≥
∨
β◁⊤

β = ⊤

and sF is a ⊤-net on X.

Proposition 3.6. Let F ∈ F⊤L (X). Then F(sF) = F.

Proof. Let first a ∈ F. For⊥ ̸= α ≤ a(x) with α◁⊤ then d = ((x, α), a) ∈ DF. If ((x, α), a) ≺ ((y, β), g) ∈ DF
then β ≤ g(y) ≤ a(y) and hence∧

((x,α),a)≺((y,β),g)

sL(((y, β), g)) → a(sX(((y, β), g))) =
∧

((x,α),a)≺((y,β),g)

β → a(y) = ⊤.

Therefore ∨
d∈DF

∧
d≺e

sL(e) → a(sX(e)) = ⊤

and we have a ∈ FsF .

Conversely, let a ∈ FsF . Then

⊤ =
∨

d∈DF

∧
d≺e

sL(e) → a(sX(e))

≤
∨
f∈F

∧
((x,γ),f)≺((y,δ),f)

(δ → a(y))

≤
∨
f∈F

∧
y∈X

∧
δ:f(y)≥δ

(δ → a(y))

=
∨
f∈F

∧
y∈X

((
∨

δ:f(y)≥δ

δ) → a(y))

=
∨
f∈F

∧
y∈X

(f(y) → a(y)) =
∨
f∈F

[f, a],

and hence a ∈ F. □
Clearly, for a ⊤-net s : D −→ X×L∗ we do not have that s(Fs) equals s as DFs does not coincide with the

original directed set D. This is similar to the classical relation between nets and filters. For the “equivalence”
of both concepts with regards to theories and applications of convergence, we need the notion of a ⊤-subnet.

Let s : D −→ X × L∗ and t : E −→ X × L∗ be two ⊤-nets on X. We call t a ⊤-subnet of s if there is
a mapping ϕ : E −→ D with tX = sX ◦ ϕ, tL ≤ sL ◦ ϕ and if for all d ∈ D there is e ∈ E such that e ≺ h
implies d ≺ ϕ(h).
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Proposition 3.7. Let t = (tX , tL) : E −→ X × L∗ be a ⊤-subnet of s = (sX , sL) : D −→ X × L∗. Then
Ft ≥ Fs.

Proof. Let d ∈ D and let bsd =
∨

d≺f sL(f) ∗ ⊤sX(f) be an element of the ⊤-basis of Fs. We choose e ∈ E

such that e ≺ h implies d ≺ ϕ(h). Then for the element bte of the ⊤-basis of Ft we have

bte =
∨
e≺h

tL(h) ∗ ⊤tX(h) ≤
∨

d≺ϕ(h)

sL(ϕ(h)) ∗ ⊤sX(ϕ(h)) ≤
∨
d≺f

sL(f) ∗ ⊤sX(f) = bsd.

Hence, bsd ∈ Ft and we have Fs ≤ Ft. □
Crucial for us is the following result.

Theorem 3.8. Let s = (sX , sL) : D −→ X × L∗ be a ⊤-net and let G ≥ Fs. Then there is a ⊤-subnet
t = (tX , tL) : E −→ X × L∗ of s such that G = Ft.

Proof. We define the set

E = {(e, d, g, ε) : d, e ∈ D, d ≺ e, g ∈ G, ε◁⊤, g(sX(e)) ∧ sL(e) ≥ ε}.

We note that for ε◁⊤, d ∈ D we have bsd ∈ Fs ≤ G and hence bsd ∧ g ∈ G. From ε◁⊤ =
∨

z∈X bsd ∧ g(z) we
conclude that there is z ∈ X such that ε◁ bsd(z) =

∨
d≺e sL(e) ∗ ⊤sX(e)(z) and ε◁ g(z). Hence there is e ≻ d

such that sX(e) = z, sL(e) ≥ ε and we conclude g(sX(e))∧ sL(e) ≥ ϵ. Therefore, the set E is not empty and
for each d ∈ D, ε◁⊤, g ∈ G there is an element (e, d, g, ε) ∈ E.

We define an order on E as follows:

(e1, d1, g1, ε1) ≺ (e2, d2, g2, ε2) ⇐⇒ d1 ≺ d2 and g1 ≥ g2.

It is not difficult to see that ≺ is a reflexive and transitive relation on E. We show that (E,≺) is directed.
Let (e1, d1, g1, ε1), (e2, d2, g2, ε2) ∈ E. We choose d3 ≻ d1, d2, ε3 ≤ ε1 ∧ ε2 and g3 = g1 ∧ g2 ∈ G. As we have
just seen, for ε3 ◁ ⊤ there is e3 ≻ d3 such that g3(sX(e3)) ∧ sL(e3) ≥ ε3 and hence (e3, d3, g3, ε3) ∈ E and
≻ (e1, d1, g1, ε1), (e2, d2, g2, ε2).

We define now ϕ : E −→ D by ϕ(e, d, g, ε) = e and we put tX(e, d, g, ε) = sX(e), tL(e, d, g, ε) = ϵ. Then
tX = sX ◦ Φ and tL ≤ sL ◦ Φ. For d ∈ D we choose (e, d, g, ε) ∈ E. If (e1, d1, g1, ε1) ≻ (e, d, g, ε) then by the
definition of E we have e1 ≻ d1 and from the order we get moreover d1 ≻ d. Hence Φ(e1, d1, g1, ε1) = e1 ≻ d.
In order to conclude that t : E −→ X × L∗ is a ⊤-subnet of s, we need only to show that t is a ⊤-net.
To this end, let (e0, d0, g0, ε0) ∈ E. For ε1 ◁ ⊤ we choose, as bsd0 ∧ g0 ∈ G, as before e ≻ d0 such that
sX(e) = z, sL(e) ≥ ε1, g0(z) ≥ ε1. Then (e, d0, g0, ε1) ∈ E and is ≻ (e0, d0, g0, ε0). Hence∨

(e0,d0,g0,ε0)≺(e,d,g,ε)

tL(e) ≥ ε1.

This is true for all ε1 ◁⊤ and hence
∨

(e0,d0,g0,ε0)≺(e,d,g,ε) tL(e, d, g, ε) = ⊤. Hence t is a ⊤-subnet of s.
We will now show that G = Ft. Consider a “tail” of t = (tX , tL),

bt(e0,d0,g0,ε0) =
∨

(e0,d0,g0,ε0)≺(e,d,g,ε)

tL(e, d, g, ε) ∗ ⊤tX(e,d,g,ε) =
∨

(e0,d0,g0,ε0)≺(e,d,g,ε)

ε ∗ ⊤sX(e).

If (e0, d0, g0, ε0) ≺ (e, d, g, ε) then e ≻ d, d ≻ d0, g ≤ g0, ε◁⊤ and g(sX(e)) ∧ sL(e) ≥ ε and we have

bsd0(sX(e)) =
∨
e≻d

s(e) ∗ ⊤sX(e)(sX(e)) ≥ sL(e)
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and
g0(sX(e)) ∧ sL(e) ≥ g(sX(e)) ∧ sL(e) ≥ ε = ε ∗ ⊤sX(e)(sX(e)).

Hence we conclude g0 ∧ bsd0(z) ≥ ε ∗ ⊤sX(e)(z) for all z ∈ X and we have bt(e0,d0,g0,ε0) ≤ g0 ∧ bd0 .

Conversely, let η ◁ g0 ∧ bsd0(z) = g0(z) ∧
∨

e≻d0 sL(e) ∗ ⊤sX(e). Then g0(z) ≥ η and there is e ≻ d0 such
that z = sX(e) and sL(e) ≥ η. We conclude (e, d0, g0, η) ∈ E and ≻ (e0, d0, g0, ε0). Hence, bt(e0,d0,g0,ε0)(z) ≥
sL(e)∧ η∧⊤sX(e)(z) = η and we have g0 ∧ bsd0 ≤ bt(e0,d0,g0,ε0). Together, we have shown g0 ∧ bsd0 = bt(e0,d0,g0,ε0).

As the “tails” bt(e0,d0,g0,ε0) are a ⊤-basis of Ft, we finally show that the set B = {g∧bsd : g ∈ G, d ∈ D} is a ⊤-

basis of G. The property (⊤-B1) follows, as bsd ∈ Fs ≤ G and therefore g∧bsd ∈ G. The property (⊤-B2) can be
seen as follows. Let g1∧bsd1 , g2∧b

s
d2

∈ B. We choose d3 ≻ d1, d2. Then bsd3 ≤ bsd1∧b
s
d2

and also g3 = g1∧g2 ∈ G.
Hence g3 ∧ bsd3 ≤ (g1 ∧ bsd1) ∧ (g2 ∧ bsd2) and we conclude

∨
g∈G,d∈D[g ∧ bsd, (g1 ∧ bds1) ∧ (g2 ∧ bsd2)] = ⊤. Hence

B is in fact a ⊤-basis. Let now g ∈ G, then g ∧ bsd ≤ g and hence
∧

h∈G,d∈D[h ∧ bsd, g] = ⊤ and we have
g ∈ G. Conversely, if ⊤ =

∨
h∈G,d∈D[h ∧ bsd, g], then, as h ∧ bsd ∈ G, also

∨
h∈G[h, g] = ⊤ which implies g ∈ G.

Therefore, B is a ⊤-basis of G and the proof is complete. □

4 The equivalence of ⊤-filter and ⊤-net convergence in L-topology

A subset τ ⊆ LX is called a strong L-topology [32] (or a probabilistic topology [10]) if the following conditions
are satisfied.

(ST1) ⊥X ,⊤X ∈ τ ,

(ST2) f ∧ g ∈ τ whenever f, g ∈ τ ,

(ST3)
∨

j∈J fj ∈ τ whenever fj ∈ τ for all j ∈ J ,

(ST4) α ∗ f ∈ τ whenever f ∈ τ and α ∈ L,

(ST5) α → f ∈ τ whenever f ∈ τ and α ∈ L.

The pair (X, τ) is called a strong L-topological space. For a strong L-topological space (X, τ) and x ∈ X we
define the ⊤-neighbourhood filter of x [10] by

Ux
τ = {u ∈ LX :

∨
g∈τ,g(x)=⊤

[g, u] = ⊤}

and we call a ⊤-filter F ∈ F(X) convergent to x if F ≥ Ux
τ and we write F τ→ x in this case. A mapping

φ : (X, τ) −→ (Y, σ) between the strong L-topological spaces (X, τ) and (Y, σ) is called continuous if for all

x ∈ X we have Uφ(x)
σ ≤ φ(Ux

τ ).
We call a⊤-net s : (sX , sL) : D −→ X×L∗ convergent to x if for all u ∈ Ux

τ we have⊤ =
∨

d∈D
∧

e≻d(sL(e) →
u(sX(e))). This is equivalent to the fact that Fs is convergent to x and we write s

τ→ x in this case.
A strong L-topological space (X, τ) can be charaterized by an interior operator, int(a) =

∨
g∈τ [g, a] ∗ g for

all a ∈ LX , [32]. It is shown in [5] that int(a) =
∨

g∈τ,g≤a g. The interior operator has the following properties

[32, 5]. For a, b ∈ LX and α ∈ L we have

(I1) [a, b] ≤ [int(a), int(b)];

(I2) int(a) ≤ a;

(I3) int(α → a) = α → int(a);
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(I4) int(a ∧ b) = int(a) ∧ int(b);

(I5) int(int(a)) = int(a).

The strong L-topology τ consists of the fixed-points of int, i.e. we have g ∈ τ ⇐⇒ int(g) = g. For the
⊤-neighbourhood filter Ux

τ we have u ∈ Ux
τ if and only if int(u)(x) = ⊤. For u ∈ Ux

τ we have on the one hand
int(u)(x) ≥

∨
g∈τ,g(x)=⊤[g, u] ∗ g(x) =

∨
g∈τ,g(x)=⊤[g, u] = ⊤ and if int(u)(x) = ⊤ we have, on the other hand,∨

g∈τ,g(x)=⊤[g, u] ≥
∨

g∈τ,g(x)=⊤ g(x) → u(x) = u(x) ≥ int(u)(x) = ⊤ by (I2) and hence u ∈ Ux
τ .

We first characterize the interior operator by convergence.

Proposition 4.1. Let (X, τ) be a strong topological space and let a ∈ LX . Then

int(a)(x) =
∨

u∈Ux

[u, a] =
∧
F τ→x

∨
f∈F

[f, a] =
∧
s

τ→x

∨
d∈D

[bsd, a].

In the last equality, the meet is taken over all convergent ⊤-nets s : D −→ X × L∗.

Proof. We first show the first equality. We have on the one hand∨
u∈Ux

τ

[u, a] =
∨

u∈Ux
τ

∨
g∈τ,g(x)=⊤

[g, u] ∗ [u, a] ≤
∨

g∈τ,g(x)=⊤

[g, a]

≤
∨
g∈τ

[g, a] ∗ g(x) = int(a)(x).

On the other hand, we define an L-set b ∈ LX by b(z) = int(a)(x) → a(z) for z ∈ X. Then, using (I3),
int(b)(x) = ⊤, i.e. b ∈ Ux

τ and we conclude∨
u∈Ux

τ

[u, a] ≥
∧
z∈X

((int(a)(x) → a(z)) → a(z)) ≥ int(a)(x).

For the second equality, we get
∧

F τ→x

∨
f∈F[f, a] ≤

∨
u∈Ux [u, a] as Ux

τ
τ→ x. Let now η ◁

∨
u∈Ux

τ
[u, a].

Then there is u ∈ Ux
τ such that η ≤ [u, a]. If F τ→ x, then u ∈ F and hence η ≤

∨
f∈F[f, a] and hence

η ≤
∧

F τ→x

∨
f∈F[f, a]. This shows

∨
u∈Ux [u, a] ≤

∧
F τ→x

∨
f∈F[f, a].

The last equality can finally be shown as follows. If s
τ→ x, then Fs

τ→ x and the “tails” bsd form a ⊤-basis

of Fs. Hence
∧

F τ→x

∨
f∈F[f, a] ≤

∧
s

τ→x

∨
d∈D[b

s
d, a]. On the other hand, if F τ→ x, then sF

τ→ x and we have
F = F(sF). Hence

∧
F τ→x

∨
f∈F[f, a] =

∧
sF

τ→x

∨
f∈F(sF)

[f, a] ≥
∧

s
τ→x

∨
f∈Fs

[f, a] ≥
∧

s
τ→x

∨
d∈D[b

s
d, a]. □

Corollary 4.2. Let (X, τ) be a strong L-topological space. Then the following assertions are equivalent.

1. g ∈ τ ;

2. g(x) ≤
∧

F τ→x

∨
f∈F[f, a] for all x ∈ X;

3. g(x) ≤
∧

s
τ→x

∨
d∈D[b

s
d, a] for all x ∈ X.

We define the closure of an L-set a ∈ LX in a strong L-topological space in accordance with [27] by

a(x) =
∨

G≥Ux
τ

∨
g∈G

[g, a], x ∈ X.

This is an L-valued interpretation of the closure of a subset A in a topological space X: A point x ∈ X
belongs to the closure of A if and only if there is a filter converging to x which contains A.

We can also characterize the closure of an L-set using ⊤-nets.
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Proposition 4.3. Let (X, τ) be a strong L-topological space and let a ∈ LX . Then

a(x) =
∨
s→x

∨
d∈D

[bsd, a], x ∈ X.

Proof. We have s → x if and only if Fs ≥ Ux
τ . Hence

a(x) =
∨

F≥Ux
τ

∨
f∈F

[f, a] ≥
∨
s→x

∨
f∈Fs

[f, a] ≥
∨
s→x

∨
d∈D

[bsd, a].

On the other hand, for f ∈ Fs we have
∨

d∈D[b
s
d, f ] = ⊤. Using F = F(sF) we conclude

a(x) =
∨

F≥Ux
τ

∨
f∈F

[f, a] =
∨

sF→x

∨
f∈F(sF)

[f, a]

≤
∨
s→x

∨
f∈Fs

[f, a] =
∨
s→x

∨
f∈Fs

∨
d∈D

[bsd, f ] ∗ [f, a] ≤
∨
s→x

∨
d∈D

[bsd, a]

and the proof is complete. □
Next we turn to the concept of a cluster point.
For a ⊤-filter F ∈ FL⊤(X) a point x ∈ X is called a cluster point of F if F ∨ Ux

τ exists or, equivalently, if
for all f ∈ F and all u ∈ Ux

τ we have
∨

x∈X f(x) ∧ u(x) = ⊤. In [10] a cluster point of a ⊤-filter is called an
adherent point of the ⊤-filter.

Lemma 4.4. Let (X, τ) be a strong L-topological space and let F be a ⊤-filter in X and let x ∈ X. Then x
is a cluster point of F if and only if there is a ⊤-filter G ≥ F which converges to x.

Proof. If x is a cluster point of F, then we can choose G = F ∨ Ux
τ , which clearly converges to x. If there is

G ≥ F converging to x, then G ≥ Ux
τ and hence F ∨ Ux

τ exists and x is a cluster point of F. □
Similarly, for a ⊤-net s = (sX , sL) : D −→ X a point x ∈ X is called a cluster point of s if

∨
d≺e sL(e) ∧

u(sX(e)) = ⊤ for all d ∈ D and all u ∈ Ux
τ .

Proposition 4.5. Let (X, τ) be a strong L-topological space and let s = (sX , sL) : D −→ X be a ⊤-net in X
and let x ∈ X. Then x is a cluster point of s if and only if x is a cluster point of Fs.

Proof. Let first x be a cluster point of s and let f ∈ Fs and u ∈ Ux
τ . Then

∨
d∈D

∧
d≺e(sL(e) → f(sX(e))) = ⊤,

because f ∈ Fs, and
∨

d≺h sL(h)∧ u(sX(h)) = ⊤. We conclude, using the inequality (α∧ β) ∗ γ ≤ α∧ (β ∗ γ),

⊤ =
∨
d∈D

([∧
d≺e

(sL(e) → f(sX(e)))

]
∗

[∨
d≺h

sL(h) ∧ u(sX(h))

])

=
∨
d∈D

∨
d≺h

(
(u(sX(h)) ∧ sL(h)) ∗

∧
d≺e

(sL(e) → f(sX(e)))

)
≤

∨
d∈D

∨
d≺h

u(sX(h)) ∧ (sL(h) ∗ (sL(h) → f(sX(h))))

≤
∨
d∈D

∨
d≺h

u(sX(h)) ∧ f(sX(h))

≤
∨
x∈X

u(x) ∧ f(x).

Hence x is a cluster point of Fs.
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For the converse, we choose f =
∨

d≺e sL(e) ∗ ⊤sX(e) ∈ Fs. Then, x being a cluster point of Fs we obtain

⊤ =
∨
x∈X

(
∨
d≺e

sL(e) ∗ ⊤sX(e)(x) ∧ u(x) =
∨
d≺e

sL(e) ∧ u(sX(e))

which means that x is a cluster point of s. □

Corollary 4.6. Let (X, τ) be a strong L-topological space and let F be a ⊤-filter in X and let x ∈ X. Then
x is a cluster point of F if and only if x is a cluster point of sF.

Proof. By Proposition 4.3, x is a cluster point of sF if and only if x is a cluster point of F(sF) = F. □

Proposition 4.7. Let (X, τ) be a strong L-topological space and let s = (sX , sL) : D −→ X be a ⊤-net in X
and let x ∈ X. Then x is a cluster point of s if and only if there is a ⊤-subnet t of s which converges to x.

Proof. Proposition 4.3 shows that x is a cluster point of s if and only if x is a cluster point of Fs. This is by
Lemma 4.2 equivalent to the existence of G ≥ Fs, converging to x. Theorem 3.7 shows that this is equivalent
to the existence of a ⊤-subnet t of s such that G = Ft, converging to x. But this means that the subnet t
converges to x. □

We now characterize cluster points using the closure.

Proposition 4.8. Let (X, τ) be a strong L-topological space, let F be a ⊤-filter on X and let s = (sX , sL) :
D −→ X be a ⊤-net in X.

1. x is a cluster point of F if and only if f(x) = ⊤ for all f ∈ F;

2. x is a cluster point of s if and only if bsd(x) = ⊤ for all d ∈ D.

Proof. (1) Let first x be a cluster point of F and let f ∈ F. Then F ∨ Ux
τ exists and converges to x. Also

f ∧ u is in F ∨ Ux
τ for all u ∈ Ux

τ . We conclude

f(x) ≥
∨

g∈F∨Ux
τ

[g, f ] ≥
∨

u∈Ux
τ

[f ∧ u, f ] = ⊤.

Conversely, let f(x) = ⊤ for all f ∈ F. We fix f ∈ F. Then

⊤ =
∨

G≥Ux
τ

∨
g∈G

[g, f ] =
∨

G≥Ux
τ

∨
g∈G

∧
z∈X

(g(z) → f(z))

Let α ◁ ⊤. Then there is G ≥ Ux
τ and g ∈ G such that for all z ∈ X we have α ∗ g(z) ≤ f(z). Let u ∈ Ux

τ .
Then g ∧ u ∈ G and hence

∨
z∈X g ∧ u(z) = ⊤. We conclude (g ∧ u(z)) ∗α ≤ f ∧ u(z) for all z ∈ X and hence

α = α ∗
∨
z∈X

g ∧ u(z) ≤
∨
z∈X

f ∧ u(z).

The complete distributivity then yields ⊤ =
∨

z∈X f ∧u(z). Hence F∨Ux
τ exists and x is a cluster point of F.

(2) A point x is a cluster point of s if and only if it is a cluster point of Fs. According to (1) this is
equivalent to f(x) = ⊤ for all f ∈ Fs and this implies, the ”tails” bsd being members of Fs, that bsd(x) = ⊤.

Conversely, if bd(x) = ⊤ for all d ∈ D, then for f ∈ Fs we conclude

⊤ =
∨
d∈D

[bsd, f ] ≤
∨
d∈D

[bsd, f ] ≤
∨
d∈D

bsd(x) → f(x) = f(x).

Hence x is a cluster point of Fs, which means that x is a cluster point of s. □
We can characterize continuity by convergence.
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Proposition 4.9. Let (X, τ), (Y, σ) be strong L-topological spaces and let φ : X −→ Y be a mapping. The
following assertions are equivalent.

1. φ is continuous;

2. for all F ∈ FL⊤(X), φ(F) converges to φ(x) whenever F converges to x;

3. for all ⊤-nets s on X, φ(s) converges to φ(x) whenever s converges to x.

Proof. The equivalence of (1) and (2) is not difficult and not shown. We show the equivalence of (2) and (3).

If the ⊤-net s converges to x, then Fs ≥ Ux
τ and hence, using Proposition 3.3 and (2), Fφ(s) = φ(Fs) ≥ Uφ(x)

σ .
This means that φ(s) converges to φ(x). Conversely, if (3) is valid and F converges to x, then with Proposition
3.5 we get F(sF) = F ≥ Ux

τ , i.e. the ⊤-net sF converges to x. With (3) then also φ(s) converges to φ(x) which

means φ(F) = φ(F(sF)) = Fφ(sF) ≥ Uφ(x)
σ , i.e. φ(F) converges to φ(x). □

We now turn our attention to separation. A strong L-topological space (X, τ) is called ⊤-Hausdorff
separated [10] if for x, y ∈ X, x ̸= y there are u ∈ Ux

τ , v ∈ Uy
τ such that

∨
z∈X u ∧ v(z) ̸= ⊤.

Proposition 4.10. Let (X, τ) be a strong L-topological space. Then

1. (X, τ) is ⊤-Hausdorff separated if and only if each ⊤-filter converges to at most one point;

2. (X, τ) is ⊤-Hausdorff separated if and only if each ⊤-net converges to at most one point.

Proof. We only prove (2). Let (X, τ) be ⊤-Hausdorff separated and assume that the ⊤-net converges to x
and y. Then Fs ≥ Ux

τ and Fs ≥ Uy
τ and hence Ux

τ ∨ Uy
τ exists. Therefore, for all u ∈ Ux

τ and all v ∈ Uy
τ we

have
∨

z∈X u ∧ v(z) = ⊤, a contradiction.
Conversely, let each ⊤-net converge to only one point and assume that

∨
z∈X u ∧ v(z) = ⊤ for all u ∈ Ux

τ

and all v ∈ Uy
τ . Then F = Ux

τ ∨Uy
τ exists and, as F(sF) = F, sF converges to both x and y. Hence x = y. □

Without going into more details we have shown in this section that ⊤-nets, like ⊤-filters, are versatile
tools for the theory of strong L-topological spaces. We would simply like to mention that compactness of a
space can be defined by the requirement that each ⊤-net has a cluster point or, equivalently, that each ⊤-net
has a convergent ⊤-subnet.

5 A diagonal principle

We first need some preparations, where we follow the work of Fang and Yue [7]. Let J be a set. For a
“selection function” σ : J −→ F⊤L (X) and f ∈ LX we define σ̂(f) ∈ LJ by σ̂(j) =

∨
h∈σ(j)[h, f ] for j ∈ J .

Then, for G ∈ F⊤L (J) we define κσG ∈ F⊤L (X) by f ∈ κσG if and only if σ̂(f) ∈ G. The ⊤-filter κσG is called
the ⊤-diagonal filter of (G, σ).

The next property of the ⊤-neighborhood filters is well-known but we shall provide a proof because it
is important for us later and to point out that the assumption of a complete MV-algebra, which is usually
assumed in the corresponding papers, is not needed here.

Proposition 5.1. Let (X, τ) be a strong L-topological space. We define a selection function σN : X −→
F⊤L (X) by σN (y) = Uy

τ for y ∈ X. Then we have Ux
τ ≤ κσNUx

τ for all x ∈ X.

Proof. From Proposition 4.1 we know that for u ∈ Ux
τ we have int(u) = σ̂N (u). Hence, using (I5), we have

for u ∈ Ux
τ that int(int(u))(x) = ⊤, i.e. that int(u) = σ̂N (u) ∈ Ux

τ , which means that u ∈ κσNUx
τ . □

We note that the other inequality is always true [6], i.e. that we have Ux
τ = κσNUx

τ for all x ∈ X. Fang
and Yue [7] show that Proposition 5.1 implies the following result. Again an MV-algebra is not needed here.
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Proposition 5.2 ([7]). Let (X, τ) be a strong L-topological space. Then the following axiom (⊤-F) is true.
For any selection function σ : J −→ F⊤L (X), G ∈ F⊤L (J) and mapping φ : J −→ X we have: if σ(j)

τ→ φ(j)

for all j ∈ J and if φ(G)
τ→ x then κσG τ→ x.

We will now use this result and show a diagonal principle for ⊤-nets in a strong L-topological space (X, τ).
Again, we first need some preparations.

If s : D −→ X × L∗ is a ⊤-net and d ∈ D, then also Dd = {e ∈ D : e ≻ d} is directed and
sd : Dd −→ X × L∗ defined by sdX(e) = sX(e), sdL(e) = sL(e) for e ∈ Dd is a ⊤-net. If s

τ−→ x, then we have∨
d∈D

∧
e≻d(s(e) → u(sX(e))) = ⊤ for all u ∈ Ux

τ . If η ◁ ⊤ there is d0 ∈ D such that for all e ≻ d0 we have

η ≤ sL(e) → u(sX(e)). We choose d1 ≻ d, d0. Then d1 ∈ Dd and for all e ≻ d1 we have η ≤ sL(e) → u(sX(e)).
Hence

η ≤
∧
e≻d1

(sL(e) → u(sX(e))) ≤
∨

d1∈Dd

∧
e≻d1

(sL(e) → u(sX(e))).

The complete distributivity then yields ⊤ =
∨

d1∈Dd

∧
e≻d1(sL(e) → u(sX(e))) for all u ∈ Ux

τ which means

that also sd
τ−→ x.

If (Dj ,≺j) are directed sets for all j ∈ J , then also the product
∏

j∈J Dj becomes directed by the product
order, i.e. (dj)j∈J ≺ (ej)j∈J if and only if for all j ∈ J we have dj ≺j ej . We will in the sequel, to simplify
the notation, write ≺ for all orders and hope that the set, on which this order is defined, will be clear from
the context.

Let D and Ed be directed sets for each d ∈ D and denote J =
∪

d∈D({d} × Ed). For (d, e), (d, e) ∈ J we
define (d, e) ≻ (d, e) if d ≻ d or if d = d and e ≻ e. It is not difficult to show that (J,≺) is a directed set.

We consider now a ⊤-net s : J −→ X × L∗, (d, e) 7−→ (sX(d, e), sL(d, e)) such that for all d ∈ D,
sd : Ed −→ X × L, e 7−→ (sdX(e) = sX(d, e), sdL(e) = sL(d, e)) is a ⊤-net which converges to a point yd ∈ X,

i.e. sd
τ→ yd. Furthermore, the ⊤-net y : D −→ X × L∗, defined by yX(d) = yd, yL(d) = ⊤ for d ∈ D shall

converge to x ∈ X, i.e. we have y
τ→ x. We shall write (yd,⊤) for y.

We denote F = D ×
∏

d∈D Ed and define the ⊤-net r : F −→ J × L∗ by rX(d, (ej)) = (d, ed) and
rL(d, (ej)) = ⊤. This ⊤-net is used to select a “diagonal ⊤-net” from s, defined by

s ◦ r :

{
F −→ X × L∗

(d, (ej)) 7−→ (sX(d, ed), sL(d, ed))
.

We note that s ◦ r is a ⊤-net. We are now in the position to state the “diagonal principle”.

Theorem 5.3. Let (X, τ) be a strong L-topological space and define, as above, J =
∪

d∈D({d} × Ed) and
F = D ×

∏
d∈D Ed and the ⊤-nets s : J −→ X × L∗, sd : Ed −→ X × L∗, r : F −→ J × L∗ and

s ◦ r : F −→ X × L∗.
If sd

τ→ yd for each d ∈ D and (yd,⊤)
τ→ x, then there is a ⊤-subnet t of s ◦ r, a “diagonal ⊤-net”, with

t
τ→ x.

Proof. For e ∈ Ed we define sde : Ee
d = {f ∈ Ed : f ≻ e} −→ X × L∗, f 7−→ (sdX(f), sdL(f)). With this

we define the selection mapping σ : J −→ F⊤L (X) by σ(d, e) = Fsde . Furthermore we define φ : J −→ X

by φ(d, e) = yd. Then σ(d, e)
τ→ φ(d, e) for all (d, e) ∈ J . For Fr ∈ F⊤L (J) we have φ(Fr) = Fφ(r) with

φ(r) = (φ ◦ rX , rL), i.e. φ(r)(d, (ej)) = (φ(d, ed),⊤) = (yd,⊤) for (d, (ej)) ∈ F . Hence φ(Fr) = Fy
τ→ x. The

axiom (⊤-F) then yields κσFr
τ→ x.

We now show Fs◦r ≤ κσFr. First, let f ∈ LX . Then σ̂(f) ∈ LJ is defined by

σ̂(f)(d, e) =
∨

h∈F
sde

[h, f ] =
∨

e∈Ee
d

[bs
de

e , f ] =
∨

e∈Ee
d

∧
e≻e

(sL(d, e) → f(sX(d, e))).
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Hence we have f ∈ κσFr if and only if σ̂(f) ∈ Fr if and only if

⊤ =
∨

(d,(ej))∈F

∧
(d,(ej))≻(d,(ej))

σ̂(f)(d, ed) =
∨

(d,(ej))∈F

∧
(d,(ej))≻(d,(ej))

∨
ẽ∈E

e
d

d

∧
˜̃e≻ẽ

(sL(d, ˜̃e) → f(sX(d, ˜̃e))).
Let now f ∈ Fs◦r. Then

⊤ =
∨

(d,(ej))∈F

∧
(d,(ej))≻(d,(ej))

(sL(d, ed) → f(sX(d, ed))).

Let η ◁ ⊤. Then there is (d, (ej)) ∈ F such that for all (d, (ej)) ≻ (d, (ej)) we have η ≤ sL(d, ed) →
f(sX(d, ed)). Then ed ∈ E

ed
d

and for ˜̃e ≻ ed we define (d, (e∗j )) ∈ F by e∗j = ej for j ̸= d and e∗d = ˜̃e. Then

(d, (e∗j )) ≻ (d, (ej)) and hence

η ≤ sL(d, e
∗
d
) → f(sX(d, e∗

d
)) = sL(d, ˜̃e) → f(sX(d, ˜̃e)).

Therefore we obtain

η ≤
∧
˜̃e≻ed

(sL(d, ˜̃e) → f(sX(d, ˜̃e))) ≤ ∨
e∈E

e
d

d

∧
˜̃e≻ed

(sL(d, ˜̃e) → f(sX(d, ˜̃e))).
This holds for all (d, (ej)) ≻ (d, (ej)) and we get

η ≤(d,(ej))∈F
∧

(d,(ej))≻(d,(ej))

∨
ẽ∈E

e
d

d

∧
˜̃e≻ẽ

(sL(d, ˜̃e) → f(sX(d, ˜̃e))).
This is true for all η ◁⊤ and the complete distributivity then yields f ∈ κσFr.

Hence we have shown Fr ≤ κσFr and we conclude from Theorem 3.7 that there is a ⊤-subnet t of s ◦ r
with Ft = κσFr, i.e. t

τ→ x. □

6 First countable spaces and ⊤-sequences

We call a strong L-topological space first countable if for each x ∈ X the ⊤-neighborhood filter Ux
τ has a

countable ⊤-basis.
In first countable spaces, ⊤-sequences suffice for the definition and study of most concepts. We shall

illustrate this with one example.

Proposition 6.1. Let the lattice L have a sequence ⊥ ̸= α1 ≤ α2 ≤ α3 ≤ ... with αk ◁⊤ for all k = 1, 2, 3, ...
and

∨∞
k=1 αk = ⊤ and let (X, τ) be a first countable, strong L-topological space. Then for a ∈ LX and x ∈ X

we have
a(x) =

∨
t→x,t ⊤-sequence

∨
n∈IN

[btn, a],

where btn =
∨

k≥n tL(k) ∗ ⊤tX(k) is a “tail” of the ⊤-sequence t = (tX , tL) : IN −→ X × L∗.

Proof. As ⊤-sequences are ⊤-nets, we obtain from Proposition 4.7 that
∨

t→x

∨
n∈IN[btn, a] ≤ a(x), where

the first join extends of all ⊤-sequences t that converge to x. For the converse, let η ◁ a(x). Then there is
a ⊤-net s = (sX , sL) : D −→ X × L∗ converging to x and a d ∈ D such that [bsd, a] ≥ η. We consider a
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countable ⊤-basis v1, v2, v3, ... of Ux
τ . Then bsd ∈ Fs ≥ Ux

τ and hence we have bsd ∧ v1, b
s
d ∧ v2, ... ∈ Fs. For

αk ◁⊤ =
∨

x∈X bsd∧ vk(x) we choose xk ∈ X such that bsd(xk)∧ vk(xk) ≥ αk for k = 1, 2, 3, ... and we consider
the ⊤-sequence t = (xk, αk). As α1, α2, ... ≤ αn for each n ∈ IN, we have

∨
k≥n αk =

∨∞
k=1 αk = ⊤, i.e. t is in

fact a ⊤-sequence. For a “tail” btk =
∨

n≥k αk ∗ ⊤xk
we have

btk(x) ≤
∨
n≥k

(bsd(xn) ∧ vk(xn)) ∗ ⊤xn(x)

=

{
⊥ if x ̸= xn for all n ≥ k∨

n≥k,x=xn
bsd(xn) ∧ vk(xn) if x = xn for some n ≥ k

=

{
⊥ if x ̸= xn for all n ≥ k

bsd(x) ∧ vk(x) if x = xn for some n ≥ k

≤ bsd(x) ∧ vk(x).

Hence btk ≤ bsd ∧ vk and we therefore conclude that vk ∈ Ft for all k = 1, 2, ..., i.e. Ux
τ ≤ Ft and t → x.

Moreover we have
∨∞

n=1 [btk, a] ≥ [bsd, a] ≥ η. This is true for all η ◁ a(x) and the missing inequality
follows. □

7 Conclusions

We have shown in this paper that besides a convergence theory based on ⊤-filters, also a convergence theory
based on ⊤-nets is available in strong L-topological spaces. Both concepts seem equivalent to one another
in the sense that definitions and proofs that are given using one concept can also be given using the other.
This was demonstrated with some examples like interior and closure of an L-set, cluster points of ⊤-filters or
⊤-nets, continuity, and Hausdorff separation.

It was shown in [7] that ⊤-filters can be used to develop an abstract theory of ⊤-convergence spaces and,
similarly, for a theory of ⊤-uniform convergence spaces [16]. It seems that also ⊤-nets could be used for such
a purpose. This research question is left open at this stage.

Important for the theory may be the concept of a ⊤-sequence as a special case of a ⊤-net. This concept
will allow to naturally extend and study notions like countable compactness or countable completeness and
so on. We will postpone this, however, to future work.
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[12] U. Hhle and A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. Hhle, S. E. Rodabaugh
(Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Kluwer Academic Publishers,
Dordrecht, (1999).

[13] D. Hofmann, G. J. Seal and W. Tholen, Monoidal topology, Cambridge University Press, (2014).
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