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Abstract. In real-world scenarios, the neutrosophic set or neutrosophic numbers have been widely used to deal
with the uncertain difference equations of the corresponding uncertain discrete dynamical system. A situation
where discrete changes occur with vague information of a neutrosophic sense can be dealt with by the neutrosophic
difference equation. In this paper, a new metric is defined for the neutrosophic set, and the sense of generalized
Hukuhara difference for the fuzzy numbers is extended to the neutrosophic numbers. The generalized Hukuhara
difference of the type-I and type-II and their corresponding neutrosophic parametric representation are discussed.
The existence and uniqueness conditions to obtain a solution of the difference equation in a neutrosophic environ-
ment are argued by some theorems. The theoretical concept has been applied to the logistic difference equation in
a neutrosophic environment. We have applied both the type-I and type-II Hukuhara differences to the two different
generalized Hukuhara difference forms of the logistic difference equation. The equilibrium points and their corre-
sponding stability criteria are established to perceive the effect of the Hukuhara differences. Finally, the numerical
examples and their graphical portrayal are provided to recognize the intuition of the introduced theory in this
paper.
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1 Introduction

The discrete dynamical phenomena are best described mathematically using the difference equation. Due
to the practical applications in various fields, including computer science, mathematical biology, economics,
and control engineering, scholars have worked on the theory of difference equations and demonstrated an
interest in this area [1–9]. The difference equation or set of difference equations used to represent a particular
dynamical situation comprises several coefficients, parameters, and initial conditions. The solutions provided
by the clean environment frequently include errors, which makes them describe reality accurately than they
should. We encounter situations where data collection errors occur, experiments are challenging, and the
original information or parameters must be clarified. As a result, the difference equation with ambiguous
beginning circumstances and parameters captures the reality. Fuzzy sets were introduced by Zadeh [10] and

..

∗Corresponding Author: Sankar Prasad Mondal, Email: sankar.mondal02@gmail.com, ORCID: 0000-0003-4690-2598
Received: 27 April 2025; Revised: 11 July 2025; Accepted: 16 July 2025; Available Online: 4 August 2025; Published
Online: 7 November 2026.

How to cite: Alamin A, Rahaman M, Rabih M, Gazi KH, Biswas A, Mondal SP. The Existence and Uniqueness of the Solution of
Difference Equation in Neutrosophic Environment via Generalized Hukuhara Difference Ideology. Transactions on Fuzzy Sets and
Systems. 2026; 5(2): 112-144. DOI: https://doi.org/10.71602/tfss.2026.1205111

112

https://sanad.iau.ir/journal/tfss/
https://doi.org/10.71602/tfss.2026.1205111
https://orcid.org/0009-0009-9621-5383
https://orcid.org/0000-0002-5513-4095
https://orcid.org/0000-0002-3588-9693
https://orcid.org/0000-0001-7179-984X
https://orcid.org/0009-0001-1972-6536
https://orcid.org/0000-0003-4690-2598


Existence and Uniqueness of the Solution of Difference Equation. Trans. Fuzzy Sets Syst. 2026; 5(2) 113

extended in terms of theory and application by succeeding works [11–13]. Abdullayev, I. et al. [14] utilised
the neutrosophic set to solve the prediction of financial distress by the relative weighted neutrosophic valued
distance methodology. While the fuzzy difference equation is an extension of the crisp difference equation, it
is nonetheless crucial for explaining real-world phenomena like ecological dynamics, mathematical models and
finance mathematics [15–18]. Abu Arqub, O. et al. [19] discussed the analytical solution and its use. Khastan,
A. [20] studied the logistic difference equation and described the overall behaviours of two alternative forms
of the difference equation using the Hukuhara difference of fuzzy numbers. Further, Wang, H. et al. [21]
solve the differential equation using gH-differentiability. Soroush, S. et al. [22] applied the generalized fuzzy
difference method to solve the initial value problems of fuzzy equations. Shams, M. et al. [23] solved the
nonlinear equations in the field of engineering and Palanikumar, M. et al. [24] utilized neutrosophic sets along
with aggregated operators in the diagnostic disease problem, respectively.

The vague ambiguity had been further expanded and broadened. The fuzzy intuitionistic theory is one
such refinement. The concepts of membership function and non-membership function are considered in this
framework. Inside this discipline of mathematics, Atanassov [25] introduced the sleight-of-hand notion of an
intuitionistic fuzzy set in 1986. The idea of a triangular intuitionistic fuzzy set was later developed by Liu and
Yuan [26]. Ejegwa, P. A. et al. [27] solved the supplier selection problems using the Pythagorean fuzzy set.
Ye [28] presented the trapezoidal intuitionistic fuzzy set’s preliminary notion. IFSs are used in many different
disciplines [29–31]. Ejegwa, P. A. et al. [32] used intuitionistic fuzzy numbers for the ascertainment of medical
diagnosis assignments. Further, Kausar, N. et al. [33] solve the mechanical engineering problems using the
generalized trapezoidal intuitionistic fuzzy numbers (GTrIFN) and Revathi, A. N. et al. [34] examine the
students’ performances using a fuzzy based uncertain model. The neutrosophic set framework encompasses
the intuitionistic fuzzy set and the fuzzy notion in a more generalised form. Smarandache [35] was first
introduced to the concept of a neutrosophic set in 1995. This concept considers truthiness, indeterminacies,
and falseness. The neutrosophic notion is logically sound, practical, and relevant to dynamic and real-world
scenarios. Türkan Y. S. et al. [36] use a neutrosophic set to select the sites for educational institute fairs. In
their discussion of the single type neutrosophic set to handle any problematic issue, Wang et al. [37], Kumar,
M. et al. [38] provided the triangular neutrosophic set and its categorization. Beigmohamadi, R. et al. [39]
evaluate the solutions of non-periodic boundary value problems for the discrete fractional difference equations
in uncertain environments. Narzary, G. et al. [40] evaluate the analytical solution to the heat equation under
a neutrosophic environment using the Laplace transform. Additionally, Safikhani, L. et al. [41] solve the
fuzzy differential equations using the gH-difference method.

A brief survey of the existing theory of arithmetic and calculus of neutrosophic numbers and neutrosophic
valued functions points to the following lacuna. Much research has been carried out on the arithmetic
properties and scoring of the neutrosophic numbers and their utilization in decision-making problems. Like
fuzzy numbers, neutrosophic numbers have arithmetic properties that differ from the deterministic ones. The
traditional difference cannot fulfill the purposes. The details on the metric, differences, and other related
consequences are untouched in research. Some existing works describe the differentiability of neutrosophic
valued functions and differential equations in the Neutrosophic arena. Discussing the theory of difference
equations in neutrosophic uncertainty would be beneficial. To fill the gaps, we did the following in this paper.
First, we defined a metric and generalized the Hukuhara difference [42] of neutrosophic numbers. Second,
we discussed the existence and uniqueness criteria to obtain the solutions of the difference equations under
the neutrosophic generalized Hukuhara difference. Next, we analyzed different cases of logistic difference
equations as an application of the proposed theory.

The succeeding texts are divided into the following sections. Section 2 contains the metric, generalized
Hukuhara difference in a neutrosophic environment. The existence and uniqueness conditions for solving
difference equations in a neutrosophic environment are established in Section 3. Section 4 presents solutions
and stability analyses of different cases of the logistic difference equation in a neutrosophic environment. The
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numerical examples and their graphical explanation are given in Section 5. Ending remarks are given in
Section 6.

2 Metric and generalized Hukuhara difference of neutrosophic numbers

In this section, we first define a metric in the collection of neutrosophic numbers [24]. The neutrosophic
numbers are applied in numerous fields, including differential equations [43], difference equations [9], opti-
misations [44] and many more. Then, the discussion continues with the generalised Hukuhara difference for
such vague numbers.

Definition 2.1. Suppose two neutrosophic numbers Ω̃ and Γ̃ are given in the parametric form (see, [48,49])
representation by

Ω̃ =
{(

Ω(u),Ω(v),Ω(w)
)
;u, v, w ∈ [0, 1]

}
=
{[

ΩL(u),ΩR(u)
]
,
[
ΩL(v),ΩR(v)

]
,
[
ΩL(w),ΩR(w)

]
;u, v, w ∈ [0, 1]

}
and

Γ̃ =
{(

Γ(u),Γ(v),Γ(w)
)
;u, v, w ∈ [0, 1]

}
=
{[

ΓL(u),ΓR(u)
]
,
[
ΓL(v),ΓR(v)

]
,
[
ΓL(w),ΓR(w)

]
;u, v, w ∈ [0, 1]

}
Then, the distance between Ω̃ and Γ̃ will be given by,

D
(
Ω̃, Γ̃

)
= sup

0≤u,v,w≤1

{
d
(
Ω(u),Γ(u)

)
, d

(
Ω(v),Γ(v)

)
, d

(
Ω(w),Γ(w)

)}
(1)

where d
(
Ω(λ),Γ(λ)

)
= max

{∥∥ΩL(λ)− ΓL(λ)
∥∥ ,∥∥ΩR(λ)− ΓR(λ)

∥∥} for λ = u, v, w.

In the given definition, u, v and w represent the degree of truth, indeterminacy and falsehood. Also, the
symbol ∥.∥ is used to denote the Euclidean distance of the respective parts regarding truth, indeterminacy
and falsehood in parametric representations of the neutrosophic numbers. The supremum of the obtained
distances in respective parts is regarded as the metric or distance between Ω̃ and Γ̃. The metric properties
of the defined mathematical object are established in the next theorem.

Theorem 2.2. The function D given in Definition 2.1 is a metric for the collection of neutrosophic numbers
[45].

Proof.

(i) Suppose two neutrosophic numbers Ω̃ and Γ̃ are given in the parametric form (see, [48,49]) representation
by

Ω̃ =
{[

ΩL(u),ΩR(u)
]
,
[
ΩL(v),ΩR(v)

]
,
[
ΩL(w),ΩR(w)

]
;u, v, w ∈ [0, 1]

}
and

Γ̃ =
{[

ΓL(u),ΓR(u)
]
,
[
ΓL(v),ΓR(v)

]
,
[
ΓL(w),ΓR(w)

]
;u, v, w ∈ [0, 1]

}
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when Ω̃ = Γ̃ then, we have 

ΩL(u) = ΓL(u)

ΩR(u) = ΓR(u)

ΩL(v) = ΓL(v)

ΩR(v) = ΓR(v)

ΩL(w) = ΓL(w)

ΩR(w) = ΓR(w)

(2)

Then, d
(
Ω(λ),Γ(λ)

)
= 0 for λ = u, v, w and consequently,

D
(
Ω̃, Γ̃

)
= sup

0≤u,v,w≤1

{
d
(
Ω(u),Ω(u)

)
, d

(
Ω(v),Ω(v)

)
, d

(
Ω(w),Ω(w)

)}
= 0 (3)

Again, when D
(
Ω̃, Γ̃

)
= 0, then sup(0≤u,v,w≤1)

{
d
(
Ω(u),Ω(u)

)
, d

(
Ω(v),Ω(v)

)
, d

(
Ω(w),Ω(w)

)}
= 0

which implies 
d
(
Ω(u),Γ(u)

)
≤ 0

d
(
Ω(v),Γ(v)

)
≤ 0

d
(
Ω(w),Γ(w)

)
≤ 0

(4)

for all u, v, w ∈ [0, 1].

That is 

∥∥ΩL(u)− ΓL(u)
∥∥ ≤ 0∥∥ΩR(u)− ΓR(u)
∥∥ ≤ 0∥∥ΩL(v)− ΓL(v)
∥∥ ≤ 0∥∥ΩR(v)− ΓR(v)
∥∥ ≤ 0∥∥ΩL(w)− ΓL(w)
∥∥ ≤ 0∥∥ΩR(w)− ΓR(w)
∥∥ ≤ 0

(5)

That is 

ΩL(u) = ΓL(u)

ΩR(u) = ΓR(u)

ΩL(v) = ΓL(v)

ΩR(v) = ΓR(v)

ΩL(w) = ΓL(w)

ΩR(w) = ΓR(w)

(6)

which concludes Ω̃ = Γ̃.
The trivial property of the metric is proved here for the proposed mathematical object D.

(ii) Since
∥∥ΩL(λ)− ΓL(λ)

∥∥ ≥ 0 and
∥∥ΩR(λ)− ΓR(λ)

∥∥ ≥ 0 for λ = u, v, w and u, v, w ∈ [0, 1].

Consequently, sup
(0≤u,v,w≤1)

{
d(Ω(u),Ω(u)), d(Ω(v),Ω(v)), d(Ω(w),Ω(w))

}
≥ 0, which implies that

D
(
Ω̃, Γ̃

)
≥ 0 (7)

The positivity property of the metric is proved in Equation (7).
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(iii) Since

d
(
Ω(λ),Γ(λ)

)
=max

{∥∥ΩL(λ)− ΓL(λ)
∥∥ ,∥∥ΩR(λ)− ΓR(λ)

∥∥} ; for λ = u, v, w

=max
{∥∥ΓL(λ)− ΩL(λ)

∥∥ ,∥∥ΓR(λ)− ΩR(λ)
∥∥} ; for λ = u, v, w

=d
(
Γ(λ),Ω(λ)

)
.

So,

D
(
Ω̃, Γ̃

)
= sup

0≤u,v,w≤1

{
d(Ω(u),Γ(u)), d(Ω(v),Γ(v)), d(Ω(w),Γ(w))

}
= sup

0≤u,v,w≤1

{
d(Γ(u),Ω(u)), d(Γ(v),Ω(v)), d(Γ(w),Ω(w))

}
=D

(
Γ̃, Ω̃

)
.

The symmetric properties for metric is established here.

(iv) Now, let Γ̃, Ω̃ and ∆̃ are three neutrosophic numbers (see, [48, 49]).∥∥ΩL(u)− ΓL(u)
∥∥ ≤

∥∥ΩL(u)−∆L(u)
∥∥+

∥∥∆L(u)− ΓL(u)
∥∥ ; for u ∈ [0, 1]

≤max
{∥∥ΩL(u)−∆L(u)

∥∥ ,∥∥ΩR(u)−∆R(u)
∥∥}

+max
{∥∥∆L(u)− ΓL(u)

∥∥ ,∥∥∆R(u)− ΓR(u)
∥∥}

=d
(
Ω(u),∆(u)) + d(∆(u),Γ(u)

)
; for u ∈ [0, 1]

Similarly,
∥∥ΩR(u)− ΓR(u)

∥∥ ≤ d
(
Ω(u),∆(u)

)
+ d

(
∆(u),Γ(u)

)
.

Therefore, max
{∥∥ΩL(u)− ΓL(u)

∥∥ ,∥∥ΩR(u)− ΓR(u)
∥∥} ≤ d

(
Ω(u),∆(u)

)
+ d

(
∆(u),Γ(u)

)
.

So,
d
(
Ω(u),Γ(u)

)
≤ d

(
Ω(u),∆(u)

)
+ d

(
∆(u),Γ(u)

)
(8)

Similarly,
d
(
Ω(v),Γ(v)

)
≤ d

(
Ω(v),∆(v)

)
+ d

(
∆(v),Γ(v)

)
(9)

and
d
(
Ω(w),Γ(w)

)
≤ d

(
Ω(w),∆(w)

)
+ d

(
∆(w),Γ(w)

)
(10)

Therefore,

D(Ω̃, Γ̃) = sup
0≤u,v,w≤1

{
d
(
Ω(u),Γ(u)

)
, d

(
Ω(v),Γ(v)

)
, d

(
Ω(w),Γ(w)

)}
=

{
sup

0≤u,v,w≤1

{
d
(
Ω(u),Γ(u)

)}
, sup
0≤u,v,w≤1

{
d
(
Ω(v),Γ(v)

)}
, sup
0≤u,v,w≤1

{
d
(
Ω(w),Γ(w)

)}}

≤

{
sup

0≤u,v,w≤1

{
d
(
Ω(u),∆(u)

)
+ d

(
∆(u),Γ(u)

)}
, sup
0≤u,v,w≤1

{
d
(
Ω(v),∆(v)

)
+ d

(
∆(v),Γ(v)

)}
,

sup
0≤u,v,w≤1

{
d
(
Ω(w),∆(w)

)
+ d

(
∆(w),Γ(w)

)}}

=

{
sup

0≤u,v,w≤1

{
d
(
Ω(u),∆(u)

)}
, sup
0≤u,v,w≤1

{
d
(
Ω(v),∆(v)

)}
, sup
0≤u,v,w≤1

{
d
(
Ω(w),∆(w)

)}}

+

{
sup

0≤u,v,w≤1

{
d
(
∆(u),Γ(u)

)}
, sup
0≤u,v,w≤1

{
d
(
∆(v),Γ(v)

)}
, sup
0≤u,v,w≤1

{
d
(
∆(w),Γ(w)

)}}
=D

(
Ω̃, ∆̃

)
+D

(
∆̃, Γ̃

)
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So,

D
(
Ω̃, Γ̃

)
≤ D

(
Ω̃, ∆̃

)
+D

(
∆̃, Γ̃

)
(11)

Equation (11) perceives the most significant result regarding triangle inequalities. Combining all the
mentioned points, we can conclude that D is a metric on the set of neutrosophic numbers.

□

Definition 2.3. Let Ω̃(n)
∞
n=1 be a sequence of neutrosophic numbers. Then Ω̃(n) is said to be convergent

if there exists a neutrosophic number Ω̃ such that D(Ω̃(n), Ω̃) → 0 as n → ∞, where D is the metric in
Definition 2.1.

Theorem 2.4. Suppose, a sequence of neutrosophic numbers Ω̃(n) is given by Ω̃(n) =
{
[ΩL(u)

n,ΩR(u)
n],

[ΩL(v)
n,ΩR(v)

n], [ΩL(w)
n,ΩR(w)

n]
}
and a neutrosophic number Ω̃(n) =

{
[ΩL(u),ΩR(u)], [ΩL(v),ΩR(v)],

[ΩL(w),ΩR(w)]
}
. Then Ω̃(n) → Ω̃ if and only if



ΩL(u)
n → ΓL(u)

ΩR(u)
n → ΓR(u)

ΩL(v)
n → ΓL(v)

ΩR(v)
n → ΓR(v)

ΩL(w)
n → ΓL(w)

ΩR(w)
n → ΓR(w)

(12)

as n→ ∞.

Proof. Suppose Ω̃(n) → Ω̃ as n→ ∞ in the metric space defined by D. Therefore, given ϵ > 0, there exists

a natural number N such that D
(
Ω̃(n), Ω̃

)
< ϵ for n ≥ N, which implies sup0≤u,v,w≤1

{
d
(
Ω(u)n,Ω(u)

)
,

d
(
Ω(v)n,Ω(v)

)
, d

(
Ω(w)n,Ω(w)

)}
< ϵ for n ≥ N which implies


d
(
Ω(u)n,Ω(u)

)
< ϵ

d
(
Ω(v)n,Ω(v)

)
< ϵ

d
(
Ω(w)n,Ω(w)

)
< ϵ

(13)

for all u, v, w ∈ [0, 1], which implies 

∥∥ΩL(u)
n − ΩL(u)

∥∥ < ϵ∥∥ΩR(u)
n − ΩR(u)

∥∥ < ϵ∥∥ΩL(v)
n − ΩL(v)

∥∥ < ϵ∥∥ΩR(v)
n − ΩR(v)

∥∥ < ϵ∥∥ΩL(w)
n − ΩL(w)

∥∥ < ϵ∥∥ΩR(w)
n − ΩR(w)

∥∥ < ϵ
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for all u, v, w ∈ [0, 1]. This is equivalent to

ΩL(u)
n → ΩL(u)

ΩR(u)
n → ΩR(u)

ΩL(v)
n → ΩL(v)

ΩR(v)
n → ΩR(v)

ΩL(w)
n → ΩL(w)

ΩR(w)
n → ΩR(w)

To prove the converse statement, suppose 

ΩL(u)
n → ΩL(u)

ΩR(u)
n → ΩR(u)

ΩL(v)
n → ΩL(v)

ΩR(v)
n → ΩR(v)

ΩL(w)
n → ΩL(w)

ΩR(w)
n → ΩR(w)

(14)

This implies, for given ∃ > 0, there exist natural numbers N1, N2, N3, N4, N5 and N6 such that

∥∥ΩL(u)
n − ΩL(u)

∥∥ < ϵ ; if n ≥ N1∥∥ΩR(u)
n − ΩR(u)

∥∥ < ϵ ; if n ≥ N2∥∥ΩL(v)
n − ΩL(v)

∥∥ < ϵ ; if n ≥ N3∥∥ΩR(v)
n − ΩR(v)

∥∥ < ϵ ; if n ≥ N4∥∥ΩL(w)
n − ΩL(w)

∥∥ < ϵ ; if n ≥ N5∥∥ΩR(w)
n − ΩR(w)

∥∥ < ϵ ; if n ≥ N6

This can be rewritten as
max

{∥∥ΩL(u)
n − ΩL(u)

∥∥ ,∥∥ΩR(u)
n − ΩR(u)

∥∥} < ϵ ; for n ≥ Nu = max {N1, N2}
max

{∥∥ΩL(v)
n − ΩL(v)

∥∥ ,∥∥ΩR(v)
n − ΩR(v)

∥∥} < ϵ ; for n ≥ Nv = max {N3, N4}
max

{∥∥ΩL(w)
n − ΩL(w)

∥∥ ,∥∥ΩR(w)
n − ΩR(w)

∥∥} < ϵ ; for n ≥ Nw = max {N5, N6}

which is equivalent to 
d
(
Ω(u)n,Ω(u)

)
< ϵ ; for n ≥ Nu

d
(
Ω(v)n,Ω(v)

)
< ϵ ; forn ≥ Nv

d
(
eΩ(w)n,Ω(w)

)
< ϵ ; for n ≥ Nw

(15)

Therefore, supu,v,w∈[0,1]

{
d
(
Ω(u)n,Ω(u)

)
, d

(
Ω(v)n,Ω(v)

)
, d

(
Ω(w)n,Ω(w)

)}
< ϵ, for

n ≥ N = maxu,v,w∈[0,1] {Nu, Nv, Nw}. This implies thatD
(
Ω(n),Ω

)
< ϵ for n ≥ N . Consequently, Ω̃(n) → Ω̃.

In the succeeding text, we will prove the completeness property of the metric space under the defined
metric. Before proving the completeness, we first define a Cauchy sequence in neutrosophic numbers. □

Definition 2.5. A sequence of neutrosophic numbers Ω̃(n)
∞
n=1 is called a Cauchy sequence if for a given

ϵ > 0, there exists a natural number N such that D
(
Ω̃(n), Ω̃(m)

)
< ϵ for all n,m ≥ N .
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Intuitively, the sequence Ω̃(n)
∞
n=1 is said to be Cauchy when the neutrosophic numbers are clustering

more tightly as phase advances. The distances of clustering values are measured using the metric D. In
other words, it represents the stabilization of the system’s progress. On the other hand, convergence of the
sequence Ω̃(n)

∞
n=1 signifies the approach of the system towards a finite point (equilibrium). Intuitively, the

existence of equilibrium must ensure stability of the system, but not vice versa. Therefore, convergence is a
stronger property than the Cauchy criteria. These two properties are equivalent in a complete metric space.
The succeeding theorem shows that the proposed metric provides a complete metric space of neutrosophic
valued numbers.

Theorem 2.6. The metric space under the metric D is a complete metric space.

Proof. Let Ω̃(n) be a Cauchy sequence in the metric space. Thus, for given ϵ > 0,

D
(
Ω̃(n), Ω̃(m)

)
< ϵ for all n,m ≥ N , which implies that

sup
u,v,w∈[0,1]

{
d
(
Ω(u)n,Ω(u)m

)
, d

(
Ω(v)n,Ω(v)m

)
, d

(
Ω(w)n,Ω(w)m

)}
< ϵ (16)

for all n,m ≥ N . This gives, 
d
(
Ω(u)n,Ω(u)m

)
< ϵ

d
(
Ω(v)n,Ω(v)m

)
< ϵ

d
(
Ω(w)n,Ω(w)m

)
< ϵ

for all n,m ≥ N . This implies that
max

{∥∥ΩL(u)
n − ΩL(u)

m
∥∥ ,∥∥ΩR(u)

n − ΩR(u)
m
∥∥} < ϵ

max
{∥∥ΩL(v)

n − ΩL(v)
m
∥∥ ,∥∥ΩR(v)

n − ΩR(v)
m
∥∥} < ϵ

max
{∥∥ΩL(w)

n − ΩL(w)
m
∥∥ ,∥∥ΩR(w)

n − ΩR(w)
∥∥m}

< ϵ

for all n,m ≥ N and consequently 

∥∥ΩL(u)
n − ΩL(u)

m
∥∥ < ϵ∥∥ΩR(u)

n − ΩR(u)
m
∥∥ < ϵ∥∥ΩL(v)

n − ΩL(v)
m
∥∥ < ϵ∥∥ΩR(v)

n − ΩR(v)
m
∥∥ < ϵ∥∥ΩL(w)

n − ΩL(w)
m
∥∥ < ϵ∥∥ΩR(w)

n − ΩR(w)
m
∥∥ < ϵ

(17)

which implies that
{
ΩL(u)

n} ,{ΩR(u)
n
}
,
{
ΩL(v)

n
}
,
{
ΩR(v)

n
}
,
{
ΩL(w)

n
}

and
{
ΩR(w)

n
}

are all Cauchy
sequences in R. Since, Cauchy sequence in real numbers are convergent,

{
ΩL(u)

n} ,{ΩR(u)
n
}
,
{
ΩL(v)

n
}
,{

ΩR(v)
n
}
,
{
ΩL(w)

n
}
and

{
ΩR(w)

n
}
are all convergent sequences. It can be shown that there exists a limit

of the Cauchy sequence Ω̃(n) in the metric space, taking limits of these convergent sequences. This proves
the completeness property. □

Lemma 2.7. Let ϕ̃ and X̃ be two neutrosophic numbers. Then, ψ̃ will be the Hukuhara difference when
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ϕ̃ = X̃ + ψ̃, that is, when 

ϕL(u) = XL(u) + ψL(u)

ϕR(u) = XR(u) + ψR(u)

ϕL(v) = XL(v) + ψL(v)

ϕR(v) = XR(v) + ψR(v)

ϕL(w) = XL(w) + ψL(w)

ϕR(w) = XR(w) + ψR(w)

(18)

or, equivalently, when 

ψL(u) = ϕL(u)−XL(u)

ψR(u) = ϕR(u)−XR(u)

ψL(v) = ϕL(v)−XL(v)

ψR(v) = ϕR(v)−XR(v)

ψL(w) = ϕL(w)−XL(w)

ψR(w) = ϕR(w)−XR(w)

(19)

for all n, v, w ∃ [0, 1]. In notation, it can be expressed as

ϕ̃⊖H X̃ = ψ̃ (20)

Lemma 2.8. Let ϕ̃ and X̃ be two neutrosophic numbers. Then, ψ̃ will be the generalized Hukuhara difference
[46] if either ϕ̃ = X̃ + ψ̃ or, X̃ = ϕ̃+ (−1)ψ̃.

For the first case, we say ψ̃ is the generalized Hukuhara difference of type I and for the second case, it
is said to be the generalized Hukuhara difference of type II. In case of type II, by the impact of neutrosophic
environment, the parametric split up of the equation X̃ = ϕ̃+ (−1)ψ̃, which implies{[

XL(u), XR(u)
]
,
[
XL(v), XR(v)

]
,
[
XL(w), XR(w)

]}
=
{[
ϕL(u), ϕR(u)

]
,
[
ϕL(v), ϕR(v)

]
,
[
ϕL(w), ϕR(w)

]}
+ (−1)

{[
ψL(u), ψR(u)

]
,
[
ψL(v), ψR(v)

]
,
[
ψL(w), ψR(w)

]}
or, {[

XL(u), XR(u)
]
,
[
XL(v), XR(v)

]
,
[
XL(w), XR(w)

]}
=
{[
ϕL(u), ϕR(u)

]
,
[
ϕL(v), ϕR(v)

]
,
[
ϕL(w), ϕR(w)

]}
+
{[

−ψL(u),−ψR(u)
]
,
[
−ψL(v),−ψR(v)

]
,
[
−ψL(w),−ψR(w)

]}
Therefore, the generalized Hukuhara difference (gH) ψ̃ can be obtained as

ψL(u) = ϕR(u)−XR(u)

ψR(u) = ϕL(u)−XL(u)

ψL(v) = ϕR(v)−XR(v)

ψR(v) = ϕL(v)−XL(v)

ψL(w) = ϕR(w)−XR(w)

ψR(w) = ϕL(w)−XL(w)

(21)
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Since there is no notion of classical subtraction for the set valued numbers, like fuzzy, interval or neutro-
sophic numbers, the notion of generalized Hukuhara difference is necessary. It includes two distinct cases.
Type I corresponds with the phenomena of additive increment. On the contrary, the subtractive increment
is given by Type II of the generalized Hukuhara difference.

Theorem 2.9. If ϕ̃ and X̃ are two neutrosophic numbers, then the following statements are true.

(i) If gH difference exists, then it is unique.

(ii) ϕ̃⊖gH X̃ = ϕ̃⊖H X̃ or ϕ̃⊖gH X̃ = −(X̃ ⊖H ϕ̃).

(iii) If ϕ̃⊖gH X̃ exist in type I sense, then X̃ ⊖gH ϕ̃ exist in type-II sense.

(iv) (ϕ̃+ X̃)⊖gH ϕ̃ = X̃.

(v) ϕ̃⊖gH X̃ = X̃ ⊖gH ϕ̃ = ψ̃ if and only if ψ̃ = −ψ̃.

Proof.

(i) Suppose, the gH difference of ϕ̃ and X̃ exist and it is equal to ψ̃. Then, ϕ̃ ⊖H X̃ = ψ̃. Then either
ϕ̃ = X̃+ψ̃ or X̃ = ϕ̃+(−1)ψ̃. If possible, let Z̃ be another gH difference of ϕ̃ and X̃, then ϕ̃⊖gH X̃ = Z̃,
which implies that either ϕ̃ = X̃ + Z̃ or X̃ = ϕ̃ + (−1)Z̃, uniqueness of the gH difference is proved
straightforward. Similarly, in case of X̃ = ϕ̃ + (−1)ψ̃ and X̃ = ϕ̃ + (−1)Z̃, the conclusion can be
made easily. Therefore, we consider the third case where ϕ̃ = X̃ + ψ̃ and X̃ = ϕ̃ + (−1)Z̃. Then,
ϕ̃ = ϕ̃+ (−1)Z̃ + ψ̃ which implies that 

ψL(u) = ZL(u)

ψR(u) = ZR(u)

ψL(v) = ZL(v)

ψR(v) = ZR(v)

ψL(w) = ZL(w)

ψR(w) = ZR(w)

(22)

This shows that ψ̃ = Z̃ = {K} a crisp singleton set. Hence, the generalized Hukuhara difference is
unique in this case also.

It is worth mentioning that generalized Hukuhara difference also possesses limitations in the context
of existence, even refining the notion of Hukuhara difference. However, this first property ensures the
uniqueness of generalized Hukuhara difference, provided it exists.

(ii) when ϕ̃ ⊖gH X̃ = ψ̃, then either ϕ̃ = X̃ + ψ̃ or X̃ = ϕ̃ + (−1)ψ̃. If ϕ̃ = X̃ + ψ̃, then ϕ̃ ⊖H

X̃ = ψ̃. In case of X̃ = ϕ̃ + (−1)ψ̃, we have
{[
XL(u), XR(u)

]
,
[
XL(v), XR(v)

]
,
[
XL(w), XR(w)

]}
={[

ϕL(u)− ψR(u), ϕR(u)− ϕL(u)
]
,
[
ϕL(v)− ψR(v), ϕR(v)− ϕL(v)

]
+

[
ϕL(w)− ψR(w), ϕR(w)− ϕL(w)

]}
.

This is equivalent to the following system.

ψR(u) = −
[
XL(u)− ϕL(u)

]
ψL(u) = −

[
XR(u)− ϕR(u)

]
ψR(v) = −

[
XL(v)− ϕL(v)

]
ψL(v) = −

[
XR(v)− ϕR(v)

]
ψR(w) = −

[
XL(w)− ϕL(w)

]
ψL(w) = −

[
XR(w)− ϕR(w)

]
(23)
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Therefore, the generalized Hukuhara difference ϕ̃ is given by ψ̃ = −
(
X̃ ⊖H ϕ̃

)
.

This second property incorporates the forward and backwards difference concepts together. The gen-
eralized Hukuhara difference coincides with the Hukuhara difference when the first fuzzy number is
greater than the latter in a fuzzy sense. The generalized Hukuhara difference is equal to the negative
of the Hukuhara difference for the reverse intuition of superiority between fuzzy numbers.

(iii) Suppose, ϕ̃⊖gH X̃ = ψ̃ in type-I sense. Then, ϕ̃ = X̃ + ψ̃, that is,

ϕL(u) = XL(u) + ψL(u)

ϕR(u) = XR(u) + ψR(u)

ϕL(v) = XL(v) + ψL(v)

ϕR(v) = XR(v) + ψR(v)

ϕL(w) = XL(w) + ψL(w)

ϕR(w) = XR(w) + ψR(w)

This system can be written as 

ϕL(u) = XL(u) + (−1)
(
−ψL(u)

)
ϕR(u) = XR(u) + (−1)

(
−ψR(u)

)
ϕL(v) = XL(v) + (−1)

(
−ψL(v)

)
ϕR(v) = XR(v) + (−1)

(
−ψR(v)

)
ϕL(w) = (−1)

(
−XL(w) + ψL(w)

)
ϕR(w) = (−1)

(
−XR(w) + ψR(w)

)
(24)

The last system of equations implies that ϕ̃ = X̃+(−1)Z̃, where Z̃ =
{
[−z2(α),−z1(α)]; [−z2(β),−z1(β)];

[−z2(γ),−z1(γ)]
}
= −ψ̃. So, X̃ ⊖gH ϕ̃ exist in type-II sense.

It provides the interconnection between two cases of difference covered in the generalized Hukuhara
sense.

(iv) When (ϕ̃+ X̃)⊖gH ϕ̃ = ψ̃ exist in type-I sense and its value is ψ̃, then X̃ = ψ̃ is trivial. In case where
(ϕ̃ + X̃) ⊖gH ϕ̃ = ψ̃ exist in type-II sense, ϕ̃ = ϕ̃ + X̃ + (−1)ψ̃. This concludes that X̃ = ψ̃ = {k}, a
crisp number.

(v) Suppose ϕ̃⊖gH X̃ = X̃⊖gH ϕ̃ = ψ̃ both exist in type-I sense. Now, ϕ̃⊖gH X̃ = ψ̃ implies that ϕ̃ = X̃+ψ̃.
Then the following system of equations is true:

ϕL(u) = XL(u) + ψL(u)

ϕR(u) = XR(u) + ψR(u)

ϕL(v) = XL(v) + ψL(v)

ϕR(v) = XR(v) + ψR(v)

ϕL(w) = XL(w) + ψL(w)

ϕR(w) = XR(w) + ψR(w)

(25)
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Again, X̃ ⊖gH ϕ̃ = ψ̃ implies that X̃ = ϕ̃+ ψ̃. This is equivalent to the system

XL(u) = ϕL(u) + ψL(u)

XR(u) = ϕR(u) + ψR(u)

XL(v) = ϕL(v) + ψL(v)

XR(v) = ϕR(v) + ψR(v)

XL(w) = ϕL(w) + ψL(w)

XR(w) = ϕR(w) + ψR(w)

(26)

The above two system of equations conclude that ψ̃i(u) = 0, ψ̃i(v) = 0 and ψ̃i(w) = 0; i ∈ {L,R}.
Therefore, ψ̃ is the zero element in the collection of neutrosophic numbers. A similar result will appear
when we consider the Hukuhara difference in the type-II sense. So, we discuss the third phenomenon
here in which ϕ̃ ⊖gH X̃ exist in a type-I sense but X̃ ⊖gH ϕ̃ is in type-II. Then, ϕ̃ = X̃ + ψ̃ and
ϕ̃ = X̃ + (−1)ψ̃. That is, ψ̃ = −ψ̃. Conversely, when ψ̃ = −ψ̃ then, ϕ̃⊖gH X̃ implies and is implied by
ϕ̃ = X̃ + ψ̃ or X̃ = ϕ̃ + (−1)ψ̃ implies and is implied by ϕ̃ = X̃ + (−1)ψ̃ or X̃ = ϕ̃ + ψ̃ implies and is
implied by X̃ ⊖gH ϕ̃.

This completes the proof.

The last two properties are synonymous with the outputs in deterministic arithmetic systems.

□
With this theorem, we bring an end to the present subsection containing the theories of metric space and

generalized Hukuhara difference for neutrosophic numbers. In the next section, we will discuss the existence
and uniqueness criteria for the solution of the imprecise difference equation under neutrosophic uncertainty.

3 Existence and uniqueness conditions for solution of difference equation
in neutrosophic environment

The difference equation, with coefficients and initial values considered as neutrosophic numbers, is referred to
as a neutrosophic fuzzy difference equation. The theory will differ when the generalized Hukuhara difference is
taken instead of the Hukuhara difference. Before going into the existence and uniqueness criteria of solvability
of the imprecise difference equation in the generalised Hukuhara sense, we discuss the following theorem in
the Hukuhara sense.

Theorem 3.1. Suppose a neutrosophic Hukuhara difference equation with its initial value is given in the
following system. X̃(t+ h)⊖H X̃(t) = Λ̃

(
t, X̃(t)

)
X̃(t0) = X̃0

(27)

The system is considered for t ∈ [t0, T ] and Λ is taken as a continuous valued neutrosophic function, provided
the existence of the Hukuhara difference. Then, the system (27) is equivalent to

X̃(tn+1) = X̃0 +

n∑
i=0

Λ̃
(
ti, X̃(ti)

)
(28)

In Equation (28), the partition of the interval [t0, T ] is given by, 0 = t0 < t1 < · · · < tn = T, h = T−t0
n and

ti = t0 + ih for i = 1, 2, . . . , n.
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In Equation (27), h represents a small generalized increment of the independent variable t. The imprecise
difference equation addresses the imprecise rate of change or growth governed by the function Λ̃, with initial
information for such increment h. Now, the value of h can be fixed anticipating the number of recurring
phases n and partitioning the interval [t0, T ]. Subsequent values of t are given in terms of the initial value t0,
increment h and step i. In this context, the n-th value of the independent variable in a partitioned system is
tn = t0 + nh. In the proposed theory of discrete systems, we will use tn for t+ h.
Proof. Suppose the given system (27) in which H-difference exists and Λ̃ is a continuous function for all

t∃[t0, T ]. Then, X̃(tn + h)⊖H X̃(tn) = Λ̃
(
tn, X̃(tn)

)
, which implies that

XL (tn+1, u) = XL(tn, u) + ΛL

(
tn, XL(tn, u), XR(tn, u), u

)
XR (tn+1, u) = XR(tn, u) + ΛR

(
tn, XL(tn, u), XR(tn, u), u

)
XL (tn+1, v) = XL(tn, v) + ΛL

(
tn, XL(tn, v), XR(tn, v), v

)
XR (tn+1, v) = XR(tn, v) + ΛR

(
tn, XL(tn, v), XR(tn, v), v

)
XL (tn+1, w) = XL(tn, w) + ΛL

(
tn, XL(tn, w), XR(tn, w), w

)
XR (tn+1, w) = XR(tn, w) + ΛR

(
tn, XL(tn, w), XR(tn, w), w

)
(29)

If we focus on the first equation of the above system, we get the following result.

XL (tn+1, u) = XL(tn, u) + ΛL

(
tn, XL(tn, u), XR(tn, u), u

)
=XL(tn−1, u) + ΛL

(
tn−1, XL(tn−1, u), XR(tn−1, u), u

)
=XL(t0, u) +

n−1∑
i=0

ΛL

(
ti, XL(ti, u), XR(ti, u), u

)
Similarly, the following results are obtained.

XR (tn+1, u) =XR(t0, u) +
n−1∑
i=0

ΛR

(
ti, XL(ti, u), XR(ti, u), u

)
XL (tn+1, v) =XL(t0, v) +

n−1∑
i=0

ΛL

(
ti, XL(ti, v), XR(ti, v), v

)
XR (tn+1, v) =XR(t0, v) +

n−1∑
i=0

ΛR

(
ti, XL(ti, v), XR(ti, v), v

)
XL (tn+1, w) =XL(t0, w) +

n−1∑
i=0

ΛL

(
ti, XL(ti, w), XR(ti, w), w

)
XR (tn+1, w) =XR(t0, w) +

n−1∑
i=0

ΛR

(
ti, XL(ti, w), XR(ti, w), w

)
Therefore, the above six crisp equations can be written as

X̃ (tn+1) = X̃0 +

n∑
i=0

Λ̃
(
ti, X̃(ti)

)
(30)

a neutrosophic equation addressing iterations. Equation (27) represents the imprecise rate of change or growth
governed by the function Λ̃, with initial information, ignoring the cumulative numbers in successive steps of
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discrete phenomena, using a neutrosophic difference equation. In other words, Equation (27) addresses the
dynamical behaviour of the system with a known initial state. On the contrary, the systems’ response (or
cumulative credit) through successive phases based on the available information in a particular phase can
be perceived by the corresponding recurrence equation. In this context, Equation (30) provides information
about the population size in the (n + 1)-th step, based on the initial information X̃0 and the dynamics-
controlling function Λ̃ in the mentioned imprecise environment. Therefore, the two mentioned phenomena
of distinct perspectives are equivalent through sharing the ultimate goal of forecasting population size in
arbitrary phases. This present theorem has proved the mathematical equivalence of Equation (27) and
Equation (30).

Imprecise differences are not merely an extension of differences in deterministic senses. A neutrosophic
number C is called a Hukuhara difference of two neutrosophic numbers A and B when A = B+C. However,
the Hukuhara difference has limitations. For instance, if A is inferior to B, in a fuzzy number sense, then
the Hukuhara difference of two neutrosophic numbers A and B does not exist. In fact, A + (−1)A ̸= 0.
Therefore, the generalized Hukuhara difference between two fuzzy numbers was introduced to enable forward
and backwards differences together. In the next theorem, we generalize the preceding theorem in the case of
the generalized Hukuhara difference. □

Theorem 3.2. Suppose we consider the generalized Hukuhara difference in a neutrosophic environment as
follows: X̃(t+ h)⊖gH X̃(t) = Λ̃

(
t, X̃(t)

)
X̃(t0) = X̃0

(31)

In Equation (31), Λ̃ is a continuous function. Then, Equation (31) is equivalent to either of the following
equations.

X̃ (tn+1) = X̃(t0) +
n∑

i=0

Λ̃
(
ti, X̃(ti)

)
(32)

Or, X̃ (t0) = X̃(tn+1) + (−1)
n∑

i=0

Λ̃
(
ti, X̃(ti)

)
(33)

Proof. Equation (31) is equivalent to either of the following systems.X̃(t+ h) = X̃(t) + Λ̃
(
t, X̃(t)

)
X̃(t0) = X̃0

(34)

Or ,

X̃(t) = X̃(t+ h) + (−1)Λ̃
(
t, X̃(t)

)
X̃(t0) = X̃0

(35)

Case I. when the System (27) is true. Then by Theorem 2.9, Equation (31) implies Equation (32).

Case II.. When the system (31) is true in the Type-II Hukuhara difference sense.

Then, X̃(t) = X̃(t + h) + (−1)Λ̃
(
t, X̃(t)

)
and consequently, X̃ (tn) = X̃(tn+1) + (−1)Λ̃

(
tn, X̃(tn)

)
.
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Taking (u, v, w)-cuts in the above neutrosophic equation, we get

XL (tn, u) = XL(tn+1, u) + ΛR

(
tn, XL(tn, u), XR(tn, u), u

)
XR (tn, u) = XR(tn+1, u) + ΛL

(
tn, XL(tn, u), XR(tn, u), u

)
XL (tn, v) = XL(tn+1, v) + ΛR

(
tn, XL(tn, v), XR(tn, v), v

)
XR (tn, v) = XR(tn+1, v) + ΛL

(
tn, XL(tn, v), XR(tn, v), v

)
XL (tn, w) = XL(tn+1, w) + ΛR

(
tn, XL(tn, w), XR(tn, w), w

)
XR (tn, w) = XR(tn+1, w) + ΛL

(
tn, XL(tn, w), XR(tn, w), w

)
(36)

The leading equation of the preceding system implies

XL (tn, u) =XL(tn+1, u) + ΛR

(
tn, XL(tn, u), XR(tn, u), u

)
=XL(tn+1, u) +

n∑
i=0

ΛR

(
ti, XL(ti, u), XR(ti, u), u

)
which is equivalent to

XL (t0, u) = XL(tn+1, u) + (−1)

n∑
i=0

ΛR

(
ti, XL(ti, u), XR(ti, u), u

)
Proceeding similarly, we obtain the following results

XR (t0, u) =XR(tn+1, u) + (−1)

n∑
i=0

ΛR

(
ti, XL(ti, u), XR(ti, u), u

)
XL (t0, v) =XL(tn+1, v) + (−1)

n∑
i=0

ΛL

(
ti, XL(ti, v), XR(ti, v), v

)
XR (t0, v) =XR(tn+1, v) + (−1)

n∑
i=0

ΛR

(
ti, XL(ti, v), XR(ti, v), v

)
XL (t0, w) =XL(tn+1, w) + (−1)

n∑
i=0

ΛL

(
ti, XL(ti, w), XR(ti, w), w

)
XR (t0, w) =XR(tn+1, w) + (−1)

n∑
i=0

ΛR

(
ti, XL(ti, w), XR(ti, w), w

)
Combining all of the above six results, we get

X̃ (t0) = X̃(tn+1) + (−1)
n∑

i=0

Λ̃
(
ti, X̃(ti)

)
(37)

Therefore, the theorem is proved for both cases. □
Equation (31) represents the imprecise rate of change or growth governed by the function Λ̃, with initial

information, enabling both forward and backwards growth. In other words, Equation (31) addresses the
bi-directional dynamical behaviour of the system with a known initial state. On the contrary, the systems’
response (or cumulative credit) through successive phases based on the available information in a particular
phase can be perceived by the corresponding recurrence equation. In this context, Equation (32) provides
information about the population size in the (n + 1)-th step, based on the initial information X̃0 and the
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dynamics-controlling function Λ̃ in the mentioned imprecise environment. On the contrary, he initial infor-
mation X̃0 is given in terms of population size in the (n+ 1)-th step and the dynamics-controlling function
Λ̃ in (33). Therefore, the two mentioned phenomena of distinct perspectives are equivalent through sharing
the ultimate goal of forecasting population size in arbitrary phases. This present theorem has proved the
mathematical equivalence of Equation (31) with Equation (32) and (33) in forward and backwards growth,
respectively.

Definition 3.3. A Neutrosophic valued function Λ̃ is Lipschitz continuous if there exists a real number L > 0

such that D
(
Λ̃(r), Λ̃(s)

)
≤ L | r − s |, for all deterministic (real or complex) numbers r and s.

In the above definition | . | represent Euclidean distance between crisp numbers and D is the metric in
Definition 2.1. This property is stronger than continuity and uniform continuity. In fact, Lipschitz continuity
implies uniform continuity and uniform continuity implies continuity.

Theorem 3.4. Suppose a neutrosophic difference equation with an initial condition is given as below:X̃(t+ h)⊖gH X̃(t) = Λ̃
(
t, X̃(t)

)
X̃(t0) = X̃0

(38)

In Equation (38), Λ̃ is a continuous function. Then, Equation (38) is equivalent to either of the following
equations.

Proof. Without loss of generality, let Equation (38) imply

X̃ (tn+1) = X̃(t0) +
n∑

i=0

Λ̃
(
ti, X̃(ti)

)
(39)

To avoid complexity, let us write the equation as

X̃tn+1 = X̃t0 +

n∑
i=0

Λ̃
(
ti, X̃ti

)
(40)

We consider a sequence X̃k
tn+1

satisfying the Equation (40).

Then, X̃k
tn+1

= X̃t0 +
∑n

i=0 Λ̃
(
ti, X̃

k
ti

)
.

Then,

D

X̃t0 +

n∑
i=0

Λ̃
(
ti, X̃

k
ti

)
, X̃t0

 ≤
n∑

i=0

D

(
Λ̃
(
ti, X̃

k
ti

)
, 0

)

≤M
(
tn − t0
h

)
Therefore,

D
(
X̃k+1

tn+1
, X̃k

tn+1

)
=D

X̃t0 +

n∑
i=0

Λ̃
(
ti, X̃

k
ti

)
, X̃t0 +

n∑
i=0

Λ̃
(
ti, X̃

k−1
ti

)
=D

 n∑
i=0

Λ̃
(
ti, X̃

k
ti

)
,

n∑
i=0

Λ̃
(
ti, X̃

k−1
ti

)
≤LkM

(
tn − t0
h

)n

(41)
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From this, it can be proved that the sequence
{
X̃k

tn+1

}
is a Cauchy sequence for each n. The sequence{

X̃k
tn+1

}
is a Cauchy sequence in the concept of a complete metric space given by the metric D for all

t ∈ [t0, T ]. So,
{
X̃k

tn+1

}
converges uniformly to a limit process X̃tn+1 , which is the solution of system (38)

and it proves the existence of such solution. To prove the uniqueness let X̃ ′
tn+1

and X̃tn+1 are the two limit
process then,

D
(
X̃ ′

tn+1
, X̃tn+1

)
=D

X̃t0 +

n∑
i=0

Λ̃
(
ti, X̃

′
ti

)
, X̃t0 +

n∑
i=0

Λ̃
(
ti, X̃ti

)
=D

 n∑
i=0

Λ̃
(
ti, X̃

′
ti

)
,

n∑
i=0

Λ̃
(
ti, X̃ti

)
≤L

n∑
i=0

D
(
X̃ ′

ti , X̃ti

)
(42)

So, Grownwall inequality implies that D
(
X̃ ′

tn+1
, X̃tn+1

)
= 0. This proves the uniqueness of the theorem.

□

Lemma 3.5. If f̃ is continuous function, X̃ and Z̃ are two neutrosophic sets then, followed by [47], we can
write [f̃(X̃, Z̃)](u,v,w) = f̃([X̃](u,v,w), [Z̃](u,v,w)); ∀u, v, w ∈ (0, 1].

4 Logistic Neutrosophic difference equation as an application

Let us consider the logistic neutrosophic difference equationϕ̃n+1 = ρ̃ϕ̃n

(
1− ϕ̃n

)
ϕ̃n=0 = ϕ̃0

(43)

At first, we express the Equation (43) into two different forms in the sense of neutrosophic number and
generalized Hukuhara difference as ϕ̃n+1 ⊖gH ρ̃ϕ̃n

(
1− ϕ̃n

)
= 0

ϕ̃n=0 = ϕ̃0
(44)

ϕ̃n+1 = ρ̃ϕ̃n ⊖gH ρ̃(ϕ̃n)
2

ϕ̃n=0 = ϕ̃0
(45)

Case I. Applying both type-I and type-II gH-difference on the Equation (44) then, we have the difference
equations as

ϕ̃n+1 = ρ̃ϕ̃n

(
1− ϕ̃n

)
+ 0 (46)

and

and ρ̃ϕ̃n

(
1− ϕ̃n

)
= ϕ̃n+1 + (−1)0 (47)
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respectively. Thus, for both types of gH-difference cases and regarding 0 as a crisp quantity, we have the
difference equation as

ϕ̃n+1 = ρ̃ϕ̃n

(
1− ϕ̃n

)
(48)

with the initial neutrosophic value ϕ̃n=0 = ϕ̃0. Let the neutrosophic (u, v, w)-cut of the population at the
n-th generation ϕ̃n and growth rate (ρ̃) are denoted by[

ϕ̃n

]
(u,v,w)

=
{[
ϕL,n(u), ϕR,n(u)

]
,
[
ϕL,n(v), ϕR,n(v)

]
,
[
ϕL,n(w), ϕR,n(w)

]}
and

[ρ̃](u,v,w) =
{[
ρL(u), ρR(u)

]
,
[
ρL(v), ρR(v)

]
,
[
ρL(w), ρR(w)

]}
respectively.

Using Equation (48) and the Lemma 3.5, in terms of parametric neutrosophic numbers, we have the
following systems of crisp difference equations:

ϕL,n+1 (u) = ρL(u)ϕL,n(u)
(
1− ϕR,n(u)

)
ϕR,n+1 (u) = ρR(u)ϕR,n(u)

(
1− ϕL,n(u)

)
ϕL,n+1 (v) = ρL(v)ϕL,n(v)

(
1− ϕR,n(v)

)
ϕR,n+1 (v) = ρR(v)ϕR,n(v)

(
1− ϕL,n(v)

)
ϕL,n+1 (w) = ρL(w)ϕL,n(w)

(
1− ϕR,n(w)

)
ϕR,n+1 (w) = ρR(w)ϕR,n(w)

(
1− ϕL,n(w)

)
(49)

In order to investigate the dynamical behaviour of the solution ϕ̃n of the neutrosophic difference Equation
(48), we find out the equilibrium points of the System (49). Then, we analyze the nature of the solution in
the vicinity of the equilibrium points, whether the equilibrium points are stable or not.

Let,
[
ϕ̃
]
(u,v,w)

=
{[
ϕL(u), ϕR(u)

]
,
[
ϕL(v), ϕR(v)

]
,
[
ϕL(w), ϕR(w)

]}
is an equilibrium point of the System

(49), then we have the following equilibrium points:

1. Ẽ0 =
{
[0, 0], [0, 0], [0, 0]

}
,

2. Ẽ1 =
{
[0, ϕR(u)], [0, ϕR(v)], [0, ϕR(w)]

}
,

3. Ẽ2 =
{
[ϕL(u), 0], [ϕL(v), 0], [ϕL(w), 0]

}
,

4. Ẽ3 =

{[
ρR(u)−1
ρR(u) , ρL(u)−1

ρL(u)

]
,
[
ρR(v)−1
ρR(v) , ρL(v)−1

ρL(v)

]
,
[
ρR(w)−1
ρR(w) , ρL(w)−1

ρL(w)

]}
.

Lemma 4.1. Consider the system of difference Equation (49) with positive neutrosophic initial value ϕ̃n=0 =
ϕ̃0 and growth rate ρ̃, then the following statements of the equilibrium points based on the stability criterion
are true:

(i) The neutrosophic equilibrium point
{
[0, 0], [0, 0], [0, 0]

}
is stable if ρi(j) < 1; i = L,R and j = u, v, w.

(ii) There exist infinite number of equilibrium points [0, ϕR(u)], [0, ϕR(v)], [0, ϕR(w)] if ρR(j) = 1 and it is
Lyapunov stable if | ρL(j)(1− ϕR(j)) | < 1 where j = u, v, w.

(iii) The equilibrium points [ϕL(u), 0], [ϕL(v), 0], [ϕL(w), 0] exist infinitely if ρL(j) = 1 and the equilibrium
point is Lyapunov stable if | ρR(j)(1− ϕL(j)) | < 1 for j = u, v, w.
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(iv) The coexistence equilibrium points

{[
ρR(u)−1
ρR(u) , ρL(u)−1

ρL(u)

]
,
[
ρR(v)−1
ρR(v) , ρL(v)−1

ρL(v)

]
,
[
ρR(w)−1
ρR(w) , ρL(w)−1

ρL(w)

]}
is fea-

sible if all ρi(j) = 1 and unstable always where i = L,R and j = u, v, w.

Proof. After linearization in the neighbourhood of the neutrosophic equilibrium point[
ϕ̃
]
(u,v,w)

=
{[
ϕL(u), ϕR(u)

]
,
[
ϕL(v), ϕR(v)

]
,
[
ϕL(w), ϕR(w)

]}
the system of difference Equation (49) can be written as

ϕ̃n+1 = Dϕ̃n (50)

where, ϕ̃n =
{[
ϕL,n(u), ϕR,n(u), ϕL,n(v), ϕR,n(v), ϕL,n(w), ϕR,n(w)

]T}
and D is a the Jacobian matrix at[

ϕ̃
]
(u,v,w)

and it is expressed by

D|
[
ϕ̃
]
(u,v,w)

=


(
A(u)

)
2×2 (

A(v)
)
2×2 (

A(w)
)
2×2

 (51)

where each block matrix is
(
A(j)

)
2×2

=

[
ρL(j)(1− ϕR(j)) −ρL(j)ϕL(j)
−ρR(j)ϕR(j) ρR(j)(1− ϕL(j))

]
; j = u, v, w ∈ [0, 1].

(i) Now using Equation (51), the Jacobian matrix at the neutrosophic equilibrium point

D|Ẽ0 =


(
A1(u)

)
2×2 (

A1(v)
)
2×2 (

A1(w)
)
2×2


where

(
A(j)

)
2×2

=

[
ρL(j) 0
0 ρR(j)

]
. The eigenvalues of the matrix D|[0̃]

(u,v,w)

are ρL(j), ρR(j);

j = u, v, w ∈ [0, 1].

Therefore, the equilibrium point Ẽ0 is stable if all the eigen values lies inside the unit disk i.e., | ρL(j) | <
1 and | ρR(j) | < 1 for j = u, v, w ∈ [0, 1].

Note 1. The stability of the neutrosophic equilibrium point Ẽ0 of the logistic growth model depends
upon the parametric values of the neutrosophic growth rate ρ̃ only.

(ii) Here the Jacobian matrix at the neutrosophic equilibrium point Ẽ1 is

D|Ẽ1 =


(
A2(u)

)
2×2 (

A2(v)
)
2×2 (

A2(w)
)
2×2


Where the block matrices are

(
A2(j)

)
2×2

=

[
ρL(j)(1− ϕR(j)) 0

−ϕR(j) 1

]
; j = u, v, w ∈ [0, 1].

Since the matrix is a lower triangle matrix, the eigenvalues are 1 and ρL(j)(1 − ϕR(j)). Therefore,
1 is an eigen value of algebraic multiplicity 3 of the matrix D|Ẽ1 and other three eigen values are

ρL(j)(1− ϕR(j)) for j = u, v, w.

Therefore, the equilibrium point Ẽ1 is Lyapunov stable if | ρL(j)(1− ϕR(j)) | < 1.
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(iii) The proof is similar with (ii).

(iv) Again, the Jacobian matrix near the neutrosophic equilibrium point Ẽ3 is given by

D|Ẽ3 =


(
A4(u)

)
2×2 (

A4(v)
)
2×2 (

A4(w)
)
2×2



where the block matrices are
(
A4(j)

)
2×2

=

 1 ρL(j)
ρR(j)(1− ρR(j))

ρR(j)
ρL(j)

(1− ρL(j)) 1

; j = u, v, w ∈ [0, 1].

Therefore, the corresponding characteristic equation is

det
(
D|Ẽ3 − λI6

)
= 0 (52)

or,


(
A4(u)

)
2×2

− λI2 (
A4(v)

)
2×2

− λI2 (
A4(w)

)
2×2

− λI2

 = 0

or, |
(
A4(u)

)
2×2

− λI2 | = 0 ; j = u, v, w ∈ [0, 1]

or, λ2 − 2λ+

{
1− ρL(j)

ρR(j)
(1− ρR(j)) ·

ρR(j)

ρL(j)
(1− ρL(j))

}
= 0

or, λ2 − 2λ+ (ρL(j) + ρR(j)− ρL(j)ρr(j)) = 0

or, λ1,2(j) = 1±
√

1 + ρL(j)ρr(j)− ρL(j)ρr(j))

(53)

Clearly, whatever be the values of
√

1 + ρL(j)ρr(j)− ρL(j)ρr(j)), there exist three eigenvalues of mod-
ulus greater than 1. Since all the eigenvalues of the matrix D|Ẽ3 do not lie inside the unit disk, hence

the equilibrium point Ẽ3 is unstable.

□
Case II. Applying both the type-I and type-II gH-difference on the neutrosophic difference Equation (45),
we have the following equations accordingly as{

ρ̃ϕ̃n = ρ̃(ϕ̃n)
2 + ϕ̃n+1

ϕ̃n=0 = ϕ̃0
(54)

and {
ρ̃(ϕ̃n)

2 = ρ̃ϕ̃n + (−1)ϕ̃n+1

ϕ̃n=0 = ϕ̃0
(55)

Now, using the Lemma 2.7 on the neutrosophic difference Equation (54), gives the parametric system of
difference equation as 

ϕL,n+1 (u) = ρL(u)ϕL,n(u)
(
1− ϕL,n(u)

)
ϕR,n+1 (u) = ρR(u)ϕR,n(u)

(
1− ϕR,n(u)

)
ϕL,n+1 (v) = ρL(v)ϕL,n(v)

(
1− ϕL,n(v)

)
ϕR,n+1 (v) = ρR(v)ϕR,n(v)

(
1− ϕR,n(v)

)
ϕL,n+1 (w) = ρL(w)ϕL,n(w)

(
1− ϕL,n(w)

)
ϕR,n+1 (w) = ρR(w)ϕR,n(w)

(
1− ϕR,n(w)

)
(56)
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Finding the exact solution of the non-linear System (56) is too difficult. In order to investigate the
dynamical behaviour of the system, we mainly focus on the dynamics of the system near the equilibrium
points. This is why, solving the system of difference Equation (56), we have the following neutrosophic
equilibrium points:

1. Ẽ0
1 =

{
[0, 0], [0, 0], [0, 0]

}
2. Ẽ1

1 =

{[
0, ρR(u)−1

ρR(u)

]
,
[
0, ρR(v)−1

ρR(v)

]
,
[
0, ρR(w)−1

ρR(w)

]}

3. Ẽ2
1 =

{[
ρL(u)−1
ρL(u)

, 0
]
,
[
ρL(v)−1
ρL(v)

, 0
]
,
[
ρL(w)−1
ρ̃L(w) , 0

]}

4. Ẽ3
1 =

{[
ρL(u)−1
ρL(u)

, ρR(u)−1
ρR(u)

]
,
[
ρL(v)−1
ρL(v)

, ρR(v)−1
ρR(v)

]
,
[
ρL(w)−1
ρL(w) , ρR(w)−1

ρR(w)

]}
Lemma 4.2. Consider the system of difference Equation (56), then the following results are true:

(i) The trivial neutrosophic equilibrium point
{
[0, 0], [0, 0], [0, 0]

}
is stable if ρL(j), ρR(j) ∈ (0, 1) for j =

u, v, w.

(ii) The equilibrium point Ẽ1
1 is stable if ρL(j) ∈ (0, 1) and 1 < ρR(j) < 3 where j = u, v, w.

(iii) The equilibrium point Ẽ2
1 is unstable.

(iv) The coexistence equilibrium point is feasible if all ρi(j) > 1 and stable if 1 < ρi(j) < 3 where i = L,R
and j = u, v, w.

Proof. Linearizing the system of difference Equation (56) in the neighbourhood of the neutrosophic equilib-
rium point

ϕ̃n+1 = D1

|
[
ϕ̃∗

]
(u,v,w)

ϕ̃n (57)

where, ϕ̃n =
{[
ϕL,n(u), ϕR,n(u), ϕL,n(v), ϕR,n(v), ϕL,n(w), ϕR,n(w)

]T}
andD1

|
[
ϕ̃∗

]
(u,v,w)

is the Jacobian matrix.

Therefore, the matrix

D1

|
[
ϕ̃∗

]
(u,v,w)

=


(
B(u)

)
2×2 (

B(v)
)
2×2 (

B(w)
)
2×2

 (58)

where each block matrix is of the form
(
B(j)

)
2×2

=

[
ρL(j)− 2ρL(j)ϕ

∗
L(j) 0

0 ρR(j)− 2ρR(j)ϕ
∗
R(j)

]
; j =

u, v, w ∈ [0, 1].

(i) The Jacobian matrix at the neutrosophic equilibrium point Ẽ0
1 is

D1
|Ẽ0

1
=


(
B1(u)

)
2×2 (

B1(v)
)
2×2 (

B1(w)
)
2×2


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where
(
B1(j)

)
2×2

=

[
ρL(j) 0
0 ρR(j)

]
. Clearly, the eigenvalues of the matrix D|Ẽ0

1
are ρL(j) and ρR(j)

where j = u, v, w. Now, all the eigen values of this matrix lies inside the unit disc, i.e., | ρL(j) | < 1
and | ρR(j) | < 1 for j = u, v, w ∈ [0, 1]. Since, ρ̃ is a positive neutrosophic growth rate, hence
ρL(j) > 0 and ρR(j) > 0. Therefore, both the inequation | ρL(j) | < 1 and | ρR(j) | < 1 implies that
ρL(j), ρR(j) ∈ (0, 1) for j = u, v, w ∈ [0, 1].

Therefore, the equilibrium point Ẽ0
1 is stable if ρL(j), ρR(j) ∈ (0, 1) where j = u, v, w ∈ [0, 1].

(ii) Using the Equation (58), the eigen values of the matrix D1
|Ẽ1

1

are ρL(j) and 2 − ρR(j). Therefore, the

equilibrium point is a stable if ρL(j) < 1 and | 2− ρL(j) | < 1. On simplification of the inequations
ρL(j) < 1 and | 2− ρR(j) | < 1 implies that ρL(j) ∈ (0, 1) and 1 < ρR(j) < 3; where j = u, v, w.

(iii) Proceeding in the similar way as the part (i), the eigen values of the matrix D1
|Ẽ2

1

are ρR(j) and 2−ρL(j).
Now, both the eigenvalues are belong within the unit disk if ρR(j) < 1 and | 2− ρL(j) | < 1. The second
inequality implies that 1 < ρL(j) < 3. As the parametric quantities 0 < ρL(j) < ρR(j), therefore no
values of ρL(j), ρR(j) found such that the modulas of the eigen values are less than unity and hence
the equilibrium point is unstable.

(iv) The proof is similar to (i).

Applying Lemma 2.8 related to type-II generalized Hukuhara difference and its parametric representa-
tion on the difference Equation (55), we have the following system of difference equations as

ϕL,n+1 (u) = ρR(u)ϕR,n(u)
(
1− ϕR,n(u)

)
ϕR,n+1 (u) = ρL(u)ϕL,n(u)

(
1− ϕL,n(u)

)
ϕL,n+1 (v) = ρR(v)ϕR,n(v)

(
1− ϕR,n(v)

)
ϕR,n+1 (v) = ρL(v)ϕL,n(v)

(
1− ϕL,n(v)

)
ϕL,n+1 (w) = ρR(w)ϕR,n(w)

(
1− ϕR,n(w)

)
ϕR,n+1 (w) = ρL(w)ϕL,n(w)

(
1− ϕL,n(w)

)
(59)

In order to investigate the dynamical behaviour in the vicinity of the equilibrium points, we solve the
system of Equation (59). The neutrosophic equilibrium points are given below:

– Ẽ0
2 =

{
[0, 0], [0, 0], [0, 0]

}
,

– Ẽ1
2 =

{
[ϕL(u), ϕR(u)], [ϕL(v), ϕR(v)], [ϕR(w), ϕR(w)]

}
, the coexistence equilibrium point. Where

the neutrosophic components ϕ̃i (j) are the roots (4.14), i = L,R and j = u, v, w.

□

Lemma 4.3. Consider the system of difference Equation (59), then the following results are true:

(i) The neutrosophic trivial equilibrium point Ẽ0
2 is stable if

√
| ρL(j)ρR(j) | < 1 when j = u, v, w.

(ii) The coexistence equilibrium point Ẽ1
2 is stable if | λ∗1,2(j) | < 1, where

λ∗1,2(j) = 1±
√{

ρL(j)
(
1− 2ϕL(j)

)}{
ρR(j)

(
1− 2ϕR(j)

)}
for j = u, v, w.
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Proof. The system of difference Equation (59), after the linearization in the neighbourhood of the neutro-
sophic equilibrium point Ẽ1

2 , can be written as

ϕ̃n+1 = D2
|Ẽ1

2
ϕ̃n (60)

where, ϕ̃n =
[
ϕL,n(u), ϕR,n(u), ϕL,n(v), ϕR,n(v), ϕL,n(w), ϕR,n(w)

]T
and D2

|Ẽ1
2

is the Jacobian matrix, where

D2
|Ẽ1

2
=


(
C(u)

)
2×2 (

C(v)
)
2×2 (

C(w)
)
2×2

 (61)

In which the block matrices are represented by
(
C(j)

)
2×2

=

[
0 ρR(j)

(
1− 2ϕR(j)

)
ρL(j)

(
1− 2ϕL(j)

)
0

]
;

j = u, v, w ∈ [0, 1].

(i) The proof is simple.

(ii) The characteristic equation of the matrix (61) is

det
(
D|Ẽ1

2
− λI6

)
= 0

or,


(
C(u)

)
2×2

− λI2 (
C(v)

)
2×2

− λI2 (
C(w)

)
2×2

− λI2

 = 0

or, |
(
C(j)2×2

)
− λI2 | = 0 ; j = u, v, w ∈ [0, 1]

or, λ2 −
{
ρL(j)

(
1− 2ϕL(j)

)}{
ρR(j)

(
1− 2ϕR(j)

)}
= 0

or, λ∗1,2(j) = ±
√{

ρL(j)
(
1− 2ϕL(j)

)}{
ρR(j)

(
1− 2ϕR(j)

)}
Therefore, all the eigenvalues belong within the unit disk if | λ∗1,2(j) | < 1.

Hence, the equilibrium point Ẽ1
2Neu is stable if | λ∗1,2(j) | < 1, where

λ∗1,2(j) = ±
√{

ρL(j)
(
1− 2ϕL(j)

)}{
ρR(j)

(
1− 2ϕR(j)

)}
for j = u, v, w ∈ [0, 1].

□

5 Numerical examples and graphical correspondence

The numerical examples and graphical representation of the neutrosophic solutions are presented in detail.
Three examples are considered for this study, as follows:

Example 5.1. Consider the logistic difference Equation (48)

ϕ̃n+1 = ρ̃ϕ̃n

(
1− ϕ̃n

)
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with the initial population ϕ̃n=0 = ϕ̃0 and growth rate ρ̃ are taken as triangular neutrosophic numbers such
that {

ϕ̃0 = [0.45, 0.50, 0.55, 0.35, 0.50, 0.65, 0.40, 0.50, 0.60]

ρ̃ = [2.70, 2.75, 2.80; 2.6, 2.75, 2.9; 2.65, 2.75, 2.85]
(62)

The parametric neutrosophic representation of the Equation (62) is given by


[
ϕ̃0

]
(u,v,w)

= [0.45 + 0.05u, 0.50− 0.05u] , [0.5− 0.15v, 0.5 + 0.15v] , [0.5− 0.1w, 0.5 + 0.1w]

[ρ̃](u,v,w) = [2.7 + 0.05u, 2.8− 0.05u] , [2.75− 0.15v, 2.75 + 0.15v] , [2.75− 0.1w, 2.75 + 0.1w]
(63)

1.png 1.bb

Figure 1: Illustrates the dynamical stability of the crisp logistic difference equation

ϕ̃n+1 = ρ̃ϕ̃n

(
1− ϕ̃n

)
with growth rate ρ̃ = 2.75 and the initial population ϕ̃0 = 0.5. As the generation increases, the population
size approaches towards a fixed quantity (∼= 0.64) with respect to the mentioned initial input.

Then using Equation (62) and Equation (63), the Equation (48) gives the system



ϕL,n+1 (u) = (2.7 + 0.05u)ϕL,n(u)
(
1− ϕR,n(u)

)
ϕR,n+1 (u) = (2.8− 0.05u)ϕR,n(u)

(
1− ϕL,n(u)

)
ϕL,n+1 (v) = (2.75− 0.15v)ϕL,n(v)

(
1− ϕR,n(v)

)
ϕR,n+1 (v) = (2.75 + 0.15v)ϕR,n(v)

(
1− ϕL,n(v)

)
ϕL,n+1 (w) = (2.75− 0.1w)ϕL,n(w)

(
1− ϕR,n(w)

)
ϕR,n+1 (w) = (2.75 + 0.1w)ϕR,n(w)

(
1− ϕL,n(w)

)
(64)
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Figure 2: The discrete change-over the population size and the generation number of the System (64) with
the triangular neutrosophic parametric population size is given by Equation (63) for u = 0.8, v = 0.3 and
w = 0.4.

Figure 3: The discrete change-over the population size and the generation number of the System (64) with
the triangular neutrosophic parametric population size is given by Equation (63) for u = 0.9, v = 0.1 and
w = 0.2.

Example 5.2. Consider the neutrosophic logistic difference equation

ϕ̃n+1 = ρ̃ϕ̃n ⊖gH ρ̃(ϕ̃n)
2

in the type-I gH-difference concept with the initial neutrosophic population and growth rate information are
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as (63). Then combined impact of the Equation (56) and (63) implies the system,

ϕL,n+1 (u) = (2.7 + 0.05u)ϕL,n(u)
(
1− ϕL,n(u)

)
ϕR,n+1 (u) = (2.8− 0.05u)ϕR,n(u)

(
1− ϕR,n(u)

)
ϕL,n+1 (v) = (2.75− 0.15v)ϕL,n(v)

(
1− ϕL,n(v)

)
ϕR,n+1 (v) = (2.75 + 0.15v)ϕR,n(v)

(
1− ϕR,n(v)

)
ϕL,n+1 (w) = (2.75− 0.1w)ϕL,n(w)

(
1− ϕL,n(w)

)
ϕR,n+1 (w) = (2.75 + 0.1w)ϕR,n(w)

(
1− ϕR,n(w)

)
(65)

Figure 4: The discrete change-over the population size and the generation number of the System (65) for
u = 0.8, v = 0.3 and w = 0.4.

Example 5.3. Consider the neutrosophic logistic difference equation

ϕ̃n+1 = ρ̃ϕ̃n ⊖gH ρ̃(ϕ̃n)
2

in the type-II gH-difference concept with the initial neutrosophic population and growth rate values as
Equation (63).

Then from Equation (59) and using the Equation (63) we have,

ϕL,n+1 (u) = (2.8− 0.05u)ϕR,n(u)
(
1− ϕR,n(u)

)
ϕR,n+1 (u) = (2.7 + 0.05u)ϕL,n(u)

(
1− ϕL,n(u)

)
ϕL,n+1 (v) = (2.75 + 0.15v)ϕR,n(v)

(
1− ϕR,n(v)

)
ϕR,n+1 (v) = (2.75− 0.15v)ϕL,n(v)

(
1− ϕL,n(v)

)
ϕL,n+1 (w) = (2.75 + 0.1w)ϕR,n(w)

(
1− ϕR,n(w)

)
ϕR,n+1 (w) = (2.75− 0.1w)ϕL,n(w)

(
1− ϕL,n(w)

)
(66)
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Figure 5: The discrete change-over the population size and the generation number of the System (65) for
u = 0.9, v = 0.1 and w = 0.2.

Figure 6: The discrete change-over the population size and the generation number of the System (66) for
u = 0.8, v = 0.3 and w = 0.4.

5.1 Discussion on the numerical results:

All the figures depict the dynamical state of the systems (62) [see the figures Fig. 2 and Fig. 3], (64) [see the
figures Fig. 4 and 5.] and the system (65) [see the figures 6. and 7.] with the supplied initial inputs consisting
of the triangular initial population size and the growth rate given by (63) in the two dimensional reference
frame of the population size and the generation number. In each frame, there are six number of plots (three
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Figure 7: The discrete change-over the population size and the generation number of the System (66) for
u = 0.9, v = 0.1 and w = 0.2.

for lower parametric neutrosophic (u, v, w)-cut and three for upper parametric neutrosophic (u, v, w)-cut) in
neutrosophic environment for some fixed parametric values which are indicated within the legend box as well
as in the figures descriptions. The following significant decision may be taken on the basis of the numerical
results:

(a) If the generation number increases, then the population size tends to either zero or an unbounded
solution (see the figures Fig. 2 and Fig. 3). In this case, the dynamical state is unstable and the
direction of lower branches refers to the possibility of population extinction. Although, we have taken

the membership functions taking
[
ϕ̃0

]
u
= [0.495, 0.505] and [ρ̃]u = [0.2745, 0.2755] which are near about

the crisp population size ϕ̃0 = 0.5 and the logistic growth ρ̃ = 2.75, the logistic difference Equation (48)
unstable (see the Fig. 3.) where as it is stable in crisp environment (see the Fig. 1.). Through this
particular Example 5.1, the neutrosophic logistic model (43) in the form of the generalized Hukuhara
difference (44) in the light of both the generalized Hukuhara difference (type-I gH and type-II gH) is
unstable but stable in a crisp environment.

(b) The neutrosophic logistic difference equation (43) in the generalized Hukuhara difference equation of

the form ϕ̃n+1 = ρ̃ϕ̃n ⊖gH ρ̃(ϕ̃n)
2
in type-I gH-difference concept is stable for the initial information

(63) and for the parameters values u = 0.8, v = 0.3 and w = 0.4 and u = 0.9, v = 0.1 and w = 0.2,
respectively (see the Fig. 4. and Fig. 5.). If the number of generations increases, the population size
oscillates slowly and finally approaches towards a stable population (≈ 0.63) (see the tendency in crisp
result Fig. 1.). Therefore, there is no chance of population extinction in this numerical result and it is
stable in crisp as well as neutrosophic environments.

(c) The neutrosophic logistic difference equation (43) in the generalized Hukuhara difference equation of the

form ϕ̃n+1 = ρ̃ϕ̃n⊖gH ρ̃(ϕ̃n)
2
in type-II gH-difference concept is unstable for the same initial information

(63) and for the parameters values u = 0.8, v = 0.3 and w = 0.4 and u = 0.9, v = 0.1 and w = 0.2
respectively (see the Fig. 6. and Fig. 7.). If the number of generations increases, the population
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size oscillates slowly but not stable in neutrosophic environments but there is no chance of population
extinction in this numerical result. The significant outcomes are observed that the same model shows a
stable situation by type-I gH-difference concept but unstable in type-II gH-difference concept (compare
the figures Fig. 4. and Fig. 5. with Fig. 6. and Fig. 7.).

6 Conclusion

The difference equation reflects discrete changes with mathematical notations. Neutrosophic sets and numbers
describe uncertain phenomena with truthfulness, indeterminacy, and falsehood functions. A situation where
discrete changes occur with vague information of a neutrosophic sense can be dealt with by the neutrosophic
difference equation. In this context, the solvability of such difference equations and the uniqueness of solutions
(if they exist) are significant concerns. This paper consists of two parts, namely (i) the theoretical part and (ii)
the application part. Through the theoretical part, we have extended the fuzzy metric and the corresponding
Lemmas, Theorems to the neutrosophic metric theory and discussed the different theorems, lemmas associated
with the Hukuhara difference, generalized Hukuhara difference of both type-I and type-II in a neutrosophic
environment with proper justification. In fact, this paper contributes a background analysis discussing the
properties of metrics and the Hukuhara differences of neutrosophic numbers in different perspectives before
establishing the uniqueness and existence criteria for the solvability of the neutrosophic difference equation.
We have discussed the practical significance of the proposed theory, taking the Logistic growth model under
neutrosophic uncertainty (see Section 4). Numerical examples and graphical results are provided to correctly
perceive this studys meaning.

The significantly extended and generalized established theory of neutrosophic uncertainty from existing
fuzzy theory reduces the gaps in the neutrosophic environment. The existence and uniqueness criteria can
be utilized to check the solvability of any given difference equation under a neutrosophic environment. Thus,
the present study opens a large scope for investigations of more complicated mathematical models based on
specific insights towards discrete dynamics and imprecise decision phenomena in the future. Besides such
application-based investigations, the proposed theory can be modified for higher orders of difference equations
and a more generalized sense of uncertainty. If the difference equations are rational type under neutrosophic
under uncertainty, then the established theory may face into the challenge to analyse the dynamical stability
condition through the eigenvalue method. For such a challenge, the researcher may try to analyse a discrete
Michaelis-Menten harvesting model through the established theory of this paper.
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