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Abstract. This paper investigates fixed-point theorems within the framework of neutrosophic normed spaces. We
provide a novel proof of the Banach Contraction Principle, offering fresh insights into its applicability in neutrosophic
environments. Additionally, we extend both Caccioppolis and Kannans fixed-point theorems to neutrosophic linear
spaces, establishing their validity in this generalized context. These results contribute to the theoretical advancement
of neutrosophic analysis and broaden the scope of classical fixed-point theory.
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1 Introduction

Neutrosophic sets, proposed by Smarandache [1], generalize fuzzy sets [2] and intuitionistic fuzzy sets [3] by
introducing three distinct membership functions: truth, indeterminacy, and falsity. Since their introduction,
these sets have gained significant attention due to their ability to handle uncertainty and incomplete infor-
mation more effectively than traditional models. Several versions of fuzzy normed spaces have been explored
in the literature [4, 5, 6], with notable contributions from Bag and Samanta [7], who introduced a modified
fuzzy norm, leading to important fixed-point results [8, 9]. Das et al. [10] advanced the field by exploring
fixed point theory within the framework of complete fuzzy normed linear spaces.

One of the notable advancements in this area is the development of neutrosophic normed spaces, which
generalize both fuzzy and intuitionistic fuzzy normed spaces. The foundational work in this domain was
established by Muralikrishna and Kumar [11], who investigated key structural properties. Later, Omran
and Elrawy [12] explored continuous and bounded operators within neutrosophic normed spaces, broadening
their applications in functional analysis. Convergence, a fundamental concept in normed spaces, has also
been studied extensively, while Kirisci and imek [13] explored statistical convergence. Chaurasiya et al. [14]
provided a detailed analysis of bounded operators, and Aral et al. [15] introduced ρ-strong convergence in
neutrosophic normed spaces, enriching the theory further. These spaces have since garnered interest for their
potential applications in decision-making, optimization, and functional analysis [16, 17, 18].

Earlier foundational work by Grabiec [19] on fixed points in fuzzy metric spaces significantly influenced
later developments in neutrosophic theory. Building on this, Sowndrarajan et al. [20] extended fixed point
results to neutrosophic metric spaces. In particular, Omran and Elrawy [12] extended the Banach Contraction
Principle to neutrosophic normed spaces, demonstrating its viability in this generalized setting. Motivated
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by these advancements, the present work offers an alternative proof of the Banach Contraction Principle,
providing new insights into its structure and implications. Furthermore, we extend Caccioppolis and Kan-
nans fixed-point theorems to neutrosophic normed linear spaces, contributing to the ongoing development of
neutrosophic functional analysis.

2 Basic Concepts

This section introduces the essential concepts and foundational results required for the subsequent develop-
ment of the theory.

Definition 2.1. [11]A binary operation ⊕ : [0, 1]× [0, 1] → [0, 1] is called a continuous t-norm if it satisfies
the following conditions:

1. ⊕ is continuous.

2. ⊕ is associative and commutative.

3. For all a ∈ [0, 1], it holds that a⊕ 1 = a.

4. If u1 ≤ u2 and v1 ≤ v2, then u1 ⊕ v1 ≤ u2 ⊕ v2 for all u1, u2, v1, v2 ∈ [0, 1].

Definition 2.2. [11]A binary operation ⊙ : [0, 1]× [0, 1] → [0, 1] is called a continuous t-conorm if it satisfies
the following conditions:

1. ⊙ is continuous.

2. ⊙ is associative and commutative.

3. For all v ∈ [0, 1], it holds that v ⊙ 0 = v.

4. If u1 ≤ u2 and v1 ≤ v2, then u1 ⊙ v1 ≤ u2 ⊙ v2 for all u1, u2, v1, v2 ∈ [0, 1].

Definition 2.3. [1]Let U be a universal set. A neutrosophic set N on U is defined as

N = {⟨x,P(x),Q(x),R(x)⟩ | x ∈ U},

where the functions P,Q,R : U → [0, 1] denote the degrees of truth, indeterminacy, and falsity membership
associated with each element x ∈ U , respectively.

Definition 2.4. [11] Let V be a real vector space, and let ⊕ and ⊙ denote continuous t-norm and t-conorm
operations, respectively. A mapping N = ⟨P,Q,R⟩ : V × R → [0, 1]3 is called a neutrosophic norm on V if,
for all u, v ∈ V and all scalars s, r, t ∈ R, the following conditions are satisfied:

1. 0 ≤ P(u, s),Q(u, s),R(u, s) ≤ 1.

2. 0 ≤ P(u, s) +Q(u, s) +R(u, s) ≤ 3.

3. P(u, s) = 0 whenever s ≤ 0.

4. P(u, s) = 1 for s > 0 if and only if u = 0.

5. For all ξ ̸= 0 and s > 0, we have P(ξu, s) = P
(
u, s

|ξ|

)
.

6. P(u, r)⊕ P(v, t) ≤ P(u+ v, r + t).
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7. The function P(u, ·) is continuous and non-decreasing for s > 0, with lim
s→∞

P(u, s) = 1.

8. Q(u, s) = 1 whenever s ≤ 0.

9. Q(u, s) = 0 for s > 0 if and only if u = 0.

10. Q(ξu, s) = Q
(
u, s

|ξ|

)
for all ξ ̸= 0 and s > 0.

11. Q(u, r)⊙Q(v, t) ≥ Q(u+ v, r + t).

12. The function Q(u, ·) is continuous and non-increasing for s > 0, with lim
s→∞

Q(u, s) = 0.

13. R(u, s) = 1 whenever s ≤ 0.

14. R(u, s) = 0 for s > 0 if and only if u = 0.

15. R(ξu, s) = R
(
u, s

|ξ|

)
for all ξ ̸= 0 and s > 0.

16. R(u, r)⊙R(v, t) ≥ R(u+ v, r + t).

17. The function R(u, ·) is continuous and non-increasing for s > 0, with lim
s→∞

R(u, s) = 0.

Hence, (V,N ,⊕,⊙) is called a neutrosophic normed linear space (NNLS).

Example 2.5. [11] Let (F, ∥ · ∥) be a normed linear space. Define binary operations on the interval [0, 1] by

a⊕ b = ab, a⊙ b = a+ b− ab.

Define the neutrosophic norms P (u, s), Q(u, s), and R(u, s) as follows:

P (u, s) =


s

s+ ∥u∥
, if s > ∥u∥,

0, if s ≤ ∥u∥,
Q(u, s) =


∥u∥

s+ ∥u∥
, if s > ∥u∥,

1, if s ≤ ∥u∥,

R(u, s) =


∥u∥
s

, if s > ∥u∥,

1, if s ≤ ∥u∥.

Then, the structure (F,N,⊕,⊙), where N : F × R+ → [0, 1]3 is given by

N(u, s) = (P (u, s), Q(u, s), R(u, s)),

forms a neutrosophic normed linear space (NNLS).

Definition 2.6. [11] A sequence {un} in an NNLS (Y,N,⊕,⊙) is said to converge to an element u ∈ Y if,
for every s > 0,

lim
n→∞

P(un − u, s) = 1, lim
n→∞

Q(un − u, s) = 0, lim
n→∞

R(un − u, s) = 0.

Definition 2.7. [11] A sequence {un} in an NNLS (Y,N,⊕,⊙) is called a Cauchy sequence if, for every
s > 0 and for each m ∈ N,

lim
n→∞

P(un+m − un, s) = 1, lim
n→∞

Q(un+m − un, s) = 0, lim
n→∞

R(un+m − un, s) = 0.

Definition 2.8. [11] An NNLS (Y,N,⊕,⊙) is said to be complete if every Cauchy sequence in Y converges
to a limit in Y .
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3 Main Results

In 1988, Grabiec [19] generalized the classical Banach Contraction Principle within the framework of fuzzy
metric spaces. Later, Das et al. [10] extended this principle to fuzzy normed linear spaces. More recently,
Omran and Elrawy [12] demonstrated a similar principle in neutrosophic normed spaces. In this work, we
present an alternative proof of this principle within the same framework.

Theorem 3.1. Let (X,N ,⊕,⊙) be a complete NNLS, and let F : X → X be a mapping satisfying the
following conditions for all ξ, η ∈ X and for some constants 0 < k, l,m < 1:

P(Fξ − Fη, t) ≥ P(ξ − η, t
k ), (1)

Q(Fξ − Fη, t) ≤ Q(ξ − η, tl ), (2)

R(Fξ − Fη, t) ≤ R(ξ − η, t
m). (3)

Then F admits a unique fixed point in X.

Proof. Choose an arbitrary element ξ0 ∈ X, and define ξ1 = F (ξ0). If ξ1 = ξ0, then ξ0 is a fixed point of F ,
and the proof is complete.

Otherwise, if ξ1 ̸= ξ0, define ξ2 = F (ξ1) and continue iteratively. This process generates a sequence {ξn}
in X, given by

ξn+1 = F (ξn) = Fn+1(ξ0), where ξn ̸= ξn+1, n = 0, 1, 2, . . .

Using inequality (1), we obtain

P(ξr − ξr+1, t) = P(F rξ0 − F r+1ξ0, t)

≥ P(F r−1ξ0 − F rξ0,
t
k ).

Repeating this process r times yields

P(ξr − ξr+1, t) ≥ P(ξ0 − ξ1,
t
kr ). (4)

Similarly, from (2) and (3), we have

Q(ξr − ξr+1, t) ≤ Q(ξ0 − ξ1,
t
lr ), (5)

R(ξr − ξr+1, t) ≤ R(ξ0 − ξ1,
t

mr ). (6)

To verify that {ξn} is a Cauchy sequence in X, consider:

P(ξn − ξn+p, t) ≥ P(ξn − ξn+1,
t
2)⊕ P(ξn+1 − ξn+p,

t
2)

≥ P(ξn − ξn+1,
t
2)⊕ P(ξn+1 − ξn+2,

t
22
)⊕ P(ξn+2 − ξn+p,

t
22
)

...

≥ P(ξn − ξn+1,
t
2)⊕ P(ξn+1 − ξn+2,

t
22
)⊕ · · · ⊕ P(ξn+p−1 − ξn+p,

t
2p−1 )

≥ P(ξ0 − ξ1,
t

2kn )⊕ P(ξ0 − ξ1,
t

22kn+1 )⊕ · · · ⊕ P(ξ0 − ξ1,
t

2p−1kn+p−1 ) by (4)

As n → ∞, the right-hand side converges to 1, implying that

lim
n→∞

P(ξn − ξn+p, t) = 1, ∀ t > 0, p ≥ 1, p ∈ N.
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Similarly, we obtain

Q(ξn − ξn+p, t) ≤ Q(ξn − ξn+1,
t
2)⊙Q(ξn+1 − ξn+2,

t
22
)⊙ · · · ⊙ Q(ξn+p−1 − ξn+p,

t
2p−1 )

≤ Q(ξ0 − ξ1,
t

2ln )⊙Q(ξ0 − ξ1,
t

22ln+1 )⊙ · · · ⊙ Q(ξ0 − ξ1,
t

2p−1ln+p−1 ). by (5)

As n → ∞, the right-hand side converges to 0, implying that

lim
n→∞

Q(ξn − ξn+p, t) = 0, ∀ t > 0, p ≥ 1, p ∈ N.

Again, from (6), we get
lim
n→∞

R(ξn − ξn+p, t) = 0.

Hence, the sequence {ξn} is Cauchy. Given that the space (X,N ,⊕,⊙) is complete, there exists an element
ξ ∈ X such that ξn converges to ξ.
Next, we show that Fξ = ξ. Indeed,

P(Fξ − ξ, t) ≥ P(Fξ − Fξn,
t
2)⊕ P(Fξn − ξ, t

2)

≥ P(ξ − ξn,
t
2k )⊕ P(ξn+1 − ξ, t

2).

Taking the limit as n → ∞, it follows that P(Fξ − ξ, t) = 1 for all t > 0, and hence Fξ = ξ.
To establish uniqueness, assume that Fη = η for some η ∈ X. Then, using (1), we obtain:

P(ξ − η, t) = P(Fξ − Fη, t) ≥ P(ξ − η, t
kn ).

Taking the limit as n → ∞, we conclude that P(ξ − η, t) = 1 for every t > 0, implying ξ = η. Therefore, the
fixed point of F is unique. □

In 2015, Das et al. [10] presented a version of Caccioppolis fixed point theorem within the framework of
fuzzy normed linear spaces. In the following theorem, we extend this result to neutrosophic normed spaces,
thereby broadening its applicability to a more generalized setting.

Theorem 3.2. Let (X,N ,⊕,⊙) be a complete neutrosophic normed space, and let F : X → X be a self-
mapping. Assume that for every pair ξ, η ∈ X, and for sequences {kn}, {ln}, {mn}, the following conditions
are satisfied:

P (Fnξ − Fnη, t) ≥ P (ξ − η,
t

kn
), (7)

Q(Fnξ − Fnη, t) ≤ Q(ξ − η,
t

ln
), (8)

R(Fnξ − Fnη, t) ≤ R(ξ − η,
t

mn
), (9)

where each of the sequences {kn}, {ln}, and {mn} consists of strictly positive real numbers. If

lim
n→∞

kn = 0, lim
n→∞

ln = 0 and lim
n→∞

mn = 0.

then the mapping F has a unique fixed point in X.

Proof. Let ξ0 ∈ X be chosen arbitrarily, and define ξ1 = F (ξ0). If ξ1 = ξ0, then ξ0 is a fixed point of F , and
the proof is complete.

Otherwise, if ξ1 ̸= ξ0, we proceed by setting ξ2 = F (ξ1), and continue this process to generate a sequence
{ξn} in X, defined recursively by

ξn+1 = F (ξn) = Fn+1(ξ0), where ξn ̸= ξn+1, n = 0, 1, 2, . . .
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Using inequality (7), we obtain

P(ξn − ξn+p, t) ≥ P(ξn − ξn+1,
t

2
)⊕ P(ξn+1 − ξn+2,

t

22
)⊕ · · · ⊕ P(ξn+p−1 − ξn+p,

t

2p−1
)

≥ P(ξ0 − ξ1,
t

2kn
)⊕ P(ξ0 − ξ1,

t

22kn+1
)⊕ · · · ⊕ P(ξ0 − ξ1,

t

2p−1kn+p−1
)

→ 1⊕ 1⊕ · · · ⊕ 1 = 1, as n → ∞ and kn → 0.

Therefore, limn→∞ P(ξn − ξn+p, t) = 1, for every t > 0, p ≥ 1, p ∈ N.
Similarly, from inequality (8), we have

Q(ξn − ξn+p, t) ≤ Q(ξn − ξn+1,
t

2
)⊙Q(ξn+1 − ξn+2,

t

22
)⊙ · · · ⊙ Q(ξn+p−1 − ξn+p,

t

2p−1
)

≤ Q(ξ0 − ξ1,
t

2ln
)⊙Q(ξ0 − ξ1,

t

22ln+1
)⊙ · · · ⊙ Q(ξ0 − ξ1,

t

2p−1ln+p−1
)

→ 0⊙ 0⊙ · · · ⊙ 0 = 0, as n → ∞ and ln → 0.

As a result, we obtain

lim
n→∞

Q(ξn − ξn+p, t) = 0, for every t > 0, p ≥ 1, p ∈ N.

Likewise,

lim
n→∞

R(ξn − ξn+p, t) = 0, for every t > 0, p ≥ 1, p ∈ N.

This confirms that the sequence {ξn} is Cauchy in the NNLS (X,N ,⊕,⊙). Since the space is assumed to be
complete, it follows that there exists an element ξ ∈ X such that ξn → ξ.
Next, we prove that Fξ = ξ:

P(ξ − Fξ, t) ≥ P(ξ − ξn+1,
t

2
)⊕ P(ξn+1 − Fξ,

t

2
)

≥ P(ξ − ξn+1,
t

2
)⊕ P(ξn − ξ,

t

2k1
) by (7)

→ 1⊕ 1 = 1, as n → ∞, for every t > 0.

Hence, P(ξ − Fξ, t) = 1 for all t > 0, implying that Fξ = ξ. To establish uniqueness, assume that there
exists another point η ∈ X such that Fη = η. In this case, it follows that Fnξ = ξ and Fnη = η for every
n ∈ N. Utilizing condition (7), we obtain

P(ξ − η, t) = P(Fnξ − Fnη, t) ≥ P(ξ − η,
t

kn
) → 1, as n → ∞.

Consequently, we have ξ = η, which confirms that the fixed point of the mapping F is unique. □

Example 3.3. Consider the complete neutrosophic normed space X = R endowed with the usual absolute
value norm. Let (R, N,⊕,⊙) denote the corresponding complete neutrosophic normed linear space. Define a
self-mapping F : R → R by F (ξ) = ξ

5 .

We begin by evaluating P for the iterates of F :
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P(Fnξ − Fnη, s) =
s

s+ ∥Fnξ − Fnη∥

=
s

s+ 1
5n |ξ − η|

≥ t

t+
(
1
2

)n |ξ − η|

=
s
kn

s
kn

+ |ξ − η|
= P(ξ − η,

s

kn
), where kn =

1

2n
.

Next, we compute the corresponding expression for Q:

Q(Fnξ − Fnη, s) =
∥Fnξ − Fnη∥

s+ ∥Fnξ − Fnη∥

=
1
5n |ξ − η|

s+ 1
5n |ξ − η|

=
|ξ − η|

5ns+ |ξ − η|

≤ |ξ − η|
3ns+ |ξ − η|

=
|ξ − η|

s
ln

+ |ξ − η|
= Q(ξ − η,

s

ln
), where ln =

1

3n
.

Finally, for R, we find:

R(Fnξ − Fnη, s) =
∥Fnξ − Fnη∥

s

=
1

5n
|ξ − η|

s

≤ 1

4n
|ξ − η|

s

=
|ξ − η|

s
mn

= R(ξ − η,
s

mn
), where mn =

1

4n
.

These results hold for all ξ, η ∈ R, s > 0, and for each n ∈ N. Additionally, the sequences kn, ln, and mn

are strictly positive and converge to zero as n → ∞. Therefore, the hypotheses of Theorem 3.2 are satisfied,
implying that F has a unique fixed point in R, namely 0.

Indian mathematician Kannan made a significant breakthrough in 1968 by proving a fixed point theorem
without requiring continuity and introducing a unique contraction modulus, 0 < β < 1

2 . Decades later, in
2015, Das et al. [10] extended Kannans theorem to fuzzy normed linear spaces using the minimum t-norm.
Building upon these advancements, our next result further generalizes this theorem within the framework of
neutrosophic linear spaces.

Theorem 3.4. Let (X,N ,⊕,⊙) be a complete neutrosophic normed space, and let F : X → X be a self-
mapping. Suppose there exist constants 0 < k, l,m < 1

2 such that for all ξ, η ∈ X, the following conditions
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hold:

P(Fξ − Fη, t) ≥ P(ξ − Fξ,
t

k
)⊕ P(η − Fη,

t

k
), (10)

Q(Fξ − Fη, t) ≤ Q(ξ − Fξ,
t

l
)⊙Q(η − Fη,

t

l
), (11)

R(Fξ − Fη, t) ≤ R(ξ − Fξ,
t

m
)⊙R(η − Fη,

t

m
), (12)

where ⊕ denotes a minimum-type t-norm and ⊙ denotes a maximum-type t-conorm. Then the mapping F
has a unique fixed point in X.

Proof. Let us choose an initial point ξ0 ∈ X and set ξ1 = F (ξ0). If it happens that ξ1 = ξ0, then ξ0 is
clearly a fixed point of F , and the result follows immediately. Otherwise, assume that ξ1 ̸= ξ0, and define
ξ2 = F (ξ1). Proceeding recursively, we generate a sequence {ξn} in X defined by

ξn+1 = F (ξn) = Fn+1(ξ0), where ξn ̸= ξn+1, n = 0, 1, 2, . . .

Using inequality (10), we obtain

P(ξr − ξr+1, t) = P(F rξ0 − F r+1ξ0, t)

≥ P(F r−1ξ0 − F rξ0,
t

k
)⊕ P(F rξ0 − F r+1ξ0,

t

k
)

= P(ξr−1 − ξr,
t

k
)⊕ P(ξr − ξr+1,

t

k
).

Since the operation ⊕ corresponds to the minimum t-norm, we proceed by examining two separate cases.
Case I: Suppose that P(ξr − ξr+1, t) ≥ P(ξr − ξr+1,

t
k ) holds. Applying this inequality iteratively n times,

we obtain

P(ξr − ξr+1, t) ≥ P(ξr − ξr+1,
t

kn
).

By passing to the limit as n → ∞, we conclude that P(ξr − ξr+1, t) = 1, implying ξr = ξr+1, which leads to
a contradiction.
Case II: Suppose

P(ξr − ξr+1, t) ≥ P(ξr−1 − ξr,
t

k
).

Repeating the above process, we obtain

P(ξr − ξr+1, t) ≥ P(ξ0 − ξ1,
t

kr
). (13)

Further, using the above inequality, we establish

P(ξn − ξn+p, t) ≥ P(ξn − ξn+1,
t

2
)⊕ P(ξn+1 − ξn+2,

t

22
)⊕ · · · ⊕ P(ξn+p−1 − ξn+p,

t

2p−1
)

≥ P(ξ0 − ξ1,
t

2kn
)⊕ P(ξ0 − ξ1,

t

22kn+1
)⊕ · · · ⊕ P(ξ0 − ξ1,

t

2p−1kn+p−1
)

→ 1⊕ 1⊕ · · · ⊕ 1 = 1, as n → ∞, for every t > 0.

Therefore, limn→∞ P(ξn+p − ξn, t) = 1, for all t > 0, p ≥ 1, p ∈ N.
Using inequality (11), we similarly obtain

Q(ξr − ξr+1, t) = Q(F rξ0 − F r+1ξ0, t)

≤ Q(F r−1ξ0 − F rξ0,
t

k
)⊕Q(F rξ0 − F r+1ξ0,

t

k
)

= Q(ξr−1 − ξr,
t

k
)⊕Q(ξr − ξr+1,

t

k
).
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Since ⊕ corresponds to the maximum t-conorm, we distinguish two cases:
Case I: Suppose Q(ξr − ξr+1, t) ≤ Q(ξr − ξr+1,

t
k ). Repeating the inequality, we have

Q(ξr − ξr+1, t) ≤ Q(ξr − ξr+1,
t

kn
).

Passing to the limit as n → ∞, we obtain Q(ξr − ξr+1, t) = 0, implying ξr = ξr+1, which leads to a
contradiction.
Case II: Suppose

Q(ξr − ξr+1, t) ≤ Q(ξr−1 − ξr,
t

k
).

Then,

Q(ξn − ξn+p, t) ≤ Q(ξn − ξn+1,
t

2
)⊙Q(ξn+1 − ξn+2,

t

22
)⊙ · · · ⊙ Q(ξn+p−1 − ξn+p,

t

2p−1
)

≤ Q(ξ0 − ξ1,
t

2ln+1
)⊙Q(ξ0 − ξ1,

t

22ln+2
)⊙ · · · ⊙ Q(ξ0 − ξ1,

t

2p−1ln+p
)

→ 0⊙ 0⊙ · · · ⊙ 0 = 0, as n → ∞.

Thus,

lim
n→∞

Q(ξn+p − ξn, t) = 0, for every t > 0, p ≥ 0, p ∈ N.

Similarly,

lim
n→∞

R(ξn − ξn+p, t) = 0.

This confirms that the sequence {ξn} is Cauchy in a NNLS (X,N ,⊕,⊙). Since the space is assumed to be
complete, it follows that there exists an element ξ ∈ X such that ξn → ξ.
Now, to verify that ξ is a fixed point of F , observe:

P(ξ − Fξ, t) ≥ P(ξ − ξn,
t

2
)⊕ P(Fξn−1 − Fξ,

t

2
)

≥ P(ξ − ξn,
t

2
)⊕ P(ξn−1 − ξn,

t

2k
)⊕ P(ξ − Fξ,

t

2k
) by (10).

By considering the limit as n → ∞, we obtain

P(ξ − Fξ, t) ≥ P(ξ − Fξ,
t

2k
) ≥ · · · ≥ P(ξ − Fξ,

t

2rkr
).

Letting r → ∞ and using the fact that 0 < k < 1
2 , we deduce that Fξ = ξ.

To prove uniqueness, suppose there exists another fixed point η ∈ X. Then

P(ξ − η, t) = P(Fξ − Fη, t)

≥ P(ξ − Fξ,
t

k
)⊕ P(η − Fη,

t

k
)

= 1⊕ 1 = 1.

Thus, ξ = η, proving uniqueness. □
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4 Conclusion

In this work, we have generalized key fixed-point theorems within the framework of neutrosophic normed
spaces, thereby strengthening their mathematical foundation and broadening their theoretical applications.
Our new proof of the Banach contraction principle in neutrosophic normed space provides a fresh perspective
on contraction mappings under uncertainty. Additionally, the generalization of Caccioppolis and Kannans
fixed-point theorems further strengthens the analytical foundation of neutrosophic normed spaces. Given
their wide-ranging applications in functional analysis, optimization, and decision sciences, future research can
explore their role in solving real-world problems. This work lays the groundwork for further advancements
in neutrosophic mathematical analysis, encouraging deeper exploration into its practical applications and
theoretical extensions.
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