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Abstract. The focus of this study is on hybrid differential and fractional hybrid differential equations (HFDEs).
Such problems have important applications in a wide range of applied sciences. To address our models, we first
study the existence theorem of fuzzy solutions under relatively weaker constraints, combining the measure of non-
compactness and Mnch’s fixed-point theorem. The insights provided here extend and refine several previously
established findings. Subsequently, two examples are provided to demonstrate the validity of the results obtained.
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1 Introduction

Zadeh [1] pioneered the concept of fuzzy sets. Chang and Zadeh later utilized fuzzy sets to demonstrate fuzzy
mapping and control [2]. A number of studies on fuzzy mappings established the framework of fundamental
fuzzy calculus ([3]-[7]). In recent years, scholars have shown increasing interest in applying these concepts to
fuzzy differential and integral equations in the field of physics.

Fractional integrals and fractional derivatives have existed for as long as mathematics itself. Fractional
differential equations with fractional derivatives have gained significant popularity in the past few decades due
to their wide range of applications in various disciplines of science and technology. Kuratowski [3] developed
fixed-point theory and measures of non-compactness in 1930, which are now frequently utilized to solve many
forms of differential and integral equations. Numerous academics are currently working on a significant
number of new studies involving various types of analytic and differential problems. One reason for the use
of fractional differential equations is that integer-order differential equations are unable to explain a wide
range of phenomena. As a result, the implications of the existence of solutions to fractional-order differential
equations have attracted considerable attention in recent years. These fractional differential equations are
particularly useful in various industrial fields, notably in the study of polymeric viscosity materials and seismic
evaluation. For further details, see ([9]-[10]).
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When studying real-world phenomena, however, uncertain features must be addressed. Under these
circumstances, fuzzy set theory stands out as one of the most successful non-statistical or irregular method-
ologies for theoretically studying fuzzy differential equations. Several researchers have recently investigated
and analyzed the existence and uniqueness of solutions to quadratic and linear fuzzy fractional differential

equations (FFDEs) across various fields. For instance, the authors of [I1] demonstrated the existence and
uniqueness results of fractional evolution equations, while Salahshour et al. [12] established the existence and
uniqueness of solutions to FFDEs. Allahviranloo et al. [13] further proved the existence and uniqueness of

solutions to FFDEs under generalized Caputo Hukuhara differentiability.

The study of fractional derivatives plays a crucial role in numerous engineering applications, as it in-
volves differential equations that have been widely used across various disciplines, such as chemistry, physics,
and dynamical systems. Fractional-order differential equations are particularly significant because they offer
greater accuracy compared to integer-order equations, thanks to their enhanced degree of freedom [14, 15].
Hybrid differential equations (HDEs), which are commonly used to model perturbations in dynamical sys-
tems, have attracted considerable attention from researchers [16, 17]. Numerous studies have explored the
application of hybrid fixed-point theory to HDEs by incorporating various symmetry perturbations [18, 19].
Before delving into our research, we provide a brief overview of relevant studies addressing this problem. In
2013, Dhage demonstrated the existence and uniqueness of solutions for the following HDE:

[2(6) = A, 2())] = Qs, 2(5), s €T =00+ <], (1)

with the initial condition z (¢p) = zo € R, where A, € C(I x R,R) [18, 20]. Subsequently, Lu et al. [1(]
generalized (1) by employing the Riemann-Liouville derivative to obtain a satisfactory relation between the
analytical solution and experimental results:

DEo(2(c) = Al 2())) = Q<. 2(<)), <€,

with the initial condition z ({y) = 29 € R. Additionally, Hilal et al. [I7] proposed the boundary value
problem (BVP) for fractional hybrid differential equations (FHDEs), which included Caputo’s fractional-order
derivative as follows:

“DY, (A(j,(zg()g))) =Q(,2(), sel,
z(0) 2(r) ) —
T <A(0,z(0))> + T2 <A(T,z(7))> =Ts,
where A € C(I x R,R —{0}), 2 € C(I xR, R), and T1,T> (with T} + T» # 0) and T3 are real constants.
In 2023, El Ghazouani and his collaborators [?] proved the existence and asymptotic behavior of non-

linear HFDEs involving the fuzzy nabla Caputo fractional difference. They provided intriguing findings on
equilibrium and asymptotic equilibrium for the following problem:

Cyv U(t) _ U .
i (uagay) =90 tem,

u(0) =up € R,

(2)

where Ni and R, are the set of all natural integers and the set of fuzzy numbers, respectively. The
functions f,g : Ny x R, — R, satisfy F(£,0) = g(t,0) = 0, and V¥ is the nabla-Caputo fuzzy fractional
difference of order v € (0,1).

In [29], the authors explored the existence and stability results of fuzzy neutral fractional integrodiffer-
ential equations. The authors of [21] reported solvability and generalized Ulam-Hyers stability studies for a
fuzzy nonlinear AtanganaBaleanu-Caputo fractional coupled system. For further examples, see the following
references: ([22]-[25]).
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To the best of our knowledge, there are no investigations in the field of science devoted to fuzzy hybrid
differential equations utilizing Mnch’s fixed-point theorem. As a result of the previous studies, the primary
objective of this investigation is to analyze the following hybrid differential equations:

d u(t) _ B -
pr {S(Lu(t))] = A(t,u(t)), t&J=1[0,T] and u(0) = 0. (3)
And the following equation:
Cr D z(t) = U and u(0) =0
DS {S(t,u(t))} = A(t,u(t)), te€Jandu(0)=0. (4)

Here, gCHD*O‘ is the Caputo fractional generalized Hukuhara derivative of order 0 < o < 1, and §, A are
two continuous functions.

The remainder of this paper is organized as follows: In Section 2, we review some fundamental concepts
of calculus. In Sections 3 and 4, we apply Mnch’s fixed-point theorem to demonstrate that systems (3)
and (4) have unique solutions. Additionally, Section 5 provides examples to support the validity of our key
assumptions. Finally, Section 6 offers a brief summary.

2 Preliminaries

In this section, we review several fundamental concepts that will be beneficial throughout the remainder of
our article.

Definition 2.1. [20] A fuzzy set u is a map from R to [0, 1] with the subsequent possessions:

a. u is convex, normal, and upper semi-continuous.

b. supp(u) is compactly closed.
Definition 2.2. [20] Let u be a fuzzy set. Then the parameterized band form of u is given by

u = [u(r), a(r),r € [0,1] (5)

and

a. u(r) is left-continuous and non-decreasing based on r.

b. u(r) is a right continuous and non-increasing based on r.

c. Forallr €]0,1], u(r) > u(r).

Definition 2.3. [20] Let u and v be two fuzzy sets. Therefore, there is
(u@v) = [u(r) + a(r), v(r) +o(r)], (6)
_ [ Pulr), Au(r)],A =0
Aou) = { a(r), Au(r)] A < 0 @

where r € [0, 1].
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The parametrization interval shape of u(.,r) is computed by
u.,r) = [u(sr),alsr)],r € [0,1]

For p, 0 € Rr, where Rr is the set of all fuzzy sets. The gH difference [27] of p and p, as shown by p ©4n 0,
is expressed as

(8)

In regard to r-cuts, we obtain
(p6gm 0)" = [min{p(r) — o(r), p(r) — &(r)}, max{p(r) — o(r), p(r) — &(r)}].

And the conditions for the existence of 0 = p S, 0 € Rr are

a(r) = p(r) — o(r) and o(r)=p(r) —2(r)

case (i) { with o(r) increasing , &(r) decreasing , 9)
a(r) <a(r).
a(r) =p(r) —o(r) and o(r) = p(r) — o(r)

case (ii) with o(r) increasing , o(r) decreasing , (10)
a(r) <7(r).

for all r € [0, 1].
Definition 2.4. The Hausdorff distance is computed in the following manner:
d:]R]:X]R}'—)RU{O}

d(@,b) = sup max {|a(r) — b(r)|
rel0,1]

Ja(r) —b(r)]}

R denotes the set of all fuzzy numbers. Let T represent the area of all triangular fuzzy sets within Rr.
Therefore, (T,d) is a subset of (Rr,d), it is a complete metric space, and the next features are widely
recognized [13].

(1) d@®e,bd ) =d@,b), Va,b,ce Ry,

(2) d(@a®b,0) = d(@,0) + d(b,0), Va,be Rr;

(3) d@®b,a®c) =d(b,e), Va,bceRyr;

(4) d@®b,e®3) < d@,c) +d(b,3), Va,bese Ry

(5) d@ob,c03) < d@,c) +d(b,3),Va,b,6,5 € Rr, a0 b,6 F exist;
(6) d\® b b

Definition 2.5. [26] The gH derivative of a fuzzy value function u is described as

u(s+h) Sy u(s)
Dot 1) (1)

/ — 1
iy (5) = Jim

if uyp (s) € Ry, we say that u is gH -differentiable,
Also we assert that u is [(i) — gH]-diff if

(ugrr), (s) = [ (s,7),@ (s,7)], 0<r<1 (12)
and that u is [(ii) — gH|-diff, if
(ugrr), () = [ (s,7) 0 (s,7)], 0<r<1 (13)
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Definition 2.6. [10] The Caputo fractional derivative of u is written as

(CDfu) (t) = (I""“D"u) (t) = ! ) /t(t — )=y M (g)ds, n—1<a<nneNs>0. (14)

I«
D represents a typical derivative.

In this paper, we use the syntax C' (J, T) for the space of all continuous functions. Furthermore, consider
L (J,T) as the space of Lebesgue integrable fuzzy-valued mappings from J to 7.

Definition 2.7. [28] Suppose u € L (J,T). The fuzzy Riemann Liouville integral of u is defined as:
1 b u(s)ds
(Igu) (t) = / —, a<s<t O<a<l (15)
I(a) Jo (t—s)7
Definition 2.8. [13] Letting x € A(J,T). The fractional gH Caputo derivative of u is:
1 T (ugH> ( )ds
c « jEet
(gHD*’LL)(T):Ia (u’gH)(T):F(l_a)/ R a<s<Tt, 0<a<l (16)

We further argue that u is ©[(i) — gH].-diff at 7o if
(gCHDSu)T (10) = [“D%u(10,7),“ D% (70,7)], 0<a<1 (17)

and u is ©[(ii) — gH]-diff at 7o if

(gHDfu)r (10) = [CDfﬂ (10,7) ,Cng (70, 7")] , 0<a<l1 (18)
Lemma 2.9. [13] Letu € A(J,T), we have
I§ (gu Du) (1) = u(r) Sgrr u(0) (19)

Following that, the Kuratowski measure of non compactness is defined, and some of its key aspects are
examined.

Definition 2.10. [29] The Kuratowski measure of non compactness (K.m.n.c) M(-) constructed on the bound
subset V of E is indeed:

MOV) :=inf{e¢>0:V =U"V; and diam (V;) <e for i=1,2,...,n}.
The K.m.n.c has the very next well-known features.

Lemma 2.11. [29] Letting £ be a Banach space and p,v C € be bounded. The next aspects are met:

1) M(p) < M(v) if pCv;

(1) M(
(2) M(p) = M(p) = M(convp)

(3) M(u) =0 iff u is relatively compact;
(4) M(

(5) M(

4 ) = [A|M(p), where A € R;

5) M(pUv) = max{M(n), M(v)};
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(6) M(p+v) < M(u)+ M(v), where uy+v={w|w=m+n,meunecv};
(7) M(p+y)=M(u), Vy € E.

Lemma 2.12. [30] Let V C C(I,E) be a bounded and equi-continuous subset. Then, the function s —
M(V(s)) is continuous on I, and the following hold:

Mc(V) = max M(V(s)),

M </Iu(s) ds) < /IM(V(S))ds,

where V(s) = {u(s) : u € V}, for s e I.

and

The preceding is a beneficial fixed point outcome for our aims:

Theorem 2.13. (Monch’s fixed point theorem [31]) Let )V be a convex, bounded, and closed subset of a
Banach space such that 0 € Y. Let Z be a continuous map from Y into itself. If, for every subsetV C Y, the
implication

V=cowZ(V) or V=Z(V)u{0} = M({V)=0,
holds, then Z has a fized point.

3 Solvability of a fuzzy hybrid differential equation

This section investigates the existence of a solution to the following hybrid differential equation (HDE) in

C(J, T):

d { u(t)

o S(W(m] = A(t,u(t)), tel0,T]=J and u(0) = 0. (20)

Equation (20) is equivalent to the hybrid integral equations (21) and (22), given as follows:

o If uis (i) — gH differentiable, then
u(®) = §(t,u(t)) [ Aln,ulo) dn (21)
0
o If u is (i) — gH differentiable, then
u(t) = (-1, u(t)) /0 A, () diy. (22)

Definition 3.1. A **fuzzy solution of type 1** for Equation (20) refers to a function v € C(J,T) that
satisfies (21). Similarly, a **fuzzy solution of type 2** for (20) refers to a function x € C(J,T) that satisfies
(22).

Let’s define P, C C([0;1],7) as the set closed of u € T such that d(u,0) < u for some p > 0. Our
objective is to demonstrate the existence of a fixed point for a constructed operator Q from (21) or (22)
within the subset P:

P, ={ueT|du,0) < pu}.

To prove the existence of a solution to (20), we require the following set of assumptions:
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(H1) §:J xT — T is continuous, and there exists a constant & > 0 such that

d (§(t,u(t), 5, v(t))) < &d(u(t),v(t)),

forallt € J and u,v e T.
Additionally, for every t € J,

~

S(L 0) = 20-
(H2) A:J x T — T is continuous, and there exists a constant A; > 0 such that
d (A, u(t)), At, v(t)) < Mad(u(t), (1)),

forall t € J and u,v € T.

Additionally, for every t € J,
A(t,0) = 0.

(Hs3) There exists a positive value p such that

T(§1,U,+ Zo) A< 1.

Theorem 3.2. Under the assumptions (H1)-(Hs), the problem (20) has at least one solution of type 1 in
C(J,T).

Proof. Let Q:C(J,T) — C(J,T) be an operator defined as

(Qu)(t) = F(t, u(t / A(n,u

Step (1): We show that Q maps P,, into P,. Let u € P,. Then,
a((Qu) (stu /An, dn,>
< (5(tu ) [ (. 0).0)
(4 (8t0.u).50.0)) +a (0.5¢.0)) [ d (tn-uta). A@.)
(g (1,0) + 20 /Alduo)d

< (Sip+ 20) tArp
ST (&ap+ 20) Arps.

IN

IN

Since d(u, 0) < p, it follows from assumption (H3) that

a((Qu)(®).0) < p

Thus, Q maps P, into P,,.
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Step (2): We establish the continuity of Q on P,. Let € > 0 and w,v € P, such that d(u,v) < €. Then,

4((Qu)(t). (Qu) (1)) < d (sa,u(t)) | A utmyan oo | A(mv(n))dn)
t
< d(E(0u(0), 500 00) [ A, Al o) d

t
< 61d(u,v) / Avd(u, v) dn
0
<&M Td(u,v)
< &AM Te.

Ase —0,d((Qu)(t), (Qu)(t)) — 0. Therefore, Q is continuous on P,.
Step (3): Let Q(# 0) C P,. Let w > 0 be arbitrary, and take v € Q and t,%2 € J such that d(t2,t1) < @
with to > t1. Then,

t1

d((Qu)(t), (Qu)(t2)) < d <S(t1,U(t1)) A(n,U(n))dn,S(tz,U(tz))/o 2 A(W,U(n))dn>

0

< a5, u(), 802 02) [ (M), 0)
(3000, u020)0) [ (A0, ), 0) i

t1

< Erd(ulty), u(ts))TArp + d (S(tl, u(tg)),ﬁ) wAip
+ d (S(tg, u(tg)), {S"(tl, u(tg))) TALu.

Let
M(u,w) = sup {d(u(t1),u(tz)) | d(te, t1) < w;ti, ta € J}.

Since § is continuous, d (§F(t2, u(t2)), F(t1, u(t2))) — 0 as w — 0. Therefore,

M(Q, @) < &TA pM(u, @)+ sup d(%(tlau(tz))ﬁ) whip+  sup  d(S(t2, ult2)),§(t1, ulte))) TArp.

d(tz,t1)<wm d(te,t1)<w
As w — 0, taking the supremum over u € €2, we obtain
Mo(2) < EMTuMy(Q).
Hence, M(Q(t)) < M(Q(t)) = 0, which implies that €(¢) is relatively compact in P,. By the Ascoli-
Arzela theorem, () is relatively compact in P,. Based on Theorem 2.13, there exists a fixed point u of Q in

Q2 C P, ie., Equation (20) has a solution in C(J, 7). This completes the proof. O

Remark 3.3. The same procedure can be applied to the other case (22).

4 Solvability of fuzzy fractional hybrid differential equation

In this section, the existence of a solution to a type of fuzzy fractional hybrid differential equation (FFHDE)
is demonstrated.
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Consider the following equation:

} =A(t,u(t)), 0<a<lpeJ=10,T],

Equation (23) corresponds to the following hybrid integral equations:

o If uis (i) — gH differentiable, then

) = G [t aw.atn) o
o If wis (ii) — gH differentiable, then
3, u(t))

Sy e A o) dn

(23)

(24)

(25)

Definition 4.1. A **fuzzy solution of type 1** for Equation (23) refers to a function u € C(J,T) that
satisfies (24). Similarly, a **fuzzy solution of type 2** for (23) refers to a function x € C(J,T) that satisfies

(25).

Let’s define P, C C([0;1],7) as the set closed of u € T such that d(u,0) < p for some p > 0. Our
objective is to demonstrate the existence of a fixed point for a constructed operator Q from (24) or (25)

within the subset P,:
P,={ueT|du,0)< pu}.

To prove the existence of a solution to (24), we require the following assumptions:

(H1) §:J xT — T is continuous, and there exists a constant &; > 0 such that

d(F(t, u(?)), 8 v(t)) < &d(u(t), v(t)),
forall t € J and u,v € T.

Additionally, for every t € J,
5(t,0) =29 > 0.

(H2) A:J x T — T is continuous, and there exists a constant A; > 0 such that
d (At u(t), At,v(t))) < Ard(u(t), v(t)),

forallt € J and u,v € T.
Additionally, for every t € J,
A(t,0) = 0.

(Hs3) There exists a positive number y such that

T (&1 + 20) A1

1.
Tatl)

Theorem 4.2. Under the assumptions (H1)-(Hg), the problem (23) has at least one solution of type 1 in

c(J,T).
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Proof. Consider the operator Q : C(J,T) — C(J,T) defined as

(@u)(t) = S [ (¢ =y A, u()

Step (1): We show that Q maps P, into P,. Let u € P,,. Then,

a)

¢((@w0.0) <a (S [ 2. uta) d.0)
1

A~

< i (50.0).0) [ 6= (. u(a).) a

5 (0 (50000).5¢.0) + 2 (0.50.0)) [ -0 (At uta). @) dn
0

’1 ‘
)

(

IN
5
—

(@) (fld(U,A + zo) /Ot(t — )* YAyd(u, 0) dn

‘ -

<

—

oGt A =t

1 (e}
S Ta+1) (Eip + 20) %A1 p

T (§1p + 20) M
- I'a+1)

Since d(u,0) < p, it follows from assumption (H3) that

a((Qu)®).0) < p

Thus, Q maps P, into P,,.
Step (2): We establish the continuity of Q on P,. Let ¢ > 0 and u,v € P, such that d(u,v) < e. Then,

8t u®) %, a- o) [f, e
(F(a)/o (=) 1A(n’u(n))d”’r(a)/o (t =) 1A(n,v(n))dn>

S

d((Qu)(t), (Qu)(#)) <

< g (a0 50.00) [ =0 A a) Al o)
< ) [ = Ao

< F(al_I_l)glAlt"‘d(u,v)

< r(al+1)51A1Ta€'

Ase =0, d((Qu)(t), (Qu)(t)) — 0. Therefore, Q is continuous on P,.
Step (3): Let (3 0) C P,. Let w > 0 be arbitrary, and take v € Q and t1,t2 € J such that d(ta,t1) <
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with £9 > t1. Then,
d ((Qu)(t1), (Qu)(t2))

<d <F(1a)s<t1,u<t1>> /0 (b — ) A, u(n) d, F(la)s(tz,u(tz)) /0 (2 — )2 TA @, u(n)) dn)

: F(a)d(g(tl’“(tl))’g(t%U(fz)))/O (b — ) (A(n,u(n)),ﬁ) dn
+ F(la)d (S(tbu(w)),ﬁ) /tIQ(tz — )l (A(n,u(n)),6> dn
1 1
=TT sy
1

+ md (5(752’ u(tQ))’ %’(th u(tQ))) TQALLL,

e1d(u(ty), u(ts))TAypt + d <S(t1, u(tQ)),6> oA

Let
M(u,w) = sup {d(u(t1),u(tz)) | d(te, t1) < w;ti, ta € J}.

Since § is continuous, d (§(t2, u(t2)), F(t1,u(t2))) — 0 as w — 0. Therefore,

M(Q, @) TN pM(u, @) +  sup

1
< -
- P(a + ].) d(ta,t1)<w F(Oé + 1)

1 (03
+ d(tgs,zlel}))gw md (S(t2,u(te)), §(t1, u(t2))) T*Arpu.

d (S(tl,u(tg)),ﬁ) Ay

As w — 0, taking the supremum over u € €2, we obtain

Mo(Q) < —

S mflAlTaMMO(Q)-

Hence, M(Q(t)) < M(Q(t)) = 0, which implies that €(¢) is relatively compact in P,. By the Ascoli-
Arzela theorem, (2 is relatively compact in P,. Based on Theorem 2.13, there exists a fixed point u of Q in
Q2 C P, ie., Equation (23) has at least one solution in C(J, 7). This completes the proof. O

Remark 4.3. The same procedure can be applied to the other case (25).

5 Examples

The following example demonstrates Theorem 3.2.

Example 5.1. Consider the fuzzy hybrid differential equation (FHDE):

d |u(t) (L+#) | thu(t) ~
dt [ Jult) +1 | 4y where t € J = [0,1] and u(0) = 0. (26)
Here,
3u+1
t A
St = 740
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and .
t°u
At = .

It is clear that § is continuous and satisfies
d(F(t,u(t), 3t v(t)) < &id(ult), v(t)),

for all t € J and u,v € T. Therefore, £, = 3 and zp = F(¢,0) = H}tQ <1.

The function A is also continuous and satisfies
d(A(t,u(t)), Alt,v(t))) <

d(u(t), v(t)),

| =

for all t € J and u,v € T. Thus, A(¢,0) =0 and A; = %.
From the inequality in assumption (H3), we have

1
b€+ 20) A =1+ (3u+20) - 7 <

This implies p < 1. The hypothesis (H3) is satisfied for p = %

Therefore, all the hypotheses (H1)-(#H3) of Theorem 3.2 are satisfied. Hence, Equation (26) has a solution
in C(J,T).

The following example demonstrates Theorem 4.2.
Example 5.2. Consider the fuzzy fractional hybrid differential equation (FFHDE):

o a1 +8)] _ Bu ) B
gt D& Su)+1 | At where ¢t € J = [0,1] and u(0) = 0. (27)
Here,
3u+1
t g
8t u) 1+’
1
=1 S
b=1, « T
and 3
t°u
A(t,u) = )
=15

The function § is clearly continuous and satisfies
d ((t,u(?)), §(t,v(t))) < &d(u(t), v(t)),
1

for all t € J and u,v € T. Therefore, & = 3 and 29 = F(¢,0) = 14:152 <

The function A is also continuous and satisfies

d (A(t,u(t)), At, v(t))) <

d(u(t), v(t)),

e

for all t € J and u,v € T. Thus, A(t,0) =0 and A = %.
From the inequality in assumption (H3), we have

b(&ip+ 20) As 1-(3/1+20)<3u+1<1

Cla+1)  4l(a+1) ~4r(3)

This implies p < 4r(§)_1 ~ 0.87. The hypothesis (H3) is satisfied for pu = %
Therefore, all the hypotheses (#1)-(#3) of Theorem 4.2 are satisfied. Hence, Equation (27) has a solution

in C(J,T).
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6 Conclusion

Fuzzy sets may exhibit two types of generalized differentiability. In fuzzy fractional hybrid differential equa-
tions (FFHDESs), a set can be either (i)-differentiable or (ii)-differentiable. This duality often introduces
complexities when solving such equations.

In this study, we focus on hybrid differential equations and fractional hybrid differential equations. Ini-
tially, we establish existence theorems for fuzzy solutions under certain weaker constraints by employing the
measure of non-compactness (m.n.c.) and Mnch’s fixed-point theorem. The insights presented here extend
and refine several previously established results. Finally, illustrative examples are provided to validate the
findings.

Acknowledgements: “The author would like to express his heartfelt gratitude to the editors and reviewers
for their constructive comments.”
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