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Abstract. Alzheimers disease is an unpredictable and progressive neurodegenerative disorder that initially affects
memory thinking and behavior. Some key features of Alzheimers disease are memory loss, cognitive decline,
behavioral changes, disorientation, and physical symptoms. In this article, we design the procedure of a multi-
attributive border approximation area comparison deep learning algorithm for the diagnosis of Alzheimers Disease.
For this, first, we goal to design the model of complex propositional linear Diophantine fuzzy information with
their basic operational laws. In addition, we analyze the model of complex propositional linear Diophantine fuzzy
power average operator, complex propositional linear Diophantine fuzzy weighted power average operator, complex
propositional linear Diophantine fuzzy power geometric operator, complex propositional linear Diophantine fuzzy
weighted power geometric operator, and also initiate their major properties. Additionally, the key role of this
paper is to arrange relevant from different sources for diagnosing Alzheimers disease under the consideration of
the designed technique. Finally, we compare both (proposed and existing) ranking information to address the
supremacy and strength of the designed models.

AMS Subject Classification 2020: 03B52; 68T27; 68T37; 94D05; 03E72
Keywords and Phrases: Alzheimers Disease, Complex Propositional linear Diophantine fuzzy sets, MABAC
deep learning methods, Power aggregation operators.

1 Introduction

Diagnosing Alzheimers disease is very ambiguous and uncertain, connected with memory loss and changing
behavior because of progressive neurodegenerative disorder [1]. The analysis of Alzheimers disease has been
done by different scholars according to consider the information of crisp data [2], but to analyze the best
one among the collection of data, we needed a soft and valuable technique that can help us in the evaluation
of the procedure of decision-making models [3]. A lot of data has been lost in numerous decision-making
procedures because of limited information and due to this, various problems are unsolved [4]. For this, Zadeh
[5] prepared the fuzzy sets (FSs). FSs theory developed with just a function, called truth degree, defined from
fixed sets to unit intervals. In addition, it is quite complex to deal with genuine life problems in the presence
of just FS theory, because truth and falsity, yes and no, supporting and supporting against information are
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the key parts of various real-life scenarios. For this, the model of FSs is not suitable, therefore, Atanassov
[6, 7] designed the intuitionistic FSs (IFSs). IFSs designed with two different functions but with the same
range, called truth degree and falsity degree with a characteristic that is the sum of both functions belonging
to a unit interval.

In genuine life situations, all experts are independent and they are not restricted to following the condition
of IFSs, because the provided information of experts will exceed form unit interval. For this, the model of
Pythagorean FSs (PFSs) was designed by Yager [8]. PFSs are constructed with truth and falsity degrees with
a characteristic that is the sum of the squares of both functions belonging to a unit interval. In addition,
Yager [9] designed the q-rung orthopair FSs (q-ROFSs) in 2016. The model of q-ROFSs has also developed
with truth and falsity information with a model that is the sum of the q-power of both functions belonging
to the unit interval. These techniques are very useful and dominant because of their characteristics and
due to this reason, many scholars have utilized them in various fields. Riaz and Hashmi [10] organized
the linear Diophantine FSs (LDFSs) with a truth and falsity function

(
Fω
rp(τ),

Fω
rp(τ)

)
with parameters(

ζωrp(τ),Γ
ω
rp(τ)

)
.The prominent characteristics of LDFSs, such as ζωrp(τ) ∗ Fω

rp(τ) + Γω
rp(τ) ∗

Fω
rp(τ) ∈ [0, 1],

where ζωrp(τ) + Γω
rp(τ) ∈ [0, 1]. The model of LDFSs is more powerful and more dominant because of their

features, the condition of LDFSs is developed based on linear Diophantine equation ax+ by = c.

Ramot et al. [11] designed the complex FSs (CFSs), the function in CFSs is developed in the form of
complex-valued information, where the real and unreal parts of the truth function are limited to unit interval.
In various situations, we will cope with complex problems with the help of two-dimensional information, called
the complex-valued truth function. Further, Alkouri and Salleh [12] designed the complex IFSs (CIFSs) with
complex-valued functions, the condition of CIFSs is that the sum of both functions (for both functions, real
and unreal) belongs to the unit interval. Ullah et al. [13] derived the complex PFSs (CPFSs), the projecting
condition of CPFSs is the sum of the square of both functions (for both functions, real and unreal) belonging
to the unit interval. In 2019, Liu et al. [14] invented the complex q-ROFSs (Cq-ROFSs), the projecting
condition of Cq-ROFSs is the sum of the q-power of both functions (for both functions, real and unreal)
belonging to the unit interval. In 2020, Ali and Mahmood [15] evaluated the Maclaurin Symmetric mean
operators for Cq-ROFSs. In 2022, Kamaci [16] designed the invented the complex LDFSs (CLDFSs), such as

H̃ =
{(

τ,
(
Fω
rp(τ),Fω

ip(τ)
)
,
( Fω

rp(τ),

Fω
ip(τ)

)
,
(
ζωrp(τ), ζ

ω
ip(τ)

)
,
(
Γω
rp(τ),Γ

ω
ip(τ)

))
: τ ∈ X

}
, where the model of

complex-valued membership (non-membership) function is defined by:
(
Fω
rp,Fω

ip

)
: X → [0, 1] ,

(( Fω
rp,

Fω
ip

)
:

X → [0, 1]) with ζωrp(t)∗Fω
rp(t)+Γω

rp(τ)∗

Fω
rp(τ) ∈ [0, 1] ,

(
ζωip(τ) ∗ Fω

ip(τ) + Γω
ip(τ) ∗

Fω
ip(τ) ∈ [0, 1]

)
and ζωrp(τ)+

Γω
rp(τ) ∈ [0, 1] ,

(
ζωip(τ) + Γω

ip(τ) ∈ [0, 1]
)
, where, the model of complex-valued parameters is defined by:

ζωrp, ζ
ω
ip,Γ

ω
rp,Γ

ω
ip : X → [0, 1] where εωrp(τ) = 1−

(
ζωrp(τ) ∗ Fω

rp(τ) + Γω
rp(τ) ∗

Fω
rp(τ)

)
, εωip(τ) = 1−

(
ζωip(τ) ∗ Fω

ip(τ)

+Γω
ip(τ) ∗

Fω
ip(τ)

)
, called the refusal function.

In 1980, Gottwald [17] designed the fuzzy propositional logic, a modified version of the FSs theory. In
1988, Atanassov [18] derived the intuitionistic fuzzy propositional calculus with two variants. In 2020, Wang
et al. [19] presented the intuitionistic fuzzy propositional logic with novel plausible reasoning-based decision-
making models. In 2024, Kahraman [20] introduced propositional PFSs with analytical hierarchal process
extensions. In addition, Pamucar and Cirovic [21] invented the (multi-attributive border approximation area
comparison) MABAC technique for classical set theory. Further, Yager [22] evaluated the power averaging
(PoA) technique. In 2009, Xu and Yager [23] introduced the power geometric (PoG) technique for classical
set theory. Jiang et al. [24] derived the power operators for IFSs. Wei and Lu [25] examined the power
operators for PFSs. Garg et al. [26] initiated the power operators for Cq-ROFSs. Liu et al. [27] derived the
power Dombi operators for CPFSs. Rani and Garg [28] evaluated the power operators for CIFSs. Ali [29]
presented the power interaction operator for CIFSs. Ali et al. [30] described the power operators for complex
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intuitionistic fuzzy soft sets. Moslem [31] designed the parsimonious spherical fuzzy AHP models. Moslem
et al. [32] evaluated the fuzzy analytical hierarchy model. Moslem and Pilla [33] invented the spherical fuzzy
group decision-making techniques. Acharya et al. [34] designed the stability analysis for neutrosophic fuzzy
information. Singh et al. [35] evaluated the malaria disease model in crisp and fuzzy information. Momena
et al. [36] initiated the generalized dual hesitant hexagonal fuzzy decision-making techniques. Acharya
et al. [37] constructed the neutrosophic differential equation with decision-making techniques. During the
assessment of the existing models, we noticed or missed that the technique of complex propositional linear
Diophantine fuzzy sets (CPLDFS) needed to be introduced because the above techniques are special cases of
proposed models. In addition, we also noticed that to propose the technique of power operators and MABAC
for CPLDFSs. The key and major contributions of the designed techniques are listed below:

1. To design the procedure of a MABAC deep learning algorithm for the diagnosis of Alzheimers Disease.

2. To design the model of complex propositional linear Diophantine fuzzy (CPLDF) information with their
basic operational laws.

3. To analyze the model of CPLDF power average (CPLDFPoA) operator, CPLDF weighted power average
(CPLDFWPoA) operator, CPLDF power geometric (CPLDFPoG) operator, CPLDF weighted power
geometric (CPLDFWPoG) operator, and also initiate their major properties.

4. To arrange relevant from different sources for diagnosing Alzheimers disease under the consideration of
the designed technique.

5. To compare both (proposed and existing) ranking information to address the supremacy and strength
of the designed models. The graphical interpretation of the designed technique is derived in the form
of Figure 1.

abstract of the proposed theory..png abstract of the proposed theory.bb

Figure 1: Graphical abstract of the proposed theory
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This article is organized in the following ways: In Section 2, we explained the revised techniques of CLDFSs
with basic definitions. In addition, we also reviewed the PA operator, and PG operator for the group of any
positive integers. In Section 3, we designed the model of CPLDF information with their basic operational
laws. In Section 4, we analyzed the model of CPLDFPoA, CPLDFWPoA, CPLDFPoG, and CPLDFWPoG
operators, and also initiated their major properties. In Section 5, we designed the procedure of a MABAC
deep learning algorithm for the diagnosis of Alzheimers Disease. In Section 6, we arranged relevant from
different sources for diagnosing Alzheimers disease under the consideration of the designed technique. In
Section 7, we compared both (proposed and existing) ranking information to address the supremacy and
strength of the designed models. Some concluding remarks are described in Section 8.

2 Preliminaries

The model of complex linear Diophantine fuzzy information is the reformed version of numerous techniques
and very reliable ideas for controlling imprecise and inexact data. This section goals to explain the revised
techniques of CLDFSs with basic definitions. In addition, we also reviewed the PA operator, and PG operator
for the group of any positive integers.

Definition 2.1. [16] A methodology of CLDFSs for X (universal set), is designed and deliberated by:

H̃ =
{(

τ,
(
Fω
rp(τ),Fω

ip(τ)
)
,
( Fω

rp(τ),

Fω
ip(τ)

)
,
(
ζωrp(τ), ζ

ω
ip(τ)

)
,
(
Γω
rp(τ),Γ

ω
ip(τ)

))
: τ ∈ X

}
Where the model of complex-valued membership (non-membership) function is defined by:(

Fω
rp,Fω

ip

)
: X → [0, 1] ,

(( Fω
rp,

Fω
ip

)
: X → [0, 1]

)
with ζωrp(τ) ∗Fω

rp(τ) +Γω
rp(τ) ∗

Fω
rp(τ) ∈ [0, 1] ,

(
ζωip(τ) ∗ Fω

ip(τ) + Γω
ip(τ) ∗

Fω
ip(τ) ∈ [0, 1]

)
and ζωrp(τ) +Γω

rp(τ) ∈

[0, 1] ,
(
ζωip(τ) + Γω

ip(τ) ∈ [0, 1]
)
, where, the model of complex-valued parameters is defined by: ζωrp, ζ

ω
ip,Γ

ω
rp,Γ

ω
ip :

X → [0, 1] where εωrp(τ) = 1−
(
ζωrp(τ) ∗ Fω

rp(τ) + Γω
rp(τ) ∗

Fω
rp(τ)

)
, εωip(τ) = 1−

(
ζωip(τ) ∗ Fω

ip(τ) + Γω
ip(τ) ∗

Fω
ip(τ)

)
,

called the refusal function. The simple version of CLDFN is mentioned in the following form, such as:

H̃& =
((

Fω&
rp ,Fω&

ip

)
,
( Fω&

rp ,

Fω&
ip

)
,
(
ζω&
rp , ζω&

ip

)
,
(
Γω&
rp ,Γ

ω&
ip

))
,& = 1, 2, · · · , ϵ

In addition, we goal to describe numerous operational laws for the above existing models, such as algebraic
operational laws, briefly discussed below.

Definition 2.2. [16] Let H̃& =
((

Fω&
rp ,Fω&

ip

)
,
( Fω&

rp ,

Fω&
ip

)
,
(
ζω&
rp , ζω&

ip

)
,
(
Γω&
rp ,Γ

ω&
ip

))
,& = 1, 2 be two

CLDFN. Thus

H̃1 ⊕ H̃2 =

(Fω1
rp + Fω2

rp −Fω1
rp Fω2

rp ,F
ω1
ip + Fω2

ip −Fω1
ip Fω2

ip

)
,
( Fω1

rp

Fω2
rp ,

Fω1
ip

Fω2
ip

)
,(

ζω1
rp + ζω2

rp − ζω1
rp ζ

ω2
rp , ζ

ω1
ip + ζω2

ip − ζω1
ip ζω2

ip

)
,
(
Γω1
rpΓ

ω2
rp ,Γ

ω1
ip Γ

ω2
ip

) 

H̃1 ⊗ H̃2 =

(Fω1
rp Fω2

rp ,F
ω1
ip Fω2

ip

)
,
( Fω1

rp +

Fω2
rp − Fω1

rp

Fω2
rp ,

Fω1
ip +

Fω2
ip − Fω1

ip

Fω2
ip

)
,(

ζω1
rp ζ

ω2
rp , ζ

ω1
ip ζω2

ip

)
,
(
Γω1
rp + Γω2

rp − Γω1
rpΓ

ω2
rp ,Γ

ω1
ip + Γω2

ip − Γω1
ip Γ

ω2
ip

) 
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η̃ΘH̃& =


(
1−

(
1−Fω&

rp

)η̃Θ , 1−
(
1−Fω&

ip

)η̃Θ)
,

(( Fω&
rp

)η̃Θ ,
( Fω&

ip

)η̃Θ)
,(

1−
(
1− ζω&

rp

)η̃Θ , 1−
(
1− ζω&

ip

)η̃Θ)
,

((
Γω&
rp

)η̃Θ ,
(
Γω&
ip

)η̃Θ)


(
H̃&

)η̃Θ
=


((

Fω&
rp

)η̃Θ ,
(
Fω&
ip

)η̃Θ)
,

(
1−

(
1−

Fω&
rp

)η̃Θ , 1−
(
1−

Fω&
ip

)η̃Θ)
,((

ζω&
rp

)η̃Θ ,
(
ζω&
ip

)η̃Θ)
,

(
1−

(
1− Γω&

rp

)η̃Θ , 1−
(
1− Γω&

ip

)η̃Θ)


Moreover, we target to revise the information of score value and accuracy value, for evaluating the relationship
among any two complex linear Diophantine fuzzy numbers.

Definition 2.3. [16] Let H̃& =
((

Fω&
rp ,Fω&

ip

)
,
( Fω&

rp ,

Fω&
ip

)
,
(
ζω&
rp , ζω&

ip

)
,
(
Γω&
rp ,Γ

ω&
ip

))
,& = 1 be a CLDFN.

Thus

SC
(
H̃&

)
=

1

4

((
Fω&
rp + Fω&

ip

)
−
( Fω&

rp +

Fω&
ip

)
+
(
ζω&
rp + ζω&

ip

)
−
(
Γω&
rp + Γω&

ip

))
∈ [−1, 1]

AC
(
H̃&

)
=

1

4

((
Fω&
rp + Fω&

ip

)
+
( Fω&

rp +

Fω&
ip

)
+
(
ζω&
rp + ζω&

ip

)
+
(
Γω&
rp + Γω&

ip

))
∈ [0, 1]

Thus, if SC
(
H̃1

)
> SC

(
H̃2

)
⇒ H̃1 > H̃2, then if AC

(
H̃1

)
> AC

(
H̃2

)
⇒ H̃1 > H̃2. Further, we goal to

discuss the technique of PoA and PoG techniques.

Definition 2.4. [22, 23] Let H̃&,& = 1, 2, · · · , ϵ, be a group of non-negative information. Then

PoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
=

(
1 + η̃

(
H̃1

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃1 ⊕

(
1 + η̃

(
H̃2

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃2 ⊕ · · · ⊕

(
1 + η̃

(
H̃ ϵ
))

∑ ϵ
&=1

(
1 + η̃

(
H̃&

))H̃ ϵ

=

ϵ∑
&=1

(
1 + η̃

(
H̃&

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃&

signified the PoA operators, and the technique

PoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
=
(
H̃1

) (1+η̃(H̃1))∑ ϵ
&=1(1+η̃(H̃&)) ⊗

(
H̃2

) (1+η̃(H̃2))∑ ϵ
&=1(1+η̃(H̃&)) ⊗ · · · ⊗

(
H̃ ϵ
) (1+η̃(H̃ ϵ))∑ ϵ

&=1(1+η̃(H̃&))

=
ϵ∏

&=1

(
H̃&

) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

called PoG operator with η̃
(
H̃&

)
=
∑ ϵ

i̸=&=1 S
(
H̃i, H̃&

)
, and S

(
H̃i, H̃&

)
= 1−D

(
H̃i, H̃&

)
, thus

1. S
(
H̃i, H̃&

)
∈ [0, 1].

2. S
(
H̃i, H̃&

)
= S

(
H̃&, H̃i

)
.

3. When S
(
H̃i, H̃&

)
≥ S

(
H̃k, H̃l

)
, then D

(
H̃i, H̃&

)
≤ D

(
H̃k, H̃l

)
.
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3 CPLDFSs: Complex Propositional Linear Diophantine Fuzzy Sets

This section goals to explain the new techniques of CPLDFSs with basic definitions. Further, we designed
some algebraic operational laws for CPLDFSs.

Definition 3.1. A methodology of CPLDFSs for X (universal set), is designed and deliberated by:

H̃ =
{(

τ,
(
Fω
rp(τ),Fω

ip(τ)
)
,
( Fω

rp(τ),

Fω
ip(τ)

)
,
(
ζωrp(τ), ζ

ω
ip(τ)

)
,
(
Γω
rp(τ),Γ

ω
ip(τ)

))
: τ ∈ X

}
In addition, we define the truth and parameter function according to their real and imaginary parts, such as

Fω
rp(τ) = L1

rp

( Fω
rp (τ)

)
,
(
Fω
ip(τ) = L1

ip

( Fω
ip (τ)

))
and

ζωrp(τ) = L2
rp

(
Γω
rp (τ)

)
,
(
ζωip(τ) = L2

ip

(
Γω
ip (τ)

))
Then

L2
rp

(
Γω
rp (τ)

)
∗ L1

rp

( Fω
rp (τ)

)
+ Γω

rp (τ) ∗

Fω
rp (τ) ≤ 1

⇒ Γω
rp (τ) ∗

Fω
rp (τ)

(
1 + L1

rpL2
rp

)
≤ 1 ⇒ Γω

rp (τ) ∗

Fω
rp (τ) ≤

1

1 + L1
rpL2

rp

Similarly, we have imaginary parts, such as

Γω
ip (τ) ∗

Fω
ip (τ) ≤

1

1 + L1
ipL2

ip

thus

εωrp(τ) = 1−
(
ζωrp(τ) ∗ Fω

rp(τ) + Γω
rp(τ) ∗

Fω
rp(τ)

)
= 1−

(
L2
rp

(
Γω
rp(τ)

)
∗ L1

rp

( Fω
rp(τ)

)
+ Γω

rp(τ) ∗

Fω
rp(τ)

)
⇒ 1−

(
Γω
rp(τ) ∗

Fω
rp(τ)

(
1 + L1

rpL2
rp

))
then

1− εωrp(τ) = Γω
rp(τ) ∗

Fω
rp(τ)

(
1 + L1

rpL2
rp

)
and

Γω
rp(τ) ∗

Fω
rp(τ) =

1− εωrp(τ)(
1 + L1

rpL2
rp

)
Similarly, we have

Γω
ip(τ) ∗

Fω
ip(τ) =

1− εωip(τ)(
1 + L1

ipL2
ip

)
But if we use the condition of IFSs, thus we have

L1
rp

( Fω
rp(τ)

)
+

Fω
rp(τ) ≤ 1

⇒

Fω
rp(τ)

(
1 + L1

rp

)
≤ 1 ⇒

Fω
rp(τ) ≤

1

1 + L1
rp
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Similarly, we have imaginary parts, such as

Fω
ip(τ) ≤

1

1 + L1
ip

Thus, we have the condition of refusal function in IFSs, such as

εωrp(τ) = 1−
(
Fω
rp(τ) +

Fω
rp(τ)

)
= 1−

(
L1
rp

( Fω
rp(τ)

)
+

Fω
rp(τ)

)
= 1−

( Fω
rp(τ)

(
1 + L1

rp

))
then

1− εωrp(τ) =

Fω
rp(τ)

(
1 + L1

rp

)
and

Fω
rp(τ) =

1− εωrp(τ)(
1 + L1

rp

) ,(ζωrp(τ) = 1− εωrp(τ)(
1 + L2

rp

) )

Similarly, we have

Fω
ip(τ) =

1− εωip(τ)(
1 + L1

rp

) ,
ζωip(τ) =

1− εωip(τ)(
1 + L2

ip

)


if εωrp(τ) = εωip(τ) = 0, thus

Fω
rp(τ) =

1

(1+L1
rp)

and

Fω
ip(τ) =

1

(1+L1
ip)

. Then

Fω
rp(τ) = L1

rp

(
1(

1 + L1
rp

)) ,

Fω
ip(τ) = L1

ip

 1(
1 + L1

ip

)


and

ζωrp(τ) = L2
rp

(
1(

1 + L2
rp

)) ,

ζωip(τ) = L2
ip

 1(
1 + L2

ip

)


Then

H̃ =


τ,

((
L1
rp

(
1

1+L1
rp

)
,L1

ip

(
1

1+L1
ip

))
,
(

1
1+L1

rp
, 1
1+L1

rp

))
,((

L2
rp

(
1

1+L2
rp

)
,L2

ip

(
1

1+L2
ip

))
,
(

1
1+L2

rp
, 1
1+L2

rp

))
 : τ ∈ X


Thus, we have the following final shape, such as

H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.
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Definition 3.2. For any H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& =

1, 2, we have

H̃1 ⊕ H̃2 =



L11
rp

(
1−εrpω1
1+L11

rp

)
+ L12

rp

(
1−εrpω2
1+L12

rp

)
− L11

rp

(
1−εrpω1
1+L11

rp

)
L12
rp

(
1−εrp

1+L12
rp

)
,

L11
ip

(
1−εip

ω
1

1+L11
ip

)
+ L12

ip

(
1−εip

ω
2

1+L12
ip

)
− L11

ip

(
1−εip

ω
1

1+L11
ip

)
L12
ip

(
1−εip

ω
2

1+L12
ip

)
 ,

((
1−εrpω1
1+L11

rp

)(
1−εrpω2
1+L12

rp

)
,

(
1−εip

ω
1

1+L11
ip

)(
1−εip

ω
2

1+L12
ip

))
,L21

rp

(
1−εrpω1
1+L2

rp

)
+ L22

rp

(
1−εrpω2
1+L22

rp

)
− L21

rp

(
1−εrpω1
1+L21

rp

)
L22
rp

(
1−εrp

1+L22
rp

)
,

L21
ip

(
1−εip

ω
1

1+L21
ip

)
+ L22

ip

(
1−εip

ω
2

1+L22
ip

)
− L21

ip

(
1−εip

ω
1

1+L21
ip

)
L22
ip

(
1−εip

ω
2

1+L22
ip

)
 ,

((
1−εrpω1
1+L21

rp

)(
1−εrpω2
1+L22

rp

)
,

(
1−εip

ω
1

1+L21
ip

)(
1−εip

ω
2

1+L22
ip

))



H̃1 ⊗ H̃2 =



(
L11
rp

(
1−εrpω1
1+L11

rp

)
L12
rp

(
1−εrp

1+L12
rp

)
,L11

ip

(
1−εip

ω
1

1+L11
ip

)
L12
ip

(
1−εip

ω
2

1+L12
ip

))
,

(
1−εrpω1
1+L11

rp

)
+

(
1−εrpω2
1+L12

rp

)
−
(

1−εrpω1
1+L11

rp

)(
1−εrpω2
1+L12

rp

)
,(

1−εip
ω
1

1+L11
ip

)
+

(
1−εip

ω
2

1+L12
ip

)
−
(

1−εip
ω
1

1+L11
ip

)(
1−εip

ω
2

1+L12
ip

)
 ,

(
L21
rp

(
1−εrpω1
1+L21

rp

)
L22
rp

(
1−εrp

1+L22
rp

)
,L21

ip

(
1−εip

ω
1

1+L21
ip

)
L22
ip

(
1−εip

ω
2

1+L22
ip

))
,

(
1−εrpω1
1+L21

rp

)
+

(
1−εrpω2
1+L22

rp

)
−
(

1−εrpω1
1+L21

rp

)(
1−εrpω2
1+L22

rp

)
,(

1−εip
ω
1

1+L21
ip

)
+

(
1−εip

ω
2

1+L22
ip

)
−
(

1−εip
ω
1

1+L21
ip

)(
1−εip

ω
2

1+L22
ip

)




η̃ΘH̃&

=


((

1−
(
1− L1&

rp

(
1−εrpω&

1+L1&
rp

))η̃Θ

, 1−
(
1− L1&

rp

(
1−εip

ω
&

1+L1&
rp

))η̃Θ
)
,

(((
1−εrpω&

1+L1&
rp

))η̃Θ

,

((
1−εip

ω
&

1+L1&
rp

))η̃Θ
))

,((
1−

(
1− L2&

rp

(
1−εrpω&

1+L2&
rp

))η̃Θ

, 1−
(
1− L2&

rp

(
1−εip

ω
&

1+L2&
rp

))η̃Θ
)
,

(((
1−εrpω&

1+L2&
rp

))η̃Θ

,

((
1−εip

ω
&

1+L2&
rp

))η̃Θ
))


(
H̃&

)η̃Θ

=


(((

L1&
rp

(
1−εrpω&

1+L1&
rp

))η̃Θ

,

(
L1&
rp

(
1−εip

ω
&

1+L1&
rp

))η̃Θ
)
,

(
1−

(
1−

(
1−εrpω&

1+L1&
rp

))η̃Θ

, 1−
(
1−

(
1−εip

ω
&

1+L1&
rp

))η̃Θ
))

,(((
L2&
rp

(
1−εrpω&

1+L2&
rp

))η̃Θ

,

(
L2&
rp

(
1−εip

ω
&

1+L2&
rp

))η̃Θ
)
,

(
1−

(
1−

(
1−εrpω&

1+L2&
rp

))η̃Θ

, 1−
(
1−

(
1−εip

ω
&

1+L2&
rp

))η̃Θ
))
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Definition 3.3. For any H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1,

we have

S
(
H̃&

)
=

1

4


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
+ L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
−
((

1−εrpω&

1+L1&
rp

)
+

(
1−εip

ω
&

1+L1&
ip

)))
+((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
+ L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
−
((

1−εrpω&

1+L2&
rp

)
+

(
1−εip

ω
&

1+L2&
ip

)))
 ∈ [−1, 1]

A
(
H̃&

)
=

1

4


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
+ L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
+

((
1−εrpω&

1+L1&
rp

)
+

(
1−εip

ω
&

1+L1&
ip

)))
+((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
+ L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
+

((
1−εrpω&

1+L2&
rp

)
+

(
1−εip

ω
&

1+L2&
ip

)))
 ∈ [−1, 1]

Thus, if SC
(
H̃1

)
> SC

(
H̃2

)
⇒ H̃1 > H̃2, if SC

(
H̃1

)
= SC

(
H̃2

)
, then if AC

(
H̃1

)
> AC

(
H̃2

)
⇒ H̃1 >

H̃2.

4 CPLDF Power Aggregation Insights

This section is famous for the analysis of the power operators for CPLDFSs, called the CPLDFPoA operator,
CPLDFWPoA operator, CPLDFPoG operator, CPLDFWPoG operator, and their genuine properties.

Definition 4.1. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ,

be a group of CPLDF information. Then

CPLDFPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
=

(
1 + η̃

(
H̃1

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃1 ⊕

(
1 + η̃

(
H̃2

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃2 ⊕ · · ·

⊕

(
1 + η̃

(
H̃ ϵ
))

∑ ϵ
&=1

(
1 + η̃

(
H̃&

))H̃ ϵ= ⊕ ϵ
&=1

(
1 + η̃

(
H̃&

))
∑ ϵ

&=1

(
1 + η̃

(
H̃&

))H̃&

Signified the CPLDFPoA operators with η̃
(
H̃&

)
=
∑ ϵ

i ̸=&=1 S
(
H̃i, H̃&

)
, and S

(
H̃i, H̃&

)
= 1−D

(
H̃i, H̃&

)
,

thus

1. S
(
H̃i, H̃&

)
∈ [0, 1].

2. S
(
H̃i, H̃&

)
= S

(
H̃&, H̃i

)
.

3. When S
(
H̃i, H̃&

)
≥ S

(
H̃k, H̃l

)
, then D

(
H̃i, H̃&

)
≤ D

(
H̃k, H̃l

)
.
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Theorem 4.2. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in
Def. (8), such as

CPLDFPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





1−
ϵ∏

&=1

(
1− L1&

rp

(
1−εrpω&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1− L1&

rp

(
1−εip

ω
&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

((
1−εip

ω
&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))



 ,



1−
ϵ∏

&=1

(
1− L2&

rp

(
1−εrpω&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1− L2&

rp

(
1−εip

ω
&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

((
1−εip

ω
&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))







Property 4.3. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information.

1. If H̃& = H̃,& = 1, 2, · · · , ϵ, thus CPLDFPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃, called the idempotency.

2. If H̃& ≤ H̃ ′
&,& = 1, 2, · · · , ϵ, thus CPLDFPoA

(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ CPLDFPoA

(
H̃ ′

1, H̃
′
2, · · · , H̃ ′

ϵ

)
,

called the monotonicity.

3. If H̃− = min
(
H̃1, H̃2, · · · , H̃ ϵ

)
, and H̃+ = max

(
H̃1, H̃2, · · · , H̃ ϵ

)
,& = 1, 2, · · · , ϵ, thus H̃− ≤

CPLDFPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ H̃+, called the boundedness.

Definition 4.4. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then

CPLDFWPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
=

ℵ1

(
1 + η̃

(
H̃1

))
∑ ϵ

&=1 ℵ&

(
1 + η̃

(
H̃&

))H̃1 ⊕
ℵ2

(
1 + η̃

(
H̃2

))
∑ ϵ

&=1 ℵ&

(
1 + η̃

(
H̃&

))H̃2 ⊕ · · ·

⊕
ℵ ϵ
(
1 + η̃

(
H̃ ϵ
))

∑ ϵ
&=1 ℵ&

(
1 + η̃

(
H̃&

))H̃ ϵ= ⊕ ϵ
&=1

ℵ&

(
1 + η̃

(
H̃&

))
∑ ϵ

&=1 ℵ&

(
1 + η̃

(
H̃&

))H̃&
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Signified the CPLDFWPoA operators with η̃
(
H̃&

)
=
∑ ϵ

i̸=&=1 S
(
H̃i, H̃&

)
, and S

(
H̃i, H̃&

)
= 1−D

(
H̃i, H̃&

)
,

thus

4. S
(
H̃i, H̃&

)
∈ [0, 1].

5. S
(
H̃i, H̃&

)
= S

(
H̃&, H̃i

)
.

6. When S
(
H̃i, H̃&

)
≥ S

(
H̃k, H̃l

)
, then D

(
H̃i, H̃&

)
≤ D

(
H̃k, H̃l

)
.

Where
∑ ϵ

&=1 ℵ& = 1, called weight vector.

Theorem 4.5. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in
Def. (9), such as

CPLDFWPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





1−
ϵ∏

&=1

(
1− L1&

rp

(
1−εrpω&

1+L1&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
, 1−

ϵ∏
&=1

(
1− L1&

rp

(
1−εip

ω
&

1+L1&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&

1+L1&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
,

ϵ∏
&=1

((
1−εip

ω
&

1+L1&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))



 ,



1−
ϵ∏

&=1

(
1− L2&

rp

(
1−εrpω&

1+L2&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
, 1−

ϵ∏
&=1

(
1− L2&

rp

(
1−εip

ω
&

1+L2&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&

1+L2&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
,

ϵ∏
&=1

((
1−εip

ω
&

1+L2&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))







Property 4.6. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information.

1. If H̃& = H̃,& = 1, 2, · · · , ϵ, thus CPLDFWPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃, called the idempotency.

2. If H̃& ≤ H̃ ′
&,& = 1, 2, · · · , ϵ, thus CPLDFWPoA

(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ CPLDFWPoA

(
H̃ ′

1, H̃
′
2, · · · , H̃ ′

ϵ

)
,

called the monotonicity.

3. If H̃− = min
(
H̃1, H̃2, · · · , H̃ ϵ

)
, and H̃+ = max

(
H̃1, H̃2, · · · , H̃ ϵ

)
,& = 1, 2, · · · , ϵ, thus H̃− ≤

CPLDFWPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ H̃+, called the boundedness.
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Definition 4.7. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then

CPLDFPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃

(1+η̃(H̃1))∑ ϵ
&=1(1+η̃(H̃&))

1 ⊗ H̃

(1+η̃(H̃2))∑ ϵ
&=1(1+η̃(H̃&))

2 ⊗ · · · ⊗ H̃

(1+η̃(H̃ ϵ))∑ ϵ
&=1(1+η̃(H̃&))
ϵ = ⊗ ϵ

&=1H̃

(1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

&

Signified the CPLDFPoG operators with η̃
(
H̃&

)
=
∑ ϵ

i̸=&=1 S
(
H̃i, H̃&

)
, and S

(
H̃i, H̃&

)
= 1−D

(
H̃i, H̃&

)
,

thus

1. S
(
H̃i, H̃&

)
∈ [0, 1].

2. S
(
H̃i, H̃&

)
= S

(
H̃&, H̃i

)
.

3. When S
(
H̃i, H̃&

)
≥ S

(
H̃k, H̃l

)
, then D

(
H̃i, H̃&

)
≤ D

(
H̃k, H̃l

)
.

Theorem 4.8. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in
Def. (10), such as

CPLDFPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





 ϵ∏
&=1

(
L1&
rp

(
1−εrpω&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

(
L1&
rp

(
1−εip

ω
&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1−

(
1−εip

ω
&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))



 ,



 ϵ∏
&=1

(
L2&
rp

(
1−εrpω&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

(
L2&
rp

(
1−εip

ω
&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1−

(
1−εip

ω
&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))







Property 4.9. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information.

1. If H̃& = H̃,& = 1, 2, · · · , ϵ, thus CPLDFPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃, called the idempotency.

2. If H̃& ≤ H̃ ′
&,& = 1, 2, · · · , ϵ, thus CPLDFPoG

(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ CPLDFPoG

(
H̃ ′

1, H̃
′
2, · · · , H̃ ′

ϵ

)
,

called the monotonicity.
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3. If H̃− = min
(
H̃1, H̃2, · · · , H̃ ϵ

)
, and H̃+ = max

(
H̃1, H̃2, · · · , H̃ ϵ

)
,& = 1, 2, · · · , ϵ, thus H̃− ≤

CPLDFPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ H̃+, called the boundedness.

Definition 4.10. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then

CPLDFWPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃

ℵ1(1+η̃(H̃1))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
1 ⊗ H̃

ℵ2(1+η̃(H̃2))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
2 ⊗ · · · ⊗ H̃

ℵ ϵ(1+η̃(H̃ ϵ))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
ϵ

= ⊗ ϵ
&=1H̃

ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))

&

Signified the CPLDFWPoG operators with η̃
(
H̃&

)
=
∑ ϵ

i̸=&=1 S
(
H̃i, H̃&

)
, and S

(
H̃i, H̃&

)
= 1−D

(
H̃i, H̃&

)
,

thus

4. S
(
H̃i, H̃&

)
∈ [0, 1].

5. S
(
H̃i, H̃&

)
= S

(
H̃&, H̃i

)
.

6. When S
(
H̃i, H̃&

)
≥ S

(
H̃k, H̃l

)
, then D

(
H̃i, H̃&

)
≤ D

(
H̃k, H̃l

)
.

Where
∑ ϵ

&=1 ℵ& = 1, called weight vector.

Theorem 4.11. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information. Then, using the information in Def. (6), we evaluate the information in
Def. (11), such as

CPLDFWPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





 ϵ∏
&=1

(
L1&
rp

(
1−εrpω&

1+L1&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
,

ϵ∏
&=1

(
L1&
rp

(
1−εip

ω
&

1+L1&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&

1+L1&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
, 1−

ϵ∏
&=1

(
1−

(
1−εip

ω
&

1+L1&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))



 ,



 ϵ∏
&=1

(
L2&
rp

(
1−εrpω&

1+L2&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
,

ϵ∏
&=1

(
L2&
rp

(
1−εip

ω
&

1+L2&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&

1+L2&
rp

)) ℵ&(1+η̃(H̃&))∑ ϵ
&=1

ℵ&(1+η̃(H̃&))
, 1−

ϵ∏
&=1

(
1−

(
1−εip

ω
&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))
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Property 4.12. Let H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ.,

be a group of CPLDF information.

1. If H̃& = H̃,& = 1, 2, · · · , ϵ, thus CPLDFWPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
= H̃, called the idempotency.

2. If H̃& ≤ H̃ ′
&,& = 1, 2, · · · , ϵ, thus CPLDFWPoG

(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ CPLDFWPoG

(
H̃ ′

1, H̃
′
2, · · · , H̃ ′

ϵ

)
,

called the monotonicity.

3. If H̃− = min
(
H̃1, H̃2, · · · , H̃ ϵ

)
, and H̃+ = max

(
H̃1, H̃2, · · · , H̃ ϵ

)
,& = 1, 2, · · · , ϵ, thus H̃− ≤

CPLDFWPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)
≤ H̃+, called the boundedness.

5 CPLDF MABAC Techniques

In this section, we analyze the MABAC technique for designed operators, called CPLDFPoA operator and
CPLDFPoG operator to deliberate the consistency of the suggested theory. The graphical interpretation of
the proposed application is given in the form of Figure 2.

For this, we have a group of alternatives H̃1, H̃2, ..., H̃ ϵwith A1, A2, ..., An, called attributes for each alterna-
tive with the same order of weighted information, such as ℵ& ∈ [0, 1] with

∑ ϵ
&=1 ℵ& = 1, thus, we design a

matrix by putting their information in the form of CPLDFSs, such as

H̃ =
{(

τ,
(
Fω
rp(τ),Fω

ip(τ)
)
,
( Fω

rp(τ),

Fω
ip(τ)

)
,
(
ζωrp(τ), ζ

ω
ip(τ)

)
,
(
Γω
rp(τ),Γ

ω
ip(τ)

))
: τ ∈ X

}
In addition, we define the truth and parameter function according to their real and imaginary parts, such as

Fω
rp (τ) = L1

rp

( Fω
rp (τ)

)
,
(
Fω
ip (τ) = L1

ip

( Fω
ip (τ)

))
and

ζωrp (τ) = L2
rp

(
Γω
rp (τ)

)
,
(
ζωip (τ) = L2

ip

(
Γω
ip (τ)

))
Then

L2
rp

(
Γω
rp (τ)

)
∗ L1

rp

( Fω
rp (τ)

)
+ Γω

rp (τ) ∗

Fω
rp (τ) ≤ 1

⇒ Γω
rp (τ) ∗

Fω
rp (τ)

(
1 + L1

rpL2
rp

)
≤ 1 ⇒ Γω

rp (τ) ∗

Fω
rp (τ) ≤

1

1 + L1
rpL2

rp
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form of the proposed technique..png form of the proposed technique.bb

Figure 2: Graphical form of the proposed technique.

Thus, we have the following final shape, such as

H̃& =


((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 ,& = 1, 2, · · · , ϵ

After constructing the decision matrix, we goal to design the procedure of the decision-making model for
evaluating numerous genuine life problems. Therefore, we will follow the following technique for evaluating
any type of problem, such as

Step 1: Construction of matrix: We focus on designing a matrix, where the value of the matrix must be the
form of CPLDFNs, such as

DM =
[
H̃i×&

]
n× ϵ

=


H̃11 H̃12 · · · H̃1 ϵ
H̃21 H̃22 · · · H̃2 ϵ
...

... · · ·
...

H̃n1 H̃n2 · · · H̃n ϵ



After the construction of the complex propositional linear Diophantine fuzzy matrix, we goal to normalize
the data.
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Step 2: Unvarying the matrix: We goal to normalize the data, if Cost types of data occurrences, such as

H̃ =




((

L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

))
,

((
1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

)))
,((

L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

))
,

((
1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

)))
 benefit


(((

1−εrpω&

1+L1&
rp

)
,

(
1−εip

ω
&

1+L1&
ip

))
,

(
L1&
rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&

1+L1&
ip

)))
,(((

1−εrpω&

1+L2&
rp

)
,

(
1−εip

ω
&

1+L2&
ip

))
,

(
L2&
rp

(
1−εrpω&

1+L2&
rp

)
,L2&

ip

(
1−εip

ω
&

1+L2&
ip

)))
 cost

In another case, we goal to go to the next step.

Step 3: Weighted matrix construction: We goal to develop the weighted matrix, such as

η̃ΘH̃&

=


((

1−
(
1− L1&

rp

(
1−εrpω&

1+L1&
rp

))η̃Θ

, 1−
(
1− L1&

rp

(
1−εip

ω
&

1+L1&
rp

))η̃Θ
)
,

(((
1−εrpω&

1+L1&
rp

))η̃Θ

,

((
1−εip

ω
&

1+L1&
rp

))η̃Θ
))

,((
1−

(
1− L2&

rp

(
1−εrpω&

1+L2&
rp

))η̃Θ

, 1−
(
1− L2&

rp

(
1−εip

ω
&

1+L2&
rp

))η̃Θ
)
,

(((
1−εrpω&

1+L2&
rp

))η̃Θ

,

((
1−εip

ω
&

1+L2&
rp

))η̃Θ
))



(
H̃&

)η̃Θ

=


(((

L1&
rp

(
1−εrpω&

1+L1&
rp

))η̃Θ

,

(
L1&
rp

(
1−εip

ω
&

1+L1&
rp

))η̃Θ
)
,

(
1−

(
1−

(
1−εrpω&

1+L1&
rp

))η̃Θ

, 1−
(
1−

(
1−εip

ω
&

1+L1&
rp

))η̃Θ
))

,(((
L2&
rp

(
1−εrpω&

1+L2&
rp

))η̃Θ

,

(
L2&
rp

(
1−εip

ω
&

1+L2&
rp

))η̃Θ
)
,

(
1−

(
1−

(
1−εrpω&

1+L2&
rp

))η̃Θ

, 1−
(
1−

(
1−εip

ω
&

1+L2&
rp

))η̃Θ
))


After evaluating the weighted decision matrix, we goal to address the aggregated matrix.

Step 4: Aggregation matrix construction: We goal to construct the aggregated values matrix by using the
CPLDFPoA operator and CPLDFPoG operator, such as

CPLDFPoA
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





1−
ϵ∏

&=1

(
1− L1&

rp

(
1−εrpω&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1− L1&

rp

(
1−εip

ω
&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

((
1−εip

ω
&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))



 ,



1−
ϵ∏

&=1

(
1− L2&

rp

(
1−εrpω&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1− L2&

rp

(
1−εip

ω
&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 , ϵ∏
&=1

((
1−εrpω&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

((
1−εip

ω
&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))
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and

CPLDFPoG
(
H̃1, H̃2, · · · , H̃ ϵ

)

=





 ϵ∏
&=1

(
L1&
rp

(
1−εrpω&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

(
L1&
rp

(
1−εip

ω
&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1−

(
1−εip

ω
&

1+L1&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))



 ,



 ϵ∏
&=1

(
L2&
rp

(
1−εrpω&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

,
ϵ∏

&=1

(
L2&
rp

(
1−εip

ω
&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

 ,1−
ϵ∏

&=1

(
1−

(
1−εrpω&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))

, 1−
ϵ∏

&=1

(
1−

(
1−εip

ω
&

1+L2&
rp

)) (1+η̃(H̃&))∑ ϵ
&=1(1+η̃(H̃&))






To assess the values of the aggregated matrix, we will find the distance values among the information of
weighted value and aggregated values.
Step 5: Distance matrix construction: We goal to design the values by distance function, such as

H̃&k =


D
(
H̃&, H̃k

)
ifH̃& > H̃k

0 ifH̃& = H̃k

−D
(
H̃&, H̃k

)
ifH̃& < H̃k

where

D
(
H̃&, H̃k

)
=
1

8

( ∣∣∣∣∣L1&
rp

(
1− εrp

ω
&

1 + L1&
rp

)
− L1k

rp

(
1− εrp

ω
k

1 + L1k
rp

)∣∣∣∣∣+
∣∣∣∣∣L1&

ip

(
1− εip

ω
&

1 + L1&
ip

)
− L1k

ip

(
1− εip

ω
k

1 + L1k
ip

)∣∣∣∣∣
+

∣∣∣∣∣
(
1− εrp

ω
&

1 + L1&
rp

)
−

(
1− εrp

ω
k

1 + L1k
rp

)∣∣∣∣∣+
∣∣∣∣∣
(
1− εip

ω
&

1 + L1&
ip

)
−

(
1− εip

ω
k

1 + L1k
ip

)∣∣∣∣∣
+

∣∣∣∣∣L2&
rp

(
1− εrp

ω
&

1 + L2&
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)
− L2k

rp

(
1− εrp

ω
k

1 + L2k
rp

)∣∣∣∣∣+
∣∣∣∣∣L2&

ip

(
1− εip

ω
&

1 + L2&
ip

)
− L2k

ip

(
1− εip

ω
k

1 + L2k
ip

)∣∣∣∣∣
+

∣∣∣∣∣
(
1− εrp

ω
&

1 + L2&
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)
−

(
1− εrp

ω
k

1 + L2k
rp

)∣∣∣∣∣+
∣∣∣∣∣
(
1− εip

ω
&

1 + L2&
ip

)
−

(
1− εip

ω
k

1 + L2k
ip

)∣∣∣∣∣
)

Step 6: Appraisal matrix: We goal to address the appraisal information, such as

S& =
1

ϵ

ϵ∑
k=1

D
(
H̃&, H̃k

)
Step 8: Ranking matrix: Calculate the ranking data according to the appraisal function for addressing the
best one amid the group of a finite number of values.

6 CPLDF MABAC Deep Learning for Diagnosis of Alzheimers Disease

In this section, we goal to address the problem of the CPLDF MABAC deep learning model for diagnosis of
Alzheimers disease for initiated techniques. Alzheimers disease is an unpredictable and progressive neurode-
generative disorder that initially affects memory thinking and behavior. The analysis of Alzheimers disease
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has been done by different scholars according to the information of crisp data, but to analyze the best one
among the collection of data, we needed a soft and valuable technique that can help us in the evaluation of
the procedure of decision-making models. Some key features of Alzheimers disease are memory loss, cognitive
decline, behavioral changes, disorientation, and physical symptoms. In this article, we design the procedure
of a multi-attributive border approximation area comparison deep learning algorithm for the diagnosis of
Alzheimers Disease. Application point of view, we target data collection for diagnosing Alzheimers disease
involves collecting a brief set of data from different sources, thus with the help of the above model, we aim
to select the major means the best and worst ones among the collecting five, such as

1. Cognitive Assessments.

2. Neuroimaging Results.

3. Genetic Information.

4. Biomarkers.

5. Clinical History and Physical Examination.

Once selected, this information can be integrated into machine learning or deep learning models to analyze
patterns and support diagnostic decision-making. Further, we have some attributes for the above alternatives,
such as

1. Memory Loss.

2. Cognitive Decline.

3. Behavioral Changes.

4. Disorientation.

5. Physical symptom.

Therefore, to evaluate the above problems, we have a group of alternatives H̃1, H̃2, · · · , H̃ ϵwithA1, A2, · · · , An,
called attributes for each alternative with the same order of weighted information, such as ℵ& =∈ [0, 1] with∑ ϵ

&=1 ℵ& = 1, thus, we design a matrix by putting their information in the form of CPLDFSs, such as

H̃ =
{(

τ,
(
Fω
rp(τ),Fω

ip(τ)
)
,
( Fω

rp(τ),

Fω
ip(τ)

)
,
(
ζωrp(τ), ζ

ω
ip(τ)

)
,
(
Γω
rp(τ),Γ

ω
ip(τ)

))
: τ ∈ X

}
In addition, we define the truth and parameter function according to their real and imaginary parts, such as

Fω
rp(τ) = L1

rp

( Fω
rp(τ)

)
,
(
Fω
ip(τ) = L1

ip

( Fω
ip(τ)

))
and

ζωrp(τ) = L2
rp

(
Γω
rp(τ)

)
,
(
ζωip(τ) = L2

ip

(
Γω
ip(τ)

))
Then

L2
rp

(
Γω
rp(τ)

)
∗ L1

rp

( Fω
rp(τ)

)
+ Γω

rp(τ) ∗

Fω
rp(τ) ≤ 1

⇒ Γω
rp(τ) ∗

Fω
rp(τ)

(
1 + L1

rpL2
rp

)
≤ 1 ⇒ Γω

rp(τ) ∗

Fω
rp(τ) ≤

1

1 + L1
rpL2

rp
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Similarly, we have imaginary parts, such as

Γω
ip(τ) ∗

Fω
ip(τ) ≤

1

1 + L1
ipL2

ip

thus

εωrp(τ) = 1−
(
ζωrp(τ) ∗ Fω

rp(τ) ∗+Γω
rp(τ) ∗

Fω
rp(τ)

)
= 1−

(
L2
rp

(
Γω
rp(τ)

)
∗ L1

rp

( Fω
rp(τ)

)
+ Γω

rp(τ) ∗

Fω
rp(τ)

)
= 1−

(
Γω
rp(τ) ∗

Fω
rp(τ)

(
1 + L1

rpL2
rp

))
then

1− εωrp(τ) = Γω
rp(τ) ∗

Fω
rp(τ)

(
1 + L1

rpL2
rp

)
and

Γω
rp(τ) ∗

Fω
rp(τ) =

1− εωrp(τ)(
1 + L1

rpL2
rp

)
Similarly, we have

Γω
ip(τ) ∗

Fω
ip(τ) =

1− εωip(τ)(
1 + L1

ipL2
ip

)
But if we use the condition of IFSs, thus we have

L1
rp

( Fω
rp(τ)

)
+

Fω
rp(τ) ≤ 1

⇒ Fω
rp(τ)

(
1 + L1

rp

)
≤ 1 ⇒ Fω

rp(τ) ≤
1(

1 + L1
rp

)
Similarly, we have imaginary parts, such as

Fω
ip(τ) ≤

1(
1 + L1

ip

)
Thus, we have the condition of refusal function in IFSs, such as

εωrp(τ) = 1−
(
Fω
rp(τ) +

Fω
rp(τ)

)
= 1−

(
L1
rp

( Fω
rp(τ)

)
+

Fω
rp(τ)

)
= 1−

( Fω
rp(τ)

(
1 + L1

rp

))
then

1− εωrp(τ) =

Fω
rp(τ)

(
1 + L1

rp

)
and

Fω
rp(τ) =

1− εωrp(τ)(
1 + L1

rp

) ,(ζωrp(τ) = 1− εωrp(τ)(
1 + L2

rp

) )
Similarly, we have

Fω
ip(τ) =

1− εωip(τ)(
1 + L1

rp

) ,
ζωip(τ) =

1− εωip(τ)(
1 + L2

ip

)
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If εωrp(τ) = εωip(τ) = 0, thus

Fω
rp(τ) =

1

(1+L1
rp)

and

Fω
ip(τ) =

1

(1+L1
ip)

. Then

Fω
rp(τ) = L1

rp

(
1(

1 + L1
rp

)) ,

Fω
ip(τ) = L1

ip

 1(
1 + L1

ip

)
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ζωrp(τ) = L2
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(
1(

1 + L2
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)) ,

ζωip(τ) = L2
ip

 1(
1 + L2

ip

)


Then

H̃ =


τ,
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(
1

1+L1
rp

)
,L1

ip

(
1

1+L1
ip

))
,
(

1
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, 1
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(
1
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)
,L2

ip

(
1
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,
(

1
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, 1
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Thus, we have the following final shape, such as

H̃& =
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rp

(
1−εrpω&

1+L1&
rp

)
,L1&

ip

(
1−εip

ω
&
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(
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(
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ω
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)
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(
1−εip

ω
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)))
 ,& = 1, 2, · · · , ϵ.

Therefore, we will follow the following technique for evaluating any type of problem, such as
Step 1: Construction of matrix: We focus on designing a matrix, where the value of the matrix must be the
form of CPLDFNs, see Table 1.

Table 1: CPLDF information decision matrix.

A1 A2 A3 A4 A5

H̃1 ((4, 3), (4, 2)) ((5, 1), (5, 3)) ((6, 2), (6, 3)) ((7, 4), (7, 4)) ((1, 3), (8, 5))

H̃2 ((1, 3), (2, 6)) ((2, 2), (3, 5)) ((3, 4), (4, 4)) ((4, 4), (5, 3)) ((1, 1), (8, 5))

H̃3 ((3, 3), (1, 5)) ((4, 2), (4, 4)) ((5, 3), (3, 3)) ((7, 4), (5, 2)) ((1, 3), (6, 1))

H̃4 ((6, 4), (1, 2)) ((5, 1), (2, 1)) ((4, 2), (3, 2)) ((3, 3), (1, 2)) ((1, 3), (2, 1))

H̃5 ((1, 5), (2, 5)) ((2, 4), (3, 4)) ((3, 3), (4, 3)) ((1, 2), (1, 2)) ((1, 3), (2, 1))

Step 2: Unvarying the matrix: We goal to normalize the data, if Cost types of data occurrences, such as

H̃ =
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In another case, we goal to go to the next step. So here we have benefit types of data in Table 1, so we will
go to the next step.

Step 3: Weighted matrix construction: We goal to develop the weighted matrix, where η̃Θ = 2, see Table 2.

Table 2: CPLDF weighted information matrix.

A1 A2 A3 A4 A5

H̃1

(
(0.96,0.9375),
(0.36,0.4375),
(0.64,0.4444),
(0.04.0.111)

) (
(0.9722,0.75),
(0.3056,0.75),

(0.6944,0.5625),
(0.0278,0.0625)

) (
(0.9796,0.8889),
(0.2653,0.5556),
(0.7347,0.5625),
(0.0204,0.0625)

) (
(0.9844,0.96),
(0.2344,0.36),
(0.7656,0.64),
(0.0156,0.04)

) (
(0.75,0.9375),
(0.75,0.4375),

(0.7901,0.6944),
(0.0123,0.0278)

)

H̃2

(
(0.75,0.9375),
(0.75,0.4375),

(0.4444,0.7347),
(0.1111,0.0204)

) (
(0.8889,0.8889),
(0.5556,0.5556),
(0.5625,0.6944),
(0.0625,0.0278)

) (
(0.9375,0.96),
(0.4375,0.36),
(0.64,0.64),
(0.04,0.04)

) (
(0.96,0.96),
(0.36,0.36),

(0.6944,0.5625),
(0.0278,0.0625)

) (
(0.75,0.75),
(0.75,0.75),

(0.7901,0.6944),
(0.0123,0.0278)

)

H̃3

(
(0.9375,0.9375),
(0.4375,0.4375),
(0.25,0.6944),
(0.25,0.0278)

) (
(0.96,0.8889),
(0.36,0.5556),
(0.64,0.64),
(0.04,0.04)

) (
(0.9722,0.9375),
(0.3056,0.4375),
(0.5625,0.5625),
(0.0625,0.0625)

) (
(0.9844,0.96),
(0.2344,0.36),

(0.6944,0.4444),
(0.0278,0.1111)

) (
(0.75,0.9375),
(0.75,0.4375),
(0.7347,0.25),
(0.0204,0.25)

)

H̃4

(
(0.9796,0.96),
(0.2653,0.36),
(0.25,0.4444),
(0.25,0.1111)

) (
(0.9722,0.75),
(0.3056,0.75),
(0.4444,0.25),
(0.111,0.25)

) (
(0.96,0.8889),
(0.36,0.5556),

(0.5625,0.4444),
(0.0625,0.1111)

) (
(0.9375,0.9375),
(0.4375,0.4375),
(0.25,0.4444),
(0.25,0.1111)

) (
(0.75,0.9375),
(0.75,0.4375),
(0.4444,0.25),
(0.1111,0.25)

)

H̃5

(
(0.75,0.9722),
(0.75,0.3056),

(0.4444,0.6944),
(0.111,0.0278)

) (
(0.8889,0.96),
(0.5556,0.36),
(0.5625,0.64),
(0.0625,0.04)

) (
(0.9375,0.9375),
(0.4375,0.4375),
(0.64,0.5625),
(0.04,0.0625)

) (
(0.75,0.8889),
(0.75,0.5556),
(0.25,0.4444),
(0.25,0.1111)

) (
(0.75,0.9375),
(0.75,0.4375),
(0.4444,0.25),
(0.1111,0.25)

)

Step 4: Aggregation matrix construction: We goal to construct the aggregated values matrix by using the
CPLDFPoA operator and CPLDFPoG operator, see Table 3.

Table 3: CPLDF aggregated information matrix.

CPLDFPoA CPLDFPoG Weighted vector obtained with the help of power operators

H̃1

(
(0.9618,0.9154),
(0.4214,0.5317),
(0.7226,0.5735),
(0.0214,0.0548)

) (
(0.9261,0.8913),
(0.3458,0.4916),
(0.7296,0.5883),
(0.0233,0.0615)

)
0.2011,0.199,0.2044,0.2024,0.1931

H̃2

(
(0.8891,0.9231),
(0.6002,0.5177),
(0.6139,0.6623),
(0.0397,0.0331)

) (
(0.8534,0.8965),
(0.5462,0.4716),
(0.6442,0.67),
(0.0515,0.0358)

)
0.1991,0.2036,0.2932,0.1995,0.1946

H̃3

(
(0.9525,0.9358),
(0.4499,0.4497),
(0.5409,0.4916),
(0.0513,0.0712)

) (
(0.9186,0.9618),
(0.3813,0.4416),
(0.605,0.5442),
(0.084,0.1005)

)
0.1962,0.204,0.2065,0.2026,0.1907

H̃4

(
(0.9491,0.9156),
(0.4579,0.531),
(0.3692,0.3546),
(0.1374,0.1528)

) (
(0.9164,0.8918),
(0.3936,0.491),
(0.4022,0.375),
(0.1612,0.1685)

)
0.2014,0.1973,0.2024,0.2037,0.1953

H̃5

(
(0.8389,0.9457),
(0.67,0.4247),

(0.4475,0.4893),
(0.0947,0.0716)

) (
(0.8114,0.9391),
(0.6341,0.4099),
(0.4848,0.5436),
(0.1176,0.1018)

)
0.2027,0.2022,0.1988,0.1968,0.1996

Step 5: Distance matrix construction: We goal to design the values by distance function, see Table 4.
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Table 4: CPLDF distance values.

CPLDFPoA CPLDFPoG

H̃1 0.0583,0.0704,0.032,0.0695,0.1102 0.056,0.0691,0.0294,0.0609,0.115

H̃2 0.0887,0.0286,0.0577,0.0909,0.1169 0.0902,0.0327,0.0522,0.0845,0.1187

H̃3 0.0972,0.0675,0.0363,0.0782,0.1452 0.1036,0.0569,0.0324,0.0723,0.148

H̃4 0.1002,0.1079,0.07,0.0638,0.1137 0.0948,0.1054,0.0663,0.0665,0.1151

H̃5 0.0729,0.0716,0.0852,0.0992,0.0784 0.0733,0.0647,0.0804,0.1061,0.0869

Step 6: Appraisal matrix: We goal to address the appraisal information, see Table 5.

Table 5: CPLDF ranking values.

CPLDFPoA CPLDFPoG

H̃1 0.0681 0.0654

H̃2 0.0765 0.0757

H̃3 0.0849 0.0826

H̃4 0.0911 0.0896

H̃5 0.0815 0.0823

Step 8: Ranking matrix: Calculate the ranking data according to the appraisal function for addressing the
best one amid the group of a finite number of values, see Table 6.

Table 6: CPLDF ranking values.

Methods Ranking values Best idea

CPLDFPoA operator H̃4 > H̃5 > H̃3 > H̃2 > H̃1 H̃4

CPLDFPoG operator H̃4 > H̃5 > H̃3 > H̃2 > H̃1 H̃4

According to the data in Table 6, the most preferable decision is H̃4, called the Biomarkers for the MABAC
model based on both operators. The simple representation of the data in Table 5 is available in the form of
Figure 3.
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Figure 3: Graphical form of data in Table 5.

In addition, we will consider the data in Table 1 and, will evaluate it with the help of operators without the
MABAC technique. Thus, the aggregated values matrix by using the CPLDFPoA operator and CPLDFPoG
operator, see Table 7

Table 7: CPLDF aggregated matrix.

CPLDFPoA CPLDFPoG

H̃1

(
(0.8046,0.7091),
(0.2393,0.3157),
(0.8501,0.7573),
(0.1462,0.2341)

) (
(0.7607,0.6843),
(0.1954,0.2909),
(0.8538,0.7659),
(0.1499,0.2427)

)

H̃2

(
(0.6669,0.7227),
(0.3677,0.3055),
(0.7835,0.8138),
(0.1993,0.1819)

) (
(0.6323,0.6945),
(0.3331,0.2773),
(0.8007,0.8181),
(0.2165,0.1862)

)

H̃3

(
(0.7821,0.7466),
(0.2583,0.2582),
(0.7355,0.7011),
(0.2266,0.2669)

) (
(0.7417,0.7418),
(0.2179,0.2534),
(0.7734,0.7331),
(0.2645,0.2989)

)

H̃4

(
(0.7744,0.7095),
(0.2637,0.3151),
(0.6077,0.5955),
(0.3706,0.3909)

) (
(0.7363,0.6849),
(0.2256,0.2905),
(0.6294,0.6091),
(0.3923,0.4045)

)

H̃5

(
(0.5986,0.7671),
(0.4256,0.2415),
(0.669,0.6995),
(0.3077,0.2675)

) (
(0.5744,0.7585),
(0.4014,0.2329),
(0.6923,0.7325),
(0.331,0.3005)

)

Score value matrix: We goal to address the Score information, see Table 8.
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Table 8: CPLDF ranking values.

CPLDFPoA CPLDFPoG

H̃1 0.5464 0.5464

H̃2 0.4832 0.4832

H̃3 0.4888 0.4888

H̃4 0.3367 0.3367

H̃5 0.373 0.373

Ranking matrix: Calculate the ranking data according to the Score function for addressing the best one amid
the group of a finite number of values, see Table 9.

Table 9: CPLDF ranking values.

Methods Ranking values Best idea

CPLDFPoA operator H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

CPLDFPoG operator H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

According to the data in Table 9, the most preferable decision is H̃3, called the Genetic Information for both
operators. The sensitivity of the proposed information for different values of parameters η̃Θ is described in
Table 10.

Table 10: Representation of the sensitive analysis.

η̃Θ Ranking values Best idea

2 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

4 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

6 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

8 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

10 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

12 H̃3 > H̃2 > H̃1 > H̃5 > H̃4 H̃3

According to the data in Table 10, the most preferable decision is H̃3, called the Genetic Information for both
operators for different values of parameters, anyhow, the proposed model is stable for all possible values of
parameters, and the best value is H̃3 for all values of the parameter. The simple representation of the data
in Table 8 is available in the form of Figure 4.
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Figure 4: Graphical form of data in Table 8.

Additionally, we will compare the proposed ranking data with the ranking information of various existing
techniques to discuss the efficiency of the invented theory.

7 Comparative Analysis

In this section, we scrutinize and deliberate the supremacy and validity of the designed technique and models
by comparing their ranking values with the ranking values of various models. For this, we goal to collect
various necessary techniques based on fuzzy models and their extensions, then we will evaluate the data
in Table 1 with the help of considered information, such as Pamucar and Cirovic [21] invented the (multi-
attributive border approximation area comparison) MABAC technique for classical set theory. Further,
Yager [22] evaluated the power averaging (PoA) technique. In 2009, Xu and Yager [23] introduced the power
geometric (PoG) technique for classical set theory. Jiang et al. [24] derived the power operators for IFSs.
Wei and Lu [25] examined the power operators for PFSs. Garg et al. [26] initiated the power operators for
Cq-ROFSs. Liu et al. [27] derived the power Dombi operators for CPFSs. Rani and Garg [28] evaluated
the power operators for CIFSs. Ali [29] presented the power interaction operator for CIFSs. Ali et al. [30]
described the power operators for complex intuitionistic fuzzy soft sets. Thus, the final ranking values are
illustrated in Table 11.
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Table 11: CPLDF comparative model.

Methods Score values Ranking values

Pamucar and Cirovic [21] 0.0,0.0,0.0,0.0,0.0 No

Yager [22] 0.0,0.0,0.0,0.0,0.0 No

Xu and Yager [23] 0.0,0.0,0.0,0.0,0.0 No

Jiang et al. [24] 0.0,0.0,0.0,0.0,0.0 No

Wei and Lu [25] 0.0,0.0,0.0,0.0,0.0 No

Garg et al. [26] 0.0,0.0,0.0,0.0,0.0 No

Liu et al. [27] 0.0,0.0,0.0,0.0,0.0 No

Rani and Garg [28] 0.0,0.0,0.0,0.0,0.0 No

Ali [29] 0.0,0.0,0.0,0.0,0.0 No

Ali et al. [30] 0.0,0.0,0.0,0.0,0.0 No

CPLDFPoA-MABAC 0.0681,0.0765,0.0849,0.0911,0.0815 H̃4 > H̃3 > H̃5 > H̃2 > H̃1

CPLDFPoG-MABAC 0.0654,0.0757,0.0826,0.0896,0.0823 H̃4 > H̃3 > H̃5 > H̃2 > H̃1

CPLDFPoA 0.5464,0.4832,0.4888,0.3367,0.373 H̃3 > H̃2 > H̃1 > H̃5 > H̃4

CPLDFPoG 0.5464,0.4832,0.4888,0.3367,0.373 H̃3 > H̃2 > H̃1 > H̃5 > H̃4

According to the data in Table 6, the most preferable decision is H̃4, called the Biomarkers for the MABAC
model based on both operators. But, according to the data in Table 11, the most preferable decision is
H̃3, called the Genetic Information for both operators. In addition, the limitation of the existing models is
described in Table 12.

Table 12: CPLDF theoretical comparison.

Methods Truth value Falsity value Crisp function Parameters for both function Aggregation operators Techniques/methods Strong condition/not failed Periodic function

Pamucar and Cirovic [21] no no yes no Yes yes no no

Yager [22] no no yes no Yes no no no

Xu and Yager [23] yes yes yes no Yes no no no

Jiang et al. [24] yes yes yes no Yes no no no

Wei and Lu [25] yes yes yes no yes no no no

Garg et al. [26] yes yes yes no yes no no yes

Liu et al. [27] yes yes yes no yes no no yes

Rani and Garg [28] yes yes yes no yes no Yes yes

Ali [29] yes yes yes no yes no no yes

Ali et al. [30] yes yes yes no yes no no yes

Proposed models yes yes yes Yes yes yes Yes yes

Finally, from the information in Table 12, we analyze that the existing techniques and models contain various
limitations because of their features. Every point of view, we have discussed in Table 12, and from the data
in Table 12, and Table 11, we concluded that the existing models are the special cases of the proposed theory.
Hence, the designed techniques are more powerful and more reliable compared to existing models.

8 Conclusion

The complex propositional linear Diophantine fuzzy technique is a very powerful model for handling vague
and uncertain data. The technique of complex propositional linear Diophantine fuzzy sets is the combination



Fuzzy MABAC Deep Learning for Diagnosis of Alzheimers Disease: Analysis of Complex
Propositional Linear Diophantine Fuzzy Power Aggregation Insights. Trans. Fuzzy Sets Syst. 2025; 4(1) 155

of numerous valuable ideas, where the key and major contributions of the designed techniques are followed,
such as designing the procedure of a MABAC deep learning algorithm for the diagnosis of Alzheimers Disease.
Further, we design the model of CPLDF information with their basic operational laws. In addition, we analyze
the model of the CPLDFPoA operator, CPLDFWPoA operator, CPLDFPoG operator, and CPLDFWPoG
operator, and also initiate their major properties. Moreover, we arrange relevant from different sources for
diagnosing Alzheimers disease under the consideration of the designed technique. Lastly, we compare both
(proposed and existing) ranking information to address the supremacy and strength of the designed models.

In the future, we will begin the model of complex propositional (p, q) Diophantine fuzzy sets with some
new extensions. In addition, we will evaluate the model of operator, measures, and methods for designed
models and discuss their application in decision-making, artificial intelligence, and data mining to improve
the worth of fuzzy set theory.

Conflict of interest: About the publication of this manuscript, the authors declare that they have no
conflict of interest.

Funding: No external funding has been received for this submission.

Ethical approval: The authors state that this is their original work and it is neither submitted nor under
consideration in any other journal simultaneously.

Human and animal participants: This article does not contain any studies with human participants or
animals performed by any of the authors.

References

[1] Knopman DS, Amieva H, Petersen RC, Chtelat G, Holtzman DM, Hyman BT, ... , Jones DT. Alzheimer
disease. Nature reviews Disease primers. 2021; 7(1), 33. DOI: http://doi.org/10.1038/s41572-021-00269-y

[2] Castellani RJ, Rolston RK, Smith M A. Alzheimer disease. Disease-a-month: DM. 2010; 56(9), 484.
DOI: http://doi.org/10.1016/j.disamonth.2010.06.001

[3] Cummings JL, Cole G. Alzheimer disease. Jama. 2002; 287(18), 2335-2338. DOI:
http://doi.org/10.1001/jama.287.18.2335

[4] Elbanna S. Strategic decisionmaking: Process perspectives. international Journal of Management re-
views. 2006; 8(1), 1-20. DOI: http://doi.org/10.1111/j.1468-2370.2006.00118.x

[5] Zadeh LA. Fuzzy sets. Information and control. 1965; 8(3), 338-353. DOI:
https://doi.org/10.2307/2272014

[6] Atanassov K. Intuitionistic fuzzy sets. In VII ITKRs Session; Deposed in Central Sci.Techn. Li-
brary of Bulg. Acad. of Sci., 1697/84; Sofia, Bulgaria. June 1983. DOI: http://doi.org/10.1016/S0165-
0114(86)80034-3

[7] Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986; 20(1), 87-96. DOI:
http://doi.org/10.1007/978-3-7908-1870-3 1

[8] Yager RR. Pythagorean fuzzy subsets. IFSA world congress and NAFIPS annual meeting
(IFSA/NAFIPS) (pp. 57-61), 2013. DOI: http://doi.org/10.1109/IFSA-NAFIPS.2013.6608375

[9] Yager RR. Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems. 2016; 25(5), 1222-
1230. DOI: http://doi.org/10.1109/TFUZZ.2016.2604005



156 Zeeshan A. Trans. Fuzzy Sets Syst. 2025; 4(1)

[10] Riaz M, Hashmi MR. Linear Diophantine fuzzy set and its applications towards multi-attribute
decision-making problems. Journal of Intelligent & Fuzzy Systems. 2019; 37(4), 5417-5439. DOI:
http://doi.org/10.3233/JIFS-190550

[11] Ramot D, Milo R, Friedman M, Kandel A. Complex fuzzy sets. IEEE Transactions on Fuzzy Systems.
2002; 10(2), 171-186. DOI: http://doi.org/10.1109/91.995119

[12] Alkouri AMDJS, Salleh AR. Complex intuitionistic fuzzy sets. AIP conference proceedings. American
Institute of Physics. 2012; 1482(1), 464-470. DOI: http://doi.org/10.1063/1.4757515

[13] Ullah K, Mahmood T, Ali Z, Jan N. (2020). On some distance measures of complex Pythagorean fuzzy
sets and their applications in pattern recognition. Complex & Intelligent Systems. 2020; 6, 15-27. DOI:
http://doi.org/10.1007/s40747-019-0103-6

[14] Liu P, Mahmood T, Ali Z. Complex q-rung orthopair fuzzy aggregation operators and their
applications in multi-attribute group decision making. Information. 2019; 11(1), 5. DOI:
http://doi.org/10.3390/info11010005

[15] Ali Z, Mahmood T. Maclaurin symmetric mean operators and their applications in the environment of
complex q-rung orthopair fuzzy sets. Computational and Applied Mathematics. 2020; 39(3), 161. DOI:
http://doi.org/10.1007/s40314-020-01145-3

[16] Kamac H. Complex linear Diophantine fuzzy sets and their cosine similarity measures with applications.
Complex & Intelligent Systems. 2022; 8(2), 1281-1305. DOI: http://doi.org/10.1007/s40747-021-00573-w

[17] Gottwald S. Fuzzy propositional logic. Fuzzy Sets and Systems. 1980; 3(2), 181-192. DOI:
http://doi.org/10.1016/0165-0114(80)90053-6

[18] Atanassov K. Two variants of intuitionistic fuzzy propositional calculus. Mathematical Foundations of
Artificial Intelligence Seminar, Sofia, 1988, Preprint IM-MFAIS-5-88. Reprinted: Int J Bioautomation,
2016, 20(S1), S17-S26.

[19] Wang X, Xu Z, Gou X. A novel plausible reasoning based on intuitionistic fuzzy propositional logic and
its application in decision making. Fuzzy Optimization and Decision Making. 2020; 19, 251-274. DOI:
http://doi.org/10.1007/s10700-020-09319-8

[20] Kahraman C. Proportional picture fuzzy sets and their AHP extension: Application to
waste disposal site selection. Expert Systems with Applications. 2024; 238, 122354. DOI:
http://doi.org/10.1016/j.eswa.2023.122354

[21] Pamuar D, irovi G. The selection of transport and handling resources in logistics centers using Multi-
Attributive Border Approximation Area Comparison (MABAC). Expert systems with applications. 2015;
42(6), 3016-3028. DOI: http://doi.org/10.1016/j.eswa.2014.11.057

[22] Yager RR. The power average operator. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans. 2001; 31(6), 724-731. DOI: http://doi.org/10.1109/3468.983429

[23] Xu Z, Yager RR. Power-geometric operators and their use in group decision-making. IEEE Transactions
on Fuzzy Systems. 2009; 18(1), 94-105. DOI: http://doi.org/10.1109/TFUZZ.2009.2036907

[24] Jiang W, Wei B, Liu X, Li X. Zheng H. Intuitionistic fuzzy power aggregation operator based on entropy
and its application in decision-making. International Journal of Intelligent Systems. 2018; 33(1), 49-67.
DOI: http://doi.org/10.1002/int.21939



Fuzzy MABAC Deep Learning for Diagnosis of Alzheimers Disease: Analysis of Complex
Propositional Linear Diophantine Fuzzy Power Aggregation Insights. Trans. Fuzzy Sets Syst. 2025; 4(1) 157

[25] Wei G, Lu M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making. In-
ternational Journal of Intelligent Systems. 2018; 33(1), 169-186. DOI: http://doi.org/10.1002/int.21946

[26] Garg H, Gwak J, Mahmood T, Ali Z. Power aggregation operators and VIKOR methods for
complex q-rung orthopair fuzzy sets and their applications. Mathematics. 2020; 8(4), 538. DOI:
http://doi.org/10.3390/math8040538

[27] Liu P, Ali Z, Ding J. Power Dombi Aggregation Operators for Complex Pythagorean Fuzzy Sets and
Their Applications in Green Supply Chain Management. International Journal of Fuzzy Systems. 2024;
1-16. DOI: http://doi.org/10.1007/s40815-024-01691-6

[28] Rani D, Garg H. Complex intuitionistic fuzzy power aggregation operators and their applications in mul-
ticriteria decisionmaking. Expert Systems. 2018; 35(6), e12325. DOI: http://doi.org/10.1111/exsy.12325

[29] Ali Z. Decision-making techniques based on complex intuitionistic fuzzy power interaction aggregation
operators and their applications. Journal of Innovative Research in Mathematical and Computational
Sciences,. 2022; 1(1), 107-125. https://jirmcs.agasr.org/index.php/jirmcs/article/view/6

[30] Ali Z, Mahmood T, Ullah K, Pamucar D, Cirovic G. Power aggregation operators based on t-norm and
t-conorm under the complex intuitionistic fuzzy soft settings and their application in multi-attribute
decision making. Symmetry. 2021: 13(11), 1986. DOI: http://doi.org/10.3390/sym13111986

[31] Moslem S. A novel parsimonious spherical fuzzy analytic hierarchy process for sustainable ur-
ban transport solutions. Engineering Applications of Artificial Intelligence. 2024; 128, 107447. DOI:
http://doi.org/10.1016/j.engappai.2023.107447

[32] Moslem S, Tezel BT, Kinay AO, Pilla F. A hybrid approach based on a magnitude-based fuzzy ana-
lytic hierarchy process for estimating sustainable urban transport solutions. Engineering Applications of
Artificial Intelligence. 2024; 137, 109112. DOI: http://doi.org/10.1016/j.engappai.2024.109112

[33] Moslem S, Pilla F. Addressing last-mile delivery challenges by using Euclidean distance-based aggrega-
tion within spherical Fuzzy group decision-making. Transportation Engineering. 2023; 14, 100212. DOI:
http://doi.org/10.1016/j.treng.2023.100212

[34] Acharya A, Mahata A, Karak M, Sil N, Mukherjee S, Mondal SP, Roy B. Stability Analysis of Di-
abetes Mellitus Model in Neutrosophic Fuzzy Environment. Franklin Open. 2024; 8, 100144. DOI:
http://doi.org/10.1016/j.fraope.2024.100144

[35] Singh P, Gor B, Gazi KH, Mukherjee S, Mahata A, Mondal SP. Analysis and interpretation of the
Malaria disease model in a crisp and fuzzy environment. Results in Control and Optimization. 2023; 12,
100257. DOI: http://doi.org/10.1016/j.rico.2023.100257

[36] Momena AF, Mandal S, Gazi KH, Giri BC, Mondal SP. Prediagnosis of disease based on symptoms
by generalized dual hesitant hexagonal fuzzy multi-criteria decision-making techniques. Systems. 2023;
11(5), 231. DOI: http://doi.org/10.3390/systems11050231

[37] Acharya A, Mahata A, Mukherjee S, Biswas MA, Das KP, Mondal SP, Roy B. A Neutrosophic differential
equation approach for modeling glucose distribution in the bloodstream using neutrosophic sets. Decision
Analytics Journal. 2023; 8, 100264. DOI: https://doi.org/10.1016/j.dajour.2023.100264



158 Zeeshan A. Trans. Fuzzy Sets Syst. 2025; 4(1)

Zeeshan Ali
Department of Information Management
National Yunlin University of Science and Technology
Yunlin, Taiwan (R.O.C.)

E-mail: zeeshanalinsr@gmail.com

..

By the Authors. Published by Islamic Azad University, Bandar Abbas Branch. This article is an
open-access article distributed under the terms and conditions of the Creative Commons Attribution

4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/ .


	1 Introduction
	2 Preliminaries
	3 CPLDFSs: Complex Propositional Linear Diophantine Fuzzy Sets
	4 CPLDF Power Aggregation Insights
	5 CPLDF MABAC Techniques
	6 CPLDF MABAC Deep Learning for Diagnosis of Alzheimer’s Disease
	7 Comparative Analysis
	8 Conclusion
	References

