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Abstract. The focus of this work is to study sequences of interactive fuzzy numbers. The interactivity relation is
associated with the concept of joint possibility distribution. In this case, the type of interactivity studied is linked
to a family of joint possibility distributions (Jγ), in which the parameter γ intrinsically models levels of interactivity
between the fuzzy numbers involved. Each element of the sequence of interactive fuzzy numbers is obtained through
a discrete equation, and the arithmetic operations present in the equation are extended to this type of fuzzy number.
Some simulations are performed to illustrate the behavior of the sequences, called interactive, and to compare them
with the sequences obtained by other fuzzy arithmetic operations.
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1 Introduction

Real number sequences have been a subject of study within Mathematics, particularly in the field of Analysis.
In this context, the domain of the function that generates the sequence is the set of natural numbers (N) and
the image is defined as the set of real numbers (R). In addition, one can define a sequence of real numbers
by writing the current value in terms of its predecessors. This type of sequence is also known as a recursive
sequence, which must be started from one or more initial conditions, as occurs, for instance, in the Fibonacci
and plant growth sequences [1].

There are several well-known real sequences, such as the Lucas sequence, in which the real sequence is
the same as in the Fibonacci sequence, but the initial values differ. Also, there is the arithmetic sequence
(each term is the sum of the previous term and a constant difference), geometric sequence (each term is the
product of the previous term and a constant ratio), triangular number sequence (each term can be arranged
in an equilateral triangle), and many others.

This work focuses on the study of an extension of recursive sequences, in the following sense: the domain
of the function that generates the sequence remains the set of natural numbers, but its values lie in the set of
fuzzy numbers (RF ). Such sequences are known as fuzzy sequences, and the motivation for working with this
approach is based on the uncertainty in determining an exact value for the initial conditions of a recursive
sequence, as seen in population dynamics [2].
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In this particular work, the fuzzy sequences, considered here, are given in the form of

Xn = f(X0, X1, . . . , Xn−1),

where f : Rn
F → RF is a linear fuzzy function. An example of this type of fuzzy sequence is given by

Xn = 3Xn−1+2Xn−2. An example of a fuzzy sequence that is not of this type is given by Xn = Xn−1 ∗Xn−2.

For this purpose, the initial conditions of the recursive sequence must be given by fuzzy numbers, conse-
quently, the operations involved in obtaining the n-th value of the sequence, in terms of the previous n − 1
values, must be appropriated for fuzzy numbers. In the literature, there are various arithmetics for fuzzy
numbers. This work will explore only two: the standard arithmetic and the interactive arithmetic.

The standard arithmetic is considered because it is the most common arithmetic operation used in the
literature. Moreover, several properties of this arithmetic are well known. For example, it is always possible
to compute the standard sum between fuzzy numbers; it is a commutative and associative operation, but
it does not satisfy the opposite element; it always produces a fuzzy number with a bigger width than each
width of the operands; and so on [2].

On the other hand, the choice of interactive arithmetic arises from the fact that the n-th term of the
sequence depends on its predecessors. This dependence is intrinsically modeled by the concept of interac-
tivity [3]. Interactivity is a fuzzy relation that emerges from a joint possibility distribution between fuzzy
numbers. This relation is similar, but not equivalent, to the concept of dependence for random variables.

In the context of interactivity, there are several arithmetic operations proposed in the literature, all of
which incorporate this relation. Carlsson and Fuller [4] proposed an addition (subtraction) for fuzzy numbers
that assumes a linear correlation between the fuzzy numbers. Barros and Santo Pedro [5] explored these
operations by proposing a fuzzy derivative. Wasques et al. [6] showed that Hukuara difference and its
generalizations incorporate the relation of interactivity, which means that several papers in the literature use
the relation of interactivity implicitly or explicitly since these fuzzy differences are widely considered in the
fuzzy set theory.

This work addresses fuzzy number sequences that incorporate the interactivity relation, illustrating their
advantages over using usual arithmetic for fuzzy numbers. The paper is organized as follows. Section 2
provides the mathematical background for the fuzzy sets theory and the construction of the interactive sum
J0. Section 3 explores fuzzy number sequences with different types of arithmetic operations. Section 4
presents the conclusion of the paper.

2 Mathematical Background

A fuzzy subset A of a universe X is characterized by a membership function µA : X → [0, 1], where µA(x),
or simply A(x), indicates the degree to which x ∈ X belongs to A. Every classical subset A of X is, in
particular, a fuzzy set, as it can be described by the characteristic function χA : X → {0, 1}, which is a
particular case of a membership function. One way to handle fuzzy sets computationally is through α-cuts,
defined by [A]α = {x ∈ X : A(x) ≥ α} if 0 < α ≤ 1 and [A]α = {x ∈ X : A(x) > 0} if α = 0, where Y
represents the closure of the set Y ⊆ X.

The set of fuzzy numbers, denoted by RF , is formed by fuzzy subsets of R whose α-cuts are non-empty,
bounded, closed, and nested intervals for all α ∈ [0, 1]. These α-cuts are denoted by [A]α = [a−α , a

+
α ], ∀α ∈

[0, 1] [2]. The set of fuzzy numbers with continuous endpoints a−(·), a
+
(·) : [0, 1] → R is denoted by RFC

. An

example of this type of fuzzy number is the triangular fuzzy number, denoted by triple (a; b; c), with a ≤ b ≤ c,
and characterized by the α-cuts [a + α(b − a), c + α(b − c)]. The width of a fuzzy number A is defined by
width(A) = |a+0 − a−0 | [2].
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Let A and B be fuzzy numbers. The Pompeiu-Hausdorff distance D∞ : RF × RF → [0,+∞) is given by

D∞(A,B) = sup
α∈[0,1]

(max{|a−α − b−α |, |a+α − b+α |}), ∀A,B ∈ RF .

A sequence of fuzzy numbers is defined by a function F : N → RF . This sequence is denoted by Xn, where
Xn represents the value F (n) and Xn is referred to as the n-th term of the sequence, that is, F (n) = Xn, for
all n ∈ N. A sequence Xn converges to Xp if for every ϵ > 0, there exists n0 such that D∞(Xn, Xp) < ϵ, for
all n > n0.

A fuzzy relation J ∈ F(R2) is said to be a joint possibility distribution between the fuzzy numbers
A1, A2 ∈ RF if

Ai(y) = sup
{(x1,x2)∈R2 : xi=y}

J(x1, x2),

for all y ∈ R and ∀i = 1, 2.

This means that A1 and A2 can be obtained by the projection of J in x and y direction, respectively.
The fuzzy numbers A1 and A2 are also called be the marginals of J .

Let A1, A2 ∈ RF and let J be a joint possibility distribution between them. The fuzzy numbers A1 and
A2 are said to be non-interactive if

J(x1, x2) = Jmin(x1, x2) = min{A1(x1), A2(x2)}, ∀(x1, x2) ∈ R2.

Otherwise, that is, if J ̸= Jmin, then A1 and A2 are said to be interactive fuzzy numbers.

The above definition states that the concept of interactivity between fuzzy numbers arises from the notion
of joint possibility distribution. This idea is similar (but not equivalent) to the definition of dependence in
the case of random variables, that is, the relation of dependence is similar to interactivity and independence
is similar to non-interactivity.

There are different types of interactivity associated with various joint possibility distributions, such as
interactivity via JL [4, 5, 7]. This joint possibility distribution establishes a linear correlation between the
membership functions of the involved fuzzy numbers, which restricts the applicability of JL [8, 9]. For example,
the joint possibility distribution JL can not be applied for the pair of fuzzy numbers A1 and A2, where A1

is a triangular symmetric fuzzy number (for example A1 = (1; 2; 3)) and A2 is a triangular non-symmetric
fuzzy number (for example A1 = (1; 2; 4)).

The following joint possibility distribution does not have such restrictions. Specifically, it can be applied
to any pair of fuzzy numbers in RFC . Given A1, A2 ∈ RFC , for each z ∈ R and α ∈ [0, 1], consider the
functions [10]:

g1(z, α) = min
w∈[A2]α

|w + z|, and g2(z, α) = max
w∈[A1]α

|w + z|. (1)

Also consider the sets Ri
α and Li(z, α) defined as follows:

Ri
α =

{
{a−iα , a

+
iα
} if α ∈ [0, 1)

[Ai]
1 if α = 1

,

and Li(z, α) = [A3−i]
α ∩ [−gi(z, α)− z, gi(z, α)− z], with i = {1, 2}.

The joint possibility distribution J0 is defined by the following membership function [10]

J0(x1, x2) =

{
min{A1(x1), A2(x2)}, if (x1, x2) ∈ P

0 , otherwise
, (2)
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where

P =

2∪
i=1

∪
α∈[0,1]

P i(α) with P i(α) = {(x1, x2) : xi ∈ Ri
α e x3−i ∈ Li(xi, α)}.

The following definition is a generalization of Zadeh’s extension principle [11], which aims to extend
real functions to fuzzy functions. Let J ∈ F(Rn) be a joint possibility distribution of A1, ..., An ∈ RF and
f : Rn → R. The sup-J extension of the function f applied to (A1, ..., An) is defined by

fJ(A1, ..., An)(y) = sup
(x1,...,xn)∈f−1(y)

J(x1, ..., xn),

where f−1(y) = {(x1, ..., xn) ∈ Rn : f(x1, ..., xn) = y}.
Through the sup-J extension principle, the arithmetic between interactive fuzzy numbers is obtained. For

example, the interactive sum and difference between A1 and A2 is defined as follows:

(A1 +J A2)(y) = sup
x1+x2=y

J(x1, x2) and (A1 −J A2)(y) = sup
x1−x2=y

J(x1, x2),

where J is an arbitrary joint possibility distribution.

Definition 2.1. [6] Let A,B ∈ RFC
. The interactive fuzzy sum defined by

(A1 +0 A2)(y) = sup
x1+x2=y

J0(x1, x2) (3)

is called the J0-sum.

The J0-sum for triangular fuzzy numbers can be easily computed according to the following theorem.

Theorem 2.2. [12] Let A = (a; b; c) and B = (d; e; f) be triangular fuzzy numbers. Let J0 be the joint
possibility distribution between A and B, given by (2). Thus

A+0 B =

{
((a+ f) ∧ (b+ e); b+ e; (b+ e) ∨ (c+ d)), if width(A) ≥ width(B)

((c+ d) ∧ (b+ e); b+ e; (b+ e) ∨ (a+ f)), if width(A) ≤ width(B)
. (4)

For example, the J0-sum between A = (1; 2; 3) and B = (0; 2; 4) is equal to

A+0 B = (min{3 + 0, 2 + 2}; 2 + 2;max{1 + 4, 2 + 2}) = (3; 4; 5).

On the other hand, the usual sum is given by

A+B = (1 + 0; 2 + 2; 3 + 4) = (1; 4; 7),

which has a bigger width than (3; 4; 5).
Also, the subtraction operator can be defined in a similar way.

Definition 2.3. Let A,B ∈ RF . The usual fuzzy difference is defined by

(A1 −A2)(y) = sup
x1−x2=y

min{A1(x1), A(x2)}. (5)

Definition 2.4. [6] Let A,B ∈ RFC
. The interactive fuzzy difference defined by

(A1 −I A2)(y) = sup
x1−x2=y

J0(x1, x2) (6)

is called the I-difference.
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For example, the I-difference between A = (1; 3; 4) and B = (1; 2; 3) is equal to

A−I B = A+0 (−B) = (min{1 + (−1), 3 + (−2)}; 3 + (−2);max{4 + (−3), 3 + (−2)}) = (0; 1; 1).

On the other hand, the usual sum is given by

A−B = A+ (−B) = (1− 3; 3− 2; 4− 1) = (−2; 1; 3),

which has bigger width than (0; 1; 1). Also, note that

A−I A = A+0 (−A) = (a; b; c) +0 (−c;−b;−a) = (0; 0; 0),

for all triangular fuzzy numbers A. Indeed, this result holds for any fuzzy number, that is, A −I A = 0 for
all A ∈ RFC [6].

The next section discusses sequences that are obtained through a discrete equation, where the arithmetic
operations involved in the equation are given by interactive arithmetic operations.

3 Fuzzy Number Sequence

The sequences that will be considered here are obtained recurrently, that is, each term xn ∈ R of the sequence
is given as a function of the previous terms x1, . . . , xn−1 from one or more initial conditions. For example,
the sequence defined by the Equation (7)

xn = xn−1 − rxn−2, (7)

where r ∈ R, with initial conditions x1 and x2.
Taking the value of r = 0.25 and initial conditions x1 = x2 = 1, this sequence assumes the following

values {1; 1; 0.75; 0.5; 0.3125; 0.1875; . . .}, converging to 0.
Considering that the initial conditions are uncertain and given by fuzzy numbers, the sequence given

in (7) is extended by the following fuzzy numbers sequence

Xn = Xn−1 ⊖ rXn−2, (8)

where r ∈ R, with X1 and X2 being fuzzy numbers, and the operation ⊖ is a difference between fuzzy
numbers.

Two cases will be analyzed here. The first one is when the fuzzy initial conditions are non-interactive,
in this case, the usual difference must be considered. In the second case the fuzzy initial conditions are
interactive, and thus, an interactive difference must be taken into account.

3.1 Usual Arithmetic Sequence

For the usual difference, we have the following sequence

Xn = Xn−1 − rXn−2. (9)

Taking the initial conditions X1 = X2 = (0; 1; 2) and r = 0.25, we obtain the following sequence of fuzzy
numbers represented in Figure 1. Figure 2 shows the 16-th term X16 computed in this sequence.

Each element of the sequence Xn given in (9) can be found in Table 1. Note that the width of Xn, that
is, the size of the 0-cut of Xn, is increasing with n. This implies that the uncertainty about the elements
increases as n increases, this behavior is connected to the usual arithmetic.
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Figure 1: Fuzzy number sequence given by Equation (9) for n = 16. Each element of the sequence Xn is
represented in shades of gray, with X1 described by the lightest shade, and X16 by the darkest shade.

Figure 2: X16 = (−14.080791; 0.00048828; 14.0818).

Note that, if the initial conditions are given by triangular fuzzy numbers, then the (n − 1)-ary term of
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Table 1: Sequence of fuzzy numbers obtained from Equation (8) from the initial conditions X1 = X2 =
(0; 1; 2), r = 0.25 and n = 16.

Usual Arithmetic

n Xn

1 (0; 1; 2)

2 (0; 1; 2)

3 (−0.475; 0.75; 1.975)

4 (−0.97; 0.5; 1.97)

5 (−1.46375; 3.125; 2.0888)

6 (−1.95625; 0.1875; 2.3313)

7 (−2.478438; 0.10938; 2.6972)

8 (−3.06125; 0.0625; 3.1863)

9 (−3.735547; 0.035156; 3.8059)

10 (−4.532109; 0.019531; 4.5712)

11 (−5.483574; 0.010742; 5.5051)

12 (−6.626367; 0.0058594; 6.6381)

13 (−8.002632; 0.0031738; 8.009)

14 (−9.662153; 0.001709; 9.6656)

15 (−11.664398; 0.0091553; 11.6662)

16 (−14.080791; 0.00048828; 14.0818)

Interactive Arithmetic

n Xn

1 (0; 1; 2)

2 (0; 1; 2)

3 (−0.15; 0.75; 1.485)

4 (−0.01; 0.5; 0.99)

5 (−0.00625; 0.3125; 0.61875)

6 (−0.00375; 0.1875; 0.37125)

7 (−0.0021875; 0.10938; 0.21656)

8 (−0.00125; 0.0625; 0.12375)

9 (−0.00070312; 0.035156; 0.069609)

10 (−0.00039062; 0.019531; 0.038672)

11 (−0.00021484; 0.010742; 0.02127)

12 (−0.00011719; 0.0058594; 0.011602)

13 (−0.00063477; 0.0031738; 0.0062842)

14 (−0.00003418; 0.0017090; 0.0033838)

15 (−0.000018311; 0.00091553; 0.0018127)

16 (−0.000009765; 0.00048828; 0.0009668)

this sequence is given by

Xn−1 = (an−2 − rcn−3; bn−2 − rbn−3; cn−2 − ran−3),

whose α-cuts are given by

[Xn−1]
α = [an−2 − rcn−3 + α(bn−2 − rbn−3 − (an−2 − rcn−3)),

cn−2 − ran−3 + α(bn−2 − rbn−3 − (cn−2 − ran−3))]

= [(an−2 − rcn−3)(1− α) + α(bn−2 − rbn−3),

(cn−2 − ran−3)(1− α) + α(bn−2 − rbn−3)]

and the n-ary term of this sequence is given by

Xn = (an−1 − rcn−2; bn−1 − rbn−2; cn−1 − ran−2),

whose α-cuts are given by

[Xn]
α = [(an−1 − rcn−2)(1− α) + α(bn−1 − rbn−2),

(cn−1 − ran−2)(1− α) + α(bn−1 − rbn−2)].

For all r > 0, it follows that

D∞(Xn, Xn−1) = sup
α∈[0,1]

(max{|a−α − b−α |, |a+α − b+α |})

= max{|an−1 − rcn−2 − (an−2 − rcn−3)|, |cn−1 − ran−2 − (cn−2 − ran−3)|}
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or

D∞(Xn, Xn−1) = max{|bn−1 − rbn−2 − (bn−2 − rbn−3)|, |bn−1 − rbn−2 − (bn−2 − rbn−3)|}
= |bn−1 − rbn−2 − (bn−2 − rbn−3)|.

Since width(Xn−1) ≤ width(Xn), it follows that for r > 1 the above sequences do not converge. This
comment gives raise to the following proposition.

Proposition 3.1. Let be the fuzzy sequence given by

Xn = Xn−1 − rXn−2,

where the subtraction operation − is given by the usual difference for fuzzy numbers. Thus, the fuzzy sequence
Xn diverges, for r > 1.

3.2 Sequence via Interactive Arithmetic

For interactive arithmetic, several differences can be used, for example, gH-difference [13], L-difference [5]
and I-difference [6]. In the simulations performed here, only the I-difference will be considered, since it
exists for any pair of fuzzy numbers, in contrast to the gH-difference (which can not be computed for any
triangular fuzzy numbers) and L-difference (which can not be computed for triangular fuzzy numbers with
different shapes). For the I-difference, the following fuzzy sequence

Xn = Xn−1 −I rXn−2, (10)

is illustrated in Figure 3.
Figure 4 depicts the 16-th term X16 computed from the sequence (10). It is possible to observe that the

output produced by this sequence is indeed a fuzzy number. Moreover, the operation −I preserves the shape
of the triangular fuzzy number.

As in usual arithmetic, the elements of [Xn]
1 are the same as in the classical sequence. Now, due to the

interactive arithmetic obtained by the set J0, the width of each Xn ∈ RFC
is decreasing with n. Therefore,

the uncertainty about such elements decreases over time.
The right tabular of Table 1 illustrates the values of each element of the sequence (10). Analyzing the

table, it is possible to quantitatively compare each Xn given by (9) and (10). It can be observed that the
width of the fuzzy numbers produced by the sequence (10) is smaller or equal than the width of the fuzzy
numbers produced by the sequence (9), for all n ∈ N. Consequently, the uncertainty about the fuzzy sequence
given in (8) is smaller using the I-difference than the usual difference.

Moreover, if the initial conditions are given by triangular fuzzy numbers, then the (n−1)-ary term of this
sequence is given by

Xn−1 = (min{an−2 − ran−3, bn−2 − rbn−3}; bn−2 − rbn−3;max{bn−2 − rbn−3, cn−2 − rcn−3}),

if width(Xn−2) ≥ width(rXn−3) or

Xn−1 = (min{cn−2 − rcn−3, bn−2 − rbn−3}; bn−2 − rbn−3;max{bn−2 − rbn−3, an−2 − ran−3}),

if width(Xn−2) ≤ width(rXn−3) and the n-ary term of this sequence is given by

Xn = (min{an−1 − ran−2, bn−1 − rbn−2}; bn−1 − rbn−2;max{bn−1 − rbn−2, cn−1 − rcn−2}),

if width(Xn−1) ≤ width(rXn−2) or

Xn = (min{cn−1 − rcn−2, bn−1 − rbn−2}; bn−1 − rbn−2;max{bn−1 − rbn−2, an−1 − ran−2}).
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Figure 3: Fuzzy number sequence given by Equation (10) for n = 16. Each element of the sequence Xn is
represented in shades of gray, with X1 described by the lightest shade, and X16 by the darkest shade.

Figure 4: X16 = (0.00009; 0.00488; 0.00966)

If 0 < r < 1, then D∞(Xn, Xn−1) is a lower bounded and decreasing function with respect to n, since
width(Xn) ≤ width(Xn−1), where an−2 − ran−3, bn−1 − rbn−2 and cn−1 − rcn−2 are decreasing sequences.
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Such reasoning is summarized in the following proposition.

Proposition 3.2. Let be the fuzzy sequence given by

Xn = Xn−1 −I rXn−2,

where the subtraction operation −I is given by the interactive difference (2.4). Thus, the fuzzy sequence Xn

converges, for any 0 < r < 1.

Similar results would be obtained using the gH-difference and the L-difference, if it were possible to
calculate Xn−1 ⊖ rXn−2 for each n. This comment is attributed to the fact that every arithmetic operation
coming from a joint possibility distribution J ̸= Jmin produces fuzzy numbers with a smaller width than the
usual arithmetic [14].

4 Conclusion

This work studied sequences of fuzzy numbers that assume values in RFC
. Each element of this sequence is

obtained by recurrence according to the equation (8), with fuzzy initial conditions.

Through some simulations, using the I-difference, it was noticed that the interactive arithmetic produces
a sequence of elements with a smaller width than the width of the elements obtained by the usual arithmetic.
This result is valid for all interactive arithmetic. It is worth mentioning that other interactive arithmetic
could have been used, such as the differences gH and L, however, it is not always possible to compute them.
The I-difference, on the other hand, does not have such restrictions.

From the point of view of applications, a smaller width implies less uncertainty about the elements of
the sequence {Xn}. The sequence provided by usual arithmetic has an increasing width, and therefore,
it propagates uncertainty over its elements. On the other hand, using the I-difference, the width of the
sequence decreases, which is better for controlling uncertainty over time. This makes interactive arithmetic
more suitable for modeling than the usual one.

It is worth noting that in several applications the usual sum and the gH-difference are used in the same
equation. This is not consistent with joint possibility distributions, since the gH-difference is an interactive
arithmetic operation [6], and the usual sum is not.
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