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Abstract. In this work, we define a new sequence denominated by fuzzy Leonardo numbers. Some algebraic
properties of this new sequence are studied and several identities are established. Moreover, the relations between
the fuzzy Fibonacci and fuzzy Lucas numbers are explored, and several results are given. In addition, some sums
involving fuzzy Leonardo numbers are provided.
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1 Introduction

Recently, several researchers have worked enthusiastically with numerical sequences. Their studies cover a
wide range of fascinating aspects, including exploring unique properties, revealing previously known identities,
and even unlocking the secrets behind generating functions and matrices. One of these interesting sequences
is the Fibonacci sequence of numbers. The sequence of Fibonacci {Fn}n≥0 is defined by a recurrence relation
of order two, given by

Fn = Fn−1 + Fn−2, (n ≥ 2), (1)

with initial conditions F0 = 0 and F1 = 1. Other classical sequence is the sequence of Lucas numbers {Ln}n≥0,
defined by the same recurrence relation of Fibonacci sequence,

Ln = Ln−1 + Ln−2, (n ≥ 2), (2)

but with different initial conditions, L0 = 2 and L1 = 1. The Fibonacci sequence has motivated the study of
many other numerical sequences. We can find not only properties of the sequences of Fibonacci but also the
correlated sequences such as Lucas, Pell, and Pell-Lucas and their applications in the following works [1], [2]
and [3].

One of these correlated sequences is the sequence of Leonardo, introduced by Catarino and Borges in [4],
and defined by the recurrence relation

Len = Len−1 + Len−2 + 1, (n ≥ 2), (3)
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with initial conditions Le0 = Le1 = 1. This recurrence relation can have the equivalent form

Len+1 = 2Len − Len−2, (n ≥ 2).

The relation between Leonardo and Fibonacci numbers is given by

Len = 2Fn+1 − 1, (4)

according to Proposition 2.2 in [4].
The Leonardo sequence has given rise to many related research studies, which are, for example, those of

Alp and Koçer in [5], Alves and Vieira in [6], Catarino and Borges in [7], Gokbas in [8], Kara and Yilmaz in
[9], Kuhapatanakul and Chobsorn in [10], and Tan and Leung in [11], among others.

On the other hand, since fuzzy set theory has a lot of applications in real life, the interest in workings
and researching has increased in recent years [12, 13, 14]. To face the challenges of ambiguity in various
areas, Zadeh, in the article [15], introduced the fuzzy set theory. The fuzzy set theory is based on the fuzzy
membership function. Given a set A, the membership function denoted by µA is a function that associates an
element of a set A to an element in the interval [0, 1]. A fuzzy set A is described by its membership function µA,
and by the fuzzy membership function, we can determine the membership grade of an element concerning
a set (see more details in [16, 17, 18, 19]). Following Duman, in [20], there are many fuzzy membership
function types, which most commonly used are the triangular, trapezoidal, Gaussian, and generalized Bell.
Fuzzy operations on fuzzy sets are defined as crisp operations performed on crisp sets. Operations on fuzzy
sets are done using fuzzy membership functions. Operations such as addition, subtraction, multiplication,
and division are defined in a fuzzy set, [16, 21]. When fuzzy set operations are applied to a set, the result is
a fuzzy set. But these sets need to be converted to a real number, that is, an inference must be made. This
process is called defuzzyfication, which means inversion of fuzzyfication [22].

Recently, a bridge between fuzzy sets and number theory was built when fuzzy Fibonacci and Lucas
number sequences were defined using the triangular membership function by [23], and also several identities
were provided. In addition, other properties are investigated in [20].

We aim to introduce the fuzzy Leonardo numbers using the triangular membership function and give
some new properties of this new sequence. The article is organized as follows. In Section 2, we present the
triangular fuzzy numbers with their operations. Also, the definitions of fuzzy Fibonacci numbers and fuzzy
Lucas numbers are given as identities related to these sequences, which will be useful for the next sections.
Section 3 introduces the fuzzy Leonardo numbers and establishes some properties and identities of this new
set of numbers. In Section 4, some sums involving fuzzy Leonardo numbers are provided. Finally, some
conclusions are stated.

2 Preliminaries concepts

In this section, we will present the definition of triangular fuzzy numbers, such as their arithmetic operations
of the α-cut, α ∈ [0, 1]. In addition, the definitions of fuzzy Fibonacci and fuzzy Lucas numbers are given,
and some properties of these numbers are presented.

First, consider the definition of the triangular fuzzy number given by Irmak and Demirtas in [23]. A
triangular fuzzy number, denoted by Ã = (a1, a2, a3) is represented by three points, two of which are left
and right of the interval, such that a1, a2, a3 are real numbers. The triangular membership function with
Ã = (a1, a2, a3) is given by

µÃ(x) =


0, x ≤ a1

x−a1
a2−a1

, a1 < x ≤ a2
a3−x
a3−a2

, a2 < x ≤ a3
0, x ≥ a3

.
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A triangular fuzzy number can be represented by α-cut operation, which denotes Aα. To convert a
triangular fuzzy number to α−cut interval, we follow that

Aα = [aα1 , a
α
3 ] = [a1 + α(a2 − a1), a3 − α(a3 − a2)], (5)

where α ∈ [0, 1] and aj for j = 1, 2, 3 are real numbers.
Let Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) be the triangular fuzzy numbers and Aα = [aα1 , a

α
3 ] and Bα =

[bα1 , b
α
3 ] be the α−cut obtained from these numbers. The arithmetic operations of the α−cut are given in [23]

as follows

Aα +Bα = [aα1 + bα1 , a
α
3 + bα3 ], (6)

Aα −Bα = [aα1 − bα1 , a
α
3 − bα3 ],

AαBα = [min{aα1 bα1 , aα3 bα1 , aα1 bα3 , aα3 bα3 },max{aα1 bα1 , aα3 bα1 , aα1 bα3 , aα3 bα3 }], (7)

Aα/Bα = [min{aα1 /bα1 , aα3 /bα1 , aα1 /bα3 , aα3 /bα3 },max{aα1 /bα1 , aα3 /bα1 , aα1 /bα3 , aα3 /bα3 }],
kAα = [min{kaα1 , kaα3 },max{kaα1 , kaα3 }],

with k real number. Note that, if a1, b1, a2, b2, a3 and b3 are positive real numbers with a1 ≤ a2 ≤ a3, and
b1 ≤ b2 ≤ b3, then AαBα = [aα1 b

α
1 , a

α
3 b

α
3 ]. Moreover, if k is a positive real number then we have kAα =

[min{kaα1 , kaα3 },max{kaα1 , kaα3 }] = [kaα1 , ka
α
3 ], (see more details in [16, 21]).

In [23], the author introduced the fuzzy Fibonacci numbers and the fuzzy Lucas numbers, which will be
very useful for this article. Let {Fn}n≥0 be the Fibonacci sequence (1). The triangular fuzzy number of
Fibonacci is given by F̃n = (Fn−1, Fn, Fn+1). Then, we have the following definition.

Definition 2.1. Let {Fn}n≥0 be the Fibonacci sequence (1). The fuzzy Fibonacci numbers are defined by the
expression

Fα
n = [Fα

n−1, F
α
n+1] = [Fn−1 + αFn−2, Fn+1 − αFn−1], (8)

for n ≥ 2, where α ∈ [0, 1] and initial conditions are Fα
0 = [1− α, 1 + α] and Fα

1 = [α, 1].

Similarly, the definition of fuzzy Lucas numbers, as proposed by Irmak and Demirtas in [23], is as follows:

Definition 2.2. Let {Ln}n≥0 be the Lucas sequence (2). The fuzzy Lucas numbers are defined by the expres-
sion

Lα
n = [Lα

n−1, L
α
n+1] = [Ln−1 + αLn−2, Ln+1 − αLn−1], (9)

for n ≥ 2, where α ∈ [0, 1] and initial conditions are Lα
0 = [−1− 3α, 1 + α], and Lα

1 = [2− α, 3− 2α].

Motivated by the previous definitions, we will introduce the fuzzy Leonardo numbers and study some
properties of this new fuzzy sequence of numbers in the next section. Moreover, this article will explore the
connection between the fuzzy Leonardo numbers, the fuzzy Fibonacci numbers, and the fuzzy Lucas numbers
by considering the following identities for non-negative integers n,

[20,Theorem 3.1] Fα
n+4 + Fα

n = 3Fα
n+2 , (10)

[20,Theorem 3.2] Fα
n+10 = 11Fα

n+5 + Fα
n , (11)

[20,Theorem 3.3] Fα
n+2 − Fα

n+1 = (−Fn, Fn, 2Fn+1) , (12)

[23,Theorem 3.1] Fα
n+2 − Fα

n−2 = Lα
n , (13)

[23,Theorem 3.2(a)] 2Fα
n+2 − 3Fα

n = Lα
n , (14)

[23,Theorem 3.2(d)] 2Fα
n+1 − Fα

n = Lα
n , (15)

[23,Theorem 3.2(g)] Fα
n+1 + Fα

n−1 = Lα
n (16)

[23,Theorem 3.2(b), (c) and (e)] 5Fα
n = 2Lα

n+2 − 3Lα
n = Lα

n+1 + Lα
n−1 = 2Lα

n+1 − Lα
n . (17)
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For the reason to establish identities involving the fuzzy Leonardo numbers, in this article, we will consider
the following classical identities for Leonardo numbers {Len}n≥0 established in Proposition 2.3 [4],

Len = 2

(
Ln + Ln+2

5

)
− 1, (18)

Len+3 =

(
Ln+1 + Ln+7

5

)
− 1, (19)

Len = Ln+2 − Fn+2 − 1, (20)

for all non-negative integer n, where Fn is the n-th Fibonacci number given by (1) and Ln is the n-th Lucas
number given by (2).

3 The fuzzy Leonardo numbers, properties and identities

In this section, we will introduce the fuzzy Leonardo numbers and provide some properties of this new
sequence. Moreover, some identities are established.

3.1 The fuzzy Leonardo numbers and properties

Let {Len}n≥0 be the Leonardo sequence of numbers defined by Equation (3) and the triangular fuzzy number
of Leonardo given by ˜Len = (Len−1, Len, Len+1). Then, it is natural to consider the α−cut of the triangular
fuzzy numbers given in the following definition.

Definition 3.1. Let {Len}n≥0 be Leonardo sequence given by (3). The fuzzy Leonardo numbers are defined
by the following expression

Leαn = [Leαn−1, Le
α
n+1] = [Len−1 + α(Len−2 + 1), Len+1 − α(Len−1 + 1)], (21)

for n ≥ 2, where α ∈ [0, 1] and initial conditions are Leα0 = [1− α, 1 + α], and Leα1 = [α, 1].

By Definition 3.1, the elements of the sequence {Leαn}n≥0 are the α−cut obtained from the triangular
fuzzy number of Leonardo ˜Len, and can be operated by using the α−cut operations.

Observe that by considering the triangular fuzzy number 1̃ = (1, 1, 1), and by applying the α−cut, we
obtain Iα = [1α, 1α] = [1 + α(1− 1), 1− α(1− 1)] = [1, 1].

Then, by using the rule of summation (6), we describe a recurrence relation for the fuzzy Leonardo
numbers in the next proposition.

Proposition 3.2. Consider α ∈ [0, 1]. Let {Leαn}n≥0 be the sequence of fuzzy Leonardo numbers. Then, it is
verified

Leαn = Leαn−1 + Leαn−2 + Iα, (22)

where Iα = [1, 1].

Proof. By considering the sum operation and Expression (21), we have

Leαn−1 + Leαn−2 + Iα = [Leαn−2, Le
α
n] + [Leαn−3, Le

α
n−1] + [1α, 1α]

= [Leαn−2 + Leαn−3 + 1α, Leαn + Leαn−1 + 1α]

= [Len−2 + α(Len−3 + 1) + Len−3 + α(Len−4 + 1) + 1,

Len − α(Len−2 + 1) + Len−1 − α(Len−3 + 1) + 1]

= [Len−1 + α(Len−2 + 1), Len+1 − α(Len−1 + 1)]

= Leαn,
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which verifies the result. □
In addition, observe that the Leonardo sequence {Len}n≥0 is an increasing sequence of positive integers,

then it is verified the scalar operation kAα = [kaα1 , ka
α
3 ], for k positive real number. Moreover, since it is

verified the recurrence relation for the Leonardo numbers, Len+1 = 2Len − Len−2, (n ≥ 2), with the same
proceedings done in the proof of Proposition 22 and the scalar product, we can obtain a new equation for
the fuzzy Leonardo numbers given by

Leαn = 2Leαn − Leαn−2.

3.2 Some Identities

This subsection will provide some new identities for the fuzzy Leonardo numbers. In addition, we will
establish new identities involving the fuzzy Leonardo numbers, the fuzzy Fibonacci numbers, and the fuzzy
Lucas numbers.

Recall the relation between the Leonardo and Fibonacci numbers given by (4), namely, Len = 2Fn+1− 1.
Therefore, by using the scalar product, Definition 3.1, and Equation (4), we establish the following result.

Proposition 3.3. Consider α ∈ [0, 1]. Let {Leαn}n≥0 be the sequence of fuzzy Leonardo numbers and {Fα
n }n≥0

be the sequence of fuzzy Fibonacci numbers. Then, it is verified

Leαn = 2Fα
n+1 − Iα. (23)

Proof. Equation (21) shows us that Leαn = [Len−1+α(Len−2+1), Len+1−α(Len−1+1)]. Since it is verified
Len = 2Fn+1 − 1, then

Leαn = [Len−1 + α(Len−2 + 1), Len+1 − α(Len−1 + 1)]

= [2Fn + 2α(Fn−1)− 1, 2Fn+2 − 2α(Fn)− 1]

= 2[Fn + αFn−1, Fn+2 − αFn]− [1α, 1α]

= 2Fα
n+1 − Iα,

by Equation (8). □
Similarly, recall the identities of the sequence of Leonardo numbers stated in Proposition 2.3 [4], and the

operations in α-cut. Then, the next proposition is stated.

Proposition 3.4. For all non-negative integers n, the following identities hold:

Leαn =
2

5

(
Lα
n + Lα

n+2

)
− Iα, (24)

Leαn+3 =
1

5

(
Lα
n+1 + Lα

n+7

)
− Iα, (25)

Leαn = Lα
n+2 − Fα

n+2 − Iα, (26)

where Iα = [1, 1], Leαn is the n-th fuzzy Leonardo numbers, Fα
n is the n-th fuzzy Fibonacci number given by

(8), and Lα
n is the n-th fuzzy Lucas number given by (9).
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Proof. By combining Definition 3.1 and Identity (18) we obtain

Leαn

= [Len−1 + α(Len−2 + 1), Len+1 − α(Len−1 + 1)]

= 2

[(
Ln−1 + Ln+1

5

)
− 1 + α

(
Ln−2 + Ln

5

)
,

(
Ln+1 + Ln+3

5

)
− 1− α

(
Ln−1 + Ln+1

5

)]
= 2

[(
Ln−1 + Ln+1

5

)
+ α

(
Ln−2 + Ln

5

)
,

(
Ln+1 + Ln+3

5

)
− α

(
Ln−1 + Ln+1

5

)]
− 1α

=
2

5
[(Ln−1 + Ln+1) + α (Ln−2 + Ln) , (Ln+1 + Ln+3)− α (Ln−1 + Ln+1)]− 1α

=
2

5

(
Lα
n + Lα

n+2

)
− Iα

Similarly, by using Definition 3.1 and Identity (19), we obtain Equation (25), as well as, by using Definition
3.1 and Identity (20) we obtain (26) □

Next, we will provide an identity related to the product of fuzzy Leonardo numbers. To do this, we need
to observe the product rule (7) and the fact of the Leonardo sequence {Len}n≥0 is an increasing sequence of
positive integers. Then we have LeαmLeαk = [Leαm−1Le

α
k−1, Le

α
m+1Le

α
k−1].

Theorem 3.5. Consider m and n non-negative integers and let Leαn be the n-th fuzzy Leonardo numbers.
Then

LeαmLeαn−m+1 + Leαm+1Le
α
n−m = [8(−1)n−m(Le2m−n−1 + 1)− Lem−1 − Len−m + Lem + Len−m−1

+α(8(−1)n−m(Le2m−n−2 + 1) + 8(−1)m−1(Len−2m−2 + 1) + Len−m + 2Len−1)

+α2(8(−1)n−m−1(Le2m−n−1 + 1) + Lem−1 + Len−m−2),

8(−1)n−m+2(Le2m−n + 1)− Lem+1 − Len−m+2 + Lem+2 + Len−m+1

−α(12(−1)n−m+3(Le2m−n−2 + 1)− Len−m+2

+12(−1)n−m+2(Le2m−n + 1) + Lem+3 − 1)

+α2(8(−1)n−m−1(Le2m−n−1 + 1) + 2Len−m−2 + Lem−1 − Lem + 1)].

Proof. Using the Definition 21 we obtain

LeαmLeαn−m+1 + Leαm+1Le
α
n−m = [Lem−1 + α(Lem−2 + 1), Lem+1 − α(Lem−1 + 1)]

×[Len−m + α(Len−m−1 + 1), Len−m+2 − α(Len−m + 1)]

+[Lem + α(Lem−1 + 1), Lem+2 − α(Lem + 1)]

×[Len−m−1 + α(Len−m−2 + 1), Len−m+1 − α(Len−m−1 + 1)]

= [(Lem−1 + α(Lem−2 + 1))(Len−m + α(Len−m−1 + 1)),

(Lem+1 − α(Lem−1 + 1))(Len−m+2 − α(Len−m + 1))]

+[(Lem + α(Lem−1 + 1))(Len−m−1 + α(Len−m−2 + 1)),

(Lem+2 − α(Lem + 1))(Len−m+1 − α(Len−m−1 + 1))]

= [(Lem−1 + α(Lem−2 + 1))(Len−m + α(Len−m−1 + 1))

+(Lem + α(Lem−1 + 1))(Len−m−1 + α(Len−m−2 + 1)),

(Lem+1 − α(Lem−1 + 1))(Len−m+2 − α(Len−m + 1))

+(Lem+2 − α(Lem + 1))(Len−m+1 − α(Len−m−1 + 1))].

Denote An = Len−1 + αLen−2 and Bn = Len+1 − αLen−1, then we have
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(Lem−1 + α(Lem−2 + 1))(Len−m + α(Len−m−1 + 1) (27)

= (Lem−1 + αLem−2)(Len−m + αLen−m−1) + α(Lem−1 + αLem−2 + Len−m + αLen−m−1)

= AmAn−m+1 + α(Lem−1 + Len−m) + α2(Lem−2 + Len−m−1),

(Lem+1 − α(Lem−1 + 1))(Len−m+2 − α(Len−m + 1)) (28)

= (Lem+1 − αLem−1)(Len−m+2 − αLen−m)− α(Lem+1 − αLem−1 + Len−m+2 − αLen−m)

= BmBn−m+1 − α(Lem+1 + Len−m+2) + α2(Lem−1 + Len−m),

(Lem + α(Lem−1 + 1))(Len−m−1 + α(Len−m−2 + 1)) (29)

= (Lem + αLem−1)(Len−m−1 + αLen−m−2) + α(Lem + αLem−1 + Len−m−1 + αLen−m−2)

= Am+1An−m + α(Lem + Len−m−1) + α2(Lem−1 + Len−m−2),

and

(Lem+2 − α(Lem + 1))(Len−m+1 − α(Len−m−1 + 1)) (30)

= (Lem+2 − αLem)(Len−m+1 − αLen−m−1) + α(Lem+2 − αLem + Len−m+1 − αLen−m−1)

= Bm+1Bn−m − α(Lem+2 + Len−m+1) + α2(Lem + Len−m−1).

Now, since

AmAn−m+1 = Lem−1Len−m + α(Len−mLem−2 + Lem−1Len−m−1) + α2Lem−2Len−m−1,

Am+1An−m = LemLen−m−1 + α(Len−m−1Lem−1 + LemLen−m−2) + α2Lem−1Len−m−2,

BmBn−m+1 = Lem+1Len−m+2 − α(Lem−1Len−m+2 + Lem+1Len−m) + α2Lem−1Len−m,

Bm+1Bn−m = Lem+2Len−m+1 − α(LemLen−m+1 + Lem+2Len−m−1) + α2LemLen−m−1,

then, by summing Equations (27) and (29), we obtain the first component given by

AmAn−m+1 + α(Lem−1 + Len−m) + α2(Lem−2 + Len−m−1) (31)

+Am+1An−m + α(Lem + Len−m−1) + α2(Lem−1 + Len−m−2)

= Lem−1Len−m + LemLen−m−1

+α(Len−mLem−2 + Lem−1Len−m−1 + Len−m−1Lem−1 + LemLen−m−2 + Lem−1 + Len−m + Lem + Len−m−1)

+α2(Lem−2Len−m−1 + Lem−1Len−m−2 + Lem−2 + Len−m−1).

Similarly, by summing Equations (27) and (29), we obtain the second component given by

BmBn−m+1 − α(Lem+1 + Len−m+2) + α2(Lem−1 + Len−m) (32)

+Bm+1Bn−m − α(Lem+2 + Len−m+1) + α2(Lem + Len−m−1)

= Lem+1Len−m+2 + Lem+2Len−m+1

−α(Lem−1Len−m+2 + Lem+1Len−m + LemLen−m+1 + Lem+2Len−m−1 + Lem+1 + Len−m+2)

+α2(Lem−1Len−m + LemLen−m−1 + Lem−1 + Len−m).
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Theorems 2.1 and 2.14 in [5] established

Le−n = (−1)n(Len−2 + 1)− 1,

LekLem + LesLet = 4(−1)m(Lek−s−1 + 1)(Lek−t−1 + 1)− Lek − Lem + Les + Let,

for positive integers n, k,m, s and t with k +m = s+ t, then holds:

Lem−1Len−m + LemLen−m−1 = 4(−1)n−m(Le−2 + 1)(Le2m−n−1 + 1)− Lem−1 − Len−m + Lem + Len−m−1

= 8(−1)n−m(Le2m−n−1 + 1)− Lem−1 − Len−m + Lem + Len−m−1,

Lem−2Len−m + Lem−1Len−m−1 = 8(−1)n−m(Le2m−n−2 + 1)− Lem−2 − Len−m + Lem−1 + Len−m−1,

Len−m−1Lem−1 + LemLen−m−2 = 8(−1)m−1(Len−2m−2 + 1)− Len−m−1 − Lem−1 + Lem + Len−m−2,

and

Lem−1Len−m + LemLen−m−1 = 8(−1)n−m(Le2m−n−1 + 1)− Lem−1 − Len−m + Lem + Len−m−1.

Therefore, we can rewrite Equation (31) in the form

AmAn−m+1 + α(Lem−1 + Len−m) + α2(Lem−2 + Len−m−1) (33)

+Am+1An−m + α(Lem + Len−m−1) + α2(Lem−1 + Len−m−2)

= 8(−1)n−m(Le2m−n−1 + 1)− Lem−1 − Len−m + Lem + Len−m−1

+α(8(−1)n−m(Le2m−n−2 + 1) + 8(−1)m−1(Len−2m−2 + 1) + Len−m + 2Len−1)

+α2(8(−1)n−m−1(Le2m−n−1 + 1) + Lem−1 + Len−m−2).

Similarly, we have,

Lem+1Len−m+2 + Lem+2Len−m+1 = 8(−1)n−m+2(Le2m−n + 1)− Lem+1 − Len−m+2 + Lem+2 + Len−m+1,

Lem−1Len−m+2 + Lem+1Len−m = 12(−1)n−m+3(Le2m−n−2 + 1)− Lem−1 − Len−m+2 + Lem+1 + Len−m,

LemLen−m+1 + Lem+2Len−m−1 = 12(−1)n−m+2(Le2m−n + 1)− Lem − Len−m+1 + Lem+2 + Len−m−1,

and

Lem−2Len−m−1 + Lem−1Len−m−2 = 8(−1)n−m−1(Le2m−n−1 + 1)− Lem−2 − Len−m−1 + Lem−1 + Len−m−2.
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Therefore

BmBn−m+1 − α(Lem+1 + Len−m+2) + α2(Lem−1 + Len−m)

+Bm+1Bn−m − α(Lem+2 + Len−m+1) + α2(Lem + Len−m−1)

= 8(−1)n−m+2(Le2m−n + 1)− Lem+1 − Len−m+2 + Lem+2 + Len−m+1

−α(12(−1)n−m+3(Le2m−n−2 + 1)− Len−m+2 + 12(−1)n−m+2(Le2m−n + 1) + Lem+3 − 1)

+α2(8(−1)n−m−1(Le2m−n−1 + 1) + 2Len−m−2 + Lem−1 − Lem + 1).

which proves the theorem. □
Next, we will provide identities involving the fuzzy Leonardo numbers and the fuzzy Fibonacci numbers.

Proposition 3.6. Consider α ∈ [0, 1]. Let {Leαn}n≥0 be the sequence of fuzzy Leonardo numbers and {Fα
n }n≥0

be the sequence of fuzzy Fibonacci numbers. Then, the following identities hold:

Leαn+9 − Leαn−1 = 22Fα
n+5, n ≥ 1; (34)

Leαn+3 + Leαn−1 + 2Iα = 6Fα
n+2, n ≥ 1; (35)

Leαn+1 − Leαn = (−2Fn, 2Fn, 4Fn+1), n ≥ 0; (36)

Leαn+1 − Leαn−3 = 2Lα
n, n ≥ 3; (37)

Leαn+1 = 3Leαn−1 + 2Iα + 2Lα
n, n ≥ 1; (38)

2Leαn − Leαn−1 + Iα = 2Lα
n, n ≥ 1; (39)

Leαn + Leαn−2 + 2Iα = 2Lα
n, n ≥ 2, (40)

5Leαn−1 + 5Iα = 2(Lα
n+1 + Lα

n−1) = 2(2Lα
n+1 − Lα

n), n ≥ 1, (41)

where Fα
n in the n-the fuzzy Fibonacci number, and where Lα

n in the n-the fuzzy Lucas number.

Proof. First, by combining Equations (23) and (11), we have

Leαn+9 = 2Fα
10 − Iα

= 2(11Fα
n+5 + Fα

n )− Iα

= 22Fα
n+5 + 2Fα

n − Iα

= 22Fα
n+5 + Leαn−1,

which proves Equation (34). Similarly, by combining Equations (23) and (10), we obtain Equation (35). By
combining Equations (23) and (12) we get Equation (36). Finally, for to prove Equations (37), (38), (39),
(40), and (41), we combine Equations (23) and (13), Equations (23) and (14), Equations (23) and (15),
Equations (23) and (16), and using Equations (23) and (17), respectively. □

4 Some sums involving fuzzy Leonardo numbers

In this section, we will provide some identities involving the sums of fuzzy Leonardo numbers. First, recall
Iα = [1α, 1α] = [1, 1]. By definition of the fuzzy number, we obtain AαIα = IαAα = Aα for all Aα. Therefore,
we have the following lemma.
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Lemma 4.1. Consider the fuzzy number Iα = [1, 1]. Then

n∑
j=1

Iα =

[
n(n+ 1)

2

]α
.

Proof. Note that, by summation rule (6),

n∑
j=1

Iα =

n∑
j=1

[1α, 1α] =

n∑
j=1

[1, 1] =

 n∑
j=1

1,

n∑
j=1

1


=

[
n(n+ 1)

2
,
n(n+ 1)

2

]
=

[
n(n+ 1)

2

]α
,

as required. □
Theorem 4.2. Let {Leαj }j≥0 be the sequence of fuzzy Leonardo numbers. Then the sum of the n first terms
of the sequence consisting of these fuzzy numbers is given by

n∑
j=0

Leαj = 2(Fα
n+1 − Fα

1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α].

Proof. Combining Theorem 3.5 in [5], Lemma 4.1 and Proposition 3.3, we get

n∑
j=0

Leαj =

n∑
j=1

(
2Fα

j−1 − Iα
)
+ Leα0

=

n−1∑
j=0

2Fα
j −

n∑
j=1

Iα

+ Leα0

= 2
n−1∑
j=0

Fα
j −

n−1∑
j=1

Iα − Fα
−1

= 2(Fα
n+1 − Fα

1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α],

as required. □
Proposition 4.3. Let {Leαj }j≥0 be the sequence of fuzzy Leonardo numbers. Then the sum of n first even
terms of the sequence is:

n∑
j=0

Leα2j = 2(Fα
2n − Fα

1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α].

Proof. Note that
n∑

j=0

Leα2j =
n∑

j=1

(
2Fα

2j−1 − Iα
)
+ Leα0

=

n−1∑
j=0

2Fα
2j−1 −

n∑
j=1

Iα

+ Leα0

= 2

n−1∑
j=0

Fα
2j−1 −

n−1∑
j=1

Iα + [1− α, 1 + α] .
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According Theorem 3.5 in [5], and Lemma 4.1, we have that

n∑
j=0

Leα2j = 2(Fα
2n − Fα

1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α],

as required. □

Proposition 4.4. Let {Leαj }j≥0 be the sequence of fuzzy Leonardo numbers. Then the sum of n first odd
terms of the sequence is:

n∑
j=0

Leα2j+1 = 2(Fα
2n+1 − Fα

1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α].

Proof. Observe that

n∑
j=0

Leα2j+1 =
n∑

j=1

(
2Fα

2j − Iα
)
+ Leα0

=

n−1∑
j=0

2Fα
2j −

n∑
j=1

Iα

+ Leα0

= 2

n∑
j=0

Fα
2j −

n−1∑
j=1

Iα + [1− α, 1 + α] .

Therefore, by Theorem 3.5 in [5] we obtain

n∑
j=0

Leα2j+1 = 2(Fα
2n+1 − Fα

1 )−
[
(n− 1)n

2

]α
+ [1− α, 1 + α],

as desired. □
A direct and immediate consequence of Proposition 4.3 and Proposition 4.4 is the result we now present,

which arises naturally from the established relationships and further reinforces the conclusions derived from
the propositions.

Proposition 4.5. Let {Leαn}jn≥0 be the sequence of fuzzy Leonardo numbers. For all non-negative integers
n, we have the following formulas:

n∑
j=0

(−1)kLeαk = 2Fα
2n − 2Fα

2n+1;

if the last term is negative and

n∑
j=0

(−1)kLeαk = 2Fα
2n+2 − 2Fα

2n+1 + [2n+ 1]α;

if the last term is positive.
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Proof. First, consider that the last term is negative, then

2n+1∑
k=0

(−1)kLeαk

= Leα0 − Leα1 + Leα2 − Leα3 + · · ·+ Leα2n − Leα2n+1

= (Leα0 + Leα2 + · · ·+ Leα2n)− (Leα1 + Leα3 + · · ·+ Leα2n+1)

=
n∑

k=0

Leα2k −
n∑

k=0

Leα(2k+1)

=

(
2(Fα

2n − Fα
1 )−

[
(n− 1)n

2

]α
+ [1− α, 1 + α]

)
−
(
2(Fα

2n+1 − Fα
1 )−

[
(n− 1)n

2

]α
+ [1− α, 1 + α]

)
= 2Fα

2n − 2Fα
2n+1.

In which case that last term is positive, then

2(n+1)∑
k=0

(−1)kLeαk

= Leα0 − Leα1 + Leα2 − Leα3 + · · ·+ Leα2n − Leα2n+1 + Leα2n+2

=
n+1∑
k=0

Leα2k −
n∑

k=0

Leα2k+1

=

(
2(Fα

2n+2 − Fα
1 )−

[
(n+ 1)(n+ 2)

2

]α
+ [1− α, 1 + α]

)
−
(
2(Fα

2n+1 − Fα
1 )−

[
(n− 1)n

2

]α
+ [1− α, 1 + α]

)
= 2Fα

2n+2 − 2Fα
2n+1 + [2n+ 1]α,

which verifies the result. □

5 Conclusion

In this study, we introduced a new sequence of fuzzy numbers, namely, the sequence of fuzzy Leonardo
numbers. We established the recurrence relation to this new sequence, some properties, as well as some
identities. In addition, we explored the relation between fuzzy Leonardo, fuzzy Fibonacci, and fuzzy Lucas
numbers, and some identities were given. Moreover, we provided some sums identities for the fuzzy Leonardo
numbers.

It seems to us that all results given here are new in the literature.
Number sequences, especially recurring ones, establish patterns in the real world and are therefore used

as discrete growth models. Discrete models are easy to solve and, in some cases, can describe solutions with
predictions that are as good as continuous models. On the other hand, in some real problems, we have a
certain degree of uncertainty about the solution, and that is why we use a fuzzy number to give us flexibility
in finding the best solution for that problem. The construction presented in this article, a priori, is simply
the immersion of a recurring integer sequence over the fuzzy number structure. However, generally, the
combination of both theories can be the premise for establishing discrete growth models that combine the
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flexibility of fuzzy logic with the structural properties of the discrete models, and then the models can be
discussed closer to the real world.
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