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Abstract. In this work, we introduce the idea of generalized interval-valued neutrosophic sets. After providing
the fundamental definitions of operations related to these sets, we establish several key properties and explore the
relationships between generalized interval-valued neutrosophic sets and other related concepts. Finally, we extend
the notion of generalized neutrosophic topological spaces to incorporate generalized interval-valued neutrosophic
topological spaces. We define the concept of generalized interval-valued neutrosophic g-continuous function between
two generalized interval-valued neutrosophic topological spaces. Lastly, an application has been shown in decision
making problem.
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1 Introduction

Neutrosophic sets, which generalize both fuzzy sets and intuitionistic fuzzy sets (IFsets), have been created
to effectively represent various types of uncertainty, imprecision, incompleteness, and inconsistency that are
often encountered in real-world scenarios. These sets extend traditional fuzzy set theory by allowing a more
nuanced representation of information. In particular, interval neutrosophic sets (IN sets) were introduced to
overcome the limitations of representing information with a single specific value. Instead, IN sets provide
a framework for dealing with ranges of values within the real unit interval, offering a more flexible and
comprehensive approach to handle uncertainties. This extension enables the modeling of more complex
situations where the degree of membership, indeterminacy, and non-membership of elements can vary within
intervals, rather than being confined to precise numerical values. The introduction of IN sets allows for
improved handling of data that exhibit variability and uncertainty across a spectrum of possible values. This
makes them particularly useful in applications where traditional fuzzy and intuitionistic fuzzy sets may fall
short in representing the full extent of uncertainty and variability.

Neutrosophy has paved the way for a broad range of new mathematical theories, extending both classical
and fuzzy set concepts, including neutrosophic set theory. The concept of fuzzy sets was first introduced
by Zadeh [1] in 1965, where each element is associated with a degree of membership, providing a means to
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handle uncertainty by representing partial truths. Building on this, Atanassov [2] introduced the IFset in
1983. This set extends fuzzy set theory by incorporating both the degree of membership and the degree of
non-membership for each element, offering a more nuanced approach to represent uncertainty where the sum
of membership and non-membership degrees is less than or equal to one. This addition allows for a more
flexible representation of uncertainty and partiality. Further extending these concepts, neutrosophic sets were
developed ([3], [4]) to address even broader aspects of uncertainty and imprecision. Neutrosophic sets intro-
duce three independent degrees: membership, indeterminacy, and non-membership. This framework allows
for a more comprehensive representation of uncertainty, capturing not only how well an element belongs to
a set but also the degree of indeterminacy regarding its membership. Despite these theoretical advance-
ments, practical applications require a clear definition of neutrosophic sets and their associated operators.
It is crucial from both scientific and engineering perspectives to ensure that these concepts are well-defined
and operationalized, enabling their effective use in real-world scenarios where complex and varied forms of
uncertainty are encountered.

In this work, we present set-theoretic operators for a specific type of neutrosophic set (NS) known as the
Generalized Interval-Valued Neutrosophic Set (GIVN set). The GIVN set is designed to represent various
forms of uncertainty, imprecision, incompleteness, and inconsistency that are commonly encountered in real-
world situations. This extends the traditional frameworks provided by NSs ( [5], [3], [4]), interval-valued NSs
[6], and generalized NSs [7]. We begin by defining the GIVN set, establishing its fundamental properties and
operations. We then explore the relationships between GIVN sets and other related set types to highlight the
distinctiveness and applicability of GIVN sets in different contexts. Building on the foundational concepts, we
extend the ideas of neutrosophic topological spaces [5] and generalized neutrosophic topological spaces [7] to
introduce the concept of GIVN topological spaces. Within these spaces, we define and analyze the g-closure
and g-interior operators, providing insights into their properties and implications. Furthermore, we define
the notion of a GIVN g-continuous function between two GIVN topological spaces, expanding the theoretical
framework for functions in this context. To illustrate the practical application of our theoretical developments,
we demonstrate how these concepts can be applied to decision-making problems. Additionally, we review
relevant studies and literature ([8], [9], [10], [11], [12], [13], [14], [15], [16]) to situate our contributions within
the broader research landscape and highlight the significance of our research work.

2 Terminologies

In this section, we recall some fundamental concepts and definitions that will be essential for our work. We
start with the basic notion of NSs and their generalizations, which provide the foundation for our theoretical
framework.

Definition 2.1. ([3], [4]) Suppose Z be a fixed non-empty set. A NS G is described as:

N = {⟨x, TG(k), IG(k), FG(k)⟩ : k ∈ Z}

where TG(k), IG(k), and FG(k) describe the degree of membership function (DMF), the degree of indeter-
minacy (DIF), and the degree of non-membership function (DNMF) of each k ∈ Z to the set G, respectively.
Here, TG, IG, FG : Z → ]0−, 1+[ and the following condition holds:

0− ≤ TG(k) + IG(k) + FG(k) ≤ 3+

This definition introduces the NS as a framework for dealing with uncertainty and imprecision in data. The de-
grees TG(k), IG(k), and FG(k) provide a way to quantify the membership, indeterminacy, and non-membership
of elements with respect to a set, extending classical set theory to handle more complex information scenarios.
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Definition 2.2. [7] Suppose Z be a fixed non-empty set. A generalized NS (GNS) G is described as:

N = {⟨x, TG(k), IG(k), FG(k)⟩ : k ∈ Z}

where TG(k), IG(k), and FG(k) represent the DMF, the DIF, and the DNMF, respectively, of each k ∈ Z
to the set G. The functions satisfy the following conditions:

TG(k) ∧ IG(k) ∧ FG(k) ≤ 0.5

TG, IG, FG : Z →
]
0−, 1+

[
0− ≤ TG(k) + IG(k) + FG(k) ≤ 3+

The condition TG(k)∧ IG(k)∧ FG(k) ≤ 0.5 ensures that the combined DMF, DIF, and DNMF, not exceed a
certain threshold, allowing for a more nuanced representation of uncertainty.

Definition 2.3. [6] Suppose Z be the non-empty fixed set. An IVNS G in Z is of the form
G = {< k, TG(k), IG(k), FG(k) >: k ∈ Z}

where TG(k) =
[
T l
G(k), T

r
G(k)

]
, IG(k) =

[
I lG(k), I

r
G(k)

]
, and FG(k) =

[
F l
G(k), F

r
G(k)

]
Which represents the DMF, the DIF, and the DNMF, for each part k ∈ Z into the set A. where for each

element k ∈ Z, TG(k) ∈ Int[0, 1], IG(k) ∈ Int[0, 1], FG(k) ∈ Int[0, 1], where Int([0, 1]) denotes the set of all
closed sub intervals of [0, 1]. This definition extends the concept of NSs to handle ranges of values rather
than precise single values, allowing for a more flexible and comprehensive representation of uncertainty.

Definition 2.4. [6] The complement of an interval-valued NS (IVNS) A in Z is
Ac = {< k, TAc(k), IAc(k), FAc(k) >: k ∈ Z},
where TAc(k) = [F l

G(k), F
r
G(k)], IAc(k) = [1− IrG(k), 1− I lG(k)], and FAc(k) = [T l

G(k), T
r
G(k)].

The complement of an IVNS G is obtained by swapping the roles of membership and non-membership
degrees while adjusting the indeterminacy degrees accordingly.

3 Generalized interval valued Neutrosophic set

In this section, we introduce the concept of GIVN sets and examine some of their fundamental properties.
These sets extend the traditional NSs by incorporating interval-valued memberships, indeterminacies, and
non-memberships.

Definition 3.1. Suppose Z be a non-empty set. A GIVN Set G is an entity with the structure

G = {< k, TG(k), IG(k), FG(k) >: k ∈ Z}

Where, TG(k) =
[
T l
G(k), T

r
G(k)

]
, IG(k) =

[
I lG(k), I

r
G(k)

]
, and FG(k) =

[
F l
G(k), F

r
G(k)

]
are the true DMF, DIF and falsity DMF for each point k ∈ Z, TG(k), IG(k), FG(k) ∈ int[0, 1] and satisfy

the condition SupTG(k) ∧ Sup IG(k)∧ SupFG(k) ≤ 0.5.
This definition introduces a framework where the membership, indeterminacy, and non-membership de-

grees are not single values but intervals. The condition involving the supremum ensures that the combined
DMF, DIF, and DNMF, remains within a bound, providing a balanced representation of uncertainty.

Example 3.2. Suppose Z = {a, b, c, d} and A =
{
< k,

[
T l
G(k), T

r
G(k)

]
,
[
I lG(k), I

r
G(k)

]
,
[
F l
G(k), F

r
G(k)

]
>

/k :∈ Z} given by
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Z
[
T l
G(k), T

r
G(k)

] [
I lG(k), I

r
G(k)

] [
F l
G(k), F

r
G(k)

]
SupTG(k) ∧ Sup IG(k) ∧ SupFG(k)

a [0.3, 0.6] [0.2, 0.5] [0.1, 0.3] 0.6 ∧ 0.5 ∧ 0.3 = 0.3

b [0.3, 0.5] [0.4, 0.6] [0.2, 0.3] 0.5 ∧ 0.6 ∧ 0.3 = 0.3

c [0.2, 0.4] [0.2, 0.5] [0.2, 0.4] 0.4 ∧ 0.5 ∧ 0.4 = 0.4

d [0.1, 0.3] [0.2, 0.3] [0.1, 0.5] 0.3 ∧ 0.3 ∧ 0.5 = 0.3

In this example, G is a valid GIVN Set on Z. Each element of Z is associated with intervals for the
true DMF, DIF, and falsity DMF, and the supremum condition is satisfied for all elements. This example
illustrates how GIVN sets can be used to model complex scenarios where uncertainty is represented by
intervals rather than precise values.

Definition 3.3. Suppose Z be a non-empty set. For a GIVN set G, we define its complement Ac as follows:
Suppose the GIVN Set G is given by:

A =
{
⟨k,

[
T l
G(k), T

r
G(k)

]
,
[
I lG(k), I

r
G(k)

]
,
[
F l
G(k), F

r
G(k)

]
⟩ : k ∈ Z

}
,

where TG(k), IG(k), and FG(k) are the DMF, the DIF, and the DNMF for each element k ∈ Z, respectively.
Each function is represented as an interval within [0, 1], such that:

TG(k) =
[
T l
G(k), T

r
G(k)

]
, IG(k) =

[
I lG(k), I

r
G(k)

]
, FG(k) =

[
F l
G(k), F

r
G(k)

]
.

The complement Ac of G is then defined as:

Ac =
{
⟨k,

[
F l
G(k), F

r
G(k)

]
,
[
1− IrG(k), 1− I lG(k)

]
,
[
T l
G(k), T

r
G(k)

]
⟩ : k ∈ Z

}
.

Here,
[
F l
G(k), F

r
G(k)

]
presents the new degree of membership for the complement,

[
1− IrG(k), 1− I lG(k)

]
presents the new degree of indeterminacy, and

[
T l
G(k), T

r
G(k)

]
represents the new degree of non-membership.

The condition to ensure valid complement values is:

SupTG(k) ∧ Sup IG(k) ∧ SupFG(k) ≤ 0.5.

The maximum value of a GIVN Set is 1G = ⟨[1, 1], [0, 0], [0, 0]⟩ and the minimum value is 0G = ⟨[0, 0], [1, 1], [1, 1]⟩.

Example 3.4. Consider a GIVN Set G defined on Z = {a, b, c, d} as follows:

A =


⟨a, [0.3, 0.6], [0.2, 0.5], [0.1, 0.3]⟩,
⟨b, [0.3, 0.5], [0.4, 0.6], [0.2, 0.3]⟩,
⟨c, [0.2, 0.4], [0.2, 0.5], [0.2, 0.4]⟩,
⟨d, [0.1, 0.3], [0.2, 0.3], [0.1, 0.5]⟩

 .

To find the complement Ac of G, we apply the formula provided in the definition:

Ac =


⟨a, [0.1, 0.3], [0.5, 0.8], [0.1, 0.3]⟩,
⟨b, [0.2, 0.3], [0.4, 0.6], [0.3, 0.5]⟩,
⟨c, [0.2, 0.4], [0.5, 0.8], [0.2, 0.4]⟩,
⟨d, [0.1, 0.5], [0.7, 0.8], [0.1, 0.3]⟩

 .

In this example: - For element a, the true membership function TG(a) is [0.3, 0.6]. Its complement FG(a)
is [0.1, 0.3]. The degree of indeterminacy IG(a) is complemented to [0.5, 0.8]. - This process is repeated for
each element in Z to obtain the full complement set.

This example illustrates how to compute the complement of a GIVN Set and highlights how the comple-
ment values reflect the inverse of the original GIVN Set values while maintaining the required conditions.
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Definition 3.5. A GIVN set G is contained in the other GIVNS B, G ⊆ B if and only if T l
G(k) ≤

T l
B(k), T

r
G(k) ≤ T r

B(k), I
l
G(k) ≥ I lB(k), I

r
G(k) ≥ IrB(k) and F l

G(k) ≥ F l
B(k), F

r
G(k) ≥ F r

B(k) for all k ∈ Z.

Definition 3.6. The union of two GIVN sets G and B is a GIVN set denoted as C = G ∪ B whose truth
DMF, DIF and the DNMF are related to those of G and B by

T l
C(k) = max

{
T l
G(k), T

l
B(k)

}
T r
C(k) = max {T r

G(k), T
r
B(k)}

I lC(k) = min
{
I lG(k), I

l
B(k)

}
IrC(k) = min {IrG(k), IrB(k)}

F l
C(k) = min

{
F l
G(k), F

l
B(k)

}
F r
C(k) = min {F r

G(k), F
r
B(k)} for all k ∈ Z

Note: G ∪B is the smallest GIVN Set containing both the sets G and B .

Definition 3.7. The intersection of two GIVN Sets G and B is a GIVN Set denoted as D = G ∩ B whose
truth DMF, DIF and the DNMF are related to those of G and B by

T l
D(k) = min

{
T l
G(k), T

l
B(k)

}
T r
D(k) = min {T r

G(k), T
r
B(k)}

I lD(k) = max
{
I lG(k), I

l
B(k)

}
IrD(k) = max {IrG(k), IrB(k)} and

F l
D(k) = max

{
F l
G(k), F

l
B(k)

}
F r
D(k) = max {F r

G(k), F
r
B(k)} for all k ∈ Z

Note: G ∩B s the largest GIVN Set contained in both the sets G and B.

Example 3.8. Suppose G and B be two GIVN Sets defined as

G =
{
< [0.3,0.5][0.2,0.4][0.1,0.2]

G , [0.3,0.4][0.5,0.7][0.2,0.3]b , [0.1,0.3][0.2,0.4][0.1,0.4]c >
}
.

Then B = {< [0.2,0.4][0.1,0.4][0.2,0.3]
G , [0.2,0.5][0.4,0.6][0.1,0.2]b , [0.3,0.4][0.3,0.5][0.1,0.3]c >

}
Here G ∪B =

{
< [0.3,0.5][0.1,0.4][0.1,0.2]

G , [0.3,0.5][0.4,0.6][0.1,0.2]b , [0.3,0.4][0.2,0.4][0.1,0.3]c >
}
.

G ∩B =
{
< [0.2,04][0.2,0.4][0.2,0.3]

G , [0.2,0.4][0.5,0.7][0.2,0.3]b , [0.1,0.3][0.3,0.5][0.1,0.4]c >
}
.

Here G ∪B and G ∩B are both the GIVN Sets.

3.1 GIVN topological Spaces

Here, we extend the ideas of generalized neutrosophic topological spaces, as introduced in [7], to encom-
pass GIVN topological spaces. This extension involves defining and analyzing the new structure of GIVN
topological spaces, including their fundamental properties and relationships.

Definition 3.9. A generalized interval valued neutrosophic topology (GIVNT) on a nonempty set Z is defined
as a family τ of GIVN sets in Z satisfying the following:
a) 0Z , 1Z ∈ τ .
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b) Q1 ∩Q2 ∈ τ for every Q1, Q2 ∈ τ .
c) ∪Qi ∈ τ,∀ {Qi : i ∈ J} ∈ τ .

In this context, (Z, τ) is referred to as a GIVNT space. The elements of τ are known as GIVN open sets.

Example 3.10. Suppose Z = {k} and A = {< k, [0.3, 0.5], [0.4, 0.5], [0.1, 0.4] >},
B = {< k, [0.2, 0.4], [0.5, 0.6], [0.6, 0.8] >}, C = {⟨k, [0.2, 0.4], [0.4, 0.5], [0.5, 0.8] >}
D = {< k, [0.2, 0.4], [0.4, 0.5], [0.6, 0.8] >}

Here, A ∪B = {< k, [0.3, 0.5], [0.4, 0.5], [0.1, 0.4]⟩} = A

A ∪ C = {⟨k, [0.3, 0.5], [0.4, 0.5], [0.1, 0.4]⟩} = A

A ∪D = {⟨k, [0.3, 0.5], [0.4, 0.5], [0.1, 0.4]⟩} = A

Also, A ∪B ∪ C = A and A ∪B ∪ C ∪D = A

B ∪ C = {⟨k, [0.2, 0.4], [0.4, 0.5], [0.5, 0.8]⟩} = C

B ∪D = {⟨k, [0.2, 0.4], [0.4, 0.5], [0.6, 0.8]⟩} = D

Also, B ∪ C ∪D = {⟨k, [0.2, 0.4], [0.4, 0.5], [0.5, 0.8]⟩} = C and
C ∪D = {< k, [0.2, 0.4], [0.4, 0.5], [0.5, 0.8] >} = C

A ∩B = {⟨k, [0.2, 0.4], [0.4, 0.5], [0.5, 0.8]⟩} = C

B∩C = B,B∩D = B,C∩D = D,A∩B∩C = B,A∩B∩C∩D = B,B∩C∩D = B, A∩C = C,A∩D = D.
Thus the family τ = {0Z , 1Z , A,B,C,D} GIVN Sets in Z is GIVNT Space on Z.

Remark: Suppose (Z, τ) be a GIVN topological space. Then the closure and interior of V ∈ τ is defined
as
int(V ) = ∪{P : P is GIVN open set in Z and V ⊇ P} andcl (V ) = ∩{D : D is GIVN closed set in Z and
V ⊆ D}

Definition 3.11. Suppose (Z, τ) be a GIVN topological space and let A be a subset of Z. Then, A is said
to be a GIVN g-closed set if cl(A) ⊆ G where A ⊆ G and G is a GIVN-open set. The complement of a GIVN
g-closed set is called a GIVN g-open set.

Definition 3.12. Suppose (Z, τ) be a GIVN topological space. Then for any GIVN set A, the interior of A
and closure of A operators are defined as g − int(A) = U{B : B is GIVNg open set in Z and A ⊇ B} and
g − cl(A) = ∩{D : D is GIVNg - closed set in Z and A ⊆ D}.

Let us denoted the g-closure and g-interior of V ∈ τ as g-int and g-cl.

Note that every GIVN open set is GIVN g-open set

Proposition 3.13. Suppose (Z, τ) be a GIVN topological space. Let A and B be any two GIVN sets in (Z, τ).
Then the following holds

1. A ⊆ g − cl(A).

2. g − int(A) ⊆ A.

3. A ⊆ B ⇒ g − cl(A) ⊆ g − cl(B)

4. A ⊆ B ⇒ g − int(A) ⊆ g − int(B)
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5. g − cl(A ∪B) = g − cl(A) ∪ g − cl(B)

6. g − int(A ∩B) = g − int(A) ∩ g − int(B)

7. (g − cl(A))c = g − int (Ac)

8. (g − int(A))c = g − cl (Ac)

Proof.
Properties (i) and (ii) follow directly from the definitions of g-closure and g-interior. Specifically, a set A

is always contained within its g-closure, and the g-interior of a set is always a subset of the set itself.

(iii) A ⊆ B

g − cl(B) = ∩{D : D is GIVNg - closed set in Z and B ⊆ D}
⊇ ∩{D : D is GIVN g − closed set in Z and A ⊆ D} ⊇ g − cl(A)

Similarly (iv).

(v) g − cl(A ∪B) = ∩{D : D is GIVNg - closed set in Z and (A ∪B) ⊆ D}
= ∩{D : D is GIVNg - closed set in Z and A ⊆ D} ∪ {∩
{D : D is GIVN g− closed set in Z and B ⊆ D}}

= gcl(A) ∪ gcl(B)
(vi) Similar to (v)
Proof (vii) g − cl(A) = ∩{D : D is GIVNg - closed set in Z and A ⊆ D}

(g − cl(A))c = ∪{Dc : Dc is GIVN g − open set in Z and Ac ⊇ Dc}
= ∪{P : P is GIVN g − open set in Z and Ac ⊇ P} = g − int (Ac)

Similarly for (viii). □

Proposition 3.14. Suppose (Z, τ) be a GIVN topological space. If W is a GIVN g-closed set in (Z, τ) and
V ⊆ G ⊆ g − cl(V ) then G is also GIVN g-closed.

Proof. Suppose A be a GIVN open set in (Z, τ) such that G ⊆ A since V ⊆, therefore V ⊆ A but
g − cl(G) ⊆ g − cl(V ). Since g − cl(G) ⊆ g − cl(V ) ⊆ A.

Hence G is a GIVN g-closed set.
□

Proposition 3.15. Suppose (Z, τ) be a GIVN topological space and A be a GIVN open set in (Z, τ). Then
A is a GIVNg- open set ifand only if V ⊆ g − int(A) whenever V is a GIVN closed set and V ⊆ A.

Proof. The proof is obvious. □

Proposition 3.16. If g − int(A) ⊆ V ⊆ A and if A is a GIVN g-open set then W is also a GIVN g- open
set.

Proof.
We have Ac ⊆ W c ⊆ (g − int(A))c = g − cl (Ac).
Since A is a GIVN g-open set. Thus Ac is GIVN g-closed set.

By Proposition-2 W c is a GIVN g-closed set ⇒ V is a GIVN g-open set. □
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Definition 3.17. Suppose A and B be any two non-empty sets and f : A → B be a function then notion of
pre image of GIVN sets is

If W = {(p, Tw(p), Iw(p), Fw(p) : p ∈ B} is a GIVN set in B then the pre-image of W is defined by
f−1(V ) =

{
< h, f−1 (TW (h)) , f−1 (IW (h)) , f−1 (FW (h)) >: h ∈ A

}
.

Example 3.18. Suppose f : (A, τ1) → (B, τ2) be a function between two GIVN topological spaces.

Suppose,
W = {⟨a, [0.2, 0.4], [0.3, 0.5], [0.2, 0.3]⟩, < b, [0.3, 0.5], [0.5, 0.8], [0.2, 0.4]⟩, < c, [0.3, 0.4], [0.5, 0.7], [0.3, 0.5] >} be
a GIVN set in B.

Let f(a) = b, f(b) = a and f(c) = c then f−1(V ) == {<
a, [0.3, 0.5], [0.5, 0.8], [0.2, 0.4] >,< b, [0.2, 0.4], [0.3, 0.5], [0.2, 0.3] >,<

c, [0.3, 0.4], [0.5, 0.7], [0.3, 0.5] >}

Remark 3.19. From the above results we may the claim the following remark:

1. Every GIVN open set is GIVN g-open set but every GIVN g-open set is not GIVN- open set.

2. Every GIVN set is IVN set but every IVN set is not GIVN set.

Definition 3.20. Suppose (A, τ1) and (B, τ2) be two GIVN topological spaces, and let f : (A, τ1) → (B, τ2)
be a function.

The function f is said to be a GIVN g-continuous function if the preimage of every GIVN g-closed set in
(B, τ2) is a GIVN g-closed set in (A, τ1).

Similarly, f is GIVN g-continuous if the preimage of every GIVN g-open set in (B, τ2) is a GIVN g-open
set in (A, τ1).

In other words, a function f is considered GIVN g-continuous if it preserves the g-closed and g-open structures
of sets between the topological spaces (A, τ1) and (B, τ2). This means that the inverse image of a GIVN g-
closed set under f is always a GIVN g-closed set, and similarly, the inverse image of a GIVN g-open set under
f is a GIVN g-open set. This concept generalizes the notion of continuity in traditional topological spaces
to the context of GIVN topological spaces.

Theorem 3.21. Suppose (A, τ1) and (B, τ2) be GIVN topological spaces, and let f : (A, τ1) → (B, τ2) be a
GIVN g-continuous function. Then for every GIVN set W in (A, τ1), the following inclusion holds:

f(g − cl(V )) ⊆ cl(f(V )).

Proof. Suppose W be a GIVN set in (A, τ1).

By definition, g − cl(V ) denotes the g-closure of W in (A, τ1). The g-closure of W is the intersection of
all GIVN g-closed sets that contain W .

Since f is a GIVN g-continuous function, the preimage of every GIVN g-closed set in (B, τ2) under f is a
GIVN g-closed set in (A, τ1). Consequently, f

−1 (cl(f(V ))) is a GIVN g-closed set in (A, τ1) because cl(f(V ))
is a GIVN g-closed set in (B, τ2).

By the definition of g-closure, we have:

V ⊆ f−1 (cl(f(V ))) .

Since g − cl(V ) is the largest GIVN g-closed set containing W , it follows that:

g − cl(V ) ⊆ f−1 (cl(f(V ))) .
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Applying the function f to both sides of this inclusion, we get:

f(g − cl(V )) ⊆ f
(
f−1 (cl(f(V )))

)
.

Because f
(
f−1 (cl(f(V )))

)
⊆ cl(f(V )) (as f maps any set to a subset of its closure), we conclude:

f(g − cl(V )) ⊆ cl(f(V )).

□

Theorem 3.22. Suppose (A, τ1) and (B, τ2) be two GIVN topological spaces. If f : (A, τ1) → (B, τ2) is GIVN
continuous, then f is also a GIVN g-continuous function.

Proof. Suppose W be a GIVN open set in (B, τ2).
Since f is a GIVN continuous function, the preimage of W under f , denoted f−1(V ), must be a GIVN

open set in (A, τ1).
By definition, every GIVN open set is also a GIVN g-open set. Therefore, if f−1(V ) is a GIVN open set

in (A, τ1), it is also a GIVN g-open set.
Thus, for any GIVN open set W in (B, τ2), the preimage f−1(V ) is a GIVN g-open set in (A, τ1). This

shows that f is GIVN g-continuous.
Note, however, that the converse of this theorem is not necessarily true. Specifically, if f : (A, τ1) → (B, τ2)

is a GIVN g-continuous function, it does not guarantee that f is GIVN continuous. The GIVN g-continuity
is a more specific condition than general GIVN continuity. □

Remark 3.23. Now it is natural to raise the question- ” Under what condition the converse of the theorem
4.13 will be true?”

In our next paper we will introduce a special GIVN topological space in which every GIVN g-open set is
also GIVN -open set.

Theorem 3.24. Suppose (A, τ1) and (B, τ2) be two GIVN topological spaces. Let f : (A, τ1) → (B, τ2) is
GIVN g-continuous then for every GIVN set W in B, then g − cl

(
f−1(V ) ⊆ f−1(cl(V )).

Proof.
Suppose W be a GIVN set in (B, τ2). Let K = f−1(V ) then f(K) = ff−1(V ) ⊆ W by theorem 4.11,

f
(
g − cl

(
f−1(V )

))
⊆ cl

(
ff−1(V )

)
Then g − cl

(
f−1(V ) ⊆ f−1(cl(V )) . □

3.1.1 Application

In order to study more efficiently the decision method process we introduce here GIVN Sets.
Let

T =
[
T l, T r

]
, I =

[
I l, Ir

]
, F =

[
F l, F r

]
and

([
T l
1, T

r
1

]
,
[
I l1, I

r
1

]
,
[
F l
1, F

r
1

])
and

([
T l
2, T

r
2

]
,
[
I l2, I

r
2

]
,
[
F l
2, F

r
2

])
be two GIVN sets where supT ∧ sup I ∧ supF ≤ 0.5

The sum
([
T l
1, T

r
1

]
,
[
I l1, I

r
1

]
,
[
F l
1, F

r
1

])
+

([
T l
2, T

r
2

]
,
[
I l2, I

r
2

]
,
[
F l
2, F

r
2

])
=

([
T l
1 + T l

2, T
r
1 + T r

2

]
,
[
I l1 + I l2, I

r
1 + Ir2

]
,
[
F l
1 + F l

2, F
r
1 + F r

2

])
If k be a positive integer then k

([
T l
1, T

r
1

]
,
[
I l1, I

r
1

]
,
[
F l
1, F

r
1

])
=

([
kT l

1, kT
r
1

]
,
[
kI l1, kI

r
1

]
,
[
kF l

1, kF
r
1

])
The summation and scalar product of (1) and (2) need not be closed operation. It may happen that

sup
([
T l
1 + T l

2, T
r
1 + T r

2

])
∧ sup

([
I l1 + I l2, I

r
1 + Ir2

])
∧ sup

([
F l
1 + F l

2, F
r
1 + F r

2

])
⊈ 0.5



10 Mukherjee A, Das R. Trans. Fuzzy Sets Syst. 2025; 4(2)

and

sup
([

kT l
i , kT

r
i

])
∧ sup

([
kI li , kI

r
i

])
∧ sup

([
kF l

i , kF
r
i

])
⊈ 0.5

Let i = 1, 2, 3, . . . , k and n = n1 + n2 + n3 + · · ·+ nk then the mean value of[
T l
1(k), T

r
1 (k)

]
,
[
I l1(k), I

r
1(k)

]
,
[
F l
1(k), F

r
1 (k)

][
T l
2(k), T

r
2 (k)

]
,
[
I l2(k), I

r
2(k)

]
,
[
F l
2(k), F

r
2 (k)

]
, . . .,[

T l
k(k), T

r
k (k)

]
,
[
I lk(k), I

r
k(k)

]
,
[
F l
k(k), F

r
k (k)

]
is

1

G

{(
n1

([
T l
1, T

r
1

]
,
[
I l1, I

r
1

]
,
[
F l
1, F

r
1

])
+ n2

([
T l
2, T

r
2

]
,
[
I l2, I

r
2

]
,
[
F l
2, F

r
2

])
+ · · ·+ nk

([
T l
k, T

r
k

]
[
I lk, I

r
k

]
,
[
F l
k, F

r
k

])}
. . . . . . (3)

Example 3.25. A company is tasked with selecting one candidate from a pool of six applicants:
k1, k2, k3, k4, k5, k6. The desired qualifications for the new candidate are represented by the set
P = {p1, p2, p3, p4}, where:

• p1 denotes “Fast”,

• p2 denotes “Young”,

• p3 denotes “Intelligent”, and

• p4 denotes “Experienced”.

The committee has evaluated each of the six candidates based on these qualifications using GIVN sets.
This approach allows for the representation of uncertain, imprecise, incomplete, and inconsistent information
regarding how well each candidate meets the desired qualifications. Consequently, the decision-making process
was structured into a tabular matrix, which reflects the evaluations of each candidate. Based on this matrix,
the best decision for the company in selecting the optimal candidate can be determined.

P1 P2 P3

k1 [0.4, 0.6], [0.2, 0.5], [0.3, 0.5] [0.3, 0.7], [0.2, 0.4], [0.1, 0.3] [0.2, 0.4], [0.4, 0.6], [0.3, 0.5]

k2 [0.3, 0.6], [0.2, 0.4], [0.1, 0.3] [0.4, 0.7], [0.3, 0.5], [0.1, 0.2] [0.2, 0.5], [0.3, 0.5], [0.3, 0.4]

k3 [0.5, 0.7], [0.2, 0.4], [0.2, 0.3] [0.4, 0.6], [0.3, 0.5], [0.1, 0.3] [0.3, 0.5], [0.2, 0.3], [0.1, 0.4]

k4 [0.3, 0.5], [0.2, 0.4], [0.1, 0.2] [0.5, 0.8], [0.1, 0.3], [0.2, 0.3] [0.3, 0.6], [0.2, 0.5], [0.1, 0.3]

k5 [0.7, 0.8], [0.1, 0.3], [0.1, 0.2] [0.4, 0.6], [0.2, 0.3], [0.1, 0.3] [0.3, 0.5], [0.2, 0.5], [0.2, 0.3]

k6 [0.2, 0.4], [0.5, 0.7], [0.4, 0.6] [0.4, 0.6], [0.2, 0.4], [0.1, 0.4] [0.5, 0.8], [0.1, 0.4], [0.2, 0.4]

P4

k1 [0.2, 0.5], [0.3, 0.7], [0.1, 0.5]

k2 [0.2, 0.4], [0.4, 0.6], [0.3, 0.5]

k3 [0.4, 0.7], [0.3, 0.5], [0.1, 0.4]

k4 [0.2, 0.4], [0.3, 0.5], [0.2, 0.4]

k5 [0.4, 0.6], [0.2, 0.5], [0.1, 0.2]

k6 [0.3, 0.6], [0.2, 0.4], [0.4, 0.5]

The choice value for each candidate is determined by the mean value of the GIVN sets to which they
belong. Thus, according to equation (3), the choice value for k1 is calculated as follows:
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1

4
[< [0.4, 0.6], [0.2, 0.5], [0.3, 0.5] > + < [0.3, 0.7], [0.2, 0.4], [0.1, 0.3] > + <

[0.2, 0.4], [0.4, 0.6], [0.3, 0.5] > + < [0.2, 0.5], [0.3, 0.7], [0.1, 0.5] >]

=
1

4
[< [1.1, 2.6], [1.1, 2.2], [0.8, 1.8] >]

=< [0.275, 0.65], [0.275, 0.55], [0.2, 0.45] >

In the same way one finds the choice values of k2, k3, k4, k5 and k6 as

Choice value of k2 is < [0.275, 0.55], [0.3, 0.5], [0.2, 0.35] >

Choice value of k3 =< [0.4, 0.625], [0.25, 0.425], [0.125, 0.35] >

Choice value of k4 =< [0.325, 0.575], [0.175, 0.425], [0.15, 0.3] >

Choice value of k5 =< [0.4, 0.625], [0.175, 0.4], [0.125, 0.25] >

Choice value of k6 =< [0.35, 0.6], [0.25, 0.475], [0.275, 0.475] >

Mean average of k1 =< 0.4625, 0.4125, 0.325 >

Mean average of k2 =< 0.4125, 0.4, 0.275 >

Mean average of k3 =< 0.5125, 0.3375, 0.2375 >

Mean average of k4 =< 0.45, 0.3, 0.225 >

Mean average of k5 =< 0.5375, 0.2875, 0.1875 >

Mean average of k6 =< 0.475, 0.3625, 0.375 >

In this case, the expert may apply an optimistic criterion by selecting the candidate with the highest
average truth degree or by using a criterion based on the lowest average falsity degree. Based on these
criteria, the expert selects candidate k5 for the company.

4 Conclusion

In this work, we introduced a novel parametric decision-making method that combines hybrid approaches
to enhance decision processes in complex scenarios. The method was illustrated through examples focused
on selecting a new candidate for a company, showcasing how the hybrid approach can effectively integrate
different criteria and preferences. The findings of this study indicate that hybrid methods, particularly within
fuzzy environments, offer substantial improvements over traditional decision-making techniques. The results
suggest that such methods can be highly effective across various scenarios, demonstrating their versatility and
robustness. Furthermore, we have developed and presented the concept of GIVN sets. These sets represent an
advancement in the representation of uncertainty by combining interval-valued membership, indeterminacy,
and non-membership functions. We described key operators within the context of GIVN topological spaces,
including the g-closure and g-interior operators. These operators help in understanding and manipulating
the properties of GIVN sets within a topological framework. The distinction between GIVN sets and IVN
sets is an important aspect of our findings. While every GIVN set is indeed a type of IVN set, the reverse
is not necessarily true. This implies that GIVN sets offer a broader and more flexible framework for dealing
with uncertainty compared to IVN sets. The generalization provided by GIVN sets allows for more nuanced
modeling of real-world situations where uncertainty cannot always be precisely quantified by single values.

This paper underscores the potential of hybrid decision-making methods and advanced set theories in
improving decision-making processes and modeling uncertainties. The hybrid approach demonstrated here
is not limited to decision-making scenarios but can be applied to various fields where complex, uncertain, or
imprecise information needs to be managed. The concepts introduced and the methods developed pave the
way for future research and applications, highlighting their relevance and utility across different domains.
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