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Abstract. Graph structure (GS) is an advancement of the graph concept which effectively represents intricate
situations with various connections, frequently used in computer science and mathematics to illustrate relationships
among objects and extensively researched in fuzzy sets (FS), intuitionistic fuzzy set (IFS), pythagorean fuzzy set
(PFS) and g-rung orthopair fuzzy set (g-ROFS). Meanwhile, a linear Diophantine fuzzy set (LDFS) is a remarkable
extension of the existing notions of a FS, IFS, PFS and q-ROFS by comporting reference parameters that removed
all the limitations related to membership degree (MD) and non-membership degree (NMD). According to the best
of our knowledge, there is a lack of elegantly proposed GS extension for LDFSs in the current literature. As a
result, this research focuses on introducing first linear Diophantine fuzzy graph structure (LDFGS) concept which
extends the existing notions of GS in various contexts of F'Ss. Several key concepts in LDFGSs are presented, such
as p;-edge, p;-path, strength of p;-path, p;-strength of connectedness, p;-degree of a vertex, vertex degree, total
pi-degree of a vertex, and total vertex degree in an LDFGS. In addition, we introduce the p;-size, size, and order
of an LDFGS. Moreover, this article presents the ideas of the maximal product of two LDFGSs, strong LDFGS,
degree and p;-degree of the maximal product, p;-regular and regular LDFGSs, along with examples for clarification.
Certain significant results related to the proposed concepts also demonstrated with explanatory examples such
as the maximal product of two strong LDFGSs is also a strong LDFGS, the maximal product of two connected
LDFGSs is also a connected LDFGS but the maximal product of two regular LDFGS may not be a regular LDGS.
Moreover, many interesting and alternative formulas for calculating p;-degrees of an LDFGS in various situations
are proved with examples. LDFGSs are highly beneficial for solving numerous combinatorial problems involving
multiple relations, and they surpass existing concepts of GSs within the F'S context due to their flexibility in selecting
MD and NMD alongside their reference parameters.

AMS Subject Classification 2020: 03B52; 03E72; 28E10; 18B35
Keywords and Phrases: Linear Diophantine fuzzy sets, Graph structure, Maximal product, Degree of a vertex,
Total degree of a vertex.

1 Introduction

Incorporating uncertainties into real-world applications has become essential for addressing a variety of prac-
tical issues such as data analysis, computational intelligence, and sustainability. In 1965, Zadeh [1] poineered
the concept of FS and fuzzy logic for modelling uncertain situations by assigning the MD to each object
rather than absolute membership and absolute non-membership. Since then, F'S theory have been studied by
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scholars and scientists in a wide range of practical fields including artificial intelligence, medical science, com-

putational sciences and decision analysis [2, 3, 4]. Since MD is not sufficient to describe many real situations,
there is a need for NMD such as educated and uneducated, perfection and imperfection, sick and healthy,
etc. In order to deal with such situations, Attanassov [, 6] proposed the idea of IFS with the addition of

NMD such that the sum of MD and NMD is not greater than one. Due to the large space of MD and NMD,
IF'Ss were studied enormously in various fields of applications [7, 8]. However, there are still many real-life
problems where the condition of IF'S is not satisfied. For instance, a professional is asked to comment on
the viability of a strategy to invest in the real estate industry. Imagine that the expert rates this investment
plan’s degree of feasibility at 0.8 and its degree of impossibility at 0.6. Since 0.8 + 0.6 > 1, the IF'S cannot
be utilized to appropriately express this information. As a result, Yager [9] presented the idea of PFS, which
meets the requirement that the sum of squares of the MD and the NMD is less than equal to 1 for each
element. But if the decision-maker expresses his view as 0.9 for agree and 0.8 for not agree, we can see that
0.92+0.82 > 1. To deal with the situations, Yager [10] investigated ¢-ROFS as a more generic version of IFS
and PFS. In ¢-ROFSs, the total of the g-powers for truthfulness and falsehood grades is kept within a unit
interval. This indicates that q-ROFSs provide additional data storage to characterize ambiguous or unclear
facts. Researchers have given the PFS theory and q-ROF'S theory a lot of attention over the past five years,
and numerous insightful theoretical and practical findings have been made in a variety of fields. For instance,
Yager [1 1] presented a multi-attribute decision making technique for PFS. Khan et al. [12] developed a new
ranking technique for g-ROFSs based on entropy function and hesitancy index with a detailed critical analy-
sis of the previously ranking methods. Liu and Wang [13] proposed some q-ROF aggregation operators and
utilized them to solve multi-attribute decision making problems.

Although MD and NMDs are subject to certain restraints under the theories mentioned earlier of IFS,
PF'S, and g-ROFS. To overcome all these restrictions associated with MD and NMD, Riaz and Hashmi [14]
introduced an augmented generalized form of FS known as LDF'S with the inclusion of reference parameters.
Due to the inclusion of reference or control parameters, LDFSs have a wide space of MD and NMD, in
contrast to the commonly used ongoing conceptions, made this theory more advanced, trustworthy and
easy to model uncertainties. Due to the advancement of LDFSs and its freedom regarding MD and NMD,
various scientists have started to create fresh theories about this emerging and sophisticated concept. For
instance, Almagrabi et al. [15] established the concept of g-linear Diophantine fuzzy set (q-LDFS) and its
application in emergency decision support system for COVID19. Ayub et al. [10] introduced the notion
of linear Diophantine fuzzy relations (LDFRs) and studied their algebraic structures with an application
in decision making. Further Ayub et al. [17, 18] studied the roughness of a crisp set by using the level
sets of an LDFR and by ((s,t), (u,v))-indiscernibility of an LDFR over dual universes, respectively. A
comprehensive details on the study of rough approximations of an LDFS via an LDFR, inituitionistic fuzzy
relation (IFR) and fuzzy relation (FR) together with their applications in the field of decision making,
respectively, have presented in [19, 20, 21]. Giil and Aydogdu [22] proposed linear Diophantine fuzzy TOPSIS
(LDF-TOPSIS) based on some novel distance and entropy definitions for LDFSs. Tampan et al. [23] presented
linear Diophantine fuzzy Einstien aggregation operators for multi-criteria decision-making problems. Inan
et al. [24] established a multiple attribute decision model to compare the firms occupational health and
safety management perspectives. Riaz et al. [25] introduced linear Diophantine fuzzy soft rough sets with a
practical application to select the sustainable material handling equipment. Kamaci [26, 27] studied linear
Diophantine fuzzy algebraic structures and introduced the concept of complex linear Diophantine fuzzy sets
with their applications using cosine similarity measures, respectively. Further Riaz et al. [28] proposed the
concept of spherical linear Diophantine fuzzy sets and presented their applications in modeling uncertainties
in MCDM.

The concept of graph theory (GT) started with finding a walk linking seven bridges in Konigsberg. Sub-
sequently, it has developed enormously in all the domains of sciences and humanities with wide applications
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in the field of operations research, economics and system analysis. A graph is used to represent mathematical
networks that define the association between vertices and edges. A vertex can be used to symbolize a work-
station, while the edges denote the association between stations. However, graphs often do not reflect many
physical processes appropriately due to the obvious complexity of various properties of the structures. Many
real-world phenomena have been emphasized to define the concept of fuzzy graphs (FGs). In 1973, Kauffman
[29] introduced the concept of the fuzzy graph (FG) based on Zadehs fuzzy relations (FR) [30]. Mordeson [/]
have further studied FGs and fuzzy hypergraphs. Fuzzy graph theory (FGT) has many applications in various
areas, including, data mining, networking, image segmentation, clustering, communication, planning, image
capturing, and scheduling. A detailed study on FGs has presented in [, 31]. Karunambigai and Parvathi [32]
utilized IFS to describe an intuitionistic fuzzy graph (IFG). Shannon and Atanassov [33], and Parvathi et al.
[34] utilized IFS to describe intuitionistic fuzzy graphs (IFGs) and their basic operations via intuitionistic
fuzzy relation (IFR) [35]. Verma et al. [30] established the concept of pythagorean fuzzy graph (PFG) by
first coining the idea of pythagorean fuzzy relation (PFR). Akram et al. [37, 38] studied certain PFS-graphs
and -ROF graphs (q-ROFGs) under Hamacher operators. Hanif et al. [39] presented the concept of an LDF
graph (LDFQG) by using the idea of an LDF relation (LDFR) which was introduced by Ayub et al. [16].

Since a graph is a pair of set of vertices ¥ and one relation & on ¥, which is capable of describing
abundant real-life phenomenons. However, in many real life situations that concern more than one type
of relations, GT cannot work efficiently. In order to deal such situations, Sampathkumar [10] generalized
the notion of graphs and introduced the concept of graph structures (GSs). GS has n mutually disjoint,
symmetric and irreflexive relations. Ramakrishnan and Dinesh [11, 12, 13] introduced fuzzy graph structures
(FGSs) and investigated some related properties. Later on, Akram and Sitara [11, 15] and Akram et al.
[10] investigated degree, total degree and few properties of semi-strong min product, maximal product and
residue product of FGSs. Sharma and Bansal [17, 48] introduced the concept of IF-graph structure (IFGS).
Further, Sharma et al. [19] presented the notion of regular IFGSs with a detailed study of their important
consequences and useful examples for illustration. Sitara et al. [50] studied the concept of g-rung picture
fuzzy graph structure (q-RPFGS).

1.1 Research Gaps and Motivations

The following subsection will summarize the main objectives and areas of knowledge lacking in the theories
discussed earlier.

1. GSs are commonly employed in analyzing various structures, such as graphs, signed graphs, semigraphs,
edge-colored graphs, and edge-labled graphs. GSs play a crucial role in researching various areas within
computer science and computational intelligence. FGSs are more beneficial compared to GS due to their
ability to address the uncertainty and ambiguity commonly found in various real-world phenomena.

2. The latest extension of FS theory, called LDFS introduced by Riaz and Hashmi [14], eliminates con-
straints related to MD and NMD found in previous concepts like F'S, IFS, PyFS, and ¢-ROFS by adding
reference parameters. It allows the decision maker greater freedom in their judgment when facing any
decision-making issue. Indeed, reference parameters play a significant role in determining the optimal
solution in decision analysis.

3. Recently, Hanif et al. [39] proposed the concept of LDF-graph (LDFG) with some fundamental oper-
ations and properties. LDFGs are more beneficial than FG, IFG, PFGS, and ¢-ROFG because they
have a broader range of MD and NMD.

4. Since GSs are more valuable than graphs due to their ability to handle multiple relationship issues
effectively. By viewing existing literature, it appears that there is a lack of investigation on LDF graph
structures (LDFGS).
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5. To address this research gap, we explore GS within LDFSs and introduce the concept of LDFGS, which
eliminates specific restrictions on MD and NMD found in current FGSs.

6. Several key concepts of LDFGSs are introduced with demonstrative examples. Certain significant and
fascinating results are proved using different scenarios along with concrete examples. LDFGSs are
certainly better than the current concepts of FGSs, IFGSs, and g-RPFGS because of the expanded
scope of MD and NMD. LDFGSs are a valuable resource in addressing issues involving numerous
connections within the context of LDFSs.

1.2 Aim of the Proposed Study

The main purposes of this research paper are:

e To establish a detailed study on GS in the context of LDFSs and hence introduce the concept of LDFGS.

e To define key notions such as p;-edge, p;-path, strength of p;-path, p;-strength of connectedness, p;-
degree of a vertex, degree of a vertex, total p;-degree of a vertex, and total degree of a vertex in an
LDFGS, p;-size of an LDFGS, size, and the order of an LDFGS.

e To introduce the notion of the maximal product of two LDFGSs, strong LDFGS, degree and p;-degree
of the maximal product.

e To present the concept of p;-regular and regular LDFGS.

e To develop their important consequences with illustrative examples.

1.3 Organization of the Paper

Our remaining part of this paper is organized in the following manners:

Certain basic notions related to FS, IFS, PFS, -ROFS, LDFS, FR, IFR, LDFR, GS, FGS, and IFGS
are presented in Section 2. In Section 3, the concept of LDFGS is introduced with an explanatory example.
Furthermore, some fundamental concepts in LDFGS such as p;-edge, p;-path, strength of p;-path, p;-strength
of connectedness, p;-degree of a vertex, degree of a vertex, total p;-degree of a vertex, and total degree of a
vertex in an LDFGS, p;-size of an LDFGS, size of an LDFGS, and the order of an LDFGS are introduced
with constructive examples. In Section 4, the notion of the maximal product of two LDFGSs, strong LDFGS,
degree and p;-degree of the maximal product are introduced. Some important results related to these concepts
are also proved with illustrative examples. Section 5 presents the concept of p;-regular and regular LDFGS
with some related consequences and examples. Finally, section 6 consists of some concluding remarks of this
research article and some future research directions related to the novel born ideas in this research article.

2 Preliminaries

In this section, some fundamental notions of FS, IFS, PFS, g-ROFS, LDFS, FR, IFR, LDFR, GS, FGS and
IFGS are given which are indispensable to understanding the contributions of this paper. For more details,
we refer the reader to study [16, 41, 12, 10, 14]. Throughout this research manuscript, *', #;, and %, are
denoted as universal sets, unless otherwise stated.

Definition 2.1. [I] A FS on ¥ is defined by .Z = {(x,»%(x)) : x € ¥}, where »% : ¥ — [0,1] is a
membership function (MF) which assigns the MD to each object x € 7.
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Definition 2.2. [5] An IFS .# on ¥ is a set of triplets of the form:

7 = {(x (37 (), %}(x») . x € 7/}, (1)

where '}, 5", : ¥ — [0, 1] specify the MD and NMD, respectively, which satisfy 0 < 2'7(x) + s (x) < 1,
for all x € 7.

Definition 2.3. [9] A PFS & on ¥ is an object of the form:
P = {(x (33 (x), %ﬁ](x») x € "//}, 2)

where »7;, 57, : ¥ — [0, 1] specify for the MD and NMD, respectively, fulfilling 0 < (%g(x))Q—i— (% (x))2 <
1, for all x € 7.

Definition 2.4. [I1, 10] A g-ROFS 2 on ¥ is an object of the form:

2= {(x (33 (x), %g(x») ‘x € 7/}7 (3)

where 5%, 5% : ¥ — [0, 1] are used for the MD and NMD, respectively such that 0 < (35(x)) "+ (57%(x))? <
1, for all x € ¥, where ¢q € [1,0).

Definition 2.5. [I1] An LDFS £ over 7 is an expression of the following form :
¢ = {(x (40(x), #2(x)), <ag(x),,82(x)>) 'x € "f/}, (4)
where ', 24 : 7/ — [0, 1] are MD and NMD, and ag(x), B¢(x) € [0, 1] are corresponding reference param-
eters, respectively, with 0 < ag(x) 4+ Be(z) < 1 and 0 < ag(x) 27" (x) + Be(x)xp(x) < 1, for all x € #. The
)

degree of hesitation of any x € ¥ is denoted and defined as Mg(x) = 1 — (a (x) T(x ) + Be(x)s3(x)), for
all x € 7.

From now onward, we will use LDFS(7") for the set of all LDFSs over #. For simplicity, we will use
£ = ({2 (x), 2 (x)), (ae(x), Be(x))) for an LDFS over 7.

Definition 2.6. [11] Let £; = ((%,’3”1 (x), 7 (x)), (g, (x), Be, (x)>) and £ = ((%,’3”2 (x), ¢, (%)), (e, (x),
Be, (x)>> be two LDFSs on #'. Then, for all x € ¥,

(1) €1 C Lo if and only if ¢ (x) < 3¢ (x), 23 (X) > 25 (%), and ag, (x) < ag,(x), B, (X) > Be, (X);
(2) £1U L2 = (8 (3) V 58 (%), 28, (%) A 52, (%)), (0, (%) V g, (%), B, (%) A B, (%)) )
(8) £101 85 = (4 () A 54 (%), 28, (%) V 328, (%), (e, (%) A e, (%), Be, (%) V B, (%)) ):

(4) 25 = ({48, (0, 28 (00)), (B, (%), 08, (%)) )

A subset & of the cartesian product 7] x ¥, is a binary relation from ¥] to ¥ which is basically the set
of edges from 7] to %5.



A Theoretical Development of Linear Diophantine Fuzzy Graph Structures. Trans. Fuzzy Sets Syst. 2025; 4(1) 69

Definition 2.7. [30] A FR p on 7] X 73 is defined as:

p= {<(X1,X2),%21(X1,X2)>, (x1,%X2) € #1 X 7/2}, (5)

where »" : 1 x 75 — [0,1] is a MF which specifies the grade of membership to which the objects x; € 71
and X9 G ¥4 are connected to each other.

Definition 2.8. [35] An IFR p from 7] to %3 is an object of the form:

p= {((Xl,xg <% (x1,%2), (xl,x2)>> 1X1 € M,X9 € ”1/2}, (6)

where sy, ) : Y1 x ¥ —» [0, 1] indicate the MD and NMD from %] to ¥4, respectively with 0 < %gn(xl, x2)+
p(Xl,XQ) S 1, for all (x1,x2) € 1 X %5.

Definition 2.9. [16] An LDFR p from ¥} to #3 is an expression having the form:

p= {((X1,X2), (25" (x1,%2), 6 (x1,%2)), <Oép‘(X]_,X2),/8’b(X]_,X2)>> iX1 € Y, X9 € 7/2}, (7)

where 55", 55« /1 x #5 — [0, 1] denotes the MD and NMD among the entities of 7 and 73, and a3(x1, X2),
Bp(x1,%x2) € [O 1] are the corresponding reference parameters to sc;'(x1,X2) and 3 (x1,X2), respectively.
These MD and NMD obey the constraint 0 < a5(x1, X2) 565" (X1, x2)+ﬁp(x1, X2) 55 (X1, x2) < 1forall (x1,x2) €
7 x Vo with 0 < a(x1,%x2) + B5(x1,%x2) < 1. The degree of hesitation can be calculated as:

Y8 (x1,x2) = 1= (p(x1,%2)5" (x1,%2) + Byt %2) 48 (x1,%2) ) (8)
where v is the corresponding reference parameter of indeterminacy. For simplicity, we shall use
p = <<%g‘(x1,x2),%g(x1,><2)>, <aﬁ(x1,x2),ﬂﬁ(x1,x2)>) for an LDFR from ¥, to #. The collection of all
LDFRs from ¥ to ¥ by LDFS(¥] x 73).
Definition 2.10. [16] Let p; = << S0 (x1,X2), 7% (x1,%2) ), (ap (X1,%2), B (xl,xQ)>) be an LDFR from 7]

to ¥ and gy = (< s (X2, X3), 55, (X2, X3) >,<04va Xg,Xg),ﬁﬁQ(xQ,X3)>> be an LDFR from ¥ to ¥5. Then,
their composition is denoted and deﬁned by :

p1opz = (((%}}f 0 55, ) (x1,%3), (545, © 75,) (x1,%3) ), (g, © gy ) (%1, %3), (B, © 5ﬁ2)(X17X3)>> (9)

where
(5, © 225,) (1, %3) xQ\e/% (%;?(lexz) 5 (X2, X3) ) (10)
(54 0 545, (x1,x3) = /\V (54, (1, 32) V 5, (32, %3) ) (11)
x2€%
(@ 0 ) (%1, %3) \/ (am (x1,X2) A @i (X2, X3) ) (12)
x2€%
(Bs © B, ) (x1,%3) = /\ <5p1(X17X2 V B, (X2, X3 > (13)

for all x; € #1,%x9 € ¥5,X3 € V3.
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Definition 2.11. Let p = <<%/T(x1,x2),%g(x1,x2)>, <aﬁ(x1,x2),ﬁp(x1,x2)>) be an LDFR from 7] to 5.
Then, the set

Supp(p) = {(X]_,XQ) : %gl(XhXQ) > 0, %g(X]_,XQ) > 0), (op(x1,%x2) > 0, B5(x1,%x2) > 0} (14)
is called the support of p.
Definition 2.12. [10] Let ¥" be any non-empty set known as the vertex set and &7, &2, - , & be mutually

disjoint relations (sets of edges) of ¥ such that each &;, 1 < i < k is symmetric and irreflexive. Then,
9 = (“//, &, E, ,éak) is called a graph structure (GS).

Definition 2.13. [11, 12] Let ¥ = (”f/,é?l,gg,'-- ,cg’k) be a GS. Then, ¥ = (ﬁ,pl,pg,--- ,pk) is called
fuzzy graph structure (FGS) of GS ¢, where . is a F'S on ¥ and p; are irreflexive, symmetric and mutually
exclusive FRson 7, forall 1 <i <k, if 0 < %gl?(x,y) < HP(x) N xR (y) forallx,y € ¥/, i=1,2,--- k.

Definition 2.14. [17] Let 4 = (¥, &1, &, ...,&;) be a GS, .# = (%7(x), »;(x)) be an IFS on ¥ and

pi = <%;~YZ_L(X1,X2), 7 (xl,xQ)> be irreflexive, symmetric and mutually disjoint IFRs on ¥, ¢ = 1,2,...,n,
where x,x1,x2 € ¥. Then, ¥ = (f,p'l, 02, ...,p'n) is called intuitionistic fuzzy graph structure (IFGS) of ¢,
if

s (X1, X2) < 3 (X) A sy (x2), and s (X1,X2) > 35 (x1) V 55 (x2),

for all x1,x2 € ¥,i=1,2,....,n.

3 Linear Diophantine Fuzzy Graph Structures (LDFGS)

In this section, we introduce the idea of LDFGS and some basic notions in LDFGSs containing p;-edge,
pi-path, strength of p;-path, p;-strength of connectedness, p;-degree of a vertex, degree of a vertex, total
pi-degree of a vertex, and total degree of a vertex in an LDFGS, p;-size of an LDFGS, size of an LDFGS,
and the order of an LDFGS are introduced with constructive examples. Throughout this section, we will use
simply ¢ for a GS ¢4 = ("I/, &, 8o, ..., (fn) (see Definition 2.12).

Definition 3.1. Let £ = (<%§”(x),%§(x)>,<a£(x),6,3(x)>) be an LDFS over ¥, 4 be a GS and p; €

w5 (x,y) < sg' (%) A g (y),
sy (x,y) = 7g(x) V xg(y), (15)
ap, (X,Y) < OCQ(X) A OZ,Q(y 3
Bﬁz (X7 y) > B‘(X) \ BQ(Y)
Example 3.2. Let ¥ = {x1,x2,X3,%X4}, 61 = {(x1,%2), (x1,%3), (x3,%4) }, and & = {(x1,%4), (x2,%3), (x2,%4) }.

Then, ¥ = (“//, &1, é”g) is the GS. Define an LDFS £ € LDFS(¥7") exhibited in TABLE 1.
Consider two LDFRs p1, po over &1, &3, respectiyely which are shown in TABLES 2 and 3, respectively.
By simple calculations, we can easily see that 4 = (S, P, ﬁg) is an LDFGS of GS ¥ = (”V, &, 5’2) shown
in Figure 1.
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Table 1: Tabular representation of LDFS £

7 (), #2(x), (as(x), Be(x))
X1 ((0.4,0.3), (0.2, 01>
Xo ((0.6,0.2),(0.3,0.2)
((0.4,0.5),(0.4,0.2)
((0.7,0.3),(0.6,0.2)

X3

)
)
)
)

X4

Table 2: p;

1 (< 7 (x,y), Y))s (s, (%), By, (x, Y)>>
(x1,%2) ((0 4,0.4),(0.2,0.3))
(x1,X3) ((0.3,0.6),(0.2,0.3))
(x3,%4) ((0.4,0.5),(0.4,0.2))

Table 3: po

(e y) o (6 ), (06, Y), B (x,9)) )
(x1,%4) (<o 4,0.3),(0.2,0.3))
(x2,%3) ((0.3,0.5),(0.2,0.3))
(x2,X4) ((0.6,0.4),(0.3,0.4))
x1((0.4,0.3),(0.2,0.1)) x4((0.7,0.3), (0.6, 0.2))

p2((0.4,0.3), (0.2,0.3))

o
‘(7
(0-3)

({g'0°z"0) “(¥'0 ‘v°0)) ¢
51((0.4,0.5), (0.4, 0.2))

p2((0.3,0.5), (0.2,0.3))

x2((0.6,0.2), (0.3,0.2)) x3((0.4,0.5), (0.4, 0.2))
Figure 1: ¥ = (2, ,51,52)

Definition 3.3. Let &4 = (2,;31,/32, ...,,bk) be an LDFGS with underlying GS ¢. If (x,y) € Supp(p;), then
(x,y) is called ps-edge of ¥.

Example 3.4. In Example 3.2, (x1,x4), (X2,X3), (X2,X4) are po-edges since Supp(pa) = {(Xl,X4), (x2,x3),
(x2,%4)} and (x1,%2), (x1,X3), (x3,%4) are pr-edges since Supp(p1) = {(x1,%2), (x1,x3), (x3,%4) }.

Definition 3.5. Let ¥ = (2, D1y P2y -n ﬁk) be an LDFGS with underlying GS 4. A p;-path of 9 is a sequence
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of vertices (xo,X1, X2, ...,X;) which are distinct except possibly xg = x;, such that (x;_1,x;) is a p;-edge for
all j=1,2,3,....1.

Example 3.6. In Example 3.2, (x3,x1,X2), and (X2,X1,X3,X4) are pj-paths. And, (x2,x3,X4), (X1, X4, X2),
and (x1,X4,X2,X3) are po-paths.

Definition 3.7. In an LDFGS ¢ = (2, 01, P2, ...,ﬁk) with underlying GS ¢, two vertices x,y of & are said
to be p;-connected, if they are joined by a p;-path.

Example 3.8. In Example 3.2, all vertices X1, X2, X3, X4 are p1- and po-connected according to the Example
3.6 since they are joined by both pi- and ps- paths. Since for all x,y € ¥ they are connected by p; for all
i =1,2, so 9 is connected LDFGS because p1(x1,%x3) > 0, p1(x1,x2) > 0, and p1(x3,%4) > 0 so, X1, X3
are pi-connected, X1, Xo are pj-connected, and xs, x4 are pi-connected, respectively. Similarly, x2, x3 are
pa2-connected, X2, X4 are po-connected, and x;, X4 are pg-connected.

Definition 3.9. Let P = (%0, x1, X2, ..., X;) be a g;-path of an LDFGS G = (2, D15 P2y e ﬁk) with underlying
GS ¢. Then, the strength of the p;-path B3, is denoted and defined as:

St(P) = <<%5n‘:€(‘1§)7 751 (Qseem)s BSt(‘JS)>>a (16)
where
k k
%gst(m) = /\ g (X1, %), %St \/ ,To“L Xj—1,X;)
= w (17)

~.

ap; (Xj-1,%5), Bsip) = \/ By, (xj-1,%;)
1 j=1

Asi(p) =

J
fori=1,2,..., k.

Example 3.10. (Continued from Example 3.6) We have seen that (x3,x1,x2), and (x2,X1,X3,X4) are pi-
paths. And, (x2,x3,X4), (X1,X4,X2), and (x1,X4,X2,X3) are pa-paths. We can calculate their strengths as
follows:

Strength of ﬁl—path ‘,131 = (X3, X1, X2) :

HSy(py) = /\j 950 (Xj-1,Xj) = s (x1,X2) A sy (x1,%3) = 0.4 A 0.3 =0.3
MGy (py) = \/j 9375 (Xj—1,%j) = 33, (X1,X2) V 53 (x1,%x3) = 0.4V 0.6 = 0.6
asip) = /\] 00 (Xj-1,%;) = oy (X1,%X2) Aoz (x1,%x3) =0.2A0.2=0.2
Bstep,) = V= 25,,1 (xj-1,%j) = Bp (x1,%2) V B (x1,%x3) = 0.3V 0.3 =0.3

So, St(P1) = ((0.3,0.6),(0.2,0.3)). Similarly, we can calculate strength of pi-path Pa = (x2,%1,%3,%X4)
which is given by St(B2) = ((0.3,0.6),(0.2,0.3)), strength of po-path P3 = (x2,x3,%x4) is St(P3) =
((0.3,0.5),(0.2,0.4)) and strength of go-path Bz = (x1, x4, X2,x3) is St(P4) = ((0.3,0.5), (0.2,0.4)).

Definition 3.11. Let & = (2,/31, P2, ,ﬁn) be an LDFGS of GS ¢4. Then, pg;-strength of connectedness of
any two vertices x1, X2 is denoted and defined as:

(51)% (x1, %3) = <<(%g;)°°(x1,><2), (%gi)‘”(xl,xQ)} <(a,3i)°°(x1,><2), (ﬁﬁi)“(xl,xz)», (18)
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where

(542.)” (x1,%2).

I
=38

(%gz)oo(XhXQ) = (%g;)j(X1,X2)7 and (%gi)oo(X17X2)

<

Il
-
<.
Il
—

J

I
=3

()’ (1, x2), and (8) (x1,%2) (ﬁpz) (x1,%2).

(ep) ™ (x1,%2) =

<

1

J

Here, (pz) (Xl,Xg) <<(%g:)j(x1,x2), (%gi)j(xl,x2)>,<(aﬁi)j(x1,xQ) (sz) (xl,x2)>> =

((p“i)ﬂ_ o ﬁi)(xl, x2), and the composition o among any two LDFRs is provided in Definition 2.10.

.
||

Example 3.12. In Example 3.2, we can evaluate the terms as defined in above definition as follows:

(se55) 7 (x1,%2) = \/ {%},”Q(xl, z) A %}Z(z,xz)} = V{55, (x1,X4) A 505, (X4, %2)} = 0.4 N 0.6 = 0.4

z

(505,) (31, %2) = /\{ L (X1,2) V 55, (7, %2) } = A{s, (X1, X4) V 25, (X4,%X2) } = 0.3V 0.4 = 0.4
(ap,)(x1,%x2) = \/{a52 (x1,2) A oy (2, %2) } = V{ap, (%1, %4) A apy(x4,%2)} =0.2A0.3=0.2
(Bs,) (x1,%2) /\{ﬁp2 X1,2) V Bs,(2,%2)} = N{Bp, (x1,%X4) V B, (%4,%2)} = 0.3V 0.4 =04

So, (p2)™ (x1,%2) = ((0.4,0.4),(0.2,0.4)). Similarly, we can find (p2)” (x1,x3) = ((0.3,0.5),(0.2,0.4)) and
(p1) 7 (x2,%3) = ({0.3,0.6), (0.2,0.3)).

Definition 3.13. Let & = (S, P15 P2y e [)n) be an LDFGS of ¢. Then, 4 is called connected LDFGS, if each
of its two vertices x1, X9y are p;-connected, that is, (p“i)oo(x,y) >0 for any x,y € ¥,andi=1,2,...,n

Example 3.14. In Example 3.12, it can be easily observed that (,(“)i)oo(xj,xk) > 0 for all © = 1,2, and
7,k =1,2,3,4. Hence, this LDFGS is connected.

Definition 3.15. Let & = (,Q, D1y P2y -n f)n) be an LDFGS with underlying GS ¢4. Then p;-degree of a vertex
x € ¥ is denoted and defined by

Dy, (x) = ({48, (), 58, (), (am,, (%), B, (%)) ). (20)
where
k k )
iy, () = > 5 (x,Y), 2y, (%) = > 5 (%, y),
7::17X7£Y7(X7Y)egi izlvxiyv(xvy)egi
k k (21)
ap, (x)= > anxy).be, )= Y Buxy).
i:17x7£y7(xvy)€& /L':l’x?éyv(xvy)elﬁi

Definition 3.16. Let ¥ = (E,ﬁl, P2, ...,ﬁn) be an LDFGS with underlying GS 4. Then the degree of the
vertex x € ¥ is denoted and characterized as:

k
x) = 3 D) = (4 (). 550, ((x). () ). (22)
where

k k
A x) =3 (0. oh) = D, (), an(x) = Y ap, (0. 0p(x) = D o, (). (23)
! ] 1=1 1=1
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Example 3.17. If we revisit Example 3.2, then according to Definition 3.15, p;-degrees of vertices can be
calculate as follows:

B, (x1) = > X (x1,y) = 22 (x1,X3) + 3f (x1,%X2) = 0.3+ 0.4 = 0.7
X12Y,(X1,y) €S

o, (x1) = > sk (x1,y) = 2} (x1,X3) + 24 (x1,%2) = 0.6+ 04 =1
x17£y,(X1,y) €61

ap, (x1) = Z ap (x1,y) = o (x1,%3) + o (x1,%2) =024 0.2 =04
Xl#y7(x17y)egl

By, (x1) = > Ba(xi,y) =B (x1,%3) + B (x1,%2) = 0.3+ 0.3 = 0.6

x17Y,(x1,y) €61

So, Dy, (x1) = ((0.7,1),(0.4,0.6)). Similarly, we can evaluate pi- and pa-degrees of all x € ¥ which are
displayed in TABLES 4 and 5, respectively.

Table 4: Dy,
v (G, (0,8, (9), (am,, (9, B, (%))
X1 ((0.7,1),(0.4,0.6))
X2 ((0.4,0.4),(0.2,0.3))
X3 ((0.7,1),(0.6,0.5))
x4 (<0405> (0.4,0.6))
Table 5: Dy,
v (G 30,48, (%), (on,, (%), 85, (x)))
X1 (<09 0.9),(0.5,0.7))
X2 ((0.9,0.9),(0.5,0.7))
X3 ({0.3, o5>, (0.2,0.3))
X4 ((1,0.7),(0.5,0.7))

Now, in the light of Definition 3.16, we calculate the degrees D(x) = Zle s, (x) as follows:

D(x1) = Dy, (x1) + Dy, (x1) = (0.7,1),(0.4,0.6)) + ({0.9,0.9), (0.5,0.7)) = ((1.6,1.9), (0.9, 1.3))
D(x2) = Dy, (x2) + Dy, (x2) = ((0.4,0.4), (0.2,0.3)) + ((0.9,0.9), (0.5,0.7)) = ((1.3,1.3),(0.7,1))

D(x3) = Dy, (x3) + Dp, (x3) = (0.7,1), (0.6,0.5)) + ((0.3,0.5),(0.2,0.3)) = ((1,1.6), (0.8,0.8))
D(x4) = Dy, (x4) + Dy, (x4) = ((0.4,0.5), (0.4,0.6)) + ((1,0.7),(0.5,0.7)) = ((1.4,1.2), (0.9, 0.9))

which can be also be seen in TABLE 6.
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Table 6: D(x)

v (B0, (), (en(x), o)) )
X1 ((1.6,1.9),(0.9,1.3))
X2 ((1.3,1.3),(0.7,1))
X3 ((1,1.6),(0.8,0.8))
X4 ((1.4,1.2),(0.9,0.9))

Definition 3.18. Let ¥ = (2, DLy P2y e ﬁn) be an LDFGS with underlying GS ¢. Then total pg;-degree of a
vertex x € ¥ is denoted and defined as:

Ty, (%) = Dy, (x) + £x) = (el (%), A, (x)), (arm,, (), B, (%)) ). (24)
where

i, (%) = 2, (%) + 558" (x), 2, (%) = 2, (%) + %S(X%} (25)

o, (X) = an, (x) + ag(x), B, (%) = Bp,, (x) + Be(x).

Definition 3.19. Let ¥ = (2, D1y P2y e ﬁn) be an LDFGS with underlying GS ¢. Then the total degree of
the vertex x € ¥ is denoted and defined as:

k
TD(x) = Y TDj, (x) = ({4 (x), 2tin(x)), (arn(x), Brn(x)) ). (26)
=1
where
A (x Z D, (%), 54 (x Z sp,, (%), arp(x Z oy, (%), B (x Z B, ( (27)

Example 3.20. (Continued from Examples 3.2 and 3.17) We can calculate the p;-degrees for each vertex
x € ¥ by using Definition 3.18 as follows:

TDp, (x1) = Dy, (x1) + £(x1) = (0.7,1),(0.4,0.6)) + ({0.4,0.3),(0.2,0.1)) = ((1.1,1.3), (0.6,0.7)),
TDp, (x2) = Dy, (x2) + £(x2) = ((0.4,0.4), (0.2,0.3)) + ((0.6,0.2), (0.3,0.2)) = ((1,0.6), (0.5,0.5)),
TDp, (x3) = Dy, (x3) + £(x3) = ((0.7,1.1),(0.6,0.5)) + ((0.4,0.5), (0.4,0.2)) = ((1.1,1.6), (1,0.7)),
TDp, (x4) = Dy, (x4) + £(x4) = ((0.4,0.5), (0.4,0.2)) + ((0.7,0.3), (0.6,0.2)) = ((1.1,0.8),(1,0.4)),
which is also demonstrated in TABLE 7. Also, pa- degrees for each vertex x € ¥ are calculated in
TABLE 8. Now, according of Definition 3.19, TD(x ZZ L TDp,(x) are calculated as follows:
TD(x1) = TDp, (x1) + TDps, (x1) = ((1.1,1.3), (0.6, 0. 7>) ((1.3,1.2),(0.7,0.8)) = ((2.4,2.5), (1.3, 1.5)),
TD(x2) = TDy, (x2) + TDp, (x2) = ((1,0.6), (0.5,0.5)) + ((1.5,1.1),(0.8,0.9)) = ((2.5,1.7), (1.3, 1.4)),
TD(x3) = TDy, (x3) + TDp, (x3) = ((1.1,1.6), (1,0.7)) + ((0.7,1),(0.6,0.5)) = ((1.8,2.6), (1.6,1.2)),
TD(x4) = TDp, (x4) + TDp, (x4) = ((1.1,1.6), (1,0.7)) + ((1.7,1),(1.1,0.9)) = ((2.8,2.6), (2.1,1.6)),

which is also shown in TABLE 9.
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Table 7: TD;,

v (s, (0,58, (0), (amm,, (%), B, ()
X1 ((1.1,1.3),(0.6,0.7))
X2 ((1,0.6), (0.5,0.5))
X3 ((1.1,1.6), (1,0.7))
X4 ((1.1,0.8), (1,0.4))
Table 8: TDj;,
v (s, ()4, (%), (arm,, (), B, (%))
X1 ((1.3,1.2),(0.7,0.8))
X ((1.5,1.1),(0.8,0.9))
X3 ((0.7,1),(0.6,0.5))
X4 ((1.7,1),(1.1,0.9))
Table 9: TD
v (<%171‘n]n> ), 7t (%)), (arn(X), B X)>)
X1 ((2.4,2.5),(1.3,1.5))
X2 ((2.5,1.7),(1.3,1.4))
X3 ((1.8,2.6),(1.6,1.2))
X4 ((2.8,2.6), (2.1,1.6))

Definition 3.21. Let & =
and described as follows:

9):<<

Example 3.22. If we consider the Example 3.2, then we can find (O)(?? ) as follows:

> )

Z g (x

xXEY

xeYV
> (x) =0.3+0.2+05+03=13,

xeY

)oY ), (D a

(£, D1y P2, +ees ﬁn) be an LDFGS with underlying GS ¢. Then order of ¢ is denoted

(28)

X)? 252(

xXEY xeYV xXEY

=0.4+0.6+0.4+0.7=2,

D ag(x)=02+03+04+0.6=15,

xeY

> Belx)

xeY

=01402+02+0.2=0.7.
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Hence, O(%) = ((2,1.3), (1.5,0.7)).

Definition 3.23. Let ¥ = (2, D1y P2y -n f)n) be an LDFGS with underlying GS ¢4. The p;-size of 4 is denoted
and postulated as:

Sﬁz (g) = <<%§;Z ) %gﬁi >> <aSﬁi s BSﬁi >) s (29)
where
%énﬁi = Z %g:;(xa Y)7 %gﬁi - Z %gl (X7 Y)v O‘S,;l. = Z A, (X y Z ﬁpl X y (30)
(xvy)eébi (X,y)EéDi (x,y)eg ( ?y)eéa

Moreover, the size of ¢ is denoted and characterized as:
)= _Su(). (31)
i=1

Example 3.24. If we revisit Example 3.2, we have

ng = Z sy (x,y) =04+03+04=11,
(x,y)€

g, = > s(xy)=04+06+05=15,
(x,y)ES

as,, = Y. ap(x,y) =02+402+04=08,
(x,y)ES

Bss, = Y. Bu(x,y)=03+03+02=08.
(xvy)egl

Thus, Sp,(4) = (g 58, ). {as,, Bs;,)) = ((L.1,1.5),(0.8,0.8)). Similarly, S5 (9) = ((1.3,1.2),(0.7,1)).

Further, the size of ¢ is calculated as:

S(9) = Sp(9) +S5(9) = ((1.1,1.5),(0.8,0.8)) + ((1.3,1.2),(0.7,1)) = ((2.4,2.7), (1.8, 1.5)).

4 Maximal Product of Two Linear Diophantine Fuzzy Graph Structures

In this section, we introduce the notions of maximal product of two LDFGSs, strong LDFGS, degree and
pi-degree of a vertex in maximal product. Furthermore, certain consequences related to these concepts are
proved with some useful examples.

Definition 4.1. Let 4 = (21,;;’1,/;’2, e ,;;’n) and % = (22 /;”1,;; 9" ,,0 ) be two LDFGSs of the GSs
G = (N, &6, ,6) and % = (15, 8,8, -+ ,&)), respectively. Then, G =G xGy = (L,p1,02, , Pn)
is called maximal LDFGS with underlying crisp GS ¢ = (”f/ &1, - ,éan), where ¥ = ¥ x ¥ and

= {( X1,¥1), (xz,yg)) X1 = X2, (y1,y2) € & or y1 = yo2, (x1,X2) € 5’} LDF vertex set £ and LDFRs
p; in maximal product % * 542 are defined as :
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2 = ,81 * ,82
= (48 (00), 42, () (0, (%), Bey (3)) ) + (4 (9), 48, (9)): (02 (7). B (9))
= (<(%,Tﬁnl * %g;)(x7Y)’ (%31 * %32)(X,y)>7 <(0421 * aSg)(X7Y)’ (ﬁih * BS2)(X7Y)>>

= (<%£n(x7 ), #g(x, y)>7 <a£(x> y), Be(x, Y)>>v (32)
where
s (X,y) = #g, (%) V 52g, (¥),
g (x,y) = g, (X) A s, (¥),
de(x,y) = e, () V gy (y), (39)
Be(x,y) = Be, (%) A Be, (¥),

for all (x,y) € ¥ = %1 x ¥ and p; = g} = p are defined

pi = pi* by
= <<% (x1,¥1), 75 (x1,¥1) >,<aﬁ;(x1,}’1)7ﬂﬁ;(><1,3’1)>) ((ﬂvn (x2,¥2), “”(X27Y2)> ( ﬁ;’(x2aYQ)75§;’(X27Y2)>>

<<( ) (x1y1,%X2y2), (%’,?; * %g;/)(X1Y1,X2YQ)>, <(Oé,5; * aﬁ;')(X1Y17X2Y2) (5,5’ * “”)(XIY17XQYQ)>)
= << 2 (X1y1,X2y2), % (X1Y1,X2}’2)>,<Oépi(X1Y1,X2}'2),ﬂpi(X1Y1,X2Y2)>>, (34)
where
%m \/ %v// (yl, y2) if X1 = X2, (YL y2> g”
0 ((x1,¥1), (X2, y2)) ’,3; , (35)
%LQ )V &7 (x1,%2), if y1 =y2, (x1,X2) € &
g, (%) A 2 (y1,y2), i X1 = xa, (y1,y2) € &'
p; ((X1,Y1 Xz,Y2 fll / (36)
%£2 ) A %v, (x1,x%2), if y1 = y2,(x1,%2) € &
ag, (x1) V oy (y1,y2), if x1 =x%2, (y1,¥2) € &
g, ((XLY1 X23y2 / (37)
g, (Y1) V ay (x1,%2), if y1 = y2, (x1,%2) € &
X1 v// y1,¥2), if x1 = %2, (y1,¥2) € &
By, (x1,¥1), (x2,y2)) = B, (x1) A By ; 31,%2) , (38)
Be, (y1) A 5;; 1(x1,%2), if y1 = y2, (x1,%2) € &
i=1,2,-- n.

Example 4.2. Consider two LDFGSs ¢ = (L1, 44, Ph, ) and Gy = (£2,47), which is depicted in Figure
2 with underlying GSs 4 = (%1, 6,85, 83) and % = (¥4, 8]"), respectively, where ¥ = {u;,uz,u3} and
Y5 = {v1,Vva} are two sets of vertices and & = {(u1,u3)}, & = {(u1,u2)}, and &; = {(uz, u3)} are the set
of edges on 71, and &' = {(v1,va)} is the edges set on ¥ such that &/ and & are irreflexive and symmetric
binary relations on #; and %5, respectively. The LDFSs £ on #; and £ on % are given in the TABLES
10 and 11, respectively. The LDFRs p}, g, p5 over the &7, &5, &4, and pYf over &/’ given in TABLES 12, 13,
14 and 15 respectively. By using Definition 4.1, we obtain the following LDFS £ = £; % £9 illustrated in
FIGURE 3 and shown in TABLE 16 and LDFRs p; = g} * p for ¢ = 1,2,3 shown in TABLE 17, 18, 19,
respectively.
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Table 10: LDFS £,

N (g (%), 58, (%)), (o, (%), Be, (%))
u; ((0.6,0.5),(0.4,0.3))
uy ((0.4,0.3), (0.5,0.4))
us ((0.8,0.9), (0.6,0.3))
Table 11: LDFS £,
Yo ({38 (%), 5, (%)), (g, (%), Be, (%))
V1 ((0.7,0.4),(0.3,0.2))
Vo ((0.3,0.2),(0.4,0.1))
Table 12: /;’1
51/ ,0 (X Y) %“ (X,y)),<Oé[;,1(X,y),B[;,l(X,y)>)
(ug, u3) (<0.6, 0.9),(0.4,0.5))
Table 13: 5’2
£)2, ,0 (X y) %“ (x,y)),<a’;,2(x,y),/6’l;,2(x,y)>)
(u, u) (<o.4, 0.5),(0.3,0.4))
Table 14: 5’3
& (2 (xy), 7 (xy) (0 (x.¥). By (x.¥))
(uz, u3) (<0.4, 0.9),(0.5,0.4))
Table 15: ;;"1
&Y' (27, (x,3), 5%, (%,3)), (e (%,¥), B (%,¥)))
(v1,V2) ((0.3, 0.5), (0.2, 0.3>)
Definition 4.3. An LDFGS & = (S,ﬁl,ﬁQ, ‘e ,[)n) is called p;-strong, if
g (x,y) = 2" (%) A g (),
a (X y) = 2 (x) V 72 (y),
o (%,y) = ag(x) Aag(y),
By (x,y) = Be(x) V Be(y),

forall x,y € ¥. If ¢ is pi-strong for all ¢ =1,2,---

Theorem 4.4. Mazimal product of two strong LDFGSs is also a strong LDFGS.

,n, then ¢ is called strong LDFGS.
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Table 16: £ = £ x £9

4 (A (%), 22 (x,y)), {ae(x,y), Be(x,¥))

)
(0.7,0.4), (0.4,0.2))
(0.6,0.2),(0.4,0.1))
(0.7,0.3),(0.5,0.2))
(0.4,0.2), (0.5,0.1))
(0.8,0.4),(0.6,0.2))
(0.8,0.2), (0.6,0.1))

(
(
(
(
(
(

Table 17: p;

&1

(5! (x1y1,%2y2), 25, (x1y1, X2y2)), {3, (X1¥1, X2¥2), By, (X1¥1, X2¥2)))

uivi, uiva

( )
( )
(112V1, u2v2)
( )
( )

)

((0.6,0.5),(0.4,0.3))
((0.7,0.4),(0.3,0.2)
((0.4,0.3),(0.5,0.4)
((0.3,0.5),(0.6,0.3)
(0.6,0.2), (0.4,0.1)

’

)
)
)
)

Table 18: po

&

(52 (x1y1,%2y2), 25, (X131, X2¥2)), (s, (X131, X2¥2), B, (X1¥1, X2¥2)))

(112V1, 113V1)

(ugva,usvs)

((0.7,0.4),(0.5,0.2))
((0.4,0.2),(0.5,0.1))

Table 19: p3

&3

(<% (X1¥1, X2¥2), 55, (X1¥1, X2Y2)), (@ (X1¥1, X2Y2), Bg (X1¥1, X2y2)))

(ugvy,uzvy)

(u1va, usvs)

((0.7,0.4), (0.4,0.2))
((0.6,0.2), (0.4,0.2))

Proof. Let 4 = (Sl,ﬁ’l,;;’Q,--- ,pv’n) and % = (Sg,pu”l,pv”Q,-~~ ,
according to the Definition 4.1, we have the following cases:

Case i: When x; = x2 and (y1,y2) € &. Then,

;;”n) be two strong LDFGSs. Then,
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uy ((0.6,0.5), (0.4, 0.3)) v1((0.7,0.4), (0.3,0.2))
[
3
B
ke
e
3
°
0'3((0.4,0.9), (0.5,0.4)) <
([ J
uz((0.4,0.3), (0.5,0.4)) uz((0.8,0.9), (0.6, 0.3)) v2((0.3,0.2),(0.4,0.1))

Figure 2: LDFGSs % = (€1, 84, b, ) and Gy = (L2, 77)

(uz, v2)((0.4,0.2), (0.5,0.1))

((7'0g'0) “(g°0‘F°0)) T

$3((0.6,0.2), (0.4,0.2))

(u1,v2)((0.6,0.2),(0.4,0.1)) (us, v2)((0.8,0.2),(0.6,0.1))
E( B(
g (uz,v1) (0.7, 0.3), (0.5,0.2)) ’g
jl dw
° o
= &
S S
@ &
° o
& «

p3((0.7,0.4), (0.4,0.2))

(u1,v1)((0.7,0.4), (0.4,0.2)) (u3,v1)((0.8,0.4), (0.6,0.2))

Figure 3: Maximal product G = {?1 * gz

%ZZ((xl,yl), (X27Y2)) = s, (x1) V %;'Z/(YL}Q)

)
= 28 (x1) V [38 (y1) A 58 (y2)]
= [ (x1) V 58 (y1)] A [548 (x1) V 28, (y2)]
= [ (x1) V o8 (y1)] A [548 (x2) V 528, (y2)]

= %}jn(xh}q) A %?(XQ,YZ)-

—~~
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Similarly we can show that > ((x1,y1), (x2,¥2)) = »g(x1,¥1) V 2¢(x2,y2), ap ((x1,¥1), (x2,¥2)) =

ag(x1,y1) A ag(x2,y2), and By, (x1,¥1), (x2,y2)) = Be(x1,y1) V Be(x2,y2).
Case ii: When y; = y2 and (x1,x2) € &/. Then,

s (x1,y1), (%2,¥2)) = x4,

= %g; Y1 %5”1 (x1) A %g‘l (Xg)]

= [ (y1) V 5 (x1)] A [ (1) V 548, (x2)]
= [ (y1) V 5 (x1)] A [, (v2) V 548, (x2)]
= 2g' (X1, ¥1) A 28 (X2, y2).-

In the same way, we can prove that s ((x1,¥1), (x2,¥2)) = 28 (x1,y1)Voeg (X2, ¥2), ap ((x1,¥1), (X2, ¥2)) =

ag(x1,y1) A ag(x2,y2), and B ((x1,¥1), (X2,¥2)) = Be(x1,¥1) V Be(xa,y2). Thus, 4 = % % is a strong
LDFGS. O

Theorem 4.5. The mazimal product of two connected LDFGSs is a connected LDFGS.

Proof. Let 4| = (21,,5’1,;;’2, e ,pU’R) and % = (Sg,pv”l,pv”% e ,pv”n) be two connected LDFGSs with un-
derlying GSs % = (1, &/, 65, ,&)) and % = (¥, &, &Y, -+, &), respectively. Let ¥ = {x1,%2, - ,Xp }
and 75 = {y1,y2, -+ ,¥q}- Then, according to the Definition 3.13,

for all x;,x; € 71 and y;,y; € #3. Consider m subgraphs of 4 with the vertex sets {(xi, v1), (Xi,y2), -, (X, yq)}
for i = 1,2,--- ,m. Each of these subgraphs of ¢ is connected since x;’s are the same and % is connected,
each y; is adjacent to at least one of the vertices in ¥#;. Since ¥ is connected, each x; is also adjacent to at
least one of the vertices in #{. Therefore, there exists one edge between any pair of the above m subgraphs.
Thus, we have

(%5 (%4, ¥5), Xk, ¥1)) > 0, (55,)°° (%4, ), (X, y1)) > 0, and
(aﬁi)oo((xi7yj)7 (kayl)) > 07 (6/;/i)oo((xiayj)7 (Xk7y1)) > 07

for all ((xs,¥;), (Xk,¥y1)) € &i. Hence, ¢ is connected LDFGS. [

Definition 4.6. Let & = %5% = (£, p1, 2, -+ , Pn) be the maximal product of LDFGSs 9 = (L1, /1, /s, -+ 1)
and % = (22, [;/’1, pu”Q, e ,pu”n). Then, the degree of a vertex in 9 is postulated as follows:

D(xi,y;5) = <<%]17]7);(Xia}’j)a s, (Xi,¥5)), <04]D)g~(xi7yj):Bng(Xi;yj»)’ (40)
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where
o, (xiyj) = Yo gpxexe) Vo (y)) + > s (¥, ¥1) Vo2 (i)
(%4,Xk)EE] Y=Y (¥ Y1) €8] xi=xx,
%]B@v (i yj) = Z %g; (x5 Xk) A %gz (yj) + Z %g;’ (yj7 yi) A %31 (xi)
(xiaxk)egi/vyj =Y (y] ,YL)E‘%Nyxi:Xk (41)
ap,, (Xi,y;) = > o (xi, X)) V ag, (y;) + > ag(yj,yi) vV ag, (%)
(xi,%xK)EE] Y =Y1 (yiy0) €8] xi=xp
Ao, (%i,y;) = > By (%5, %) A B, (v5) + > B (yi> 1) A Be, (xi)
(xi,Xk)EE] Y j=Y1 (v ¥1)€EE] xi=x

Also, p; — Dy(x;,y;) of a vertex (x;,y;) of maximal product 4 is defined as follows:

where
= (X yj) = > w5 (%, X)) V 225, (v5) + > (Y5, Y1) V o, (i)
(%i,%Xk)ES] Y =Y1 (yj Y1) €8] xi=xy,
%zn - %ﬁg(xian) = Z %%(Xbxk) A %gz(yj) + Z %gg(}’p}’l) A %31(Xi)
(xi,XK)EE] Y j=Y1 (¥, y1)€EE! xi=xy (43)
a; — ap, (Xi, y;5) = > oy (Xi, X)) Vo ag, () + > g (y,y1) V ag, (xi)
(xi, Xk )EE]y =W (¥5,y1) €8] xi=xp
Bi — By, (xi,y5) = > By (xis xk) A By (y;) + > Ber(yisyi) A Be, (i)
(s xk) €61y =Y (y5:y1) €& xi=xk J

Example 4.7. (Continued from Example 4.2) With the same LDFGSs %), % and their maximal product
Y = 4 x Y with underlying GSs ¥4, % and their maximal product ¢ = 4 * %. According to Definition
4.6, the degrees of vertices in & are calculated as follows:

%ﬁg(ul,vl) = %gflb(ul, uz) Vg (vi) + %g,;(ul,u?,) Vg (vi) + %gllll(vl,VQ) V g (ug)
=04Vv074+06V0.7+03V0.6=2

%ﬂg(ul,VQ) = %g{(ul, ug) V %g;(VQ) + %;Z(ul,u;g) Vv %)73”2 (ve) + %[T,l,(vl,VQ) V %E (uy)
=04Vv03+06Vv03+0.3V0.6=1.6

i, (U2, v1) = s (ag, 1) V seg, (Vi) + 25 (g, u3) V 228, (V1) + 5650 (V1, v2) V seg, (ug)
=04Vv074+04Vv0.7+03Vv04=138

%ﬁlg(UQ,VQ) = %%?(uz, uy) VvV %}Z(Vg) + %;Z(ug, u3) V %?2 (ve) + %gfll(vl,VQ) V %’in (u2)
=04v034+04Vv034+03Vv04=1.2

%ﬁié(ug,vl) = %g,;(ug, up) Vg (V1) + %%(ug,ul) Vosg (vi) + %gzl(vl,vz) V g (u3)
=04Vv074+06Vv0.7T+03V0.8=22

%]g;(ug,VQ) = %EZ(U;;, ug) V %g;(VQ) + %g,;(ug,ul) Vv %Eé (ve) + %gllll(vl,VQ) vV %Enl (us)

=04Vv03+06Vv034+03Vv0.8=1.8
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similarly,

%ﬁg(ul,vl) = s (a1, uz) A sxg, (vi) + %gg(ul,ug,) A g, (V1) + %g,l,(vl,vQ) A seg (ur)
=05A044+09A04+05A05=1.3

%ﬁg (ug,vy) = %g/l(U]_, uz) A g, (vo) + %/?g (ur,u3) A sg, (va) + %glll (V1,v2) A seg (uy)
=05N024+09A0.2405A05=0.9

%ﬁg(u%vl) = %grl(UQ, ug) A %QQ(Vl) + %p’?,z(ug,u;g) A %EQ (vi) + %g,l,(vl,VQ) A %gl (u2)
=05A044+09A04+051A03=1.1

7, (02, v2) = s (uz, w) A g, (V2) + 565 (U2, u3) A 22g, (Va) + 50 (Vi v2) A g, (ug)
=05A02409A024+05A0.3=0.7

%ﬁg(u&vl) = %gé(ug, uz) A g, (vi) + %gg(ug, up) A g, (vi) + %g,ll(vl,VQ) A g (u3)
=09AN044+09A044+05A09=1.3

%ﬁg(ug,vQ) = %gé(ug, up) A sg, (Vo) + %gg(ug,m) A g, (va) + %%/(Vl,VQ) A 3¢ (u3)

=09A02409A02+05A09=09

In the similar way, ap,, (x4,y;) and Bp, (x4,y;) are calculated for all x; € ¥] and y; € 72, shown in TABLE

20.
Table 20: ]D)g;
v (G i) o (i), (o, (x0,37), B, (%0, 7))
(uy,vy) ((2,0.9),(1.1,0.7))
(ug, vo) ((1.6,1.1),(1.2,0.5))
(ug,v1) ((1.8,0.7),(1.3,0.7))
(ug, v2) ((1.2,1.3),(1.4,0.5))
(usz, v1) ((2.2,0.9), (1.5,0.7))
(us, va2) ((0.8,1.3),(1.5,0.5))

Now, we calculate p; — Dy/(x;,y;) for all i = 1,2,3 as follows:

wt — oy (g, vy) = %Ufl‘(ul, up) Vg (vi) + %v//(Vl,VQ) Vg (u) =04V 0.74+03Vv0.6 =13
]t — %ﬁ;(ul,VQ) = %f?(ul, uz) Vg (Vo) + %v//(V]_,VQ) Vg (u) =04V03+03v0.6=1
' — %ﬁié(ug,vl) = %f’{(ug, ug) Vg (vi) + %v//(Vl,VQ) Vg (u2) =04V0.7+03Vv04=11
n]t — %E@(UQ,VQ) = %ﬁi(uz, u) Vg (vo) + %ﬁ/ll(V]_,VQ) Vg (u2) =04V 0.34+03Vv04=038
' — %ﬁfg(ug,vl) = %C?(Vl,vg) Vg (ug) = 0.3V 0.8 =0.8

P D, (ug, vo) = %f'/} (v1,v2) V g (u3) = 0.3V 0.8=0.8
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Similarly, s} — %ﬁg (x4,y;) can be calculated as:

n] — ﬁg(ul,vl) = x5 (ur,ug) A seg, (v1) + %g,l,(vl,vQ) A g (u) =05A044+05A0.5=0.9
n] — ﬁg(ul,VQ) = x5 (ur,uz) A s, (va) + %g,l/(vl,VQ) A g (u) =05A02+05A0.5=0.7
n] — ﬁg(ug,vl) =5 (ug,uy) A seg, (v1) + %g,l,(vl,vQ A g (ug) =05A04+05A0.3=0.7
n] — ﬁ)g (ug,vo) = 5 (ug,ur) A sg, (va) + %ﬁ,ll(vl, v2) A xg (u2) =0.5A0.2+0.5A0.3=0.5
nl — ﬁg(ug,vl) :%ﬁlll(vl,vQ)/\%gl(ug) 09N04=04
] — ﬁg(U3,V2) :%@&,(Vl,VQ)/\%gl(ug) 0.9A0.5=05

Moreover, a; — ap,, (xi,y;) and 1 — Bp, (x4,y;) are evaluated by following the same steps, which are given
in TABLE 21.

Table 21: ,51 — Dg“

v (A, iy — (ki y), (o1 — am (5, 5), 61— B, (%)) )
(a1, vy) ((1.3,0.9),(0.7,0.5))
(ug, vo) ((1,0.7),(0.8,0.4))
(ug,vy) ((1.1,0.7),(0.8,0.5))
(uz, va) ((0.8,0.5), (0.9,0.4))
(ug, v1) ((0.8,0.5),(0.6,0.3))
(u3, vo) ((0.8,0.5),(0.6,0.3))

Now, we calculate py — Dy(x;,y;) as

2o —%ﬁ;(ug,vl):XCZ(UQ,Ug)\/%g(Vl) 0.4v0.7=0.7
7y —%ﬂr)f‘g(ug,VQ) :%?Z(ug,ug)\/%g;(VQ) 04Vv03=04
2o —%ﬁ;(ug,vl):%@g(ug,ug)\/%g";(vl) 0.4v0.7=0.7
P2 —%[gl(é(ug,VQ) :%Z;(UQ,ug)\/%g(VQ) 04Vv03=04
%S—%ﬁg(ug,vl) :%%(UQ,Ug)/\%ELQ(Vl) 09AN04=04
ny — %ﬁ(é(ug,w) = %E,Z(ug, u3) A »g,(v2) =0.9A0.2=0.2
y — H")?(ug,vl) :%ﬁé(ug,ug)/\%&(vl) 09AN04=04
ny — ﬁg(u;v,,VQ) :%Z/Z(UQ,U:),)/\%EQ(VQ) 09AN0.2=0.2

In the similar manners, we have calculated as — %ﬁ)g (x4,y;) and By — %ﬁg (x4,y;) for all x; € #1, and

y;j € %2 which presented in TABLE 22. By following the similar methodology as above, p3 — Dy (x;,y;) are
evaluated for all x; € 71, and y; € #2 which are shown in TABLE 23.
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Table 22: gy — Dy

v (G = () sl = (%0y))) (a0 — (%0, 35), B2 — Bo (%0,35)
(u2,v1) ((0.7,0.4),(0.5,0.2))
(a2, v2) ((0.4,0.2),(0.5,0.1))
(us, v1) ((0.7,0.4),(0.5,0.2))
(us, va2) ((0.4,0.2), (0.5,0.1))

Table 23: p3 — Dy

4 (<%§n — s, (%0, ¥5), 545 — sy (%6, ¥;5)), (s — oy, (%4, ¥5), Bs — 5Dg(xz',}’j)>)
(ar,vy) ((0.7,0.4),(0.4,0.2))
(ar, va) ((0.6,0.2),(0.4,0.1))
(us, v1) ((0.7,0.4), (0.4,0.2))
(us, va) ((0.7,0.2), (0.4,0.1))

Theorem 4.8. If%vl = (21,;;’1,,5’2,--- ,ﬁ/k) and 9 = (Sg,pu”l,pu”z,-" ,pv/’k) are two LDFGSs such that
£1Cp", i =1,2,--- k, then the degree of any vertex in mazximal product G =G Gy = (S, D1, P2, ,,ék)
s given by:

D (xi,y;) = <<%$g(xia}’j)a%ﬁg(xian)% <aDié(Xian)v/8Dg(XiaYj)>)a (44)
where
i, (Xi,¥5) = Dy ()8, (y5) + »p, (¥5),)
1, (Xi,¥j) = Day (%) 222, (y5) + b, (), (45)
ap,, (%, yj) = Dg, (xi)ag, (y;) + ap,, (v5),
B, (xi,¥5) = Day (xi) Be, (v5) + oy, (v5)- ]

Proof. Let 4 = (Sl,pv’l,pv’g, e ,/;’k) and % = (Eg,pv”l,pv”Q,--- ,pv”k) be two LDFGSs such that £, C pu”l-,
then p/; C £5,i=1,2,---, k. Thus,

o, (X0, yj) = > w5 (Xi, Xp) V 228, (¥5) + > AN ORESACS)
(xi,%k) €Sy =y1 (v Y1) €] Xi=Xp
= D> B+ Y AW
(xi,%xK)EE]y i =W1 (yiy)€8] xi=xp

= Dy, (xi)7g, (y5) + 5. (¥5);
EP)
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Also,
b, (X, ¥j) = > w (xi, X ) A seg, (y) + > 22 (¥, y1) A 728, (%)
(xi,%k)€EE] Y=y (¥i,y)€E] xi=xp,
= > g, (yj) + > 250 (Y55 ¥1)
(xi,%k)€EE] Y=V (yiy1)€8] xi=xp

= Dy, (x3) 522, (v5) + >, (v5)
By adopting the procedure, we can show that

D, (%i,¥5) = Dg, (xi)ag, (v5) + ap,, (v5) and Do (%, y;) = Dg, (xi)Be, (v5) + By, (v5)-

O

Theorem 4.9. If?!”ul = (21,5’1,,5’2, e ,,z;’k) and Gy = (Sg,pu”l,pv”Q, e ,[;/’k) are LDFGSs such that £1 C /;’/i,
i=1,2,---,k, and £ is constant LDFS of LDF value ((a,b), (c,d)), where a,b,c,d € [0,1] are fized, then
the degree of any vertex in mazimal product G =G Y is given as:

Dg(xi7 y]) = (<%ﬁ; (Xl'v YJ)a %]]Sl)cgv (Xia y])>a <O‘]D)g; (Xi7 y])a 6@@ (Xia yj)>) ) (46)
where .
%]g;; XZ') y] = D(f1 XZ a + %]ﬁ;g2 (y] I
#p,, (X6, ¥;) = Dy, (%i)b + >

(47)

Proof. Let 4 = (21,/;’1,/;’2, e ,ﬁ’k) and % = (Eg,pv”l,pv”Q,--- ,/;”k) be two LDFGSs such that £ C pv”z-,
then pv’i C9,1=1,2,--- ,k and £9 is a constant LDFS. Therefore,

b, (Xi, yj) = > w5 (i, Xp) V 228, (v5) + > s (v, y1) V28, (i)
(xi,%k)ES] Y =y1 (¥5,y1) €8] xi=xp
= > sy (i) + > AN
(xi,%xk)€EE] Y=y (yiy1)€8] xi=xp

=Dy, (x5)a + >, (¥;)-

Also,
o, (X0 yj) = > g (Xi; X ) A seg, (y5) + > s (Y3, y1) A o2, (i)
(xi:Xk)ES] Y j=y1 (viy1)EE] xi=xp
= > g, (yi) + > 25 (¥, 1)
(x:,X1K)EE] Y j=Yy1 (¥ Y1) €S xi=xx,

=Dy, (x:)b + 55, (v5).
Similarly, we can show that

ap,, (%, yj) = Dy, (xi)c + ap,, (v;) and ap, (%i,¥;) = Dy, (xi)Be, (v5) + o, (¥5)-
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Theorem 4.10. Ifgvl = (,21,,5’1,;;’2,--- ,5’k) and G = (Sg,pu”l,pv”Q,--- ,;;”k) are two LDFGSs such that

(49)

L9 C pv’i, 1=1,2,--- ,k, then the degree of any verter in mazximal product G =G Y, is given by:
Dy(xi,y5) = ((”ﬁ;(xz‘ayg%%ﬁg(xzvy]‘)% <04D>g>(xuYj)wé’mg(xz'v}’j»)a (48)
where
%ﬁg Xi,Yj) = %ﬁl% (xi) + Dg, (y;) g, (%i),
b, (%0,55) = 2, (%) + D, (v5) 22, (xi),
(

Proof. Let 4, = (21,5’1,5’2, e ,pv’k) and % = (22,,07’1,/;”2, e ,/;”k) be two LDFGSs such that £9 C /;’Z-,
then p”; C £1,i=1,2,--- , k. So,

b, (Xi, yj) = > w5 (Xi, Xp) V 228, (v5) + > s (v, y1) V28, (%)
(xi,%k)EE] .y =y1 (Y€ xi=Xp,
_ 3 305 (X3, Xk) + > 72 (%)
(xi, X% )EE],y =1 (y5y1)EE] xi=xy

= sy, (%i) + Dy, (y5) 2, (xi)-

Also,
o, (X0 yj) = > e (Xi; X ) A seg, (y5) + > s (Y3, y1) A o2, (i)
(xi,xk)EE] Y=Y (yiy1)EE] xi=xy
= Z %g; (xi,xk) + Z g (%)
(xi,xk)ES] Y i=y1 (¥ Y€} xi=x%p,

= s, (xi) + Dy, (y5) 2, (xi).

Similarly, we can show that ap_ (xi,y;) = apy, (xi) + Dy, (yj)og, (x;) and Bp,(xi,y;) = ﬁD% (%) + Dy, (y;)
Bﬂl (Xl) O

Theorem 4.11. If%ul = (21,5’1,5’2,--~ ,pv’k) and Gy = (22,pv”1,,0v”2,"' ,,ov”k) are two LDFGSs such that

Lo C /;’Z-, 1=1,2,---,k, and £1 is constant LDFS of LDF value ((a, b), {c, d)), where a,b,c,d € [0,1] are

fized, then the degree of any vertex in maximal product G =G x%, is given by:

Dy (xir ;) = (48, (xis ¥), 7, (%0 ¥3))» (m (%0s Y3 Aoy (%6 ¥3)) ) (50)
where
b, (Xi,¥5) = #p,, (%i) + Dy, (y;)a,
., (Xi,¥j) = 7, (xi) + D, (v5)b, -
an, (Xi,¥j) = an, (%) + Dy, (v5)e,
B (xi,¥5) = o, (i) + D, (y;)d. |
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Proof. Let 4 = (31,5’1,5’2,--- ,,c;’k) and % = (22,,5”1,;;”2,--- ,;;”k) be two LDFGSs such that £ C 5’i,
1=1,2,--- ,k, and £; is constant LDFS of LDF value ((a, by, (c, d>) Therefore,

(X0 yj) = > g (i, Xk) V 228, (¥5) + > s (v, y1) Vg, (i)
(xi:Xk)ES] Y j=Yi (yi Y1) EE] xi=xy
= Z %gg(xi,xk) + Z g (%)
(xi,x,)EE!,y ;=Y (v Y1)EE] xi=xp,

= 4, (%) + Dy (3,

Also,
5, (%i,¥5) = > s (X, Xp) A 28, (y5) + > s (¥, y1) A 728, (%)
(xi,Xk)EE] Y=Y (y5,y1)€E] xi=xX,
_ 3 > (i, X)) + > 3 (%)
(xi,%k)€EE] Y=y (¥j Y1) €] xi=xp

=, (xi) + Dy, (y;)b.
Similarly, it can be shown that ap,, (x4,¥5) = apy, (%) + Dy, (yj)c and B, (x4,y5) = B]Dgl (x;) + Dy, (y;)d.
]

Theorem 4.12. Ifgvl = (Sl,pu’l,pu’%'-- ,pv’k) and 5% = (Eg,pu”l,pv”Q,--- ,pv”k) are two LDFGSs such that
/;”i C £ and pv’i C L ,1=1,2,---,k, then the degree of any vertex in mazximal product G =G « gvg 18
characterized as:

Dy (xirys) = (B, 0 33), 2B, (%00 930 (am, (53, 9), B,y (5 ¥7)) ) (52)
where
#i,, (%0, yj) = Dy (%) 225, (v5) + Dy () 28, (%),
w1, (Xiy ) = Dy (x0) 528, () + Dag, (v5) 48, (x0), (53)
an, (%i,y;5) = Dy, (xi)og, (v;) + D, (y5) e, (%),
Bp, (Xi,¥;) = D, (xi) B2, (v5) + D, (v5) Be, (x:)

p';C & and p/; C Ly, i=1,2,- k. Then,

., (X0 yj) = > s (i, Xk) V 228, (v5) + > AN ORESHES)
(%i,%Xk)ES],Yi=Y1 (v, y1)€E] xi=x

D D107 ) S SO (1 ¢'%

(xi,xK)ES] Y=y (yi:y1)€8] xi=xp

= Dy, (xi) 75, (y5) + D, (y5) 22g, (i)

Also,
5, (%i,¥5) = > o (X, Xp) A 28, (y5) + > s (¥, y1) A 722, (%)
(xi,Xk)EE] Y=Y (yiy1)€E] xi=xy,
PRRAY) J J
= > g, () + > g, (%i)
(xi,%k)€EE] Y=y (¥5 Y1) €S xi=X,

= Dy, (xi)7g, (y;) + De, (y5) g, (xi)-
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Similarly, we can show that ap,, (x;,y;) = Dy, (xi)ag, () +Dg, (v;)as, (xi) and Bp,, (x,y;) = Dy, (xi)Be, (v;)
'HD)%z (Yj)/Bih (Xz) U

Example 4.13. Consider two LDFGSs ¥ = (L1, 7, 5, ) and Gy = (L2, p), which is depicted in Figure
4 with underlying GSs ¢ = (¥1,8],&,,84) and % = (¥4, 8]'), respectively, same as in Example 4.2. The
LDFSs £; on #; and £9 on ¥ are given in the TABLES 24 and 25, respectively. The LDFRs g}, gh, g5 over
the &7, &y, &3, and pf over &/’ given in TABLES 26, 27, 28 and 29 respectively with g, C £ and p C £, for
i = 1,2,3. By using Definition 4.1, the LDFS £ = £; % £9 is shown in TABLE 30 and LDFRs p; = g, * p/
for ¢ = 1,2,3 shown in TABLE 31, 32, 33, respectively. The resulting LDFGS G =G xG = (£, P15 P2, [)3)
is illustrated in FIGURE 5

uy (0.6, 0.5), (0.4,0.3)) v1((0.7,0.4), (0.5,0.2))
[ ]
i
3
&
e
L
S
vl\’)
o
55((0.4,0.9), (0.5,0.4)) 2z
[ J
uz((0.4,0.3), (0.5,0.4)) uz((0.8,0.9), (0.6,0.3)) v2((0.8,0.2), (0.4,0.1))

Figure 4: LDFGSs 91 = (&1, 7}, fy, 4) and % = (Lo, )

Table 24: LDFS £

N (4 (x), g, (%)), g, (x), Be, (%))
u; ((0.6,0.5), (0.4,0.3))
uy ((0.4,0.3),(0.5,0.4))
us ((0.8,0.9), (0.6,0.3))
Table 25: LDFS £,
7/2 (<%T (X)’ Mg, ( )>7<a22(x)w822(x)>)
V1 ((0.7,0.4),(0.5,0.2))
Vo ((0.8,0.2),(0.4,0.1))

Table 26: p'y

éoll (< g} (X Y) %“ (X7Y)>’ <a,;/1 (X’Y)vﬁl;ll (X7Y)>)
(uy, us) «&a&%&&ao@)
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(uz, v2)((0.8,0.2), (0.5,0.1))

((7'0g0) (g°0‘F°0)) T

$3((0.8,0.2), (0.4,0.1))

(u1,v2)((0.8,0.2),(0.4,0.1)) (us, v2)((0.8,0.2),(0.6,0.1))
E( B(
= (uz,v1)((0.7,0.3), (0.5,0.2)) =
o o
N N
S S
= >
° °
& &
p3((0.7,0.4), (0.5,0.2))

(u1,v1)((0.7,0.4), (0.5,0.2)) (uz, v1)((0.8,0.4), (0.6,0.2))

Figure 5: Maximal product G =% %,

Table 27: 5’2

£’2, (<%g}2 (Xv y)’ %/?/2 (X7 Y)>7 <O[,;/2 (X’ Y)7 /65/2 (X) Y)>)
(uy, uy) ((0.4,0.5),(0.3,0.4))

Table 28: 5’3

é’é (<%g}3 (X, y)? %2/3 (X7 y))? <Oé[;,3 (X, Y)7 55/3 (X, Y)>)
(ug,u3) ((0.4,0.9),(0.5,0.4))

Table 29: pu”l

gl// ((ng/1 (X7 }’), %g//] (X7 y)>7 <ap7'1 (X, y)? /8p7/1 (X7 y)>)

(v1,Vv2) ((0.3,0.9),(0.2,0.5))
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Table 30: £ = £ x £9

vV (G (x,y), 7 (x,¥)), (s (x,y
0.7,0.4), (0.5,0.2
0.8,0.2), (0.4,0.1

), Be(%,¥)))
( ) )
( ) ( )
(0.7,0.3),(0.5,0.2))
( ) ( )
( ) ( )
( )5 )

0.8,0.2), (0.5,0.1
0.8,0.4), (0.6, 0.2
0.8,0.2), (0.6, 0.1

(
(
(
(
(
(

Table 31: p;

&1 (< o (x1y1, X2y2), 27 (x1y1,X2y2)), (g (X1y1, X2y2), B (x1y1,X2y2)))
(u1vi,urve) ((0.6,0.5),(0.4,0.3))
(u1vy, ugvy) ((0.7,0.4),(0.5,0.2))
(ugvy, ugvy) ((0.4,0.3),(0.5,0.4))
(ugvy, ugvs) ((0.8,0.9),(0.6,0.3))
(u;ve, ugvs) ((0.8,0.2),(0.4,0.1))

Table 32: po

& (2 (x1y1, X2y2), 225, (X1y1, X2¥2))s (s, (X131, X2¥2), B, (X171, X2Y2)) )
(ugvy,uzvy) ((0.7,0.4),(0.5,0.2))
(ugva, uzva) ((0.8,0.2),(0.5,0.1))

Table 33: p3

&3 (< (X1Y1=XQY2) (X1Y17X2Y2)>7 <aﬁ3 (X1y1,X2Y2), Bps (X1Y1,XQYQ)>)
(U1V1,U3V1) (<0.7,0.4>, <O.5,0.2>)
(u1va, uzva) ((0.8,0.2),(0.4,0.1))

Then, using the formula given in Theorem 4.12; we calculate the degrees of the vertices in the maximal
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product as follows:

wpy, (1, vi) = Dy, (1) 55, (v1) + Dy, (V1) e, (a1) = (2)(0.7) + (1)(0.6) =
%ﬁ}}g (ur, va) = Dy, (ur)sxg, (va) + Dy, (va)sg: (ur) = (2)(0.8) + (1)(0.6) = 2.2
%ﬁ;(ug,vl) Dy, (u2) g, (V1) 4 Dy, (v1) g, (u2) = (2)(0.7) + (1)(0.4) = 1.8

oy, (U2, Vo) = Dy, (u2) 528, (v2) + D, (v2) 528, (u2) = (2)(0.8) + (1)(0.4) = 2
%ﬁig (uz, vi) = Dy, (u3z)sxg, (v1) + Dy, (v1) g, (ug) = (2)(0.7) + (1)(0.8) = 2.2
%ﬁig (uz, v2) = Dy, (u3)sxg, (v2) + Dy, (va) g, (uz) = (2)(0.8) + (1)(0.8) = 2.4

And,

0, (1, V1) = Dy, (w1) 3¢, (V1) + D, (V1) 2, (w1) = (2)(0.4) + (1)(0.5) = 1.3
0, (U1, va) = Dy, (01) 568, (v2) + Dy, (v2)32g, (w1) = (2)(0.2) + (1)(0.5) = 0.9
#p, (a2, v1) = Dy, (uz) g, (v1) + Dy, (v1) g, (u2) = (2)(0.4) +(1)(0.3) = 1.1
0, (U2, va) = Dy, (u2) 528, (V2) + Dy, (va) s2g, (u2) = (2)(0.2) 4 (1)(0.3) = 0.7
%ﬁg (ug,vy) = Dy, (u3) g, (V1) 4+ Dy, (v1) g, (u3) = (2)(0.4) + (1)(0.9) = 1.7
%ﬁg (usz, vo) = Dy, (u3)sg, (v2) + Dy, (v2) g, (uz) = (2)(0.6) + (1)(0.9) = 1.3

In the similar way, we get an,, (x4,y;) and 510@ (x4,y;) for all x; € 71 and y; € #3, which are shown in TABLE
34.

Table 34: ]D)g;

v <<%]D) X“yj> %]D) (Xl7yj)> < (Xi7yj),BDg(Xi7yj)>>
3), ¢

(ug,vy) ((2,1.3),(1.4,0.7))
(a1, va) ((2.2,0.9),(1.2,0.5))
(a2, v1) ((1.8,1.1),(1.5,0.8))
(ug,vs) ((2,0.7),(1.3,0.6))
(uz,v1) ((2.2,1.7),(1.6,0.7))
(uz, vo) ((2.4,1.3),(1.4,0.5))

Theorem 4.14. If G = (21,5’1,5’2,--- ,pv’k) and G = (Sg,pv”l,pv”g,~~ ,,Ov”k) are two LDFGSs, such that
pv”z- D L,i=1,2,---  k, then the total degree of any vertex in maximal product g = Sél * E?g 1s described as:

TD(xi,y;) = <<%m (Xi,¥5), I, (Xzay])>7<04?1‘]D>g;(xiaYj)a/BTDg(XhYJ»)v (54)
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where

(55)

Proof. Let 4 = (Sl,pu’l,pu/Q, e ,;;’k) and % = (22,,07’1,5”2, e ,p;”k) be two LDFGSs such that such that
P D &1, then o/, D Lo and £, C £ i=1,2,--- , k. We have,

b, (Xi,¥j) = > g (i, Xk) V 22g, (¥5) + > 22 (5, ¥1) V 248, (%3) + 58 (%3, )
(xixk) €)Y =Y1 (v5,y1) €6} xi=x%p,
= > xRy Do vy + [ (i) Vs (v))]
(xixk)EE] Y=Y (v y1)€E] xi=xy
= Dy, (x:) 248, (v;) + (8, (v5) + 28, ()
= Dy, (xi)22, (v;) + >, (v))-
Also,
T, (X0, ¥j) = > g (Xi, Xp) A seg, (y) + > s (¥ y1) A 32, (xi) + 222 (%3, 3 5)
(xi,%k)EE] Y=y (Y€ Xi=Xp,
= Z %32 (Yj) + Z %g’j’(yﬁ yz) + [%EI (xl) N %gz (Yj)}
(xi,%xK)EE] Y =W1 vy €8] xi=xp,

=Dy, (x:)24¢, (v;) + (B, (v5) + 8, (¥5))

= Dy, (x3) 22, (y5) + >p,, (¥5)-

Similarly, we can show that atp, (xi,y;) = Dy, (x;)ag, (yj)—l—aqm% (v;) and Bro, (xi,y;) = Dy, (xi)Be, (y;)+
P, (yj). O

Example 4.15. Let 4 = (¥1,&]) and % = (¥5,4,) be GSs with ¥ = {uj,us}, % = {vi,ve}, & =
{(u1,u2)} and &’ = {(v1,v2)}. The LDFGSs ¥ = (£1,';) and % = (£2, p”,) with underlying GSs ¢ and
%, respectively are shown in FIGURE 6, where £; on #; and £9 on ¥ are given in TABLES 35 and 3v6,
respectively, and LDFRs pv’1 and pv’l’ presented in TABLES 37 and 38, respectively with the condition £; C pf.
By using the Definition 4.1, we obtain the maximal LDFGS G =G xGy = (2, /“)) is portrayed in FIGURE
7, where £ = £1 x £5 given in TABLE 39 on ¥ = ¥1 X % = {(ul,vl), (ug, va), (ug,vi), (ug,vz)} and LDFR
pr=pixpfoné& =& x& = {(ulvl, uva), (u1vy, ugvy), (U ve, ugva), (ugvy, u2v2)} presented in TABLE
40.

Table 35: £

7 (o (%), 58, (%)), (e, (%), Bey (%))
uy ((0.6,0.5),(0.4,0.2))
uy ((0.5,0.7),(0.3,0.5))
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u1((0.6,0.5), (0.4,0.2)) v1((0.5,0.6), (0.4,0.5))

u5((0.5,0.7), (0.3, 0.5)) v5((0.7,0.6), (0.6, 0.4))

Figure 6: LDFGSs % = (£1, ) and % = (£2, )

(uz,v2)(0.7,0.6), (0.6,0.4))

(uz,v1)((0.5,0.6), (0.4,0.5)) (u,v2)(0.7,0.5),(0.6,0.2))

(u1,v1)((0.6,0.5), (0.4,0.2))

Figure 7: The maximal LDFGS G = gl * S%

Table 36: £,

7/2 (<%;T:Z (X)’ %32 (X)>7 <a22 (X)’ 522 (X)>)
V1 ((0.5,0.6),(0.4,0.5))
Vo ((0.7,0.6), (0.6,0.4))

Using the Formula given Theorem 4.14, we calculate the total degrees of all the vertices of the maximal
product in the sequel:
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Table 37: [;/1

S (e (). () oy (%).55 (%))

1281 1281
(uy, up) ((0.9,0.5), (0.6,0.3))

Table 38: pf

&1 ({55, (x), 5%, (%)), (e (%), B (%))

Pl Pl P1 P1
(v1, Vo) ((0.8,0.3),(0.6,0.2))

Table 39: £ = £1 x £o

14 (2 (x,y), 73 (x,y)), (ae(x,y), Be(x,¥)))
(ug,v1) ((0.6,0.5), (0.4,0.2))
(u1,v2) ((0.7,0.5), (0.6,0.2))
(u2,v1) ((0.5,0.6), (0.4,0.5))
(ug, v2) ((0.7,0.6), (0.6,0.4))

Table 40: p1 = p x p!

&1

(<%ZI(X1Y1,X2Y2)7%;31 (x1¥1, X2¥2)), (0 (X1¥1, X2y 2), By, (X1¥1, X2y2)))

uivi,upva)
)
)
)

uzvi, uz2va

)

((0.8,0.3),(0.6,0.2))
((0.9,0.5),(0.6,0.3))
((0.9,0.5),(0.6,0.3))
((0.8,0.3),(0.6,0.2))

2

=

2

=

vi) = Dy, (u1)sg, (v1) + Dy, (v1) = (1)(0.5) + (0.8 +0.5) = 1.8
va) = Dy, (uy)sg, (v2) + %{T”D% (v2) = (1)(0.7) + (0.8 4+ 0.7) = 2.2
v1) = Dy, (u2)sg, (v1) + Dy, (vi) = (1)(0.5) + (0.8 +0.5) = 1.8
vo) =Dy, (a2)sg, (va) + sepp , (v2) = (1)(0.7) + (0.8 4 0.7) = 2.2

M
K
¥
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Also,
#p,, (1, v1) = Dy () 52g, (V1) + >4p,, (vi) = (1)(0.6) + (0.3 +0.6) = 1.5
s, (U1, v2) = Dy, (u1)3g, (va) + %%D% (v2) = (1)(0.6) + (0.3 +0.6) = 1.5
»1p,, (U2, V1) = Dy, (u2) g, (vi) + spp,, (v1) = (1)(0.6) + (0.3 +0.6) = 1.5
»1p,, (U2, Vo) = Dy, (u2) g, (v2) + %%TLD% (v2) =(1)(0.6) + (0.3+0.6) =1.5

In the similar way, we’ve calculated amp,, (x4,¥5) =

Dy, (x:)Be, (v5) + brg,

Dy, (xi)ag, (y;) + atpy, (v5), and Pro, (%i,¥5) =
(y;) for all x; € 71, and y; € 73, which are hsted in the TABLE 41.

Table 41: TD(x;,y;)

(A, (%0, 35), ity (%i,¥5)), (o, (%3, ¥5), Bro,, (X0, ¥5))

)
1.8,1.5),(1.4,1.2))
2.2,1.5),(1.8,1.1))
1.8,1.5),(1.4,1.2))
2.2,1.5),(1.8,1.1))

(
(
(
(§

Theorem 4.16. If f!”vl = (21,/;’1,,5’2,”'

Pl DLy, i =1,2,

75/14;) and ng - ('827&/17;;”27”'

fized, then the total degree of any vertex in mazximal product G =G x %, is characterized as:

TD, (xl, Vi)

where

(<%']I‘]D) (th]) %’]T]D) (X“y])>7<O‘TD<§“(Xiayj)v/BTDg;(Xi7YJ')>)7

m . m
%TIDJ%V Xi,Yj) = %TID)g yj + Dy, (x;)a,
2
n n
1, (Xi,¥j) = %TID)% y;) + Dy, (x;)b,

Proof. Analogous to the proof of Theorems 4.9 and 4.14. U

Theorem 4.17. If %, = (El,pu’l,pv’g,-"

5/1‘ 2'227 2:1727
TD,, (Xw}’]

where

75/k') and % = ('227&/17/;”27'”

(<%m (Xi,¥5)s #ID,, (Xla}’j)>a<04’]1‘]D>g~(xiaYj)a/B’]I‘]D)Eé(Xi’}’j»)a

b, (i, ¥5) = Dy (v) 78, (xi) + b, (%1),
%%D)g; (xi,¥5) = D, (v5) 28, (xi) + %%D)g;l (xi),
atp,, (Xi,y;) = Dy, (v))ae, (%i) + o, (%),
B, (Xi, ;) = Da, (y;)Be, (%i) + Pro,, (x:)

,/;”k) are two LDFGSSs, such that
,k, and £9 is constant LDFS of LDF value ({(a, b) (c,d)), where a,b,c,d € [0,1] are

(56)

, /;” k) are two LDFGSs, such that
,k, then the total degree of any verter in maximal product G =G x%D is postulated as:

(58)

(59)
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Proof. Identical to the proof of Theorems 4.10 and 4.14. O

Theorem 4.18. Ifg”vl = (Sl,pv’l,pv’%--' ,ﬁ’k) and % = (£2,pu”1,pv’/2,--- ,pv”k) are two LDFGSs, such that
pi D Lo, i =1,2--k, and £1 is constant LDFS of LDF value ((a,b),(c,d)), where a,b,c,d € [0,1] are
fized, then the total degree of any vertex in maximal product G =G xY, is given by:

Dy (xi,y;) = (<%17rnmg(xi7}’j)7%%Dg(xz',}’j»v <O[TD<'§7(X7;7y]')7%’]rTan(Xi7yj)>)7 (60)
where
%%Tnﬂj)gv xi’ y] = Dgl y] a + %%Dgl (XZ )

)
) (61)
)
)

Proof. Analogous to the proof of Theorems 4.11 and 4.14. O

5 Regular Linear Diophantine Fuzzy Graph Structures

In this section, we have defined the notions of g;-regular and regular LDFGSs. Some fascinating consequences
are also proved with illustrative examples.

Definition 5.1. An LDFGS ¢ is said to be ((a,b), (c,d))-p; regular, if Dy (x) = ((a,b),(c,d)), for all
x € ¥. Moreover, ¢ is called ((a, b), (c,d))-regular, if D(x) = ((a,b), (c,d)), for all x € .

Example 5.2. From Example 3.2, we can easily see that ¢ is neither p1 nor py regular. Also, not regular
LDFGS.

Remark 5.3. The maximal product of two regular LDFGSs may not be regular, which can justified through
Example 5.4.

Example 5.4. Let ¥ = {uy,us}, % = {vi1,va}, & = {(ui,u2)} and &’ = {(vi,v2)}. Then, % = (#1,8])
and % = (¥4, &5) are GSs.

u1((0.6,0.5), (0.4,0.2)) v1((0.5,0.6), (0.4,0.5))

u((0.5,0.7), (0.3,0.5)) v2((0.7,0.6), (0.6, 0.4))

Figure 8: LDFGSs % = (£1, /) and % = (£2, )

ConsideruLDFSsuﬁil on ¥ and £9 on ¥ which are given in TABLES 42 and 43, respectively.
LDFRs p) and p/ are exhibited in TABLES 44 and 45, respectively.
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Table 42: £

7/1 (<%E (X)v %gl (X)>’ <a21 (X)v /821 (X)>)
u; ((0.6,0.5),(0.4,0.2))
u ((0.5,0.7), (0.3,0.5))

Table 43: £9

Vs (e (%), 528, (%)), (e, (%), Be, (%))
V1 ((0.5,0.6),(0.4,0.5))
) ((0.7,0.6), (0.6,0.4))

Table 44: o'y

& (6 (0, () oy, (9,85, ()

(ug, up) ((0.8,0.4),(0.5,0.2))

Table 45: pf

&' (<%I’}Z, (x), %,’jl (%)) {5 (%), B 5 (x)))
(v, Vo) ((0.8,0.4),(0.5,0.2))

It becomes evident that 4 = (¥4, /,) and % = (¥, p";) are LDFGSs which are depicted in FIGURE 8
and they are ((0.8,0.4), (0.5,0.2))-regular.

By employing Definition 4.1, we obtain the following LDFS £ = £ % £9 given in TABLE 16 on ¥ =
Y X Vo = { uy, vy), (ug, ve), (ug, vi), (UQ,VQ)} and LDFR p; = g} * pf shown in £ on ¥ is calculated in
TABLE 46 on & = & x &' = { w1V, uyva), (upvy, ugvy), (U ve, ugva), (UQV1,LI2V2)}. LDFR p; = pv’1 X ,ou’l’
is calculated in Table 47.

Then the maximal LDFGS ¥ = gvl * 5% = (2, ﬁl) is portrayed in FIGURE 9.

Table 46: £ = £1 x £9

v (2 (xy) 2 (x,¥)), (ee(x,y), Be(x,¥))
(u1,v1) ((0.6,0.5), (0.4,0.2))
(u1,v2) ((0.7,0.5),(0.6,0.2))
(u2,v1) ((0.5,0.6), (0.4,0.5))
(ug, va) ((0.7,0.6), (0.6,0.4))

From Definition 4.6, we can calculate the pi-degrees of each vertex of £ as follows:
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(uz, va,)((0.7,0.6), (0.6, 0.4))

(uz, v1)((0.5,0.6), (0.4, 0.5)) (u1,v2)((0.7,0.5), (0.6,0.2))

(u1,v1)((0.6,0.5),(0.4,0.2))

Figure 9: The maximal LDFGS g — gl * ffg

Table 47: /5, = p, x p/

&1 (< * 51 o (x1y1,X2Yy2), > (X1Y17X2}’2)>7<O‘p1(X1YI7XZY2) By (lel,X2YQ)>)
(u1vy,upva) ((0.8,0.4),(0.5,0.2))
(urvy, ugvy) ((0.8,0.4),(0.5,0.2))
(uva, ugva) ((0.8,0.4), (0.6,0.5))
(ugvy, uava) ((0.8,0.4), (0.5,0.2))

(¢

]D)ﬁl (u17 Vl)

/\/\/-\/\

sy (Wvy, urve) + s (W1vy, ugvi), sz (U1vy, uva) + 5 (U1vi, ugv)),

uvi, uve) + ag (avy, uavi), By (111V1, w1 va) + B (11v, ugvy)))
0.8,0.4), (0.5,0.2)) + ((0.8,0.4), (0.5,0.2))
1.6,0.8), (1,0.4))

)

I
/—\/\»-‘

Similarly,

Dy, (a1, va) = ((0.8,0.4),(0.5,0.2)) + ((0.8,0.4), (0.6,0.2)) =
= ((0.8,0.4),(0.5,0.2)) + ((0.8,0.4), (0.5,0.2))
5 (u2,v2) = ((0.8,0.4), (0.5,0.2)) + ((0.8,0.4), (0.5,0.2)) =

((1.6,0.8), (1.1,0.4))
= ((1.6,0.8), (1,0.4))
((1.6,0.8),(1,0.4))
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Clearly, ¢ is not regular since Dy, (u1,v1) = ((1.6,0.8), (1,0.4)) # ((1.6,0.8), (1.1,0.4)) = Dy, (u1, va).

Theorem 5.5. If % = (21,5’1,5’2,...,5’k) 18 ((r, S), (s,t))—regular LDFGS and % = (Sg,p”l,p”%...,pv”k)
is an LDFGS, such that ;;”i DL,i=1,2,....k, and £5 is constant LDFS of LDF value ((a, b), (e, d>), where
a,b,c,d € [0,1] are fized, then maximal product G =G «Y, is regular if and only sz% s reqular.

Proof. Let %vl = (Sl,;;’l,pu/z,...,pu’k) be partially regular LDFGS and %VQ = (Sg,pu”l,pv”Q,...,pv”k) be an
LDFGS, such that pv”i DL,t=1,2,....k, and £o = (<a, b, (c, d)) be a constant LDFGS. Then,

Dy (xi,y;5) = <<%]g;(xi,y]'), s, (Xi,¥)), <aDg(Xi’yj)?BDg(Xi’yj)>)

where
s, (Xi,¥5) = Dgy (xi)a + s, (v5);
2., (X, ¥5) = Dagy (x0)b + 545, (y5);
an,, (xi,yj) = Dg, (xi)e + ap,, (v);
P, (%iyj) = Dy, (xi)d + o, (v5)-

This holds for all vertices of ¥ = ¥ x #. Hence, maximal product g = % * %2 is regular.
Conversely, suppose that maximal product G =% %D is regular. Then, for any two vertices of ¥ = ¥#| X ¥4,

%ﬂi(xl, yi) = %{)f;(x% y2)
= Dy, (x1)a + %{D?% (y1) = Dy, (x2)a + %{D?% (y2)
= ra+ g, (y1) =ra+ g, (v2)
= i, (y1) = 25, (v2)
Similarly, %ﬁg (x1,y1) = %ﬁ) (x2,y2) implies that %]D) (Y1) (YZ)' D, (X1,¥1) = ap,(x2,y2) implies

that apg, (y1) = ap, (y2); 5]])?; (x1,y1) = BJD) (Xz,yg) 1mphes that ,BD ( ) = BD% (y2). This holds for all
vertices of %. Hence, % is regular LDFGS. O

Theorem 5.6. If G = (21,5’1,5’2,...,5’k) 18 partially reqular LDFGS and Gy = (22,,(;”1,;;”2,...,5”k) is
an LDFGS, such that ;;’i D Lo, i=1,2,....k, and £9 is constant LDFS of LDF value ((a, b), {c, d>), where
a,b,c,d € [0,1] are fized, then mazimal product G =G xY is regular if and only z'fgvl s reqular.

Proof. Suppose with the given assumptions, we have from Theorem 4.11,

Dg(xwy] <<%]D) me]) %ID) (wa] >7<aDg(X17y])7ﬁDg(wa])>>a

where
., (Xi,¥5) = 2, (xi) + Dy, (y;)a;
1, (Xi,¥;5) = 7, (xi) + D, (v5)b;
ap, (xi,y;) = ap,, (%) + Dy, (y;)c;
(%i,¥5) ) j)d.
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which holds for all vertices of ¥ = ¥7 x #;. Hence, maximal product G = % * %2 is regular.
Conversely, assume that maximal product G — % * gg is regular. Then for any two vertices of ¥ = ¥| x %5,
we have:
%ﬁ; (x1,¥1) = %15; (x2,¥2)
8, (1) ol () () = sl (2) + B, (v2) o (2)
%ﬁ;l (Xl) + rqa = %61‘51 (XQ) “+ roa

m
“p
]D)(qu

(x1) = >, (x2)

1
Similarly, %ﬁg (x1,y1) = %ﬁ) (x2,y2) implies that %D (xl) = %JD (Xg) an,, (x1,y1) = an,, (x2,y2) implies
that apy, (x1) = apy, (x2); B% (x1,y1) = Bp, (XQ,YQ) implies that Bp, ( 1) = ﬁD%& (x2). This proves that
% regular LDFGS. O
Theorem 5.7. If%ul = (81,5’1,5’2,...,5’k) and Gy = (Eg,pv”l,pv”Q,...,pv”k) are two (<r1,31>, (tl,ul))—regular
and ((7"2, s9), (ta, u2>)—regular LDFGSs, respectively, such that ;;”i C £y and pu”z- CLy,i=1,2,....,kand Lo isa
constant LDFS of LDF value ((a, b, {c, d>), where a, b, c,d € [0, 1] are fixed, then mazimal product G =G x%,
is reqular if and only if £, is a constant LDFS of LDF value ((a’,V), (¢, d')), where a/,¥',¢',d" € [0,1] are
fized.

Proof. With the given assumptions, we have from Theorem 4.12,

D, (me] <<%]D) Xlay]) %ID) (wa] >7<OZD%~(X’Hy])7BD%~(X’Hy])>>a
where

sy, (%i,Y5) = Dy (x3) 522, (y5) + Dag, () 548, (xi) = r1a + r2a’;
sy, (%i,¥5) = Doy (%) 528, (y5) + Dagy () 52¢, (xi) = 510+ s2b;
ap, (%5, ¥;) = Dy, (xi)ag, (v5) + D, (v5) g, (xi) = tic+ tac’;
By (xiyyj) = Dy, (xi) Be, (v) + Dag, (v) Be, (%) = urd + uad’;
which holds for all vertices of ¥ = ¥#7 x #. Hence, G =G Gy is regular.
Conversely, assume that ¢4 = 4 *x % is regular. For any two vertices of ¥ = #] x %5, we have:
%ITD@(XMYD = %ITD?C;(X%}Q)
Dy, (x1)3g, (y1) + Dy, (y1) 8, (x1) = Dy, (x2) 52, (v2) + Dy, (y2) 28] (x2)
r12egy (X1) 4 To2eg, (X1) = r12eg, (Y1) + rosg. (X1)
%f:’; (x1) = %f:ng (y1)
Similarly, > _(x1,y1) = »p_ (%2, y2) implies 5§, (x1) = g, (y1); ap,, (x1,¥1) = ap,, (x2, y2) implies ag, (x1) =

ag,(y1); BJD@ (x1,y1) = ﬁ% (x2,y2) implies B¢, (x1) = Be,(y1), which holds for all vertices of 4. Hence, £,
is constant LDF'S. O

6 Conclusion

Graphs are used in various applications such as social networks, recommendation systems, routing algorithms,
and many more. A GS has n mutually disjoint, symmetric and irreflexive relations. Understanding these
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structures and their properties is key to leveraging graphs effectively in solving real-world problems. However,
in certain scenarios, several features of GT might be uncertain. FGSs have many advantages to cope with
vagueness and uncertainty. FGSs are more advantageous to circumvent uncertainty. In this research study,
we have applied the notion of LDFSs to GSs and introduced a novel concept LDFGS. We have defined p;-
edge, p;-path, strength of p;-path, p;-strength of connectedness, p;-degree of a vertex, vertex degree, total
pi-degree of a vertex, and total vertex degree in an LDFGS. Also, we have introduced the p;-size, size, and
order of an LDFGS. Moreover, the ideas of the maximal product of two LDFGSs, strong LDFGS, degree and
pi-degree of the maximal product, p;-regular and regular LDFGS are introduced, along with examples for
clarification. Certain significant results related to the proposed concepts also demonstrated with explanatory
examples such as the maximal product of two strong LDFGSs is also a strong LDFGS, the maximal product
of two connected LDFGSs is also a connected LDFGS but the maximal product of two regular LDFGS may
not be a regular LDGS. Moreover, many interesting and alternative formulas for calculating p;-degrees of an
LDFGS in various situations are proved with examples. LDFGSs are highly beneficial for solving numerous
combinatorial problems involving multiple relations than the existing GSs in the context of F'S, IFS, PFS and
q-ROFS. LDFGSs as an extension of IFGS and LDFG to GSs deals the graph theoretical aspects in more
appropriate way due to their flexibility in selecting MD and NMD alongside their reference parameters.

In the future, we aim to extend our approach to (1) rough linear Diophantine fuzzy graph structures, (2)
rough linear Diophantine fuzzy soft graph structures, (3) linear Diophantine fuzzy soft graph structures, and
(4) Spherical linear Diophantine fuzzy graph structures.
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