Transactions on Fuzzy Sets and Systems

Transactions on Fuzzy Sets and Systems

ISSN: **2821-0131**

<https://sanad.iau.ir/journal/tfss/>

Fixed Point Theorems in Orthogonal Intuitionistic Fuzzy b-metric Spaces with an Application to Fredholm Integral Equation

Vol.3, No.2, (2024), 1-22. DOI: <https://doi.org/10.71602/tfss.2024.1119656>

Author(s):

Fahim Uddin, Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan. E-mail: fahamiiu@gmail.com

Muhammad Saeed, Department of Mathematics, University of Management and Technology, Lahore, Pakistan. E-mail: muhammad.saeed@umt.edu.pk

Khaleel Ahmad, Department of Mathematics, University of Management and Technology, Lahore, Pakistan. E-mail: khalil7066616@gmail.com

Umar Ishtiaq, Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan. E-mail: umarishtiaq000@gmail.com

Salvatore Sessa, Department of Mathematics, University of Naples Federico II, Naples, Italy. E-mail: salvatore.sessa2@unina.it

iransactions on
Tuzzy Sets & Systems

Article Type: Original Research Article

Fixed Point Theorems in Orthogonal Intuitionistic Fuzzy b-metric Spaces with an Application to Fredholm Integral Equation

Fahim Uddin .**[ID](https://orcid.org/0000-0002-9623-6629)** , **Muhammad Saeed** .**[ID](https://orcid.org/0000-0002-7284-6908)** , **Khaleel Ahmed** .**[ID](https://orcid.org/0000-0002-5423-4596)** , **Umar Ishtiaq** .**[ID](https://orcid.org/0000-0002-5228-1073)** , **Salvatore Sessa***[∗]* .**[ID](https://orcid.org/0000-0002-4303-2884)**

Abstract. In this manuscript, the concept of an orthogonal intuitionistic fuzzy b-metric space is initiated as a generalization of an intuitionistic fuzzy b-metric space. We presented some fixed point results in this setting. For the validity of the obtained results, some non-trivial examples are given. In the last part, we established an application on the existence of a unique solution of a Fredholm-type integral equation.

AMS Subject Classification 2020: 47H10; 54H25

Keywords and Phrases: Orthogonal set, Intuitionistic fuzzy metric space, Unique solution, Integral equation.

1 Introduction

.

A publication showing there are solutions to differential equations established fixed-point theory in the second quarter of the eighteenth century (Joseph Liouville, 1837). This approach was further improved as a sequential approximation technique (Charles Emile Picard, 1890), and in the setting of complete normed space, it was generalized as a fixed-point theorem (Stefan Banach, 1922). It presents the a priori and a posteriori approximations for the convergence rate as well as a general way to actually determine the fixed point. Additionally, it ensures that a fixed point exists and is distinct. This information is helpful for studying metric spaces. Stefan Banach is acknowledged for developing fixed-point theory after that. Fixed-point theorems allow us to guarantee that the main problem has been resolved, as has the existence of a fixed point for a given function. In a large variety of scientific problems that are derive from many different branches of mathematics, the existence of a solution is equivalent to the existence of a fixed point for a suitable mapping.

In 1989, Bakhtin [\[1\]](#page-20-0) established the notion of quasi-metric spaces and established some results for contraction mappings. In 1993, Czerwik [\[2\]](#page-20-1) established the concept of b-metric spaces and discussed several fixed-point results. Eshaghi et al. [[3](#page-20-2)] introduced the notion of orthogonal metric spaces and derived wellknown Banach fixed point theorem. Uddin et al. [\[4\]](#page-20-3) established orthogonal m-metric spaces and solve the integral equation. Eshaghi and Habibia [[5\]](#page-20-4) derived several fixed point results in the context of generalized orthogonal metric space. Senapati et al. [\[6\]](#page-20-5) established some new fixed point theorems in the context of orthogonal metric spaces. In 1965, Zadeh [[7](#page-20-6)] established the notion of fuzzy sets (FSs) to deal with those problems that do have not any clear boundaries.

*∗***Corresponding Author:** Salvatore Sessa, Email: salvatore.sessa2@unina.it, ORCID: 0000-0002-4303-2884 **Received:** 21 March 2024; **Revised**: 18 June 2024; **Accepted**: 21 June 2024; **Available Online**: 21 June 2024; **Published Online**: 7 November 2024.

How to cite: Uddin F, Saeed M, Ahmed K, Ishtiaq U, Sessa S. Fixed point theorems in orthogonal intuitionistic fuzzy b-metric spaces with an application to fredholm integral equation. *Transactions on Fuzzy Sets and Systems.* 2024; 3(2): 1-22. DOI: https://doi.org/10.71602/tfss.2024.1119656

In 1960, Schweizer [[8](#page-21-0)] introduced the notion of continuous t-norm and worked on statistical metric spaces. In 1975, the combination of metric spaces and FSs, named fuzzy metric spaces (FMSs), have been introduced by Kramosil and Michlek [\[9\]](#page-21-1). In 1994, George and Veeramani [[10](#page-21-2)] modified the notion of FMSs and gave an interesting analysis of FMSs in 1997 in a research paper $[11]$ $[11]$. Deng $[12]$ $[12]$ established the notion of fuzzy pseudo-metric spaces and proved neumours results in the existence and uniqueness of a solution. Shukla and Abbas [\[13](#page-21-5)] established the notion of fuzzy metric-like spaces as a generalization of FMSs. Hezarjaribi [\[14](#page-21-6)] established the notion of orthogonal FMSs as a generalization of FMSs. Ndban [[15\]](#page-21-7) established the concept of fuzzy b-metric spaces (FBMSs) and Jeved et al. [[16](#page-21-8)] introduced fuzzy b-metric like spaces as a generalization of FBMSs. The authors [\[17](#page-21-9), [18](#page-21-10), [19,](#page-21-11) [20\]](#page-21-12) derived several fixed points results under some circumstances in the context of FBMSs. In 2004, Park [[21\]](#page-21-13) introduced the notion of intuitionistic fuzzy metric spaces (IFMSs), in which he combined the notions of continuous t-norm, continuous t-conorm, FSs and metric space.

Rafi and Noorani [[22\]](#page-21-14), Sintunavarat and Kumam [[23](#page-21-15)], Alaca et al. [[24\]](#page-21-16) and Mohamad [\[25\]](#page-21-17) derived some fixed point results for contraction mappings in the context of IFMSs. Konwar [[26](#page-22-0)] introduced the notion of intuitionistic fuzzy b-metric spaces (IFBMSs) as a generalization of IFMSs and derived fixed point results. Baleanu and Rezapour [\[27](#page-22-1)] and Sudsutad and Tariboon [\[28](#page-22-2)] worked on fractional differential equations. In this manuscript, we aim to toss the notion of orthogonal Intuitionistic fuzzy b-metric spaces (OIFBMSs) as a generalization of IFBMSs. We provide some related fixed point theorems, including non-trivial examples and an application. Some of the following notions are used throughout this paper, as CTN for a continuous t-norm, CTCN for a continuous t-conorm and FP for fixed point.

2 preliminaries

In this section, we will discuss some important definitions that support our main result.

Definition 2.[1](#page-20-0). [1] Suppose $\Xi \neq \phi$. Given a five tuple $(\Xi, G, H, *, \Delta)$ where $*$ is a CTN, Δ is a CTCN, $\theta \geq 1$ and *G, H* are FSs on $\Xi \times \Xi \times (0, \infty)$. If $(\Xi, G, H, *, \Delta)$ meets the below conditions for all w, $k \in \Xi$ and $\pi, \tau > 0$:

- (B1) $G(w, k, \tau) + H(w, k, \tau) \leq 1$;
- (B2) $G(w, k, \tau) > 0$;
- (B3) $G(w, k, \tau) = 1 \Leftrightarrow w = k;$
- (B4) $G(w, k, \tau) = G(k, w, \tau);$
- $(G|B5)$ $G(w, e, \theta(\tau + \pi)) \geq G(w, k, \tau) * G(k, e, \Pi);$
- (B6) $G(w, k, \cdot)$ is a non decreasing function of R^+ and $\lim_{\tau \to \infty} G(w, k, \tau) = 1$;
- (B7) $H(w, k, \tau) > 0$;
- (B8) $H(w, k, \tau) = 0 \Leftrightarrow w = k;$
- (B9) $H(w, k, \tau) = H(k, w, \tau);$
- $(H10)$ $H(w, e, \theta(\tau + \pi)) \leq H(w, k, \tau) \Delta H(k, e, \Pi);$
- (B11) $H(w, k, \cdot)$ is a non increasing function of R^+ and $\lim_{\tau \to \infty} H(w, k, \tau) = 1$;
- Then $(\Xi, G, H, *, \Delta)$ is an IFBMS.

Definition 2.2. Assume $\Xi \neq \phi$. Let $\bot \in \Xi \times \Xi$ be a binary relation. Suppose there exists w₀ $\in \Xi$ such that $w_0 \perp w$ or $w \perp w_0$ for all $w \in \Xi$. Thus, Ξ is known as orthogonal set (OS) and denoted by (Ξ, \bot)

Definition 2.3. Assume that (Ξ, \bot) is an OS. A sequence $\{w_n\}$ for $n \in \mathbb{N}$ is known to be an O-sequence if $(\forall n, w_n \perp w_{n+1})$ or $(\forall n, w_{n+1} \perp w_n)$

3 Orthogonal Intuitionistic Fuzzy b-metric Spaces

Now, we establish the notion of OIFBMSs and derive several FP results with non-trivial examples.

Definition 3.1. (Ξ , G , H , $*$, Δ) is known to be an OIFBMS if Ξ is a (non empty) OS, $*$ is a CTN, Δ is a CTCN, and *G, H* are FSs on $\Xi \times \Xi \times (0, \infty)$ verifying the below conditions for a given real number $\theta \geq 1$:

- $(B_\perp 1)$ $G(w, k, \tau) + H(w, k, \tau) \leq 1$ for all $w, k \in \Xi$, $\tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_1 2)$ $G(w, k, \tau) > 0$ for all w, $k \in \Xi$, $\tau > 0$ such that w \bot k and $k \bot w$;
- $(B_1 3)$ $G(w, k, \tau) = 1 \Leftrightarrow w = k$; for all $w, k \in \Xi, \tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_1 4)$ $G(w, k, \tau) = G(k, w, \tau)$ for all $w, k \in \Xi$, $\tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_1 5)$ $G(w, e, \theta(\tau + \pi)) > G(w, k, \tau) * G(k, e, \Pi)$ for all $w, k \in \Xi$, $\tau > 0$ such that $w \perp k$ and $k \perp w$.
- (*B*_⊥6) $G(w, k, \cdot)$ is a non decreasing function of R^+ and $\lim_{\tau \to \infty} G(w, k, \tau) = 1$ for all $w, k \in \Xi$, $\tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_1 7)$ $H(w, k, \tau) > 0$ for all w, $k \in \Xi$, $\tau > 0$ such that w \bot k and $k \bot w$;
- (B_18) $H(w, k, \tau) = 0 \Leftrightarrow w = k$ for all w, $k \in \Xi$, $\tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_1 9)$ $H(w, k, \tau) = H(k, w, \tau)$ for all w, $k \in \mathbb{Z}, \tau > 0$ such that w $\bot k$ and $k \bot w$;
- $(B_1 10)$ $H(w, e, \theta(\tau + \pi)) \leq H(w, k, \tau) \Delta H(k, e, \Pi)$ for all $w, k \in \Xi$, $\tau > 0$ such that $w \perp k$ and $k \perp w$;
- $(B_1 11)$ $H(w, k, \cdot)$ is a non increasing function of R^+ and $\lim_{\tau \to \infty} H(w, k, \tau) = 1$ for all $w, k \in \Xi$, $\tau > 0$ such that $w \perp k$ and $k \perp w$;

Then $(\Xi, G, H, *, \Delta)$ is an IFBMS.

Example 3.2. Let $\Xi = R$ and define $\sigma * \theta = \sigma \theta$, $\sigma \Delta \theta = \min{\{\sigma, \theta\}}$ and \bot by w \bot k iff w + k ≥ 0 . Let

$$
G(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 1 \text{ if } \mathbf{w} = \mathbf{k}, \\ \frac{\tau}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}} \text{ otherwise.} \end{cases}
$$
 (1)

and

$$
H(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 0 \text{ if } \mathbf{w} = \mathbf{k}, \\ \frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}} \text{ otherwise.} \end{cases}
$$
 (2)

for all $w, k \in \Xi$, $\tau > 0$ with α belong to odd natural numbers.

Proof. $(B_{\perp}1) - (B_{\perp}3)$, $(B_{\perp}5) - (B_{\perp}9)$ and $(B_{\perp}11)$ are obvious. Here, we prove $(B_{\perp}4)$ and $(B_{\perp}10)$. $(B_{\perp}4)$: for a random number $\theta \geq 1$, one writes

 $\max\{w, e\}^{\alpha} \leq \theta[\max\{w, k\}^{\alpha} + \max\{k, e\}^{\alpha}]$

Thus,

$$
\tau\pi \max\{w, e\}^{\alpha} \leq \theta(\tau + \pi)\pi \max\{w, k\}^{\alpha} + \theta(\tau + \pi)\tau \max\{k, e\}^{\alpha}
$$

.

.

Consequently,

$$
\tau\pi \max\{w,e\}^{\alpha} \leq \theta(\tau+\pi)\pi \max\{w,k\}^{\alpha} + \theta(\tau+\pi)\tau \max\{k,e\}^{\alpha} + \theta(\tau+\pi) \max\{k,e\}^{\alpha}.
$$

Thus,

$$
\tau\pi \max\{w, e\}^{\alpha} \leq \theta(\tau + \pi)[\pi \max\{w, k\}^{\alpha} + \tau \max\{k, e\}^{\alpha} + \max\{w, k\}^{\alpha} \max\{k, e\}^{\alpha}].
$$

one write

$$
\theta(\tau + \pi)\tau\pi + \tau\pi \max\{w, e\}^{\alpha} \leq \theta(\tau + \pi)\tau\pi + \theta(\tau + \pi)[\pi \max\{w, k\}^{\alpha} + \tau \max\{k, e\}^{\alpha} + \max\{w, k\}^{\alpha} \max\{k, e\}^{\alpha}].
$$

Therefore,

$$
\theta(\tau + \pi)\tau\pi + \tau\pi \max\{w, e\}^{\alpha} \leq \theta(\tau + \pi)[\tau\pi + \pi \max\{w, k\}^{\alpha} + \tau \max\{k, e\}^{\alpha} + \max\{w, k\}^{\alpha} \max\{k, e\}^{\alpha}].
$$

That is,

$$
\tau \pi [\theta(\tau + \pi) + \max\{w, e\}^{\alpha}] \leq \theta(\tau + \pi)[\tau + \max\{w, k\}^{\alpha}] [\pi + \max\{k, e\}^{\alpha}]
$$

Hence,

$$
\frac{\theta(\tau + \pi)}{\theta(\tau + \pi) + \max\{w, e\}^{\alpha}} \ge \frac{\tau\pi}{[\tau + \max\{w, k\}^{\alpha}][\pi + \max\{k, e\}^{\alpha}]}.
$$

$$
\frac{\theta(\tau + \pi)}{\theta(\tau + \pi) + \max\{w, e\}^{\alpha}} \ge \frac{\tau}{\tau + \max\{w, k\}^{\alpha}}.
$$

That is,

$$
G(\mathbf{w}, e, \theta(\tau + \pi)) \ge G(\mathbf{w}, \mathbf{k}\tau) * G(\mathbf{k}, e, \pi).
$$

(*B⊥*10): One writes

$$
\max\{w, e\}^{\alpha} = \max\{w, e\}^{\alpha} \max\left\{\frac{\max\{w, k\}^{\alpha}}{\max\{w, k\}^{\alpha}}, \frac{\max\{k, e\}^{\alpha}}{\max\{k, e\}^{\alpha}}\right\}.
$$

Then

$$
\max\{w, e\}^{\alpha} \leq [\theta(\tau + \pi) + \max\{w, e\}^{\alpha}] \max\left\{\frac{\max\{w, k\}^{\alpha}}{\max\{w, k\}^{\alpha}}, \frac{\max\{k, e\}^{\alpha}}{\max\{k, e\}^{\alpha}}\right\}
$$

That is,

$$
\frac{\max\{w,e\}^\alpha}{\theta(\tau+\pi)+\max\{w,e\}^\alpha} \le \max\left\{\frac{\max\{w,k\}^\alpha}{\tau+\max\{w,k\}^\alpha}, \frac{\max\{k,e\}^\alpha}{\pi+\max\{k,e\}^\alpha}\right\}.
$$

Hence,

$$
H(\mathbf{w}, e, \theta(\tau + \pi)) \le H(\mathbf{w}, \mathbf{k}, \tau) \Delta H(\mathbf{k}, e, \pi).
$$

Now, we show it's not an IFBM. Indeed, for $\pi = \tau = 1$, $w = -1$, $k = -\frac{1}{2}$ $\frac{1}{2}$ and $\alpha = 3$, (B4) and (B10) fail. \square **Example 3.3.** Let $\Xi = \mathbb{R}$ and define $\sigma * \theta = \sigma \theta$, $\sigma \Delta \theta = \min\{\sigma, \theta\}$ and \bot by w \bot k iff w + k ≥ 0 . Let

$$
G(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 1 \text{ if } \mathbf{w} = \mathbf{k}, \\ \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}}\right]^{-1} \text{ otherwise.} \end{cases}
$$
 (3)

and

$$
H(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 0 \text{ if } \mathbf{w} = \mathbf{k}, \\ 1 - \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}} \right]^{-1} \text{ otherwise.} \end{cases}
$$
 (4)

for all $w, k \in \Xi, \tau > 0$ with α belong to odd natural numbers. **Proof.** $(B_{\perp}1) - (B_{\perp}3)$, $(B_{\perp}5) - (B_{\perp}9)$ and $(B_{\perp}11)$ are obvious. Here, we prove $(B_{\perp}4)$ and $(B_{\perp}10)$. (B_\perp 4): for a random number $\theta \geq 1$, one writes

$$
\max\{w,e\}^\alpha\leq \theta\left[\max\{w,k\}^\alpha+\max\{k,e\}^\alpha\right].
$$

Therefore,

$$
\max\{w,e\}^\alpha \leq \theta\left[\frac{\tau+\pi}{\tau}\max\{w,k\}^\alpha+\frac{\tau+\pi}{\pi}\max\{k,e\}^\alpha\right]
$$

Then

$$
\frac{\max\{w, e\}^{\alpha}}{\theta(\tau + \pi)} \le \frac{\max\{w, k\}^{\alpha}}{\tau} + \frac{\max\{k, e\}^{\alpha}}{\pi}
$$

Since, $e^{\mathbf{w}}$ is an increasing function, one gets

$$
e^{\frac{\max\{w,e\}^\alpha}{\theta(\tau+\pi)}} \leq e^{\frac{\max\{w,k\}^\alpha}{\tau}} \cdot e^{\frac{\max\{k,e\}^\alpha}{\pi}}.
$$

That is

$$
\left[e^{\frac{\max\{w,e\}^{\alpha}}{\theta(\tau+\pi)}}\right]^{-1} \geq \left[e^{\frac{\max\{w,k\}^{\alpha}}{\tau}}\right]^{-1} \cdot \left[e^{\frac{\max\{k,e\}^{\alpha}}{\pi}}\right]^{-1}.
$$

Hence,

$$
G(\mathbf{w}, e, \theta(\tau + \pi)) \ge G(\mathbf{w}, \mathbf{k}\tau) * G(\mathbf{k}, e, \pi).
$$

 $(B_\perp 10)$: For a random $\theta \geq 1$, we write

$$
\frac{\max\{w,e\}^{\alpha}}{\theta(\tau+\pi)} \leq \max\left\{\frac{\max\{w,k\}^{\alpha}}{\tau}, \frac{\max\{k,e\}^{\alpha}}{\pi}\right\}.
$$

That is,

$$
e^{\frac{\max\{w,e\}^\alpha}{\theta(\tau+\pi)}} \leq \max\left\{e^{\frac{\max\{w,k\}^\alpha}{\tau}}, e^{\frac{\max\{k,e\}^\alpha}{\pi}}\right\}.
$$

Then,

$$
\left[e^{\frac{\max\{w,e\}^{\alpha}}{\theta(\tau+\pi)}}\right]^{-1} \geq \max\left\{\left[e^{\frac{\max\{w,k\}^{\alpha}}{\tau}}\right]^{-1}, \left[e^{\frac{\max\{k,e\}^{\alpha}}{\pi}}\right]^{-1}\right\}.
$$

That is,

$$
1 - \left[e^{\frac{\max\{w,e\}^{\alpha}}{\theta(\tau+\pi)}}\right]^{-1} \leq \max\left\{1 - \left[e^{\frac{\max\{w,k\}^{\alpha}}{\tau}}\right]^{-1}, 1 - \left[e^{\frac{\max\{k,e\}^{\alpha}}{\pi}}\right]^{-1}\right\}.
$$

Hence,

$$
H(\mathbf{w}, e, \theta(\tau + \pi)) \le H(\mathbf{w}, \mathbf{k}, \tau) \Delta H(\mathbf{k}, e, \pi). \forall \mathbf{w}, \mathbf{k}, e \in \Xi, \forall \tau, \pi > 0.
$$

Now, we show it's not an IFBM. Indeed, for $\pi = \tau = 1$, $w = -1$, $k = -\frac{1}{2}$ $\frac{1}{2}$, $e = -2$ and $\alpha = 3$, (B4) and (B10) is not satisfy. \Box

Example 3.4. Let $\Xi = \mathbb{R}$ and define $\sigma * \theta = \sigma \theta$, $\sigma \Delta \theta = \max{\{\sigma, \theta\}}$ and \bot by w \bot k iff w + k ≥ 0 . Suppose

$$
G(\mathbf{w}, \mathbf{k}, \tau) = \frac{\tau + \min\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}
$$
(5)

and

$$
H(\mathbf{w}, \mathbf{k}, \tau) = 1 - \frac{\tau + \min\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}
$$
(6)

.

for all $w, k \in \Xi, \tau > 0$ with α belong to odd natural numbers. Here, $(\Xi, G, H, *, \Delta, \bot)$ is an OIFBMS. It is not an IFBMS. Indeed, if it is the case, from (B4),

$$
\frac{\theta(\tau+\pi) + \min\{w,k\}^\alpha}{\theta(\tau+\pi) + \max\{w,k\}^\alpha} \geq \frac{\tau + \min\{w,k\}^\alpha}{\tau + \max\{w,k\}^\alpha} \cdot \frac{\pi + \min\{w,k\}^\alpha}{\pi + \max\{w,k\}^\alpha}
$$

and from case (B10)

$$
1-\frac{\theta(\tau+\pi) + \min\{w,k\}^\alpha}{\theta(\tau+\pi) + \max\{w,k\}^\alpha} \le \max\left[1-\frac{\tau + \min\{w,k\}^\alpha}{\tau + \max\{w,k\}^\alpha}\cdot 1 - \frac{\pi + \min\{w,k\}^\alpha}{\pi + \max\{w,k\}^\alpha}\right]
$$

Then by taking $w = k, e = -2$ and $\alpha = \frac{1}{2}$ $\frac{1}{2}$, the above inequalities are not satisfied.

Remark 3.5. Every IFBMS is an OIFBMS, but the converse is not true. The above examples confirm this reverse statement.

Definition 3.6. An O-sequence $\{w_n\}$ is an OIFBMS (Ξ , G , H , $*, \Delta, \bot$) is called an orthogonal convergent (O-convergent) to $w \in \Xi$, if

$$
\lim_{n \to \infty} G(\mathbf{w}_n, \mathbf{w}, \tau) = 1, \forall \tau > 0,
$$

and

$$
\lim_{n \to \infty} H(\mathbf{w}_n, \mathbf{w}, \tau) = 0, \forall \tau > 0,
$$

Definition 3.7. An O-sequence $\{w_n\}$ is an OIFBMS $(\Xi, G, H, *, \Delta, \bot)$ is known to be an orthogonal Cauchy (O-Cauchy) if

$$
\lim_{n \to \infty} G(\mathbf{w}_n, \mathbf{w}, \tau) = 1,
$$

and

$$
\lim_{n \to \infty} H(\mathbf{w}_n, \mathbf{w}, \tau) = 0,
$$

for all $\tau > 0, p \ge 1$.

Definition 3.8. Let $\xi : \Xi \to \Xi$ is \bot -continuous at $w \in \Xi$ is an OIFBMS ($\Xi, G, H, *, \Delta, \bot$)*,* whenever for each O-sequence w_n for all $n \in \mathbb{N}$ in Ξ if $\lim_{n\to\infty} G(w_n, w, \tau) = 1$ and $\lim_{n\to\infty} H(w_n, w, \tau) = 0$ for all $\tau > 0$, then $\lim_{n\to\infty} G(\xi w_n, \xi w, \tau) = 1$ and $\lim_{n\to\infty} H(\xi w_n, \xi w, \tau) = 0$ for all $\tau > 0$. Furthermore, ξ is \bot -continuous on Ξ if *ξ ⊥*-continuous at each w *∈* Ξ*.* Also, *ξ* is *⊥*- preserving if *ξ*w *⊥ ξ*k*,* whence w *⊥* k*.*

Definition 3.9. An OIFBMS $(\Xi, G, H, *, \Delta, \bot)$ is known to be orthogonally complete (O-complete) if every O-Cauchy O-sequence is O- convergent.

Remark 3.10. It is necessary that the limit of an O-convergent O-sequence is unique in an OIFBMS.

Remark 3.11. It is necessary that the limit of an O-convergent O-sequence is O-Cauchy in an OIFBMS.

Lemma 3.12. *If for some* $v \in (0,1)$ *and* $w, k \in \Xi$ *,*

$$
G(\mathbf{w}, \mathbf{k}, \tau) \ge G\left(\mathbf{w}, \mathbf{k}, \frac{\tau}{v}\right), \tau > 0,
$$

and

$$
H(\mathbf{w}, \mathbf{k}, \tau) \le H\left(\mathbf{w}, \mathbf{k}, \frac{\tau}{v}\right), \tau > 0,
$$

then $w = k$ *. Proof. The proof is follows from [8].* \Box

Definition 3.13. Suppose $(\Xi, G, H, *, \Delta, \bot)$ be an OIFBMS. A mapping $\xi : \Xi \to \Xi$ is an orthogonal contraction (*⊥*-contraction) if there exists $\rho \in (0,1)$ such that for every $\tau > 0$ and w, $k \in \Xi$ with w $\bot k$, we have

$$
G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \ge G(\mathbf{w}, \mathbf{k}, \tau), \tag{7}
$$

$$
H(\xi w, \xi k, \varrho \tau) \le H(w, k, \tau). \tag{8}
$$

Theorem 3.14. *Let* $(\Xi, G, H, *, \Delta, \bot)$ *be an O-complete IFBMS such that*

$$
\lim_{\tau\to\infty}G({\bf w},{\bf k},\tau)=1,
$$

and

$$
\lim_{\tau \to \infty} H(\mathbf{w}, \mathbf{k}, \tau) = 0.
$$

for all $w, k \in \mathbb{E}$ *. Suppose* $\xi : \mathbb{E} \to \mathbb{E}$ *be an* \bot *-continuous and* \bot *-preserving mapping. Thus,* ξ *has a unique FP, say* w*[∗] ∈* Ξ*. Furthermore,*

$$
\lim_{\tau \to \infty} G(\xi^n w, k, \tau) = 1,
$$

and

$$
\lim_{\tau \to \infty} H(\xi^n w, \mathbf{k}, \tau) = 0.
$$

for all $w, k \in \Xi$ *.*

Proof. Let $(\Xi, G, H, *, \Delta, \bot)$ be an O-complete IFBMS, there exists $w_0 \in \Xi$ such that $w_0 \perp k$ for all $k \in \Xi$, that is, $w_0 \perp \xi w_0$. Take $w_n = \xi^n w_0 = \xi w_{n-1}$ for all $n \in \mathbb{N}$. Since ξ is \perp -preserving, $\{w_n\}$ is an O-sequence. *From assumption that ξ is an ⊥-contraction, we have*

$$
G(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) = G(\xi \mathbf{w}_n, \xi \mathbf{w}_{n-1}, \varrho \tau) \ge G(\mathbf{w}_n, \mathbf{w}_{n-1}, \tau)
$$

for all $n \in \mathbb{N}$ *and* $\tau > 0$ *. Note that G is non-decreasing on* $(0, \infty)$ *. By utilizing above inequality, we have*

$$
G(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau) \ge G(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) = G(\xi \mathbf{w}_{n+1}, \xi \mathbf{w}_n, \varrho \tau) \ge G(\mathbf{w}_n, \mathbf{w}_{n-1}, \tau)
$$

= $G(\xi \mathbf{w}_{n-1}, \xi \mathbf{w}_{n-2}, \tau) \ge G\left(\mathbf{w}_{n-1}, \mathbf{w}_{n-2}, \frac{\tau}{\varrho}\right) \ge \cdots \ge G\left(\mathbf{w}_1, \mathbf{w}_0, \frac{\tau}{\varrho^n}\right)$ (9)

for all $n \in \mathbb{N}$ *and* $\tau > 0$ *. Thus, from (9) and (B4), we deduce*

$$
G(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \ge G\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta}\right)
$$

$$
\ge G\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^2}\right) * G\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+3}, \frac{\tau}{\theta^3}\right) * \cdots * G\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{n+m}}\right)
$$

$$
\geq G\left(\mathbf{w}_{1}, \mathbf{w}_{0}, \frac{\tau}{\theta \varrho^{n}}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^{2} \varrho^{n}}\right) * G\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+3}, \frac{\tau}{\theta^{3} \varrho^{n}}\right) * \cdots * G\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{n+m} \varrho^{n}}\right)
$$
\n(10)

We know that $\lim_{\tau \to \infty} G(w, k, \tau) = 1$ *, for all* $w, k \in \Xi$ *and* $\tau > 0$ *. So, from (10), we have*

$$
\lim_{\tau \to \infty} G(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \ge 1 * 1 * \cdots * 1 = 1.
$$
\n(11)

Similarly,

$$
H(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) = H(\xi \mathbf{w}_n, \xi \mathbf{w}_{n-1}, \varrho \tau) \le H(\mathbf{w}_n, \mathbf{w}_{n-1}, \tau)
$$

for all $n \in \mathbb{N}$ *and* $\tau > 0$ *. By utilizing above inequality, we have*

$$
H(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau) \le H(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) = H(\xi \mathbf{w}_{n+1}, \xi \mathbf{w}_n, \varrho \tau) \le H(\mathbf{w}_n, \mathbf{w}_{n-1}, \tau)
$$

= $H(\xi \mathbf{w}_{n-1}, \xi \mathbf{w}_{n-2}, \tau) \le H\left(\mathbf{w}_{n-1}, \mathbf{w}_{n-2}, \frac{\tau}{\varrho}\right) \le \cdots \le H\left(\mathbf{w}_1, \mathbf{w}_0, \frac{\tau}{\varrho^n}\right)$ (12)

for all $n \in \mathbb{N}$ *and* $\tau > 0$ *. Thus, from (12) and (B10), we deduce*

$$
H(\mathbf{w}_{n}, \mathbf{w}_{n+m}, \tau) \leq H\left(\mathbf{w}_{n}, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta}\right)
$$

\n
$$
\leq H\left(\mathbf{w}_{n}, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^{2}}\right) \Delta H\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+3}, \frac{\tau}{\theta^{3}}\right) \Delta \cdots \Delta H\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{n+m}}\right)
$$

\n
$$
\leq H\left(\mathbf{w}_{1}, \mathbf{w}_{0}, \frac{\tau}{\theta \varrho^{n}}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^{2} \varrho^{n}}\right) \Delta H\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+3}, \frac{\tau}{\theta^{3} \varrho^{n}}\right) \Delta \cdots \Delta H\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{n+m} \varrho^{n}}\right)
$$

\n(13)

We know that $\lim_{\tau \to \infty} H(w, k, \tau) = 0$, *for all* $w, k \in \Xi$ *and* $\tau > 0$ *. So, from (13), we have*

$$
\lim_{\tau \to \infty} H(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \le 0 \Delta 0 \Delta \cdots \Delta 0 = 0.
$$
\n(14)

So, $\{w_n\}$ *is an O-sequence. The O-sequence. The O-completeness of the IFBMS* $(\Xi, w, k, *, \Delta, \bot)$ *ensure* that there exists $w_* \in \Xi$ such that $G(w_n, w_*, \tau) \to 1$, and $H(w_n, w_*, \tau) \to 0$, as $n \to +\infty$ for all $\tau > 0$. Now, since ξ is an \bot -continuous mapping, $G(w_{n+1}, \xi w_*, \tau) = G(\xi w_{n+1}, \xi w_*, \tau) \to 1$ and $H(w_{n+1}, \xi w_*, \tau) =$ $H(\xi_{Wn+}, \xi_{W*}, \tau) \to 0$ *as* $n \to +\infty$ *. Now, we have*

$$
G(\mathbf{w}_{*}, \xi \mathbf{w}_{*}, \tau) \ge G\left(\mathbf{w}_{*}, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) * G\left(\mathbf{w}_{n+1}, \xi \mathbf{w}_{*}, \frac{\tau}{2\theta}\right),
$$

$$
H(\mathbf{w}_{*}, \xi \mathbf{w}_{*}, \tau) \le H\left(\mathbf{w}_{*}, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \xi \mathbf{w}_{*}, \frac{\tau}{2\theta}\right).
$$

Taking limit as $n \to \infty$, we get $G(w_*, \xi_{w_*}, \tau) = 1 * 1 = 1$ and $H(w_*, \xi_{w_*}, \tau) = 0 \Delta 0 = 0$ and hence $\xi_{w_*} = w_*$. **Uniqueness***:*

Let w_* and k_* be two FPs of ξ such that $w_* \neq k_*$. We have $w_0 \perp w_*$ and $w_0 \perp k_*$. Since T is \perp -preserving, *we have* $\xi w_0 \perp \xi^n w_*$ *and* $\xi^n w_0 \perp k_*$ *for all* $n \in \mathbb{N}$ *. So from (7), we can drive*

$$
G(\xi^n w_0, \xi^n w_*, \tau) \ge G(\xi^n w_0, \xi^n w_*, \varrho \tau) \ge G\left(w_0, w_*, \frac{\tau}{\varrho^n}\right)
$$

and

$$
G(\xi^n w_0, \xi^n k_*, \tau) \ge G(\xi^n w_0, \xi^n k_*, \varrho \tau) \ge G\left(w_0, k_*, \frac{\tau}{\varrho^n}\right)
$$

Therefore,

$$
G(\mathbf{w}_*, \mathbf{k}_*, \tau) = G(\xi^n \mathbf{w}_*, \xi^n \mathbf{k}_*, \tau) \ge G\left(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \frac{\tau}{2\theta}\right) * G\left(\xi^n \mathbf{w}_0, \xi^n \mathbf{k}_*, \frac{\tau}{2\theta}\right)
$$

$$
\ge G\left(\mathbf{w}_0, \mathbf{w}_*, \frac{\tau}{2\theta \varrho^n}\right) * G\left(\mathbf{w}_0, \mathbf{k}_*, \frac{\tau}{2\theta \varrho^n}\right) \to 1
$$

Fixed point theorems in orthogonal intuitionistic fuzzy b-metric spaces

 $as n \rightarrow \infty$ *So from (8), we can derive*

$$
H(\xi^n w_0, \xi^n w_*, \tau) \le H(\xi^n w_0, \xi^n w_*, \varrho \tau) \le H\left(w_0, w_*, \frac{\tau}{\varrho^n}\right)
$$

and

$$
H(\xi^n w_0, \xi^n \mathbf{k}_*, \tau) \le H(\xi^n w_0, \xi^n \mathbf{k}_*, \varrho \tau) \le H\left(w_0, \mathbf{k}_*, \frac{\tau}{\varrho^n}\right)
$$

Therefore,

$$
H(\mathbf{w}_*, \mathbf{k}_*, \tau) = H(\xi^n \mathbf{w}_*, \xi^n \mathbf{k}_*, \tau) \le H\left(\xi^n \mathbf{w}_0, \xi^n \mathbf{w}_*, \frac{\tau}{2\theta}\right) * H\left(\xi^n \mathbf{w}_0, \xi^n \mathbf{k}_*, \frac{\tau}{2\theta}\right)
$$

$$
\le H\left(\mathbf{w}_0, \mathbf{w}_*, \frac{\tau}{2\theta \varrho^n}\right) \Delta H\left(\mathbf{w}_0, \mathbf{k}_*, \frac{\tau}{2\theta \varrho^n}\right) \to 0
$$

 $as n \to \infty$ *So*, $w_* = k_*$, hence w_* *is the unique FP.* □

Corollary 3.15. *Suppose* $(\Xi, G, H, *, \Delta, \bot)$ *be an O-complete IFBMS. Assume* $\xi : \Xi \to \Xi$ *be* \bot -*contraction and* \bot -preserving. Assume that if $\{w\}$ is an O-sequence with $w_n \to w \in \Xi$, Then $w \perp w_n$ for all $n \in \mathbb{N}$. Then ξ has a unique FP, say $w_* \in \Xi$, Moreover, $\lim_{n\to\infty} G(\xi^n w, w_*, \tau) = 1$ and $\lim_{n\to\infty} H(\xi^n, w, w_*, \tau) = 0$, *for all* $w \in \Xi$ *and* $\tau > 0$ *.*

Proof. Follows from Theorem 2.1 that w_n *is a O-Cauchy O-sequence and so it O-converges to* $w_* \in \Xi$ *. Hence* $w_* \perp w_n$ *for all* $n \in \mathbb{N}$ *from (7), we have*

$$
G(\xi_{W_*}, w_{n+1}, \tau) = G(\xi_{W_*}, \xi_{W_n}, \tau) \ge G(\xi_{W_*}, \xi_{W_n}, \tau_{\mathcal{Q}}) \ge G(w_*, w_n, \tau)
$$

and

$$
\lim_{n \to \infty} G(\xi_{W_*}, w_{n+1}, \tau) = 1.
$$

Then, we can write

$$
G(\mathbf{w}_{*}, \xi \mathbf{w}_{*}, \tau) \geq G\left(\mathbf{w}_{*}, \xi \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) * G\left(\mathbf{w}_{n+1}, \xi \mathbf{w}_{*}, \frac{\tau}{2\theta}\right)
$$

Taking limit as $n \to +\infty$ *, We get* $G(w_*, \xi_{w_*}, \tau) = 1 * 1 = 1$ *and from (8)*

$$
H(\xi_{\mathbf{W}_{*}},\mathbf{w}_{n+1},\tau)=H(\xi_{\mathbf{W}_{*}},\xi_{\mathbf{W}_{n}},\tau)\leq H(\xi_{\mathbf{W}_{*}},\xi_{\mathbf{W}_{n}},\tau_{\mathcal{Q}})\leq H(\mathbf{w}_{*},\mathbf{w}_{n},\tau)
$$

and

$$
\lim_{n \to \infty} H(\xi_{W_*}, w_{n+1}, \tau) = 0.
$$

Then, we can write

$$
H(\mathbf{w}_{*}, \xi \mathbf{w}_{*}, \tau) \leq H\left(\mathbf{w}_{*}, \xi \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \xi \mathbf{w}_{*}, \frac{\tau}{2\theta}\right)
$$

Taking limit as $n \to +\infty$ *, We get* $H(w_*, \xi w_*, \tau) = 0\Delta 0 = 0$ *, So* $\xi w_* = w_*$ *. Next follows from Theorem 3.13.* □

Example 3.16. Let $\Xi = [-2, 2]$. We define \bot by

$$
w \perp k \Leftrightarrow w + k \in \{ |w|, |k| \tag{15}
$$

$$
G(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 1 \text{ if } \mathbf{w} = \mathbf{k}, \\ \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}}\right]^{-1} \text{ otherwise.} \end{cases}
$$
 (16)

and

$$
H(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 0 \text{ if } \mathbf{w} = \mathbf{k}, \\ 1 - \left[e^{\frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau}} \right]^{-1} \text{ otherwise.} \end{cases}
$$
 (17)

for all w, $k \in \Xi$, $\tau > 0$ with $\sigma \times \theta = \sigma \cdot \theta$ and $\sigma \Delta \theta = \max{\{\sigma, \theta\}}$. Then $(\Xi, G, *, \Delta, \bot)$ is an O-complete IFBMS. Define $\xi : \Xi \to \Xi$ by

$$
\xi(\mathbf{w}) = \begin{cases} \frac{\mathbf{w}}{4}, & \text{if } \mathbf{w} \in [-2, 0] \\ 0, & \text{if } \mathbf{w} \in (0, 2]. \end{cases}
$$
 (18)

Then the below cases fulfilled:

- 1. if $w \in [-2, 0]$ and $k \in (0, 2]$, then $\xi(w) = \frac{w}{4}$ and $\xi(k) = 0$,
- 2. if $w, k \in [-2, 0]$, then $\xi(w) = \frac{w}{4}$ and $\xi(k) = \frac{k}{4}$,
- 3. if $w, k \in (0, 2]$, then $\xi(w) = 0$ and $\xi(k) = 0$,
- 4. if $w \in (0, 2]$ and $k \in [-2, 0]$, then $\xi(w) = 0$ and $\xi(k) = \frac{k}{4}$,

This is easy to see that $\xi((w)) + \xi(k) \in \{|\xi(w)|, |\xi(k)|\}$. Hence, ξ is *⊥*-preserving. Let $\{w_n\}$ be an arbitrary O-sequence in Ξ that $\{w_n\}$ O-converges to $w \in \Xi$. That is

$$
\lim_{n \to \infty} G(\mathbf{w}_n, \mathbf{w}, \tau) = \lim_{n \to \infty} \left[e^{\frac{\max\{\mathbf{w}_n, \mathbf{w}\}^{\alpha}}{\tau}} \right]^{-1} = 1,
$$

$$
\lim_{n \to \infty} H(\mathbf{w}_n, \mathbf{w}, \tau) = 1 - \lim_{n \to \infty} \left[e^{\frac{\max\{\mathbf{w}_n, \mathbf{w}\}^{\alpha}}{\tau}} \right]^{-1} = 0.
$$

We can easily see that if $\lim_{n\to\infty} G(w_n, w, \tau) = 1$, then $\lim_{n\to\infty} G(\xi w_n, \xi w, \tau) = 1$, and if $\lim_{n\to\infty} H(w_n, w, \tau) =$ 0, then $\lim_{n\to\infty} H(\xi w_n, \xi w, \tau) = 0$, for all $w \in \Xi$ and $\tau > 0$. That is, ξ is *⊥*-continuous. if $w = k$, then it is obvious. Suppose $w \neq k$, then there are following four cases for $\varrho \in \left[\frac{1}{2}\right]$ $\frac{1}{2}, 1)$: Case 1) if $w \in [-2, 0]$ and $k \in (0, 2]$, then $\xi w = \frac{w}{4}$ and $\xi k = 0$. Here,

$$
G(\xi w_n, \xi w, \varrho \tau) = G(\frac{w}{4}, 0, \varrho \tau) = \left[e^{\frac{\left[\frac{w}{4}\right]^{\alpha}}{\varrho \tau}}\right]^{-1} \ge \left[e^{\frac{\max\{w, k\}^{\alpha}}{\tau}}\right]^{-1} = G(w, k, \tau),
$$

$$
H(\xi w_n, \xi w, \varrho \tau) = H(\frac{w}{4}, 0, \varrho \tau) = 1 - \left[e^{\frac{\left[\frac{w}{4}\right]^{\alpha}}{\varrho \tau}}\right]^{-1} \le 1 - \left[e^{\frac{\max\{w, k\}^{\alpha}}{\tau}}\right]^{-1} = H(w, k, \tau),
$$

Case 2) If $w, k \in [-2, 0)$, then $\xi w = \frac{w}{4}$ and $\xi k = \frac{k}{4}$. We have

$$
G(\xi w_n, \xi w, \varrho \tau) = G(\frac{w}{4}, \frac{k}{4}, \varrho \tau) = \left[e^{\frac{\max\{\frac{w}{4}, \frac{k}{4}\}^{\alpha}}{\varrho \tau}}\right]^{-1} \ge \left[e^{\frac{\max\{w, k\}^{\alpha}}{\tau}}\right]^{-1} = G(w, k, \tau),
$$

$$
H(\xi w_n, \xi w, \varrho \tau) = H(\frac{w}{4}, \frac{k}{4}, \varrho \tau) = 1 - \left[e^{\frac{\max\{\frac{w}{4}, \frac{k}{4}\}^{\alpha}}{\varrho \tau}} \right]^{-1} \le 1 - \left[e^{\frac{\max\{w, k\}^{\alpha}}{\tau}} \right]^{-1} = H(w, k, \tau),
$$

Case 3) If w, $k \in (0, 2]$, then $\xi w = 0$ and $\xi k = 0$. Here,

$$
G(\xi w, \xi k, \varrho \tau) = G(0, 0, \varrho \tau) = e^0 \ge \left[e^{\frac{\max\{w, k\}^{\alpha}}{\tau}} \right]^{-1} = G(w, k, \tau),
$$

$$
H(\xi w, \xi k, \varrho \tau) = H(0, 0, \varrho \tau) = 1 - e^0 \le 1 - \left[e^{\frac{\max\{w, k\}^{\alpha}}{\tau}} \right]^{-1} = H(w, k, \tau),
$$

Case 4) If $w \in (0, 2]$ and $k \in [-2, 0]$, then $\xi w = 0$ and $\xi k = \frac{k}{4}$. We have

$$
G(\xi w, \xi k, \varrho \tau) = G(0, \frac{k}{4}, \varrho \tau) = \left[e^{\frac{\max\left\{0, \frac{k}{4}\right\}^{\alpha}}{\varrho \tau}} \right]^{-1} \ge \left[e^{\frac{\max\{w, k\}^{\alpha}}{\tau}} \right]^{-1} = G(w, k, \tau),
$$

$$
H(\xi w, \xi k, \varrho \tau) = H(0, \frac{k}{4}, \varrho \tau) = 1 - \left[e^{\frac{\max\{0, \frac{k}{4}\}^{\alpha}}{\varrho \tau}} \right]^{-1} \le 1 - \left[e^{\frac{\max\{w, k\}^{\alpha}}{\tau}} \right]^{-1} = H(w, k, \tau),
$$

From all the above cases, We obtain that

$$
G(\xi w, \xi k, \varrho \tau) \ge G(w, k, \tau),\tag{19}
$$

$$
G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) \ge G(\mathbf{w}, \mathbf{k}, \tau), \tag{20}
$$

Hence, ξ is an orthogonal contraction. But, ξ is not a contraction. In fact, let w = -1 and k = -2 and $\alpha = 3$, then

$$
G(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) = \left[e^{\frac{\max\left\{\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}\right\}^{\alpha}}{\varrho \tau}} \right]^{-1} \ge 1,
$$

$$
H(\xi \mathbf{w}, \xi \mathbf{k}, \varrho \tau) = 1 - \left[e^{\frac{\max\left\{\frac{\mathbf{w}}{4}, \frac{\mathbf{k}}{4}\right\}^{\alpha}}{\varrho \tau}} \right]^{-1} \le 0.
$$

Which is not true. Hence, all assumptions of Theorem 3.13 are fulfilled and 0 is the unique FP of *ξ*. Also,

$$
G(w, w, \tau) = G(0, 0, \tau) = e^{0} = 1, \forall \tau > 0
$$
\n(21)

and

$$
H(\mathbf{w}, \mathbf{w}, \tau) = H(0, 0, \tau) = 1 - e^{0} = 0. \forall \tau > 0
$$
\n(22)

Theorem 3.17. *Suppose* $(\Xi, G, H, *, \Delta, \bot)$ *be an O-complete IFBMS such that* $\lim_{t\to\infty} G(w, k, \tau) = 1$ *, and* $\lim_{t\to\infty} H(w, k, \tau) = 0, \forall w, k \in \Xi$ and $\tau > 0$. Suppose $\xi : \Xi \to \Xi$ be \bot -continuous, \bot -contraction, and *⊥-preserving. Suppose ϱ ∈* (0*,* 1 $\frac{1}{\theta}$ and $\tau > 0$, such that

$$
G(\xi w, \xi k, \varrho \tau) \ge \min\{G(\xi w, w, \tau), G(\xi k, k, \tau)\}\tag{23}
$$

$$
H(\xi w, \xi k, \varrho \tau) \le \min\{H(\xi w, w, \tau), H(\xi k, k, \tau)\}\tag{24}
$$

for all $w, k \in \Xi, \tau > 0$. Then ξ has a unique FP, say $w_* \in \Xi$. Moreover, $\lim_{n \to \infty} G(\xi^n w, w_*, \tau) = 1$ and $\lim_{n\to\infty} H(\xi^n w, w_*, \tau) = 0$ *for all* $w \in \Xi$ *and* $\tau > 0$ *.*

Proof. Let $(\Xi, G, H, *, \Delta, \bot)$ be an O-complete IFBMS, There exists $w_0 \in \Xi$ such that

$$
w_0 \perp k \forall k \in \Xi \tag{25}
$$

Therefore, ξ *is* \bot -preserving, and $\{w_n\}$ *is an O-sequence. We have*

$$
G(w_{n+1}, n, \tau) \ge G(w_{n+1}, n, \varrho \tau) = G(\xi w_n, \xi w_{n-1}, \varrho \tau) \ge \min\{G(\xi w_n, n, \tau), G(\xi w_{n-1}, w_{n-1}, \tau)\}
$$

$$
H(\mathbf{w}_{n+1}, \mathbf{n}, \tau) \le H(\mathbf{w}_{n+1}, \mathbf{n}, \varrho \tau) = H(\xi \mathbf{w}_n, \xi \mathbf{w}_{n-1}, \varrho \tau) \le \min\{H(\xi \mathbf{w}_n, \mathbf{n}, \tau), H(\xi \mathbf{w}_{n-1}, \mathbf{w}_{n-1}, \tau)\}
$$

Two cases arise.

 $Case 1: If $G(w_{n+1}, n, \tau) \geq G(\xi w_n, w_n, \tau)$, then$

$$
G(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau) \ge G(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) \ge G(\xi \mathbf{w}_n, \mathbf{w}_n, \tau) = G(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau)
$$

and

$$
H(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau) \le H(\mathbf{w}_{n+1}, \mathbf{w}_n, \varrho \tau) \le H(\xi \mathbf{w}_n, \mathbf{w}_n, \tau) = H(\mathbf{w}_{n+1}, \mathbf{w}_n, \tau)
$$

Then, by Lemma 3.12, $w_n = w_{n+1}$ *for all* $n \in \mathbb{N}$ *Case 2): If* $G(w_{n+1}, n, \tau) \geq G(\xi w_{n-1}, w_{n-1}, \tau)$, *then*

$$
G(w_{n+1}, w_n, \tau) \ge G(w_{n+1}, w_n, \varrho \tau) \ge G(\xi w_{n-1}, w_{n-1}, \tau) \ge G(w_n, w_{n-1}, \tau)
$$

 $and H(w_{n+1}, n, \tau) \leq H(\xi w_{n-1}, w_{n-1}, \tau)$ *, then*

$$
H(w_{n+1}, w_n, \tau) \le H(w_{n+1}, w_n, \varrho \tau) \le H(\xi w_{n-1}, w_{n-1}, \tau) \le H(w_n, w_{n-1}, \tau)
$$

for all $n \in \mathbb{N}$ *and* $\tau > 0$ *. By utilizing Theorem 3.13, we have an O-Cauchy sequence. Since* $(\Xi, G, H, *, \Delta, \bot)$ *is complete, there exists* $w_* \in \Xi$ *, such that*

$$
\lim_{n \to \infty} G(\mathbf{w}_n, \mathbf{w}_*, \tau) = 1,\tag{26}
$$

and

$$
\lim_{n \to \infty} H(\mathbf{w}_n, \mathbf{w}_*, \tau) = 0,\tag{27}
$$

for all $\tau > 0$ *. Science,* ξ *is an* \bot *-continuous, We have*

$$
\lim_{n \to \infty} G(\mathbf{w}_{n+1}, \mathbf{w}_*, \tau) = G(\xi \mathbf{w}_n, \xi \mathbf{w}_*, \tau) = 1,
$$

and

$$
\lim_{n \to \infty} H(w_{n+1}, w_*, \tau) = H(\xi w_n, \xi w_*, \tau) = 0,
$$

Next, we examine that w_* *is a FP of* ξ *. Let* $\tau_1 \in (\varrho \theta, 1)$ *and* $\tau_2 = 1 - \tau_1$ *. then*

$$
G(\xi w_*, w_*, \tau) \ge G\left(\xi w_*, w_{n+1}, \frac{\tau \tau_1}{\theta}\right) * G\left(\xi w_{n+1}, w_*, \frac{\tau \tau_2}{\theta}\right),
$$

\n
$$
= G\left(\xi w_*, \xi w_n, \frac{\tau \tau_1}{\theta}\right) * G\left(\xi w_{n+1}, w_*, \frac{\tau \tau_2}{\theta}\right),
$$

\n
$$
\ge \min\left\{G\left(\xi w_*, w_*, \frac{\tau \tau_1}{\theta \theta}\right) * G\left(\xi w_n, w_n, \frac{\tau \tau_2}{\theta \theta}\right)\right\} * G\left(\xi w_{n+1}, w_*, \frac{\tau \tau_2}{\theta}\right)
$$

\n
$$
= \min\left\{G\left(\xi w_*, w_*, \frac{\tau \tau_1}{\theta \theta}\right) * G\left(\xi w_{n+1}, w_n, \frac{\tau \tau_2}{\theta \theta}\right)\right\} * G\left(\xi w_{n+1}, w_*, \frac{\tau \tau_2}{\theta}\right)
$$

Taking $n \rightarrow \infty$ *, We get*

$$
G(\xi_{\mathbf{W}_{*}}, \mathbf{w}_{*}, \tau) \ge \min\left\{G\left(\xi_{\mathbf{W}_{*}}, \mathbf{w}_{*}, \frac{\tau\tau_{1}}{\varrho\theta}\right), 1\right\} * 1,
$$

 $\bigg(\tau>0,$

and

$$
G(\xi w_*, w_*, \tau) \ge G\left(\xi w_*, w_*, \frac{\tau}{\nu}\right) \tau > 0, ,
$$

$$
H(\xi w_*, w_*, \tau) \le H\left(\xi w_*, w_{n+1}, \frac{\tau \tau_1}{\theta}\right) \Delta H\left(\xi w_{n+1}, w_*, \frac{\tau \tau_2}{\theta}\right),
$$

$$
= H\left(\xi w_*, \xi w_n, \frac{\tau \tau_1}{\theta}\right) \Delta H\left(\xi w_{n+1}, w_*, \frac{\tau \tau_2}{\theta}\right),
$$

$$
\le \min\left\{H\left(\xi w_*, w_*, \frac{\tau \tau_1}{\theta \theta}\right) \Delta H\left(\xi w_n, w_n, \frac{\tau \tau_2}{\theta \theta}\right)\right\} \Delta H\left(\xi w_{n+1}, w_*, \frac{\tau \tau_2}{\theta}\right)
$$

$$
= \min\left\{H\left(\xi w_*, w_*, \frac{\tau \tau_1}{\theta \theta}\right) \Delta H\left(\xi w_{n+1}, w_n, \frac{\tau \tau_2}{\theta \theta}\right)\right\} \Delta H\left(\xi w_{n+1}, w_*, \frac{\tau \tau_2}{\theta}\right)
$$

Taking $n \to \infty$ *, We get*

$$
H(\xi w_*, w_*, \tau) \le \min\left\{H\left(\xi w_*, w_*, \frac{\tau\tau_1}{\varrho\theta}\right), 0\right\} * 0,
$$

$$
H(\xi w_*, w_*, \tau) \le H\left(\xi w_*, w_*, \frac{\tau}{\nu}\right) \tau > 0,
$$

There is $\nu = \frac{\theta \varrho}{\tau_1}$ $\frac{\partial \rho}{\partial \tau_1} \in (0,1)$ *, and by utilizing Lemma 3.12, we get* $\xi_{\mathbf{W}*} = \mathbf{w}_*.$ **Uniqueness** : *Suppose* $w_* \neq k_*$ *are two FPs of* ξ . We get $w_0 \perp w_*$ *and* $w_0 \perp k_*$ *. Therefore, since* ξ *is an* \perp -preserving, we have $\xi^n w_0 \perp \xi^n w_*$ and $\xi^n w_0 \xi^n \perp k_*$. for all $n \in \mathbb{N}$. we can write

$$
G(\xi^n w_0, \xi^n w_*, \tau) \ge G(\xi^n w_0, \xi^n w_*, \varrho \tau) \ge \min\{G(\xi^n w_0, w_0, \tau), G(\xi^n w_*, w_*, \tau)\},
$$

and

$$
G(\xi^n w_0, \xi^n k_*, \tau) \ge G(\xi^n w_0, \xi^n k_*, \varrho \tau) \ge \min\{G(\xi^n w_0, w_0, \tau), G(\xi^n k_*, k_*, \tau)\},\
$$

Hence, we write that

$$
G(\mathbf{w}_0, \mathbf{k}_*, \tau) = G(\xi^n \mathbf{w}_*, \xi^n \mathbf{k}_*, \tau) \ge \min \left\{ G\left(\xi^n \mathbf{w}_*, \mathbf{w}_*, \frac{\tau}{\varrho}\right), G\left(\xi^n \mathbf{k}_*, \mathbf{k}_*, \frac{\tau}{\varrho}\right) \right\},\,
$$

and

$$
H(\xi^n w_0, \xi^n w_*, \tau) \le G(\xi^n w_0, \xi^n w_*, \varrho \tau) \le \min\{H(\xi^n w_0, w_0, \tau), H(\xi^n w_*, w_*, \tau)\},
$$

and

$$
H(\xi^n w_0, \xi^n k_*, \tau) \le H(\xi^n w_0, \xi^n k_*, \varrho \tau) \le \min\{H(\xi^n w_0, w_0, \tau), H(\xi^n k_*, k_*, \tau)\},
$$

Hence, we write that

$$
H(\mathbf{w}_0, \mathbf{k}_*, \tau) = H(\xi^n \mathbf{w}_*, \xi^n \mathbf{k}_*, \tau) \le \min\left\{H\left(\xi^n \mathbf{w}_*, \mathbf{w}_*, \frac{\tau}{\varrho}\right), H\left(\xi^n \mathbf{k}_*, \mathbf{k}_*, \frac{\tau}{\varrho}\right)\right\},\,
$$

for all $\tau > 0$ *. Thus,* $w_* = k_*$. □

Corollary 3.18. *Suppose* $(\Xi, G, H, *, \Delta, \bot)$ *be a complete OIFBMS and* $\xi : \Xi \to \Xi$ *be an* \bot *-continuous and ⊥-preserving. Let ϱ ∈* (0*,* 1 $\left(\frac{1}{\theta}\right)$ *for all* $\tau > 0$ *,with*

> $G(\xi w, \xi k, \varrho \tau) \ge \min\{G(\xi w, w, \tau), G(\xi k, k, \tau),\}$ $H(\xi w, \xi k, \rho \tau) \le \min\{H(\xi w, w, \tau), H(\xi k, k, \tau)\}.$

Then, ξ has a unique FP. Furthermore, $\lim_{n\to\infty} G(\xi^n w, w_*, \tau) = 1$ and $\lim_{n\to\infty} H(\xi^n w, w_*, \tau) = 0$, for all $w \in \Xi$ *and* $\tau > 0$ *.*

Proof. It is obvious from Theorem 3.14 and 3.17 \Box

Example 3.19. Suppose $\Xi = [-2, 2]$ and by \bot by $w \bot k \Leftrightarrow w + k \geq 0$. Define *G* and *H* by

$$
G(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 1 & \text{if } \mathbf{w} = \mathbf{k}, \\ \frac{\tau}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^\alpha} & \text{otherwise} \end{cases} \tag{28}
$$

$$
H(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 0 & \text{if } \mathbf{w} = \mathbf{k}, \\ \frac{\max\{\mathbf{w}, \mathbf{k}\}^{\alpha}}{\tau + \max\{\mathbf{w}, \mathbf{k}\}^{\alpha}} & \text{otherwise} \end{cases}
$$
 (29)

for all w, $k \in \Xi$ and $\tau > 0$, with $\sigma * \theta = \sigma \cdot \theta$ and $\sigma \Delta \theta = \max{\{\sigma, \theta\}}$, Then $(\Xi, G, H, *, \Delta, \bot)$ is an O-complete IFBMS. Note that $\lim_{n\to\infty} G_{w}$, k, $\tau = 1$ and $\lim_{n\to\infty} H_{w}$, k, $\tau = 0$. Define $\xi : \Xi \to \Xi$ by

$$
\xi(\mathbf{w}) = \begin{cases} \frac{\mathbf{w}}{4}, \ \mathbf{w} \in \left[-2, \frac{2}{3}\right], \\ 1 - \mathbf{w}, \ \mathbf{w} \in \left(\frac{2}{3}, 1\right], \\ \mathbf{w} - \frac{1}{2}, \ \mathbf{w} \in (1, 2]. \end{cases}
$$
 (30)

There are following four cases:

1. If
$$
w, k \in [-2, \frac{2}{3}]
$$
 then $\xi(w) = \frac{w}{4}$ and $\xi(k) = \frac{k}{4}$.
\n2. If $w, k \in (\frac{2}{3}, 1]$ then $\xi(w) = 1 - w$ and $\xi(k) = 1 - k$.
\n3. If $w, k \in (1, 2]$ then $\xi(w) = w - \frac{1}{2}$ and $\xi(k) = k - \frac{1}{2}$.
\n4. If $w, \in [-2, \frac{2}{3}]$ and $k \in (\frac{2}{3}, 1]$ then $\xi(w) = \frac{w}{4}$ and $\xi(k) = k - \frac{1}{2}$.
\n5. If $w, \in [-2, \frac{2}{3}]$ and $k \in (1, 2]$ then $\xi(w) = \frac{w}{4}$ and $\xi(k) = k - \frac{1}{2}$.
\n6. If $w, \in (\frac{2}{3}, 1]$ and $k \in (\frac{2}{3}, 1]$ then $\xi(w) = 1 - w$ and $\xi(k) = k - \frac{1}{2}$.
\n7. If $w, \in (1, 2]$ and $k \in (\frac{2}{3}, 1]$ then $\xi(w) = w - \frac{1}{2}$ and $\xi(k) = 1 - k$.
\n8. If $w \in (1, 2]$ and $k \in [-2, \frac{2}{3}]$ then $\xi(w) = w - \frac{1}{2}$ and $\xi(k) = \frac{k}{4}$.
\n9. If $w \in (\frac{2}{3}, 1]$ and $k \in [-2, \frac{2}{3}]$ then $\xi(w) = 1 - w$ and $\xi(k) = \frac{k}{4}$.

Because $w \perp k \Leftrightarrow w + k \geq 0$, it is clearly implies that $\xi w + k \geq 0$. that is, ξ is *⊥*-preserving. Suppose $\{w_n\}$ be any O-sequence in Ξ that O-converges to w *∈* Ξ*.* We get

$$
\lim_{n \to \infty} G(\mathbf{w}_n, \mathbf{w}, \tau) = \lim_{n \to \infty} \frac{\tau}{\tau + \max\{\mathbf{w}_n, \mathbf{w}\}^3} = 1,\tag{31}
$$

$$
\lim_{n \to \infty} H(\mathbf{w}_n, \mathbf{w}, \tau) = \lim_{n \to \infty} \frac{\max\{\mathbf{w}_n, \mathbf{w}\}^3}{\tau + \max\{\mathbf{w}_n, \mathbf{w}\}^3} = 0,
$$
\n(32)

Note that if $G(w_n, w, \tau) = 1$ and $H(w_n, w, \tau) = 0$, then $G(\xi w_n, \xi w, \tau) = 1$ and $H(\xi w_n, \xi w, \tau) = 0$ for all $\tau > 0$, that is, ξ is orthogonal continuous. For $w = k$, it is obvious. Assume $w \neq k$. We get

> $G(\xi w, \xi k, \rho \tau) \ge \min\{G(\xi w, w, \tau), G(\xi k, k, \tau)\}$ $H(\xi w, \xi k, \varrho \tau) \le \min\{H(\xi w, w, \tau), H(\xi k, k, \tau)\}.$

It fulfilled above all cases. Now, we show that ξ is not a contraction. Suppose

$$
\min\{G(\xi w, w, \tau), G(\xi k, k, \tau)\} = G(\xi w, w, \tau)
$$

$$
\min\{H(\xi w, w, \tau), H(\xi k, k, \tau)\} = H(\xi w, k, \tau).
$$

then for $w = -1$ and $k = -2$, we have

$$
G(\xi w, \xi k, \varrho \tau) = \frac{\varrho \tau}{\varrho \tau + \max\left\{\frac{w}{4}, \frac{k}{4}\right\}^3} = \frac{64 \varrho \tau}{64 \varrho \tau - 1} \ge 1,
$$

$$
H(\xi w, \xi k, \varrho \tau) = \frac{\max\left\{\frac{w}{4}, \frac{k}{4}\right\}^3}{\varrho \tau + \max\left\{\frac{w}{4}, \frac{k}{4}\right\}^3} = \frac{-1}{64 \varrho \tau - 1} \le 0.
$$

Which is not true. That is, all assumptions of Theorem 2.2 are fulfilled, and 0 is a unique FP of *ξ*.

Definition 3.20. Suppose $(\Xi, G, H, *, \Delta, \bot)$ be an OIFBMS. A mapping $\xi : \Xi \to \Xi$ is called a fuzzy θ - \bot contraction if their exists $\rho \in (0,1)$ such that

$$
\frac{1}{G(\xi \mathbf{w}, \xi \mathbf{k}, \tau)} - 1 \le \varrho \left[\frac{1}{G(\mathbf{w}, \mathbf{k}, \tau)} - 1 \right]
$$
\n(33)

$$
H(\xi w, \xi k, \tau) \le \varrho H(w, k, \tau) \tag{34}
$$

for all w, $k \in \Xi$ and $\tau > 0$. Where ρ is said to be an IFB- \bot -contractive constant of ξ .

Theorem 3.21. *Suppose* $(\Xi, G, H, *, \Delta, \bot)$ *be an OIFBMS. Such that*

$$
\lim_{\tau \to \infty} G(\mathbf{w}, \mathbf{k}, \tau) = 1,\tag{35}
$$

$$
\lim_{\tau \to \infty} H(\mathbf{w}, \mathbf{k}, \tau) = 0, \forall \mathbf{w}, \mathbf{k} \in \Xi.
$$
\n(36)

Assume a mapping $\xi : \Xi \to \Xi$ *be a* \bot *-continuous, IFB-* \bot *-contraction and* \bot *-preserving mapping. Thus,* ξ *has a FP, call* $\nu \in \Xi$ *. Moreover,* $G(\nu, \nu, \alpha) = 1$ *and* $H(\nu, \nu, \alpha) = 0$ *for all* $\alpha > 0$ *.*

Proof. Suppose $(\Xi, G, H, *, \Delta, \bot)$ *be an O-complete IFBMS. For any point* $w_0 \in \Xi$, $w_0 \perp k$, *for all* $k \in \Xi$. That is, $w_0 \perp \xi w_0$. Consider $w_n = \xi^n w_0 = \xi w_{n-1}$ for all $n \in \mathbb{N}$. Therefore, ξ is \perp -preserving and $\{w_n\}$ is *an O-sequence.* If $w_n = w_{n-1}$ *for some* $n \in \mathbb{N}$ *then* w_n *is a FP of* ξ *. We suppose that* $w_n \neq w_{n-1}$ *for all* $n \in \mathbb{N}$ *. For all* $\tau > 0$ *,* $n \in \mathbb{N}$ *and utilizing (9), we have*

$$
\frac{1}{G(w_n, w_{n+1}, \tau)} - 1 = \frac{1}{G(\xi w_{n-1}, \xi w_n, \tau)} - 1 \le \varrho \left[\frac{1}{G(w_{n-1}, w, \tau)} - 1 \right]
$$

$$
H(w_n, w_{n+1}, \tau) = H(\xi w_{n-1}, \xi w_n, \tau) \le \varrho H(w_{n-1}, w_n, \tau).
$$

We have

$$
\frac{1}{G(\mathbf{w}_n, \mathbf{w}_{n+1}, \tau)} - 1 = \frac{\varrho}{G(\mathbf{w}_{n-1}, \mathbf{w}_n, \tau)} + (1 - \varrho), \forall \tau > 0
$$

$$
\frac{\varrho}{G(\xi \mathbf{w}_{n-2}, \xi \mathbf{w}_{n-1}, \tau)} + (1 - \varrho) \le \frac{\varrho^2}{G(\mathbf{w}_{n-2}, \mathbf{w}_{n-1}, \tau)} + \varrho(1 - \varrho) + (1 - \varrho).
$$

Continuing in this way, we get

$$
\frac{\varrho}{G(w_n, w_{n+1}, \tau)} \le \frac{\varrho^n}{G(w_0, w_1, \tau)} + \varrho^{n-1}(1-\varrho) + \varrho^{n-2}(1-\varrho) + \dots + \varrho(1-\varrho) + (1-\varrho).
$$

$$
\le \frac{\varrho^n}{G(w_0, w_1, \tau)} + (\varrho^{n-1} + \varrho^{n-2} + \dots)(1-\varrho)
$$

$$
\leq \frac{\varrho^n}{G(\mathbf{w}_0, \mathbf{w}_1, \tau)} + (1 - \varrho^n)
$$

We have

$$
\frac{1}{\frac{\varrho^n}{G(w_0, w_1, \tau)} + (1 - \varrho^n)} \le G(w_n, w_{n+1}, \tau), \forall \tau > 0, n \in \mathbb{N}
$$
\n(37)

and

$$
H(\mathbf{w}_n, \mathbf{w}_{n+1}, \tau) = H(\xi \mathbf{w}_{n-1}, \xi \mathbf{w}_n, \tau) \le \varrho H(\mathbf{w}_{n-1}, \mathbf{w}_n, \tau) = \varrho H(\xi \mathbf{w}_{n-2}, \xi \mathbf{w}_{n-1}, \tau)
$$

$$
\leq \varrho^2 H(\mathbf{w}_{n-2}, \mathbf{w}_{n-1}, \tau) \leq \cdots \leq \varrho^n H(\mathbf{w}_0, \mathbf{w}_1, \tau) \forall \tau > 0, n \in \mathbb{N}
$$
\n(38)

Now, for $m \geq 1$ *and* $n \in \mathbb{N}$ *, we have*

$$
G(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \ge G\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta}\right)
$$

\n
$$
\ge G\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) * G\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^2}\right) * G\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^2}\right)
$$

Again, continuing in this way, we get

 $G(w_n, w_{n+m}, \tau) \geq G(w_n, w_{n+1}, \frac{\tau}{a})$ *θ* $\bigg) * G \left(w_{n+1}, w_{n+2}, \frac{\tau}{\alpha^n} \right)$ *θ* 2 \int * · · · * *G* $\left(\text{w}_{n+m-1}, \text{w}_{n+m}, \frac{\tau}{\rho m}\right)$ *θm−*¹ \setminus

and

$$
H(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \le H\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta}\right)
$$

$$
\le H\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^2}\right) \Delta H\left(\mathbf{w}_{n+2}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^2}\right)
$$

Continuing in this way, we get

$$
H(\mathbf{w}_n, \mathbf{w}_{n+m}, \tau) \le H\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^2}\right) \Delta \cdots \Delta H\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{m-1}}\right)
$$

By utilizing (37) in the above inequality, we get

$$
G(w_n, w_{n+m}, \tau) \ge \frac{1}{\frac{\varrho^n}{G(w_0, w_1, \frac{\tau}{\theta})} + (1 - \varrho^n)} * \frac{1}{\frac{\varrho^{n+1}}{G(w_0, w_1, \frac{\tau}{\theta^2})} + (1 - \varrho^n)} * \cdots
$$

$$
* \frac{1}{\frac{\varrho^{n+m-1}}{G(w_0, w_1, \frac{\tau}{\theta^{m-1}})} + (1 - \varrho^{n+m-1})}
$$

$$
\ge \frac{1}{\frac{\varrho^n}{G(w_0, w_1, \frac{\tau}{\theta})} + 1} * \frac{1}{\frac{\varrho^{n+1}}{G(w_0, w_1, \frac{\tau}{\theta^2})} + 1} * \cdots * \frac{1}{\frac{\varrho^{n+m-1}}{G(w_0, w_1, \frac{\tau}{\theta^{m-1}})} + 1}
$$

Also, using (38), we have

$$
H(\mathbf{w}_n, \mathbf{w}_{n+p}, \tau) \le H\left(\mathbf{w}_n, \mathbf{w}_{n+1}, \frac{\tau}{\theta}\right) \Delta H\left(\mathbf{w}_{n+1}, \mathbf{w}_{n+2}, \frac{\tau}{\theta^2}\right) \Delta \cdots \Delta H\left(\mathbf{w}_{n+m-1}, \mathbf{w}_{n+m}, \frac{\tau}{\theta^{m-1}}\right)
$$

As $\rho \in (0,1)$, we have $\lim_{n\to\infty} G(w_n, w_{n+m}, \tau) = 1$ and $\lim_{n\to\infty} H(w_n, w_{n+m}, \tau) = 0$ for all $\tau > 0$, $m \ge$ 1*. Therefore, a sequence* $\{w\}$ *is an O-Cauchy in* $(\Xi, G, H, *, \Delta, \bot)$ *is complete, and we have* ξ *is an* \bot *continuous, there exist* $\nu \in \Xi$ *such that*

$$
\lim_{n \to \infty} G(\mathbf{w}_{n+1}, \nu, \tau) = \lim_{n \to \infty} G(\xi \mathbf{w}_n, \xi \nu, \tau) = 1, \forall \tau > 0,
$$
\n(39)

$$
\lim_{n \to \infty} H(\mathbf{w}_{n+1}, \nu, \tau) = \lim_{n \to \infty} H(\xi \mathbf{w}_n, \xi \nu, \tau) = 0, \forall \tau > 0,
$$
\n(40)

Now, we show that ν is a FP of ξ. By utilizing (33), we have

$$
\frac{1}{G(\xi w, \xi \nu, \tau)} - 1 \le \varrho \left[\frac{1}{G(w_n, \xi \nu, \tau)} - 1 \right] = \frac{\varrho}{G(w, \xi \nu, \tau)} - \varrho.
$$

That is,

$$
\frac{1}{G(\xi w, \xi \nu, \tau) + 1 - \varrho} \leq G(\xi w_n, \xi \nu, \tau).
$$

Using the above inequality, we obtain

$$
G(\nu, \xi \nu, \tau) \ge G\left(\nu, w_{n+1}, \frac{\tau}{2\theta}\right) * G\left(w_{n+1}, \xi \nu, \frac{\tau}{2\theta}\right)
$$

= $G\left(\nu, w_{n+1}, \frac{\tau}{2\theta}\right) * G\left(\xi w_n, \xi \nu, \frac{\tau}{2\theta}\right)$
 $\ge G\left(\nu, w_{n+1}, \frac{\tau}{2\theta}\right) * \frac{\varrho}{G\left(w_n, \nu, \frac{\tau}{2\theta}\right) + 1 - \varrho}$

and

$$
H(\mathbf{w}, \nu, \tau) = H(\xi \mathbf{w}, \xi \nu, \tau) \le \varrho H(\mathbf{w}, \nu, \tau) < H(\mathbf{w}, \nu, \tau)
$$

= $H\left(\mathbf{w}, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) \Delta H\left(\xi \mathbf{w}_n, \xi \mathbf{w}, \frac{\tau}{2\theta}\right)$
 $\le H\left(\mathbf{w}, \mathbf{w}_{n+1}, \frac{\tau}{2\theta}\right) \Delta \varrho H\left(\mathbf{w}_n, \mathbf{w}, \frac{\tau}{2\theta}\right)$

Taking limit as $n \to \infty$ *and using (39) and (40) in the above expression, we get* $G(\nu, \xi \nu, \tau) = 1$, that is, $\xi \nu = \nu$. Therefore, ν *is a FP of* ξ , and $G(\nu, \nu, \tau) = 1$ and $H(\nu, \nu, \tau) = 0$ for all $\tau > 0$. \Box

Corollary 3.22. *Suppose* $(\Xi, G, H, *, \Delta, \bot)$ *be an O-complete IFBMS such that* $\lim_{n \to \infty} G(w, k, \tau) = 1$ *and* $\lim_{nt \to \infty} H(w, k, \tau) = 0$, for all $w, k \in \Xi$ and ξ : Ξ *to* Ξ *satisfy*

$$
\frac{1}{G(\xi^n w, \xi^n k, \tau)} - 1 \le \varrho \left[\frac{1}{G(w, k, \tau)} - 1 \right]
$$
\n(41)

$$
H(\xi^n w, \xi^n k, \tau) \le \varrho H(w, k, \tau) \tag{42}
$$

for all $n \in \mathbb{N}, w, k \in \Xi, \tau > 0$, where $0 < \varrho < 1$. Then ξ has a FP, say $\nu \in \Xi$ and $G(\nu, \nu, \tau) = 1$, for all $\tau > 0$. *Proof.* $\nu \in \Xi$ *is a unique FP of* ξ^n *by utilizing Theorem 3.22, and* $G(\nu, \nu, \tau) = 1$ *, for all* $\tau > 0$ *.* $\xi \nu$ *is also a FP* of $\xi^{n}(\xi \nu) = \xi \nu$ *from Theorem 3.22,* $\xi \nu = \nu$ *. Hence, the FP* of ξ *is also a FP* of ξ^{n} *.* □

Example 3.23. Suppose $\Xi = [-1, 2]$ and define \bot by w \bot k \Leftrightarrow w + k ≥ 0 . Define *G, H* as in Example 3.4 with $\alpha = 3$,

$$
G(w, k, \tau) = \frac{\tau + \min\{w, k\}^3}{\tau + \min\{w, k\}^3} \forall w, k \in \Xi, \tau > 0,
$$
\n(43)

and

$$
H(w, k, \tau) = 1 - \frac{\tau + \min\{w, k\}^3}{\tau + \min\{w, k\}^3} \forall w, k \in \Xi, \tau > 0,
$$
\n(44)

with $\sigma * \theta = \sigma \cdot \theta$ and $\sigma \Delta \theta = \max{\{\sigma, \theta\}}$, then $(\Xi, G, H, *, \Delta, \bot)$ is an O-complete IFBMS. see that $\lim_{\tau \to \infty} G(w, k, \tau) = 1$ and $\lim_{\tau \to \infty} H(w, k, \tau) = 0$ for all $w, k \in \Xi$. Define $\xi : \Xi \to \Xi$ by

$$
G(\mathbf{w}, \mathbf{k}, \tau) = \begin{cases} 2 - \mathbf{w} \ \mathbf{w} \in [-1, 1), \\ 1 \ \mathbf{w} \in [1, 2), \end{cases}
$$
 (45)

We have the following four cases:

- 1. if $w, k \in [-1, 1)$ then $\xi w = 2 w$ and $\xi k = 2 k$,
- 2. if $w, k \in [1, 2]$ then $\xi w = \xi k = 1$,
- 3. if $w, \in [-1, 1)$ and $k \in [1, 2]$ then $\xi w = 2 w$ and $\xi k = 1$,
- 3. if $w, \in [1, 2]$ and $k \in [-1, 1)$ then $\xi w = 1$ and $\xi k = 2 k$,

Because $w \perp k \Leftrightarrow w + k \geq 0$, it is clearly implies that $\xi(w) + \xi(k) \geq 0$. That is, ξ is *⊥*-preserving. Suppose ${w_n}$ be any O-sequence in Ξ that O-converges to $w \in \Xi$. we get

$$
\lim_{n \to \infty} G(\mathbf{w}, \mathbf{k}, \tau) = \lim_{n \to \infty} \frac{\tau + \min{\{\mathbf{w}, \mathbf{k}\}}^3}{\tau + \min{\{\mathbf{w}, \mathbf{k}\}}^3} = 1 \forall \mathbf{w}, \mathbf{k} \in \Xi, \tau > 0,
$$

and

$$
\lim_{n \to \infty} H(w, k, \tau) = 1 - \lim_{n \to \infty} \frac{\tau + \min\{w, k\}^3}{\tau + \min\{w, k\}^3} = 0 \forall w, k \in \Xi, \tau > 0,
$$

we can easily see that if $\lim_{n\to\infty} G(w_n, w, \tau) = 1$, and $\lim_{n\to\infty} H(w_n, w, \tau) = 0$, then $\lim_{n\to\infty} G(\xi w_n, \xi w, \tau) =$ 1 and $\lim_{n\to\infty} H(\xi w_n, \xi w, \tau) = 0$ for all $\tau > 0$. That is, ξ is orthogonal continuous. For w = k, it is obvious.

$$
\frac{1}{G(\xi \mathbf{w}, \xi \mathbf{k}, \tau)} - 1 \le \varrho \left[\frac{1}{G(\mathbf{w}, \mathbf{k}, \tau)} - 1 \right]
$$

$$
H(\xi \mathbf{w}, \xi \mathbf{k}, \tau) \le q \varrho H(\mathbf{w}, \mathbf{k}, \tau).
$$

All conditions of Theorem 3.21 are satisfied and 1 is a FP of *ξ*

4 An Application to an Integeal Equation

Let $\Xi = C([\sigma, \theta], \mathbb{R})$ be the set of all continuous real valued functions defined on $[\sigma, \theta]$. Now, we consider the Fredholm type integral equation of fiest kind:

$$
\mathbf{w}(\eta) = \int_{\sigma}^{\theta} F(\eta, j) \mathbf{w}(\eta) \mathbf{k} j, \text{for } \eta, j \in [\sigma, \theta]
$$
\n(46)

Where, $F \in \Xi$. Define *G* as in Example 3.2, That is

$$
G(\mathbf{w}(\eta), \mathbf{k}(\eta), \tau) = \sup_{\eta \in [\sigma, \theta]} \begin{cases} 1 \text{ if } \mathbf{w} = \mathbf{k}, \\ \left[e^{\frac{\max\{\mathbf{w}(\eta), \mathbf{k}(\eta)\}^{\alpha}}{\tau}} \right]^{-1} \text{ otherwise,} \end{cases}
$$
(47)

and

$$
H(\mathbf{w}(\eta), \mathbf{k}(\eta), \tau) = \sup_{\eta \in [\sigma, \theta]} \begin{cases} 0 \text{ if } \mathbf{w} = \mathbf{k}, \\ 1 - \left[e^{\frac{\max\{\mathbf{w}(\eta), \mathbf{k}(\eta)\}^{\alpha}}{\tau}} \right]^{-1} \text{ otherwise,} \end{cases}
$$
(48)

for all w, $k \in \Xi$ and $\tau > 0$. Then $(\Xi, G, H, *, \Delta, \bot)$ is an O-complete IFBMS.

Theorem 4.1. Assume that $\max\{F(\eta, j)w(\eta), F(\eta, j)k(\eta)\}\leq \varrho \max\{w(\eta), k(\eta)\}$ for $w, k \in \Xi, \varrho \in (0, 1)$ and $\eta, j \in [\sigma, \theta]$ *. Also, consider* $\int_{\sigma}^{\theta} kj = 1$ *. Then the Fredholm type integral equation of first kind in equation* (46) *has a unique solution.*

Proof. Define $\xi : \Xi \to \Xi$ *by* $w(\eta) = \int_{\sigma}^{\theta} F(\eta, j)w(\eta) k j$, for $\eta, j \in [\sigma, \theta]$. *Define Orthogonality as:* $w(\eta) \perp$ $k(\eta) \Leftrightarrow w(\eta)k(\eta) \in \{ |w(\eta)|, |k(\eta)| \}.$ We see that $w(\eta)$ and $\xi w(\eta)$ belong to Ξ . So, observe that if $w(\eta) \perp k(\eta)$,

then must be $\xi w(\eta) \perp \xi k(\eta)$ *. Observe that the existence of a FP of the operator* ξ *is equivalent to the existance of a solution of the Fredholm type integral equation* (46). Now, for $w(\eta) = k(\eta)$, the contraction condition *holds. While for* $w \neq k$ *, We have*

$$
G(\xi w(\eta), \xi k(\eta), \varrho \tau) = \left[e^{\frac{\max\{w(\eta), k(\eta)\}^{\alpha}}{\varrho \tau}}\right]^{-1}
$$

\n
$$
= \left[e^{\frac{\max\left\{\int_{\sigma}^{\theta} F(\eta, j) w(\eta) k j, \int_{\sigma}^{\theta} F(\eta, j) k(\eta) k j\right\}^{\alpha}}{\varrho \tau}}\right]^{-1}
$$

\n
$$
= \left[e^{\frac{\left(\int_{\sigma}^{\theta} \max\{F(\eta, j) w(\eta) k j, F(\eta, j) k(\eta) k j\}\right)^{\alpha}}{\varrho \tau}}\right]^{-1}
$$

\n
$$
\geq \left[e^{\frac{\left(\int_{\sigma}^{\theta} \max\{w(\eta) k j, k(\eta) k j\}\right)^{\alpha}}{\varrho \tau}}\right]^{-1}
$$

\n
$$
\geq \sup_{\eta \in [\sigma, \theta]} \left[e^{\frac{(\varrho \max\{w(\eta) k j, k(\eta)\})^{\alpha} \left(\int_{\sigma}^{\theta} k j\right)^{\alpha}}{\varrho \tau}}\right]^{-1}
$$

\n
$$
= \sup_{\eta \in [\sigma, \theta]} \left[e^{\frac{(\max\{w(\eta) k j, k(\eta)\})^{\alpha}}{\tau}}\right]^{-1}
$$

\n
$$
= G(w(\eta), k(\eta), \tau),
$$

and

$$
H(\xi w(\eta), \xi k(\eta), \varrho \tau) = 1 - \left[e^{\frac{\max\{w(\eta), k(\eta)\}^{\alpha}}{\varrho \tau}} \right]^{-1}
$$

\n
$$
= 1 - \left[e^{\frac{\max\{ \int_{\sigma}^{\theta} F(\eta, j) w(\eta) k j, \int_{\sigma}^{\theta} F(\eta, j) k(\eta) k j \}^{\alpha}}{\varrho \tau}} \right]^{-1}
$$

\n
$$
1 - \left[e^{\frac{\left(\int_{\sigma}^{\theta} \max\{F(\eta, j) w(\eta) k j, F(\eta, j) k(\eta) k j\} \right)^{\alpha}}{\varrho \tau}} \right]^{-1}
$$

\n
$$
\leq 1 - \left[e^{\frac{\left(\int_{\sigma}^{\theta} \max\{w(\eta) k j, k(\eta) k j\} \right)^{\alpha}}{\varrho \tau}} \right]^{-1}
$$

\n
$$
\leq 1 - \sup_{\eta \in [\sigma, \theta]} \left[e^{\frac{\left(\varrho \max\{w(\eta) k j, k(\eta) \} \right)^{\alpha} \left(\int_{\sigma}^{\theta} k j \right)^{\alpha}}{\varrho \tau}} \right]^{-1}
$$

\n
$$
= 1 - \sup_{\eta \in [\sigma, \theta]} \left[e^{\frac{\left(\max\{w(\eta) k j, k(\eta) \} \right)^{\alpha}}{\tau}} \right]^{-1}
$$

\n
$$
= H(w(\eta), k(\eta), \tau),
$$

Hence, ξ *is an* \bot -contraction. Let $\{w_n\}$ be an O-sequence in Ξ *O-converging to* $w \in \Xi$ *. Because* ξ *is an ⊥-preserving, then {ξ*w*n} is an O-sequence for each n ∈* N*. We have*

$$
G(\xi w_n(\eta), \xi w, \varrho \tau) \ge G(w_n(\eta), w(\eta), \tau)
$$
\n(49)

and

$$
H(\xi w_n(\eta), \xi w, \varrho \tau) \le H(w_n(\eta), w(\eta), \tau)
$$
\n(50)

As $\lim_{n\to\infty} G(\xi w_n(\eta), \xi w, \varrho\tau) = 1$ and $\lim_{n\to\infty} H(\xi w_n(\eta), \xi w, \varrho\tau) = 0$ for all $\tau > 0$, it is clear that

$$
\lim_{n \to \infty} G(\xi \mathbf{w}_n(\eta), \xi \mathbf{w}, \varrho \tau) = 1,\tag{51}
$$

$$
\lim_{n \to \infty} H(\xi w_n(\eta), \xi w, \varrho \tau) = 0,\tag{52}
$$

Hence, ξ is ⊥-continuous. Therefore, all conditions of Theorem 3.13 are satisfied. Hence, the operator ξ has a unique FP. That is, the Fredholm type integral equation (46) has a unique solution. \Box

5 Conclusion

In this study, we established the concept of an OIFBMS as a generalization of an IFBMS. We established some fixed point theorems and solved some non-trivial examples with an application to Fredholm integral equations. This work is extendable in the structure of orthogonal neutrosophic b-metric spaces,and orthogonal inutionistic fuzzy controlled metric spaces and we can increase self mappings to get new results.

Acknowledgements: We would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript.

Conflict of Interest: The authors declare no conflicts of interest.

References

- [1] Bakhtin IA. The contraction mapping principle in quasimetric spaces. *Functional analysis*. 1989; 30: 26-37. DOI: https://doi.org/10.4236/oalib.1104657
- [2] Czerwil S. Contraction mappings in b-metric spaces. *Acta Mathematica et Informatica Universitatis Ostraviensis*. 1993; 1(1): 5-11. DOI: http://dml.cz/dmlcz/120469
- [3] Eshaghi Gordji M, Ramezani M, De La Sen M, Cho YJ. On orthogonal sets and Banachs fixed point theorem. *Fixed Point Theory*. 2017; 18(2): 569-578. DOI: https://doi.org/10.24193/fpt-ro.2017.2.45
- [4] Uddin F, Park C, Javed K, Arshad M, Lee JR. Orthogonal m-metric spaces and an application to solve integral equations. *Advance in Difference Equations*. 2021; 2021: 1-15. DOI: https://doi.org/10.1186/s13662-021-03323-x
- [5] Eshaghi Gordji M, Habibia H. Fixed point theory in generalized orthogonal metric space. *Journal of Linear and Topological Algebra*. 2017; 6(03): 251-260. DOI: https://dorl.net/dor/20.1001.1.22520201.2017.06.03.7.7
- [6] Senapati T, Dey LK, Damjanovic B, Chanda A. New fixed point results in orthogonal metric Space with an application. *Kragujevac Journal of Mathematics*. 2018; 42(4): 505-516. DOI: https://doi.org/10.5937/KgJMath1804505S
- [7] Zadeh LA. Fuzzy sets. *Information and Control*. 1965; 8(3): 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
- [8] Schweizer B, Sklar A. Statistical metric spaces. *Pacific Journal of Mathematics*. 1960; 10(1): 313-334. DOI: http://dx.doi.org/10.2140/pjm.1960.10.313
- [9] Kramosil I, Michlek j. Fuzzy metric and statistical metric spaces. *Kybernetika*. 1975; 11(5): 336-344. DOI: http://dml.cz/dmlcz/125556
- [10] George A, Veeramani P. On some results in fuzzy metric spaces. *Fuzzy Sets and Systems*. 1994; 64(3): 395-399. DOI: https://doi.org/10.1016/0165-0114(94)90162-7
- [11] George A, Veeramani P. On some results of analysis for fuzzy metric spaces. *Fuzzy Sets and Systems*. 1997; 90(3): 365-368. DOI: https://doi.org/10.1016/S0165-0114(96)00207-2
- [12] Deng Z. Fuzzy pseudo-metric spaces. *Journal of Mathematical Analysis and Applications*. 1982; 86(1): 74-95. DOI: https://doi.org/10.1016/0022-247X(82)90255-4
- [13] Shukla S, Abbas M. Fixed point results in fuzzy metric-like spaces. *Iranian Journal of Fuzzy Systems*. 2014; 11(5): 81-92. DOI: https://doi.org/10.22111/ijfs.2014.1724
- [14] Hezarjaribi M. Fixed point result in orthogonal fuzzy metric space. *Jordan Journal of Mathematics and Statistics*. 2018; 11(4): 295-308.
- [15] Ndban S. Fuzzy b-metric spaces. *International Journal of Computers Communications & Control*. 2016; 11(2): 273-281. DOI: https://doi.org/10.15837/IJCCC. 2016.2.2443
- [16] Javed K, Uddin F, Aydi H, Arshad M, Ishtiaq U, Alsamir H. On fuzzy b-metric-like spaces. *Journal of Function Spaces*. 2021; 2021: 1-9. DOI: https://doi.org/10.1155/2021/6615976
- [17] Sedghi S, Shobe N. Common fixed point theorem in b-fuzzy metric space. *Nonlinear Functional Analysis and Applications*. 2012; 17: 349-359. DOI: https://doi.org/10.1155/2021/6615976
- [18] Doenovic T, Javaheri A, Sedghi S, Shobe N. Coupled fixed point theorem in b-fuzzy metric spaces. *Novi Sad J. Math*. 2017; 47(1): 77-88. DOI: https://doi.org/10.1515/fascmath-2018-0015
- [19] Rakic D, Mukheimer A, Doenovic T, Mitrovic ZD, Radenovic S. On some new fixed point results in fuzzy b-metrics paces. *Journal of Inequalities and Applications*. 2020; 2020:1-14. DOI: https://doi.org/10.1186/s13660-020-02371-3
- [20] Mehmood F, Ali R, Ionescu C, Kamran T. Extended fuzzy b-metric spaces. *Journal of Mathematical Analysis*. 2017; 8(6): 124-131.
- [21] Park JH. Intuitionistic fuzzy metric spaces. *Chaos, Solitons* & *Fractals*. 2004; 22(5): 1039-1046. DOI: https://doi.org/10.1016/j.chaos.2004.02.051
- [22] Rafi M, Noorani MSM. Fixed point theorem on intuitionistic fuzzy metric space. *Iranian Journal of Fuzzy Systems*. 2006; 3(1): 23-29. DOI: https://doi.org/10.22111/IJFS.2006.428
- [23] Sintunavarat W, Kumam P. Fixed theorems for a generalized intuitionistic fuzzy contraction in intuitionistic fuzzy metric spaces. *Thai Journal of Mathematics*. 2012; 10(1): 123-135.
- [24] Alaca C, Turkoglu D, Yildiz C. Fixed points in intuitionistic fuzzy metric spaces. *Chaos, Solitons* & *Fractals*. 2006; 29(5): 1073-1078. DOI: https://doi.org/10.1016/j.chaos.2005.08.066
- [25] Mohamad A. Fixed-point theorems in intuitionistic fuzzy metric spaces. *Chaos, Solitons* & *Fractals*. 2007; 34(5): 1689-1695. DOI: https://doi.org/10.1016/j.chaos.2006.05.024
- [26] Konwar N. Extension of fixed results in intuitionistic fuzzy b-metric spaces. *Journal of Intelligent* & *Fuzzy Systems*. 2020; 39(5): 7831-7841. DOI: https://doi.org/10.3233/JIFS-201233
- [27] Baleanu D, Rezapour S, Mohammadi H. Some existence results on nonlinear fractional differential equations. *Philosophical Transaction of the Royal Society A: Mathematical, Physical and Engineering Sciences*. 2013; 371(1990): 1-7. DOI: https://doi.org/10.1098/rsta.2012.0144
- [28] Sudsutad W, Tariboon J. Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions. *Advances in Difference Equations*. 2012; 2012(93): 1-10. DOI: https://doi.org/10.1186/1687-1847-2012-93

Fahim Uddin

Abdus Salam School of Mathematical Sciences Government College University Lahore, Pakistan. E-mail: fahamiiu@gmail.com

Muhammad Saeed

Department of Mathematics University of Management and Technology Lahore, Pakistan. E-mail: muhammad.saeed@umt.edu.pk

Khaleel Ahmad

Department of Mathematics University of Management and Technology Lahore, Pakistan. E-mail: khalil7066616@gmail.com

Umar Ishtiaq

Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan. E-mail: umarishtiaq000@gmail.com

Salvatore Sessa

.

Department of Mathematics University of Naples Federico II Naples, Italy. E-mail: salvatore.sessa2@unina.it

G By the Authors. Published by Islamic Azad University, Bandar Abbas Branch. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution

4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/ .