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Abstract. Decision-Making (DM) is one of the most important components of human cognition. Starting with a
review of the traditional criteria for DM, this work presents also a method for the verification of a decision, a step
of the DM process which, due to its special interest, is usually examined separately from its other steps. Frequently
in everyday life, however, the data of a DM problem are vague and characterized by uncertainty. In such cases the
traditional techniques for DM, which are based on principles of the bivalent logic (yes-no), cannot help effectively
in making the right decision. The first who introduced principles of the fuzzy sets theory in DM were Bellman
and Zadeh in 1970 and an example is given here illustrating their fuzzy criterion for DM. Also, among the several
fuzzy methods proposed later by other researchers for a more effective DM, a hybrid method is developed here for
parametric multiple-criteria DM using soft sets and grey numbers (or intuitionistic fuzzy sets, or neutrosophic sets)
as tools, which improves an earlier method proposed by Maji et al. in 2002. All the DM approaches presented in
this paper are illustrated with everyday practical examples.
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1 Introduction

Decision-making (DM), one of the most important components of human cognition, is the process of choosing
a solution between two or more alternatives for the purpose of achieving the optimal result for a given problem.
Obviously DM has sense if, and only if, there exists more than one feasible solution, together with one or
more suitable criteria helping the decision maker to choose the best among these solutions. We recall that
a solution is characterized as feasible, if it satisfies all the restrictions imposed onto the real system by the
statement of the problem as well as all the natural restrictions imposed onto the problem by the real system;
e.g. if x denotes the quantity of stock of a product, we must have x ≥ 0. The choice of the suitable criterion,
especially when the results of DM are affected by random events, depends upon the desired goals of the
decision maker; e.g. optimistic or conservative criterion, etc.

The rapid technological progress, the impressive development of transportation means, the globalization
of human society, the continuous changes appearing in the local and international economies, and other
related reasons, led during the last 60-70 years to a continuously increasing complexity of the problems of
our everyday life. As a result the DM process became in many cases a very difficult task, which is impossible
to be based on the decision makers experience, intuition and skills only, as it usually happened in the past.
Thus, from the beginning of 1950 a progressive development started of a systematic methodology for the DM
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process, termed Statistical Decision Theory, which is based on principles of Probability Theory, Statistics,
Economics, Psychology and of other related scientific sectors [1].

The DM process involves the following steps:

• d1 : Analysis of the decision problem, i.e. understanding, simplifying and reformulating the problem
in a form permitting the application of the standard DM techniques it.

• d2 : Collection and interpretation of all the necessary information related to the problem.

• d3 : Determination of all the feasible solutions.

• d4 : Choice of the best solution in terms of the suitable, according to the decision-makers goals, criterion
(-ia).

One could add one more step to the DM process, the verification of the chosen decision according to the
results obtained by applying it in practice. However, this step is extended to areas which, due to their depth
and importance, have become autonomous. Therefore, it is usually examined separately from the other steps
of the DM process.

Note that the first three steps of the DM process are continuous, in the sense that the completion of
each one of them usually needs some time, during which the decision- maker’s reasoning is characterized by
transitions between hierarchically neighbouring steps. In other words, the DM process, the flow diagram of
which is represented in Figure 1, cannot be characterized as a linear process.

Figure 1: The flow diagram of the DM process

For facilitating the DM process, at the step of analysis a decision problem is usually represented by a
decision matrix, otherwise termed as the matrix of the pay-offs. Each row of this matrix corresponds to
an event and each column of it corresponds to a decision. The events are all the possible outcomes of the
corresponding DM problem, whereas the entries of the matrix correspond to the results of each decision
(pay-offs). Mathematically speaking, in a DM problem with n events and m possible decisions the decision
matrix is an n x m matrix of the form [aij ], where aij denotes the pay-off corresponding to the event Ei

and the decision Dj . Table 1, for example, represents the decision matrix of the classical DM problem of the
judge.

Table 1: Decision matrix of the DM problem of the judge

Events Decisions of the judge

INNOCENT GUILTY

INNOCENT An innocent is decided to be innocent An innocent is decided to be guilty

GUILTY A guilty is decided to be innocent A guilty is decided to be guilty

An alternative way to represent a DM problem is the use of a decision tree, which has the form of a logical
diagram. The decision tree of the DM problem of the judge, for example, is shown in Figure 2.
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Figure 2: The decision tree of the DM problem of the judge

The use of a decision tree is usually preferred in the case of composite and complicated DM problems.

In this review paper, starting from the traditional criteria for DM, based on principles of the bivalent
logic [2, 3], we also present a method for studying the verification of a decision, based on the calculation of
the GPA index. Next the criterion of Bellman and Zadeh is presented for DM under fuzzy conditions [4] and
a parametric method for multiple criteria DM is developed [5–8], which improves an earlier DM of Maji et
al. [9] using soft sets as tools.

2 Traditional Criteria for Decision-Making

According to the existing information, a decision is made under conditions of certainty, risk, uncertainty
or complete ignorance. In the first case the DM is obviously an easy task, whereas the complete lack of
information is something that happens very seldom. Uncertainty in the field of Management is understood to
be a situation in which all the possible outcomes of future action are known, but not the probabilities of the
appearance of each outcome. On the contrary, in a situation of risk both the outcomes of an action and the
probabilities of them to happen are known. The turn of a coin, for example, is a situation of risk, whereas
the color of the first car that will pass in front of an observer is a situation of uncertainty.

As already mentioned in the previous section, a necessary condition for the DM is the existence of at least
one suitable criterion helping the decision-maker to make the right decision. When the pay-offs are numerical
quantities, the most commonly used decision criteria among those reported in the literature [2, 3], are the
following:

• Maximization of the minimal pay-offs (maxi min pay-offs)
Using this criterion, the decision-maker considers the minimal pay-offs corresponding to each possible decision
and chooses the maximal among them. This criterion, otherwise known as the criterion of Wald, is based
on the law of Murphy, according to which the worst that could happen will happen. It is, therefore, a
conservative criterion, which is frequently used when the decision-maker knows that he/she has no chance to
make a wrong estimation. On the other end, the maximization of the maximal pay-offs (maxi max pay-offs)
is a super optimistic criterion, which is used very rarely, because it involves a great risk.

• Minimization of the maximal lost opportunities (mini max lost opportunities)
The lost opportunity xij is defined to be the difference of the maximal pay-off corresponding to the event Ei,
minus the pay-off aij , for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. To apply this criterion, one forms the n x m
matrix of the lost opportunities {xij} and chooses the column (and therefore the decision) corresponding to
the minimal among the maximal lost opportunities. This criterion, also known as the regret criterion because
of the decision-makers disappointment with the lost opportunities, is more optimistic than the criterion of
Wald.

• Maximization of the expected pay-offs
Let pi be the probability of appearance of the event Ei, i = 1, 2, . . . , n, then the expected pay-off aj corre-
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sponding to the possible decision j, j = 1, 2, . . . ,m, is defined by

aj =

n∑
i=1

piaij . (1)

According to this criterion, which obviously can be applied when the decision is made under conditions of
risk, the right decision corresponds to the max(a1, a2, . . . , am). For applying this criterion under conditions
of uncertainty, i.e. when the probabilities pi are not known, one may assume that all of them are equal to
each other, a simplification which is not always true in practice. In this case equation (1) takes the form

aj =
1

n

n∑
i=1

aij . (2)

In this form the criterion is known as the criterion of Laplace.
• Minimization of the expected lost opportunities

Under conditions of risk, if pi denotes the probability of realization of the event Ei, i = 1, 2, . . . , n, the
expected lost opportunity xj corresponding to the possible decision Dj , j = 1, 2, . . . ,m, is defined by

xj =

n∑
i=1

pixij . (3)

According to this criterion, the right decision corresponds to the min(x1, x2, . . . , xm). In case of uncertainty

one may set again pi =
1

n
.

Remark 2.1. On the basis of the definition of the lost opportunities it becomes evident that the criteria
of the maximization of the expected pay-offs and of the minimization of the expected lost opportunities are
equivalent, leading always to the same decision, e.g. see below the case (iii) of Example 2.2.

• Criterion of optimism - pessimism
In this criterion an optimism index qj is assigned to the maximal pay-off, say tj , of each decision Dj , j =
1, 2, . . . ,m. Also the pessimism index 1qj is assigned to the minimal pay-off, say sj , of the same decision.
The index qj either depends on the personal goals of the decision-maker, or it is determined with the help of
existing statistical data. Then the expected pay-off aj of the possible decision j, j = 1, . . . ,m, is calculated
by the formula

aj = qjtj + (1− qj)sj , (4)

and the right decision corresponds to the max(a1, a2, . . . , am). This criterion is also referred to as the criterion
of Hurwicz.

Example 2.2. The management of an industry must choose the optimal among three methods, say A1, A2,
A3, for the production of a good, which will be put on sale at a price of 100 euros per unit. The application
of A1 requires an initial capital of one million euros for buying and setting the necessary equipment, plus 50
euros per unit for the production expenses. The corresponding amounts of money are 1.6 million, 40 euros
for A2 and 3 million, 30 euros for A3 respectively. The markets research has shown that the probability for a
low demand of the good (25000 units) is 10%, for a mediocre demand (100000 units) is 70% and for a high
demand (150000 units) is 20%. Further, the optimistic indices for each method of production were estimated
to be q1 = q2 = 0.6 and q3 = 0.8 respectively.
Find which the optimal choice for the industry is by applying the criteria:

i) Maxi min pay-offs,
ii) Mini max lost opportunities,
iii) Maximization of the expected pay-offs or minimization of the expected lost opportunities.
iv) Optimism pessimism.
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Solution: Denote by E1, E2 and E3 the events of low, mediocre and high demand of the good respectively.
i) The pay-offs aij are equal to the revenue from the sale of the good minus the initial capital and the

expenses for the production of the good. In case of the event E1 and the method A2, for example, one finds
that a12 = 25000.100−(1600000+25000.40) = −100000 euros. The matrix of pay-offs (in thousands of euros)
is the following:

A1 A2 A3

E1

E2

E3

 250 −100 −1250
4000 4400 4000
6500 7400 7500


The minimal pay-offs corresponding to each method of production are 250, −100 and −1250 respectively and
the maximal pay-off among them is 250. Therefore, the industry must choose the method A1.

ii) With the help of the matrix of pay-offs one calculates the lost opportunities; for example, x32 =
7.500−7.400 = 100, x33 = 7.500−7.500 = 0, The matrix of the lost opportunities is, therefore, the following:

A1 A2 A3

E1

E2

E3

 0 350 1500
400 0 400
1000 100 0


The maximal lost opportunities for each method of production are 1000, 350 and 1500, with min(1.000, 350, 1500) =
350. Therefore, the industry must choose the method A2. This decision is more optimistic than the decision
made with the help of the previous criterion, since it corresponds to a maximum possible pay-off of 7.400.000
euros, in comparison to the 6.500.000 euros corresponding to the previous decision.

iii) From the problems data it turns out that p1 = 0.1, p2 = 0.7 and p3 = 0.2. Therefore, equation (1)
gives that the expected payoffs for each decision are a1 = (0.1).250 + (0.7).4000 + (0.2).6500 = 4125 and
similarly a2 = 4450, a3 = 4175. Therefore, since max(4125, 4450, 4175) = 4450, the industry must choose the
method A2.

Also, with the help of equation (3) one finds that the expected lost opportunities for each method of
production are x1 = 0.(0.1) + 400.(0.7) + 1000.(0.2) = 480 and similarly x2 = 55 and x3 = 430. Therefore,
since min(x1, x2, x3) = 55, the industry must choose again the method A2 (see Remark 2.1).

iv) The maximal pay-off of the method A1 is 6500 and the minimal is 250. Therefore, equation (4)
gives that a1 = (0.6).6500 + (1 − 0.6).250 = 4000 and similarly a2 = 4400, a3 = 3500. Therefore, since
max(a1, a2, a3) = 4400, the industry must choose the method A2.

3 Verification of a Decision

As it was already mentioned, the verification of a decision is a step of the DM process, which is usually
examined separately from its other steps. A method will be presented here for investigating this important
step of the DM process by using the Grade Point Average (GPA) index.

It is recalled that the GPA index is a weighted mean which is frequently used for assessing a groups
quality performance (since greater coefficients are assigned to the higher grades) during a certain activity.
For this, consider the qualitative grades A = excellent, B = very good, C = good, D = satisfactory and
F = unsatisfactory (failed). Then the GPA index is calculated by the formula

GPA =
0nF + nD + 2nC + 3nB + 4nA

n
. (5)
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In formula (5) n denotes the total number of the groups members and nA, nB, nC, nD and nF denote the
numbers of the groups members that demonstrated excellent, very good, good, satisfactory and unsatisfactory
performance respectively [10, Chapter 6]. In case of the worst performance (nF = n), formula (5) gives that
GPA = 0, whereas in case of the ideal performance (nA = n) it gives that GPA = 4. Therefore, we have in
general that 0 ≤ GPA ≤ 4.

Our method is illustrated with the help of the following example:

Example 3.1. The car industry circulates a new car in the market in two different types, the luxury (L) Class
and the regular (R) Class. Six months after the purchase with their cars, the customers were asked to complete
a written questionnaire concerning the degree of their satisfaction for their cars. Their answers were divided
by the industrys marketing department into the following five categories: A = Fully satisfied customers,
B = Very well satisfied customers, C = Satisfied customers, D = Rather satisfied customers and E =
Unsatisfied customers. The data collected from the customers answers are depicted in Table 2. What is the
general conclusion obtained by the car industry concerning the degree of satisfaction of its customers for their
new cars?

Table 2: Questionnaires data

Customers L R
Categories Class Class

A 60 60

B 30 90

C 30 45

D 30 45

E 20 15

Total 170 255

Solution: Replacing the data of Table 2 to formula (5) one finds that the GPA index concerning the

degree of satisfaction of the owners of the L Class and the R Class is equal to
42

17
≈ 2.47 and

43

17
≈ 2.529

respectively. Taking into account that 0 ≤ GPA ≤ 4, this means that the owners were satisfied with their

cars at a percentage of
2.47x100

4
≈ 61.75% for the L Class and

2.529x100

4
≈ 63.22% for the R Class.

4 Criterion of Bellman and Zadeh for Decision-Making under Fuzzy Con-
ditions

Frequently in everyday life the data of a DM problem are fuzzy; e.g. when a company wants to employ as
a sales manager a well-experienced person whose residence is not very far from the companys place. In such
cases the traditional techniques of DM, which are based on principles of bivalent logic (yes-no), cannot help
effectively in making the right decision. On the contrary, fuzzy sets (FSs) and their extensions, due to their
nature of including multiple values, offer a rich field of resources for this purpose; e.g. see [4, 11–18], etc.

It is recalled that Zadeh in 1965 extended the concept of the crisp set to that of a FS by replacing the
characteristic with the membership function as follows [19]:

Definition 4.1. A FS, say A, in the universal set of the discourse U is of the form A = {(x,m(x)) : x ∈ U},
where m : U → [0, 1] is its membership function. The value m(x) is called the membership degree of x in A,
for all x in U . The closer m(x) to 1, the better x satisfies the characteristic property of A.
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For example, if A is the FS of the high mountains and m(x) = 0.7, then x is a rather high mountain, if
m(x) = 0.4, then x is a rather low mountain, etc.
Bellman and Zadeh were the first, in 1970, who applied principles of FS theory to DM, their method being
known as Criterion of Bellman and Zadeh for DM [4].

A DM problem under fuzzy conditions is characterized by its fuzzy goal (G) and by the fuzzy constraints
Ci, i = 1, 2, . . . , n, where n is a positive integer. The steps of the method of Bellman and Zadeh are the
following:

• Choice of the universal set of the discourse U
• Fuzzification of the decision problems data

In this step the fuzzy goal G and the fuzzy constraints Ci are expressed as fuzzy sets (FSs) in U by defining
properly the corresponding membership functions mG and mCi .

• Evaluation of the fuzzy data
The fuzzy decision F , expressed as a fuzzy set in U , is equal to the intersection of the FSs G and Ci of U
Therefore, the membership function mF of F is defined by

mF (x) = mG ∩mC1 ∩ . . . ∩mCi(x) = min{mG(x),mC1(x), . . . ,mC2(x)}, (6)

for all x in U .
• Defuzzification

The solution of the problem corresponds to the element x of U having the highest membership degree in F .
The following example illustrates the DM model of Bellman and Zadeh in practice:

Example 4.2. A company is willing to employ as a sales manager the candidate with the best qualifications
(G), provided that his/her salary demand is not very high (C1) and that his/her residence is in a close
distance from the companys central offices (C2). There are four candidates for this position, say , , C and D,
with annual salary demands of 29050, 25000, 14050, and 6250 euros respectively. Who of them is the best
choice for the company under the fuzzy constraints C1 and C2?

Solution: In this problem the universal set of the discourse is the set U = {A,B,C,D} of the four
candidates. In order to express the fuzzy goal and the fuzzy constraints as FSs in U , one must properly
define the corresponding membership functions.

For example, having in mind that there is not any general criterion available for the definition the mem-
bership functions, the membership function mC1 : U → [0, 1] of the fuzzy constraint C1, may be defined by
mC1 = 1 for s(x) < 6000, mC1(x) = 1 − 2x10−5xs(x) for 6000 ≤ s(x) ≤ 30000 and mC1(x) = 0 for s(x) >
30000, where s(x) denotes the salary of the candidate x, for all x in U . Then mC1(A) = 1−2x0.2905 = 0.419
and similary mC1(B) = 0.5, mC1(C) = 0.719 and mC1(D) = 0.875. Consequently, the constraint C1 can be
written as a FS in U in the form C1 = {(A, 0.419), (B, 0.5), (C, 0.719), (D, 0.875)}.

Assume further that in an analogous way the fuzzy goal G and the fuzzy constraint C2 were expressed as
fuzzy sets in U in the formG = {(A, 0.9), (B, 0.6), (C, 0.8), (D, 0.6)} and C2 = {(A, 0.1), (B, 0.9), (C, 0.7), (D, 1)}
respectively. Therefore, with the help of equation (6) it is straightforward to check that F can be written as
a FS in U in the form F = {(A, 0.1), (B, 0.5), (C, 0.7), (D, 0.6)}. The highest membership degree in F is 0.7
and corresponds to C. Therefore the candidate C is the best choice for the company.

The fuzzy model of Bellman and Zadeh can be suitably modified to accommodate the relative importance
that could exist for the goal and constraints by using weighting coefficients, whose sum is always equal to 1.
The following example illustrates this case:

Example 4.3. Revisit Example 4.2 and assume that the management of the company, taking into account
the existing companys budget and the results of the oral interviews of the four candidates, decided to attach
weights w = 0.5, w2 = 0.2 and w3 = 0.3 to the goal G and to the constraints C1 and C2 respectively. Which
will be the best companys choice under these new conditions?



A Journey From Traditional to Fuzzy Methods of Decision-Making. Trans. Fuzzy Sets Syst. 2024; 3(1) 143

Solution: In this case the membership function of the fuzzy decision F is defined as a linear combination
of the weighted goal and constraints of the form

mF (x) = w1xmG(x) + w2xmC1(x) + w3xmC2(x), (7)

where mG(x), mC1(x), mC2(x) are the membership degrees in G, C1 and C2 respectively of each x in U (see
Example 4.2) and the coefficients w1, w2 and w3 are the weights attached to the fuzzy goal and to the fuzzy
constraints C1 and C2 respectively. Therefore, the membership degree of candidate A in the fuzzy decision
F is equal to mF (A) = 0.5x0.9+0.2x0.419+0.3x0.1 = 0.638. In the same way one finds that mF (B) = 0.67,
mF (C) = 0.7538 and mF (D) = 0.775. Therefore, candidate D is the companys best choice in this case.

5 MultipleCriteria Parametric Decision-Making

Following the criterion of Bellman and Zadeh, several other methods were proposed by other researchers for
DM in fuzzy environments; e.g. [11–18], etc. Here we will present a hybrid, parametric, multiple-criteria DM
method using soft sets, grey numbers and intuitionistic fuzzy sets as tools.

5.1 Decision-Making with Soft Sets

Molodstov introduced in 1999 the concept of soft set (SS) for tackling the uncertainty in a parametric manner,
not needing, therefore, the definition of a membership function. Namely, a SS is defined as follows [20]:

Definition 5.1. Let E be a set of parameters, let A be a subset of E, and let f be a map from A into
the power set P (U) of the universe U . Then the SS (f,A) in U is defined as the set of the ordered pairs
(f,A) = {(e, f(e)) : e ∈ A}. In other words, an SS is a parametric family of subsets of U . The term ”soft”
was introduced due to the fact that the form of (f,A) depends on the parameters of A. A FS in U with
membership function y = m(x) is a SS in U of the form (f, [0, 1]), where f(a) = {x ∈ U : m(x) ≥ a} is the
corresponding a-cut of the FS, for each a in [0, 1]. Consequently the concept of SS is a generalization of the
concept of FS. Most notions and operations defined on FSs are extended in a natural way to SSs.

Maji et al. [9] utilized the tabular form of a SS as a tool for DM in a parametric manner. Here this
method is illustrated with the following example:

Example 5.2. Let V = {H!,H2,H3,H4,H5,H6} be a set of houses and let Q = {e1, e2, e3, e4} be the set of
the parameters e1 = beautiful, e2 = wooden, e3 = in the country and e4 = cheap. Assume that H1, H2, H6

are beautiful, H2, H3, H5, H6 are wooden, H3, H5 are the houses in the country and H4 is the unique cheap
house. Assume further that one is interested in buying a beautiful, wooden and cheap house in the country
choosing among the previous six houses. Which is the best choice for the candidate buyer?

Solution: Consider the map g : Q → P (V ) defined by g(e1) = {H1,H2,H6}, g(e2) = {H2,H3,H5,H6},
g(e3) = {H3,H5} and g(e4) = {H4} and the

SS (g,Q) = {(e1, {H1,H2,H6}), (e2, {H2,H3,H5,H6}), (e3, {H3,H5}), (e4, {H4})}.

The tabular representation of the SS (g,Q), which is shown in Table 3, is formed by assigning the binary
elements 1, 0 to each of the houses having (not having) the property described by the corresponding parameter

The choice value of each house is calculated by adding the binary elements of the corresponding row of the
tabular matrix containing it. The houses H1 and H4, therefore, have choice value 1 and all the other houses
have choice value 2. Consequently, the buyer must choose one of the houses H2, H3, H5 or H6.
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Table 3: Tabular form of the soft set (g,Q)

e1 e2 e3 e4
H1 1 0 0 0

H2 1 1 0 0

H3 0 1 1 0

H4 0 0 0 1

H5 0 1 1 0

H6 1 1 0 0

5.2 Decision-Making Using Grey Numbers in the Decision Matrix

The decision of Example 5.2 was not very helpful for the candidate buyer, since it excluded only two among
the six available for sale houses. This gave us the hint to modify the DM method of Maji et al. by using grey
numbers (GNs) in the tabular form of the corresponding SS [6].

Definition 5.3. A GN is understood to be a real number with known boundaries whose exact value is
unknown. A GN, say G, is represented with the help of a closed real interval. Namely, we write G ∈ [a, b],
with a, b in the set R of real numbers. Frequently, however, G is accompanied by a whitenization function
g : [a, b] → [0, 1], such that the closer g(x) to 1, the more x approximates the exact value of G, for all x in
[a, b].

It is recalled that GNs are used as tools for performing all the necessary calculations in the theory of
grey systems introduced by Deng in 1982 [21] as an alternative to Zadehs FSs for tackling the existing in
real world uncertainty. The known arithmetic of the real intervals [22] is used for performing the arithmetic
operations between GNs. Here we will make use of the addition of GNs and the scalar multiplication of a
positive number with a GN, which are defined as follows:

Definition 5.4. Let G1 ∈ [a1, b1], G2 ∈ [a2, b2] be two given GNs and let k be a positive number. Then the
sum G1 +G2 ∈ [a1 + a2, b1 + b2] and the scalar product kG1 ∈ [ka1, kb1]. When no whitenization function is
assigned to G ∈ [a, b], then the real number

W (G) =
a+ b

2
, (8)

is used for approximating the unknown exact value of G.

Revisiting now Example 5.2 one observes that the parameters e1 and e4 do have not a bivalent texture.
In fact, how beautiful a house is depends on the subjective criteria of each observer, whereas its low or high
price depends on the financial ability of the candidate buyer. For this reason, the characterization of the
parameters e1 and e4 in Table 3 by using the binary elements 0, 1 is not the suitable one. One way to tackle
this problem, is to replace the binary elements 0, 1 corresponding to the parameters e1 and e5 with GNs.
This is illustrated with the following example.

Example 5.5. Revisit Example 5.2 and assume that the candidate buyer, after studying more carefully the
existing information about the six available houses, decided to use Table 4 instead of Table 3 for making the
final decision, where G1 ∈ [0.85, 1], G2 ∈ [0.6, 0.74], G3 ∈ [0.5, 0.59] and G4 ∈ [0, 0.49] are the GNs replacing
the binary elements 0, 1 in the columns of e1 and e3. Which will be the optimal decision in this case?
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Table 4: Revised tabular form of the soft set (g,Q) using grey numbers

e1 e2 e3 e5
H1 G1 0 0 G2

H2 G1 1 0 G4

H3 G2 1 1 G2

H4 G3 0 0 G1

H5 G4 1 1 G3

H6 G1 1 0 G4

Solution: In Table 4 one calculates the choice value Vi of the house Hi, i = 1, 2, 3, 4, 5, 6 with the help

of Definition 5.3 and equation (8) as follows: V1 = W (G1 + G2) = W ([1.45, 1.74]) =
1.45 + 1.74

2
= 1.595

and similarly V2 = 1 + W (G1 + G4) = 2.17, V3 = 2 + W (G2 + G2) = 3.34, V4 = W (G3 + G1) = 1.47,
V5 = 2 +W (G4 +G3) = 3.215, V6 = 1 +W (G1 +G4) = 2.47. Therefore, the optimal decision is to buy the
house H3. A second way for tackling this problem is to use triangular fuzzy numbers (TFNs) instead of GNs
[5]. These two methods are equivalent, providing always the same outcomes.

5.3 Decision-Making Using Intuitionistic Fuzzy Pairs in the Decision Matrix

As we have seen in the previous example, the use of the GNs instead of the binary elements 0, 1 for charac-
terizing the fuzzy parameters that exist in the tabular decision matrix, helps the decision-maker to make a
better decision. DM situations, however, appear frequently in everyday life, in which the decision-maker is
not sure about the accuracy of these characterizations. In such cases, one way to perform the DM process is
to use intuitionistic fuzzy pairs instead of GNs in the tabular matrix of the corresponding soft set [8].

It is recalled that Atanassov in 1986, in order to tackle more effectively the existing in real life uncertainty,
added to Zadehs membership degree the degree of non-membership and extended the concept of FS to the
concept of intuitionistic FS (IFS) as follows [23]:

Definition 5.6. An IFS, say A, in the universe U is of the form A = {(x,m(x), n(x)) : x ∈ U, 0 ≤
m(x)+n(x) ≤ 1}, where m : U → [0, 1] and n : U → [0, 1] are its membership and non-membership functions
of A respectively.

For example, if A is the set of the high mountains and m(x) = 0.6, n(x) = 0.2, then there is a 60% belief
that x is a high mountain, but at the same time there is a 20% belief that I is not a high mountain. For
brevity an IFS is denoted here by A = ⟨n,m⟩ and its elements are written in the form of intuitionistic fuzzy
pairs (IFPs) (m,n), with m+ n ≤ 1. For the needs of the present work we define the addition of IFPs and
the scalar multiplication of a positive number with an IFP in the same way as for the ordinary ordered pairs,
i.e. as follows:

Definition 5.7. Let A = ⟨m,n⟩ be an IFS, let (m1, n1), (m2, n2) be elements of A and let k be a positive
number. Then:

i) The sum (m1, n1) + (m2, n2) = (m1 +m2, n1 + n2)

ii) ii) The scalar product k(m1, n1) = (km1, kn1).
It becomes evident that the above defined sum and the scalar product are not closed operations in A, since
it can be either (m1 +m2) + (n1 + n2) > 1 or (and) km1 + kn1 > 1.

We also define the mean value of a finite number of IFPS of A in the following way:
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Definition 5.8. Let A = ⟨m,n⟩ be an IFS and let (m1, n1), (m2, n2), . . . , (mk, nk) be a finite number of

elements of A. Then the mean value of these elements is defined to be (m,n) =
1

k
[(m1, n1)+ (m2, n2)+ . . .+

(mk, nk)]. It becomes evident that (m,n) is always an element of A.

The use of IFPs in the decision matrix will be illustrated with the following example:

Example 5.9. A company wants to employ a person among six candidates, say A1, A2, A3, A4, A5 and
A6. The ideal qualifications for the new employee are to have satisfactory previous experience (p1), to hold
a university degree (p2), to have a driving license (p3) and to be young (p4). Assume that A2, A3, A5, A6

are the holders of a university degree and that A3, A5 are the holders of a driving license. Assume further
that the company has difficulty assigning accurate characterizations to the six candidates with respect to the
fuzzy parameters p1 and p4. It was decided, therefore, to use IFPs instead of the binary elements 0, 1 in the
tabular decision matrix. For this, the analysts of the company considered the IFSs of the candidates with
satisfactory previous experience and of the young candidates, as well as the trivial IFSs of the holders of a
university degree and of a driving license and represented their elements in the form of IFPs. As a result the
tabular decision matrix took the form of Table 5.

Table 5: Tabular representation of the DM process using IFPs

p1 p2 p3 p4
A1 (1, 0) (0, 1) (0, 1) (0.6, 0.1)

A2 (1, 0) (1, 0) (0, 1) (0.2, 0.6)

A3 (0.5, 0.1) (1, 0) (1, 0) (0.6, 0.2)

A4 (0.5, 0.3) (0, 1) (0, 1) (1, 0)

A5 (0.5, 0.4) (1, 0) (1, 0) (0.6, 0.1)

A6 (1, 0) (1, 0) (0, 1) (0.4, 0.2)

Which will be the best choice for the company?

Solution: In this case the choice value of each candidate Ai, i = 1, 2, 3, 4, 5, 6, is equal the mean value of
the IFPs contained in the row of Ai. With the help of Definitions 5.7 and 5.8, therefore, one finds that the
choice value of A1 is equal to

1

4
[(1, 0) + 2(0, 1) + (0.6, 0.1)] =

1

4
(1.6, 2.1) = (0.4, 0.525).

In the same way the choice values of A2, A3, A4, A5 and A6 can be find to be equal to (0.55, 0.4), (0.775, 0.075),
(0.375, 0.575), (0.775, 0.125) and (0.6, 0.3) respectively. The company now may use either an optimistic
criterion by choosing the candidate with the greatest membership degree, or a conservative criterion by
choosing the candidate with the lower non-membership degree, i.e. one of the candidates A3 and A5 in the
first case, or the candidate A3 in the second case. A combination of the two criteria leads finally to the choice
of the candidate A3.

5.4 Decision-Making Using Neutrosophic Triplets in the Decision Matrix

An alternative way for tackling the previous DM problem is to use neutrosophic sets (NSs) instead of
IFSs writing their elements in the form of neutrosophic triplets (NTs) in the tabular decision matrix [7].
In fact, Smarandache in 1995, inspired by the frequently appearing in the everyday life neutralities, like
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⟨tall,medium, short⟩, ⟨friend, neutral, enemy⟩,⟨win, draw, defeat⟩, etc., introduced the degree of indeter-
minacy or neutrality and extended the notion of IFS to the notion of NS [24]. The simplest form a NS, known
as a single-valued NS (SVNS) is defined in the following way [25]:

Definition 5.10. A SVNS, say A, in the universe U has the form

A = {(x,m(x), i(x), n(x)) : x ∈ U, m(x), i(x), n(x) ∈ [0, 1], 0 ≤ m(x) + i(x) + n(x) ≤ 3}.

In the SVNS A m(x) is the degree of membership (or truth), i(x) is the degree of indeterminacy (or
neutrality) and n(x) is the degree of non-membership (or falsity) of x in A, for all x in U . When 0 ≤
m(x) + i(x) + n(x) ≤ 1, then the data about x in A are characterized by incomplete information, when
m(x)+ i(x)+n(x) = 1 by complete and when m(x)+ i(x)+n(x) > 1 by inconsistent (contradiction relevant)
information. A NS may contain simultaneously elements characterized by all these types of information. For
brevity we write A = ⟨m, i, n⟩ and the elements of A as NTs in the form (m, i, n), with 0 ≤ m + i + n ≤ 3.
For example, if A is the NS of the high mountains and (0.6, 0.3, 0.2) ∈ A, then there exists a 60% belief that
x is a high mountain, but at the same time a 30% belief that x is neither a high nor a low mountain and a
20% belief that it is a low mountain.
The sum of NTSs, the scalar product of a positive number cross a NT and the mean value of a finite number
of NTs of a NS are defined similarly with the corresponding operations for IFPs (see Definitions 5.7 and
5.8). The advantage of using NTs instead of IFPs in the decision matrix is that they enable one to handle
data connected incomplete and/or inconsistent information. The following example illustrates this situation.

Example 5.11. Revisiting Example 5.9 assume that the company, due to the existence of incomplete and
inconsistent information for some candidates, decided to use NSs instead of IFSs for the formation of the
decision matrix. Thus, considering the NSs of the candidates with satisfactory previous experience and of
the young candidates, as well as the trivial NSs of the holders of a university degree and of the holders of a
driving license and representing their elements in the form of NTs formed the decision matrix shown in Table
6. Which is the best choice for the company in this case?

Table 6: Tabular representation of the DM process using NTs

p1 p2 p3 p4
A1 (1, 0, 0) (0, 0, 1) (0, 0, 1) (0.6, 0.3, 0.1)

A2 (1, 0, 0) (1, 0, 0) (0, 0, 1) (0.2, 0.2, 0.7)

A3 (0.5, 0.4, 0.2) (1, 0, 0) (1, 0, 0) (0.6, 0.2, 0.1)

A4 (0.5, 0.2, 0.2) (0, 0, 1) (0, 0, 1) (1, 0, 0)

A5 (0.5, 0.1, 0.4) (1, 0, 0) (1, 0, 0) (0.6, 0.3, 0.1)

A6 (1, 0, 0) (1, 0, 0) (0, 0, 1) (0.4, 0.3, 0.2)

Solution: In this case the choice value of the candidate A1 is equal to
1

4
[(1, 0, 0)+2(0, 0, 1)+(0.6, 0.3, 0.1)] =

1

4
(1.6, 0.3, 2.1) = (0.4, 0.075, 0.525) and in the same way the choice values of A2, A3, A4, A5 and A6

are approximately equal to (0.55, 0.07, 0.425), (0.775, 0.15, 0.075), (0.375, 0.05, 0.55), (0.775, 0.13, 0.125) and
(0.6, 0.075, 0.3) respectively. Consequently, applying the optimistic criterion the company must choose one of
the candidates A3 or A5, whereas applying the conservative criterion it must choose the candidate A3. The
final choice of the company, therefore, must be again the candidate A3, although the indeterminacy degree
of candidate A5 is slightly smaller (0.13 < 0.15).
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5.5 Weighted Parametric Decision-Making

Cases appear frequently in DM in which the decision-makers goals are not equally important. In such cases,
weight coefficients, whose sum is equal to 1, are assigned to each parameter. Assume, for instance, that the
weight coefficients 0.4, 0.3, 0.2 and 0.1 have been assigned to the parameters p1, p2, p3 and p4 respectively of
Example 5.9. Then the weighted choice value of the candidate A1 is equal to

1

4
[0.4(1, 0) + 0.3(0, 1) + 0.2(0, 1) + 0.1(0.6, 0.1)] =

1

4
(0.46, 0.51) = (0.115, 0.1275).

In the same way one finds that the choice values of the candidates A2, A3, A4, A5 and A6 are (0.18, 0.065),
(0.19, 0.015), (0.075, 0.115), (0.19, 0.0425) and (0.185, 0.055) respectively. The combination of the two criteria,
therefore, shows again that the best decision for the company is to employ the candidate A3.

Remark 5.12. (i) The parametric DM method presented in this work is of a general character, therefore
it can be applied to all the analogous cases of multiple-criteria DM. Other examples that have been already
presented in earlier works of the present author are related to decisions for buying a car [5], choosing a new
player for a football team [7], etc.
(ii) There is no objective criterion for defining the membership function of a FS, its definition depends on the
personal criteria of each observer. The same problem exists for all the extensions of FSs involving membership
functions and in particular for the membership, non-membership and indeterminacy functions of the IFSs
and of the NSs. As a result, the characterization of the fuzzy parameters p1 and p4 in Examples 5.9 and 5.11
using IFPs and NTs respectively was purely based on the companys analysts personal criteria. An analogous
problem appears when using GNs (or TFNs) for characterizing the fuzzy parameters in the decision matrix
(see Section 5.2), although no whitenization function was used for the corresponding GNs. This is, therefore,
a general limitation of the parametric DM method presented in this work.

6 Conclusion

Frequently in everyday life the goal and/or the constraints of a DM problem are expressed in a vague way,
characterized by uncertainty. The first who studied DM problems under fuzzy conditions were Bellman
and Zadeh in 1970. Since then, several DM methods have been proposed by other researchers using FSs
or their extensions as tools. In this work, starting from the traditional DM criteria of bivalent logic and
continuing with the fuzzy criterion of Bellman and Zadeh, we also presented a hybrid model for multiple-
criteria parametric DM in fuzzy environments. This model improves a DM method of Maji et al. using SSs
as tools, by replacing the binary elements 0, 1 in the tabular matrix of the corresponding SS either with GNs
(or TFNs), or by IFPs, or by NTs, depending on the form of the corresponding DM problem. In addition, a
method was presented, based on the calculation of the GPA index, for the verification of a decision, a step
of the DM process, which, due to its special importance, is usually examined separately from its other steps.
All the DM methods presented in this work are illustrated by suitable examples, connected to everyday life
situations. It seems that suitable combinations of two or more theories related to FS (e.g. SSs with GNs or
with IFSs or with NSs in this work) provide better results than each one of these theories alone does. This
is, therefore, a promising area for further research.

Conflict of Interest: The author declares no conflict of interest.

References

[1] Berger JO. Statistical Decision Theory: Foundations, Concepts and Methods. New York: Springer Verlag;
1980.



A Journey From Traditional to Fuzzy Methods of Decision-Making. Trans. Fuzzy Sets Syst. 2024; 3(1) 149

[2] Barker RC. The Power of Decision. 2011. LA: Penguin Publishing Group; 2011.

[3] Heath C, Heath D. Decisive: How to Make Better Choices in Life and Work. 2013.

[4] Bellman RA, Zadeh LA. Decision making in fuzzy environment. Management Science. 1970; 17(4): 141-
164. DOI: http://dx.doi.org/10.1287/mnsc.17.4.B141

[5] Voskoglou MGr. A hybrid model for decision making utilizing TFNs and soft sets as tools. Equations.
2022; 2: 65-69. DOI: https://doi.org/10.37394/232021.2022.2.11

[6] Voskoglou MGr. A combined use of soft sets and grey numbers in decision making. Journal of Computa-
tional and Cognitive Engineering. 2023; 2(1): 1-4. DOI: https://doi.org/10.47852/bonviewJCCE2202237

[7] Voskoglou MGr. An application of neutrosophic sets to decision making. Neutrosophic Sets and Systems.
2023; 53: 1-9. https://digitalrepository.unm.edu/nss journal/vol53/iss1/1

[8] Voskoglou, M.Gr. and Broumi, S. Applications of intuitionistic fuzzy sets to assessment, and
decision making. Journal of Fuzzy Extensions and Applications. 2023; 4(4): 299-309. DOI:
https://doi.org/10.22105/jfea.2023.425520.1326

[9] Maji PK, Roy AR, Biswas R. An application of soft sets in a decision making problem. Comput-
ers and Mathematics with Applications. 2002; 44: 1077-1083. DOI: https://doi.org/10.1016/S0898-
1221(02)00216-X

[10] Voskoglou MGr. Finite Markov Chain and Fuzzy Logic Assessment Models: Emerging Research and
Opportunities. 2017.

[11] Alcantud JCR. Fuzzy Techniques for Decision Making. Switzerland: Symmetry Publishing; 2018.

[12] Chiclana F, Herrera F, Herrera-Viedma E. Integrating three representation models in fuzzy multipurpose
decision making based on fuzzy preference relations. Fuzzy Sets and Systems. 1998; 97(1): 33-48. DOI:
https://doi.org/10.1016/S0165-0114(96)00339-9

[13] Ekel P. Methods of decision making in fuzzy environment and their applications. Nonlinear Analysis:
Theory, Methods & Applications. 2001; 47(2): 979-990.

[14] Ekel P. Fuzzy sets and models of decision making. Computers & Mathematics with Applications. 2002;
44(7): 863-875. DOI: https://doi.org/10.1016/S0898-1221(02)00199-2

[15] Ekel P, Kokshenev I, Parreiras R, Pedrycz W, Pereira JrJ. Multiobjective and multiattribute decision
making in a fuzzy environment and their power engineering applications. Information Sciences. 2016;
361: 100-119. DOI: https://doi.org/10.1016/j.ins.2016.04.030

[16] Alazemi FKAOH, Ariffin MKABM, Mustapha FB, Supeni EEB. A comprehensive fuzzy decision-making
method for minimizing completion time in manufacturing process in supply chains. Mathematics. 2021;
9(22): 2919. DOI: https://doi.org/10.3390/math9222919

[17] Khan A, Yang M-S, Haq M, Shah AA, Arif M. A new approach for normal parameter reduction using
σ-algebraic soft sets and its application in multi-attribute decision making. Mathematics. 2022; 10(8):
1297. DOI: https://doi.org/10.3390/math10081297

[18] Zhu B, Ren P. Type-2 fuzzy numbers made simple in decision making. Fuzzy Optimization and Decision
Making. 2022; 175-195. DOI: https://doi.org/10.1007/s10700-021-09363-y



150 Michael Gr. Voskoglou. Trans. Fuzzy Sets Syst. 2024; 3(1)

[19] Zadeh LA. Fuzzy sets. Information and Control. 1965; 8(3): 338-353. DOI:
http://dx.doi.org/10.1016/S0019-9958(65)90241-X

[20] Molodtsov D. Soft set theory-First results. Computers and Mathematics with Applications. 1999; 37(4-5):
19-31. DOI: https://doi.org/10.1016/S0898-1221(99)00056-5

[21] Deng J. Control problems of grey systems. Systems and Control Letters. 1982; 288-294. DOI:
http://dx.doi.org/10.1016/S0167-6911(82)80025-X

[22] Moore RA, Kearfort RB, Clood MJ. Introduction to Interval Analysis. 1995.

[23] Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986; 20(1): 87-96. DOI:
http://dx.doi.org/10.1016/S0165-0114(86)80034-3

[24] Smarandache F. Neutrosophy / Neutrosophic Probability, Set, and Logic. 1998.

[25] Wang H, Smarandanche F, Zhang Y, Sunderraman R. Single valued neutro-
sophic sets. Review of the Air Force Academy (Brasov). 2010; 1(16): 10-14.
https://www.afahc.ro/ro/revista/NR 1 2010/Nr 1 2010.pdf

Michael Gr. Voskoglou
Department of Mathematical Sciences,
Graduate Technological Educational Institute of Western Greece,
Meg. Alexandrou 1, 263 34 Patras, Greece.

E-mail: voskoglou@teiwest.gr; mvoskoglou@gmail.com

..

By the Authors. Published by Islamic Azad University, Bandar Abbas Branch. This article is an
open-access article distributed under the terms and conditions of the Creative Commons Attribution

4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/ .


	1 Introduction
	2 Traditional Criteria for Decision-Making
	3 Verification of a Decision
	4 Criterion of Bellman and Zadeh for Decision-Making under Fuzzy Conditions
	5 Multiple–Criteria Parametric Decision-Making
	5.1 Decision-Making with Soft Sets 
	5.2 Decision-Making Using Grey Numbers in the Decision Matrix
	5.3 Decision-Making Using Intuitionistic Fuzzy Pairs in the Decision Matrix
	5.4 Decision-Making Using Neutrosophic Triplets in the Decision Matrix
	5.5 Weighted Parametric Decision-Making 

	6 Conclusion
	References

