
Transactions on Fuzzy Sets and Systems

Transactions on Fuzzy Sets and Systems

ISSN: 2821-0131

https://sanad.iau.ir/journal/tfss/

Enhancing Big Data Governance Framework Implementation Using
Novel Fuzzy Frank Operators: An Application to MADM Process

Vol.3, No.1, (2024), 88-125. DOI: https://doi.org/10.30495/TFSS.2024.1105557

Author(s):

Hamza Iftikhar, Department of Mathematics and Statistics, International Islamic University, Islamabad
44000, Pakistan. E-mail: hamzaiftikhar098@gmail.com
Faisal Mehmood, School of Mathematics and Physics, Center for Applied Mathematics of Guangxi,
Guangxi Minzu University, Nanning 530006, China. E-mail: mehmood@gxmzu.edu.cn

https://sanad.iau.ir/journal/tfss/
https://doi.org/10.30495/TFSS.2024.1105557


Transactions on Fuzzy Sets and Systems (TFSS)

URL: https://sanad.iau.ir/journal/tfss/

Online ISSN: 2821-0131

Vol.3, No.1, (2024), 88-125

DOI: https://doi.org/10.30495/TFSS.2024.1105557

Article Type: Original Research Article

Enhancing Big Data Governance Framework Implementation Using
Novel Fuzzy Frank Operators: An Application to MADM Process

Hamza Iftikhar
..ID
, Faisal Mehmood∗

..ID

Abstract. In today’s data-driven landscape, to ensure continuous survival and betterment, the implementation of a
robust Big Data Governance Framework (BDGF) is imperative for organizations to effectively manage and harness
the potential of their vast data resources. The BDGF serves no purpose when implemented in a random manner.
This article delves into the complex decision-making challenges that emerge in the context of implementation of
the BDGF under uncertain conditions. Specifically, we aim to analyze and evaluate the BDGF performance using
the Multi-Attribute Decision-Making (MADM) techniques aiming to address the intricacies of big data governance
uncertainties. To achieve our objectives, we explore the application of Frank operators within the framework of
complex picture fuzzy (CPF) sets (CPFs). We introduce complex picture fuzzy Frank weighted averaging (CPF-
FWA) and complex picture fuzzy Frank ordered weighted averaging (CPFFOWA) operators to enable more accurate
implementation of the BDGF. Additionally, we rigorously examine the reliability of these newly proposed fuzzy
Frank (FF) operators (FFAOs), taking into consideration essential properties such as idempotency, monotonicity,
and boundedness. To illustrate the practical applicability of our approach, we present a case study that high-
lights the decision-making challenges encountered in the implementation of the BDGF. Subsequently, we conduct
a comprehensive numerical example to assess various BDGF implementation options using the MADM technique
based on complex picture fuzzy Frank aggregation (CPFFA) operators. Furthermore, we perform a comprehensive
comparative assessment of our proposed methodology, emphasizing the significance of the novel insights and results
derived. In conclusion, this research article offers a unique and innovative perspective on decision-making within
the realm of the BDGF. By employing the CPFFWA and the CPFFOWA operators, organizations can make well-
informed decisions to optimize their BDGF implementations, mitigate uncertainties, and harness the full potential
of their data assets in an ever-evolving data landscape. This work contributes to the advancement of decision
support systems for big data governance (BDG), providing valuable insights for practitioners and scholars alike.

AMS Subject Classification 2020: 03B52; 03B80; 03B50
Keywords and Phrases: Picture fuzzy set, Complex picture fuzzy set, Frank operations, Averaging operators,
Geometric operators.

1 Introduction

Although having a BDGF is crucial for companies, a judicious and optimized implementation of the BDGF is
a lot more important. The BDGF is like a set of rules and plans to make sure that when a lot of information
(Big Data) is collected and used, it’s done in a smart and responsible way. It’s about making sure the data
is accurate, safe, and used in a way that helps rather than causes problems. Just like traffic rules help
everyone drive safely on the roads, Big Data Governance rules help manage information in a sensible and
secure manner.
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In today’s fiercely competitive business environment, companies are constantly challenged to not only
attain profitability but also to allocate their funds judiciously. The imperative arises when organizations
seek to implement a robust BDGF to manage and harness the potential of their ever-expanding data assets.
However, the challenge they face lies in determining how to deploy these financial resources effectively, par-
ticularly when confronted with multiple options for their allocation. This problem is further worsened by the
inherent complexity of the BDGF, where cost attributes and profit attributes are pivotal components, ren-
dering it a multi-attribute decision-making problem. This study underscores the critical need for a suitable
and comprehensive implementation of the BDGF within companies to ensure their continuous survival in
competitiveness and achieve long-term profitability. To address this challenge, our research article introduces
an innovative approach based on CPFSs and FFA Operators. This novel method offers a powerful tool to
tackle the intricacies of multi-attribute decision-making in the context of data governance, ensuring that orga-
nizations make well-informed, data-driven choices when allocating resources for optimal outcomes. Through
powerful empirical and academic analysis, our research article provides a convincing argument for the imple-
mentation of a BDGF in a manner that strictly goes in the companys favor. By leveraging CPFS and FFAOs,
organizations can not only navigate the complexities of data governance but also make informed decisions
that enhance profitability, reduce risks, and fortify their competitive position in an increasingly data-centric
world. This research article serves as a valuable resource for executives, practitioners, and scholars seeking
to fortify their organizations’ data governance practices in the pursuit of sustainable success.

Figure 1: Big data governance framework of a company.

The MADM is a method of organizing and resolving planning and judgmental problems by determining
the most appropriate alternative based on an expert’s judgment in line with predetermined criteria [1]. This
decision-making process is very important and has drawn the attention of many academicians [2]. Typically,
professionals or decision-makers resolve the problems to assess the data using fuzzy information [3]. To give
just a few examples, numerous researchers have made substantial contributions to the fields of fuzzy sets
(FSs) [4], intuitionistic fuzzy sets (IFSs) [3], cubic intuitionistic fuzzy sets [5], linguistic interval-valued IFSs
[6], and other generalized sets [7, 8, 9, 10, 11, 12], as well as Pythagorean fuzzy set (Py-FS) [13], which
relaxes the IFS limitation 0 ≤ µ + ν ≤ 1 into 0 ≤ µ2 + ν2 ≤ 1. PFSs are more broadly applicable than
IFSs. Using various aggregation operators (AOs), several scholars have presented different sorts of models
in these generalized environments [14, 15, 16]. A mathematical function known as an aggregate operator
turns a collection of inputs or data into a single datum. In the course of making decisions, aggregation
operators are crucial [17, 18] and [19], respectively, creating the ordered weighted averaging (OWA) and
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ordered weighted geometric (OWG) operators, which, according to their ranking order, applied weights to all
values in the collection or data. The weighted averaging operator was developed by [20] for use with IF data,
while the geometric aggregation operators were provided by [21]. The FSs and IFSs environments, however,
only provide partial information on the data set’s components. Picture fuzzy set (PFS) is a novel concept
introduced by [22]. It is distinguished by neutral membership, membership, and non-membership features
that show data on human decisions like yes, refrain, no, and rejection. [23] Also provided some PFS results.
In a PFS environment, [24] proposed WA, OWA, and hybrid averaging operators. The Einstein operations
on PFSs were first introduced by [25]. In [26] the most recently used the Hamachar operators in PFSs.

A noteworthy extended form of Lukasiewicz as well as probabilistic t-norm and t-conorm [27] have emerged
as Frank t-norm and t-conorm [28]. Moreover, they constitute a sufficiently flexible type of the continuous
triangular norm. The Frank models, along with the process of fusion of information, became more adaptable
owing to the fact that a certain parameter is used in them, and the literature is replete with numerous works
[17, 23, 29, 30, 31, 32] related to these models. Frank operators have gained the attention of researchers in a
great number recently [33] Ullah et al used Frank operators to evaluate electric motor cars, and Milosevic et
al [34] used those operators for IFS-IBA logical aggregation. Also to improve the MADM process Seikh et al
[35, 36] used Frank operators in a very efficient manner. For two types comprising commutative, associative,
and growing binary operators, the Alsina and Frank functional equations have skillfully been examined by
[37]. Yager [38] developed a paradigm for approximate reasoning using Frank t-norms by examining the
additive-generating function of these norms. The scalar cardinality related to Frank t-norms was studied in a
novel way by Casasnovas and Torrens [17], who also further established the characteristics of other common
t-norms. Sarkoci [39] came to the conclusion that two separate t-norms, Frank and Hamacher t-norms, are
actually members of the same family. In order to address the MADM issues, Xing et al. [40] presented
aggregation operators pertaining to the PyFs depending on Frank models. Zhou et al. [41] examined a case
study of choosing agriculture socialization and looked into several Frank aggregation operations of interval-
valued neutron-sophic numbers. Aggregation operators of Frank pertaining to triangular interval type2 FSs
were presented by Qin and Liu [42]. Based on Frank t-norm procedures, Qin et al. [43] created more hesitant
fuzzy aggregation operators.

It has been determined that the MADM problems addressed in the aforementioned studies in FSs, IFSs,
and PFSs environments only handle ambiguity as well as vagueness. All of these models are unable to cope
with data insensitivity and periodicity, but a complex data set potentially addresses data periodicity, its
continually changing nature and uncertainty at the same time. To deal with these circumstances, Ramot
[44] and Ramot et al. [45] proposed the noteworthy notion known as a complex fuzzy set (CFS). In a
complex plane, he suggested that a CFS membership degree is expressed as µeiϕµ the range of which is
expanded to a unit disk, where µ ∈ [0, 1] and ϕ ∈ [0, 2], Zhang et al. presented certain CFS operating
rules and characteristics [46]. Since CFSs first appeared in a variety of real-world sectors, such as biometric
procedures, medical investigations, etc., a broad range of applications have been well established. Using the
CF data, Bashir and Akram [47] put out the novel idea of ordered weighted quadratic averaging operators.
In the realm of the CF, Luqman et al.[48], [49] produced outstanding work. Some notable works can also be
found in [50, 51, 52, 53, 54, 55].

The CFS is insufficient to reveal a data set elements inconsistency. Then, Garg and Rani [15], [56] produced
the complex intuitionistic fuzzy set (CIFS) and their aggregation operators, which is a generalization of a
CFS, in which both an element’s membership as well as non-membership were embedded. They provided
definitions for the CIFSs intersection, complement, and union. In order to overcome the MADM challenges
later, AOs utilizing the CIFSs information were presented by Rani and Garg [57]. Ali et al [17] used complex
T-Spherical fuzzy Frank aggregation operators, and yang et al [58] used complex intuitionistic fuzzy Frank
(CIFF) aggregation operators for decision making, However, CIFS is unable to cope with data that has been
somewhat neglected, such as the fact that it only displays the membership and non-membership degrees of
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Table 1: Superiority of CPFS over existing models in literature.

Model
Fuzzy
set

Intuitionistic
fuzzy set

Picture
fuzzy
set

Complex
fuzzy set

Complex
intuitionistic
fuzzy set

Complex
picture fuzzy

set

Uncertainty ✓ ✓ ✓ ✓ ✓ ✓
Falsity × ✓ ✓ × ✓ ✓
Hesitation × × ✓ × × ✓
Periodicity × × × ✓ ✓ ✓
Handles 2-D data × × × × ✓ ✓
Handles 3-D data × × × × × ✓

a data set’s elements in a complex plane and is unable to convey whether a choice was made to abstain
(neutral value) or reject a piece of information. We introduce the complex picture fuzzy set (CPFS), which
is distinguished by membership, neutral membership, and non-membership values in a unit disc of a complex
plane, in response to the absence of information in CIFS theory. By criteria [0, 1] and [0, 2π], respectively,
the amplitude terms and corresponding phase terms of a CPFS are constrained. The set’s applicability is
increased by complex neutral membership grade, which also makes it simpler for a decision maker to be aware
of greater depth as compared to a CIFS. The readers are directed to [59], [60, 61, 49, 48], [22, 2, 43, 44, 57],
and [62] for any additional and useful discussions related to AOs as well as the MADM techniques.

The presence of neutral membership gives a CPFS leverage over a CFS and CIFS: The CPFS has a larger
range as compared to them. Compared to previous models, CPFSs can address uncertainty and periodicity
concurrently and provide significantly more detailed and insightful about an object. The following is a
description of the suggested model’s motivation:

1. A CPFSs membership degrees have complex values made up of terms for amplitude and phase. The
amplitude component of the neutral membership function denotes the abstinence degree. The phase
term for this function, however, offers further details, usually regarding periodicity. In essence, the
neutral degree has boosted the adaptability of CPFS by providing additional details about an object
being evaluated.

2. The CPFS is distinct from the conventional ideas of PFS due to the innovative phase term conception.
This is caused by the fact that PFS only works with one-dimensional data, which causes data loss.
However, when dealing with issues in real-world occurrences, the second dimension must be taken into
account. To remedy it, we incorporated the phase term.

3. The T-norm and t-conorm of Frank [24] appear to be fascinating generalizations extracted from the
t-norm and t-conorm of probabilistics and Lukasiewicz [6], and they constitute a common as well as a
sufficiently compromising branch of these models. Usage of a certain parameter, the robustness of the
Frank models and the information fusion process increase manifold.

The structure of this manuscript can be viewed as follows: In Section 2, several essential ideas that
are important to comprehending this manuscript have been given. The novel conception of a CPFS with
several CPFS attributes and operating rules as well as score and accuracy functions are presented in Section
3. After applying, in the earlier part of section 3, the Frank AOs to the innovative CPFS concept, we
introduced the idea of the CPFHWA and the CPFHWG, complex picture fuzzy Frank hybrid averaging
(CPFFHA), complex picture fuzzy Frank weighted geometric averaging (CPFFWGA), complex picture fuzzy
Frank ordered weighted geometric averaging (CPFFOWG), and complex picture fuzzy Frank hybrid geometric
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averaging (CPFFHGA) operators in the later parts of this section. For these operators, we demonstrate a
few features and outcomes. An MADM technique, along with the method to determining attributes weights,
is put forth in section 4 to determine the most preferable alternative using a specific example and the
creditworthiness to show the relevance of the proposed work. After that, section 5 deals with a numerical
illustration of our proposed work with the help of a real-world problem. To demonstrate our manuscript’s
superiority and influence over other prevalent approaches, we compare the model we have offered in Section 6
of our paper. Finally, in Section 7, we have concluded our approach and have provided some recommendations
for future work as far as this wider and profound area of study is concerned.

2 Preliminaries

This section deals with some of the fundamental definitions and preliminaries.

Definition 2.1. [37] Consider X as a universal set. The CPFS R̄ over X is defined as

R̄ =
{⟨

x, µR̄(x)e
i2πµR̄(x), ηR̄(x)e

i2πηR̄(x), νR̄(x)e
i2πνR̄(x)

⟩
| x ∈ X

}
,

where µR̄(x)e
i2πµR̄(x) : X → [0, 1], ηR̄(x)e

i2πηR̄(x) : X → [0, 1] and νR̄(x)e
i2πνR̄(x) : X → [0, 1] are reffered

to as positive, neutral and negative degrees respectively, such that 0 ≤ µR̄(x)e
i2πµR̄(x) + ηR̄(x)e

i2πηR̄(x) +
νR̄(x)e

i2πνR̄(x) ≤ 1 for every x ∈ X.

Moreover, κR̃(x)e
i2πµR̄(x) =

(
1− µR̃(x)− ηR̄(x)− νR̄(x)

)
ei2πµR̄(x) is reffered to as the degree of hesitancy

for ∈ X. For our convenience, we denote R̄ =
(
µR̄(x)e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
as the representation

of a CPFN.

Definition 2.2. Let R̄ =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
and S̄ =

(
µS̄e

i2πµS̄(x), ηS̄e
i2πηS̄(x), νS̄e

i2πνS̄(x)
)

be CPFNs over a universal set X and ζ > 0 belonging to real number, then following are defined some notable
operations:

1. R̄ ≤ S̄, if µR̄e
i2πµR̄(x) ≤ µS̄e

i2πµS̄(x), ηR̄e
i2πηR̄(x) ≤ ηS̄e

i2πηS̄(x) and νR̄e
i2πνR̄(x) ≥ νS̄e

i2πνS̄(x).

2. R̄
∨

S̄ =

(
max

{
µR̄e

i2πµR̄(x), µS̄e
i2πµS̄(x)

}
,min

{
ηR̄e

i2πηR̄(x), ηS̄e
i2πηS(x)

}
,

min
{
νR̄e

i2πνR̄(x), νS̄e
i2πνS̄(x)

} )
.

3. R̄ ∧ S̄ =

(
min

{
µR̄e

i2πµR̄(x), µS̄e
i2πµS̄(x)

}
,max

{
ηR̄e

i2πηR̄(x), ηS̄e
i2πηS̄(x)

}
,max

{
νR̄e

i2πνR̄(x), νS̄e
i2πνS̄(x)

} )
.

4. R̄c =
(
νR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), µR̄e

i2πνR̄(x)
)
.

5. R̄ ∧ S̄ =

(
min

{
µR̄e

i2πµR̄(x), µS̄e
i2πµR̄(x)

}
,max

{
ηR̄e

i2πηR̄(x), ηS̄e
i2πηR̄(x)

}
,

max
{
νR̄e

i2πvR̄(x), νS̄e
i2πνR̄(x)

} )
.

6. R̄ ∨ S̄ =

(
max

{
µR̄e

i2πµR̄(x), µS̄e
i2πµS̄(x)

}
,min

{
ηR̄e

i2πηR̄(x), ηS̄e
i2πηS̄(x)

}
,

min
{
νR̄e

i2πνR̄(x), νS̄e
i2πνS̄(x)

} )
.

7. R̄⊕ S̄ =

(
µR̄e

i2πµR̄(x) + µS̄e
i2πµS̄(x) − µR̄e

i2πµR̄(x)µS̄e
i2πµS̄(x), ηR̄e

i2πηR̄(x)ηS̄e
i2πηS(x),

νR̄e
i2πνR̄(x)νS̄e

i2πνS̄(x)

)
.

8. R̄⊗ S̄ =

(
µR̄e

i2πµR̄(x)µS̄e
i2πµS̄(x), ηR̄e

i2πηR̄(x) + ηS̄e
i2πηS̄(x) − ηR̄e

i2πηR̄(x)ηS̄e
i2πηS̄(x),

νR̄e
i2πνR̄(x) + νS̄e

i2πνS(x) − νR̄e
i2πνR̄(x)νS̄e

i2πνS(x)

)
.
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9. ζR̄ =
(
1−

(
1− µR̄e

i2πµR̄(x)
)ζ

,
(
ηζ
R̄

)
ei2πηR̄(x), νζ

R̄
ei2πνR̄(x)

)
.

10. R̄ζ =
(
µζ
R̄
ei2πµR̄(x), 1−

(
1− ηR̄e

i2πηR̄(x)
)ζ

, 1−
(
1− νR̄e

i2πνR̄(x)
)ζ)

.

Definition 2.3. For a CPFNR̄ =
(
µR̄(x)e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)

∆(p) =
2 + µR̄e

i2πµR̄(x) − νR̄e
i2πνR̄(x)

4
,

is defined as score function, where ∆(p) ∈ [0, 1].

Definition 2.4. For a CPFNR̄ =
(
µR̄(x)e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)

∇(p) = µR̄e
i2πµR̄(x) + νR̄e

i2πνR̄(x),

is defined as accuracy function, where Ψ(p) ∈ [−1, 1].

According to Definitions 2.3 and 2.4, if R̄ =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
and

S̄ =
(
µS̄e

i2πµR̄(x), ηS̄e
i2πηR̄(x), νS̄e

i2πνR̄(x)
)
are any two CPFNs then

1. If ∆(R̄) > ∆(S̄) then R̄ > S̄.

2. If ∆(R̄) < ∆(S̄) then R̄ < S̄.

3. If ∆(R̄) = ∆(S̄), then

(a) If ∇(R̄) > ∇(S̄), then R̄ > S̄.

(b) If ∇(R̄) = ∇(S̄), then R̄ = S̄.

Definition 2.5. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be CPFNs’ collection.

Then, by using the CPFWAOs, their aggregated value is also a CPFN and CPFWA
(
R̄1, R̄2, . . . , R̄n

)
=

⊕n
k=1

(
wkR̄k

)
=

 1−
∏n

k=1

(
1− µR̄k

e
i2πµR̄k

(x)
)wk

,
(∏n

k=1 ηR̄k
e
i2πηR̄k

(x)
)wk

,(∏n
k=1 νR̄k

e
i2πνR̄k

(x)
)wk

 ,

here w = (w1, w2, . . . , wn)
t denotes the weight-vector of pk(k = 1, 2, . . . , n), wk ∈ [0, 1] and

∑n
k=1wk = 1.

Definition 2.6. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a collection of

CPFNs. A structure pn → p such that,

CPFOWA
(
R̄1, R̄2, . . . , R̄n

)
=

n⊕
k=1

(
wkR̄R̄(k)

)
=

(
1−

n∏
k=1

(
1− µR̄R̄(k)

)wi

,

n∏
k=1

ηR̄R̄(k)
wk,

n∏
k=1

νR̄R̄(k)
wk

)
,

is known as CPFOWA operator and,(ρ(1), ρ(2), . . . , ρ(n)) denotes the permutation related to (k = 1, 2, . . . , n),
satisfying pρ(i−1) ≥ pρ(k); k = 1, 2, . . . , n.

The definition of Frank t-norm and t-conorm is provided as follows:
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Definition 2.7. [28] For a and b as two real numbers, the functions

Fra(a, b) = logr

(
1 +

(ra − 1)
(
rb − 1

)
r − 1

)
,

and

Fra′(a, b) = 1− logr

(
1 +

(
r1−a − 1

) (
r1−b − 1

)
r − 1

)
,

are defined as Frank t-norm and Frank t-conorm respectively, where (a, b) ∈ [0, 1]× [0, 1] and r ̸= 1.

Following observations should be considered here [63]:

1. Fra′(a, b) → a+ b− ab, when r → 1, also Fra (a, b) → ab when r → 1. Therefore, we conclude that sum
and product of Frank change into sum and product of probabilistic when r → 1.

2. Fra′(a, b) → min{a+ b, 1} when r → ∞ and Fra (a, b) → max{0, a+ b− 1} when r → ∞. Therefore, we
conclude that the sum as well as product of Frank change into sum as well as product of Lukasiewicz,
when r → ∞.

Example 2.8. Let a = 0.33, b = 0.98 and r = 5, then,

Fra(0.33, 0.98) = log4

(
1 +

(
40.33 − 1

) (
40.98 − 1

)
5− 1

)
= 0.3197.

Fra′(0.33, 0.98) = 1− log4

(
1 +

(
41−0.33 − 1

) (
41−0.98 − 1

)
5− 1

)
= 0.9902.

3 Complex Picture Fuzzy Frank Aggregation Operators

By skillfully using the t-norm and t-conorm of Frank, notable operating rules for the CPF environment
have been created in this part. We also recommend the CPFFWA, CPFFOWA, CPFFHWA, CPFFWG,
CPFFOWG, and CPFFHWA aggregation operators utilizing the operational principles we have defined.

Definition 3.1. Let R̄ =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
, S̄ =

(
µS̄e

i2πµJ̄ (x), ηS̄e
i2πηJ̄ (x), νS̄e

i2πνJ̄ (x)
)

and T̄ =
(
µT̄ e

i2πµT̄ (x), ηT̄ e
i2πηT̄ (x), νT̄ e

i2πνT̄ (x)
)
be CPFNs, r > 1, and ζ > 0 is a real number.

Frank t-norm and t-conorm operations for CPFNs are provided as follows:

1. R̄⊕ S̄ =

=



1− logr

1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)(

r1−µS̄e
i2πµS̄(x)

− 1
) 

r−1

 , logr

1 +


(
rηR̄ei2πηR̄(x)

− 1
)(

rηS̄e
i2πηS̄(x)

− 1
) 

r−1

 ,

logr

1 +


(
rνR̄ei2πνR̄(x)

− 1
)(

rνS̄e
i2πνS̄(x)

− 1
) 

r−1





.
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2. R̄⊗ S̄ =

=



logr

1 +


(
rµR̄ei2πµR̄(x)

− 1
)(

rµS̄e
i2πµS̄(x)

− 1
) 

r−1

 , 1− logr

1 +


(
r1−ηR̄ei2πηR̄(x)

− 1
)(

r1−ηS̄e
i2πηS̄(x)

− 1
) 

r−1

 ,

1− logr

1 +


(
r1−νR̄ei2πνR̄(x)

− 1
)(

r1−νS̄e
i2πνS̄(x)

− 1
) 

r−1





.

3. ζR̄

=


1− logr

1 +

(
r1−µR̄e

i2πµR̄(x)
−1

)ζ

(r−1)ζ−1

 , logr

1 +

(
rηR̄e

i2πηR̄(x)
−1

)ζ

(r−1)ζ−1

 ,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)ζ

(r−1)ζ−1



 .

4. R̄ζ

=


logr

1 +

(
rµR̄e

i2πµR̄(x)
−1

)ζ

(r−1)ζ−1

 , 1− logr

1 +

(
r1−ηR̄e

i2πηR̄(x)
−1

)ζ

(r−1)ζ−1

 ,

1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)ζ

(r−1)ζ−1



 .

Example 3.2. Let R̄ =
(
0.5ei2π(0.5), 0.3ei2π(0.1), 0.2ei2π(0.4)

)
and S̄ =

(
0.1ei2π(0.4), 0.5ei2π(0.4), 0.4ei2π(0.2)

)
be

any two CPFNs. Let r = 2 and ζ = 3 in definition 3.1, we get

1. R̄⊕ S̄ =
(
0.5577ei2π(0.7206), 0.1319ei2π(0.0327), 0.0669ei2π(0.06)

)
.

2. R̄⊗ S̄ =
(
0.0422ei2π(0.1793), 0.6680ei2π(0.4672), 0.0.2243ei2π(0.3330)

)
.

3. 5R̄ =
(
0.9348ei2π(0.9860), 0.0012ei2π(0.00001), 0.000015ei2π(0.000015)

)
.

4. R̄4 =
(
0.00003ei2π(0.0034), 0.0975ei2π(0.0876), 0.9216ei2π(0.9216)

)
.

Theorem 3.3. Let R̄ =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
, and S̄ =

(
µS̄e

i2πµS̄(x), ηS̄e
i2πηS̄(x), νS̄e

i2πνS̄(x)
)

and T̄ =
(
µT̄ e

i2πµT̄ (x), ηT̄ e
i2πηT̄ (x), νT̄ e

i2πνT̄ (x)
)
be any three CPFNs. Let r > 1 and ζ, ζ1, ζ2 are positive real

numbers, then

1. R̄⊕ S̄ = S̄ ⊕ R̄.

2. R̄⊗ S̄ = S̄ ⊗ R̄.

3. ζ(R̄⊕ S̄) = ζR̄⊕ ζS̄.
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4. ζ1R̄⊕ ζ2R̄ = (ζ1 + ζ2) R̄.

5. (R̄⊗ S̄)ζ = R̄ζ ⊗ S̄ζ .

6. R̄ζ1 ⊗ R̄ζ2 = R̄ζ1+ζ2.

Proof. For three CPFNs R̄ =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), νR̄e

i2πνR̄(x)
)
, S̄ =

(
µS̄e

i2πµS̄(x), ηS̄e
i2πηS̄(x), νS̄e

i2πνS̄(x)
)

and T̄ =
(
µT̄ e

i2πµT̄ (x), ηT̄ e
i2πηT̄ (x), νT̄ e

i2πνT̄ (x)
)
with ζ, ζ1, ζ2 > 0. According to Definition 3.1, we can obtain

1. R̄⊕ S̄ =



1− logr

1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)(

r1−µS̄e
i2πµS̄(x)

− 1
) 

r−1

 , logr

1 +


(
rηR̄ei2πηR̄(x)

− 1
)(

rηS̄e
i2πηS̄(x)

− 1
) 

r−1

 ,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)(
rνS̄e

i2πνS̄(x)
−1

)
r−1





=



1− logr

1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)(

r1−µS̄e
i2πµS̄(x)

− 1
) 

r−1

 , logr

1 +


(
rηR̄ei2πηR̄(x)

− 1
)(

rηS̄e
i2πηS̄(x)

− 1
) 

r−1

 ,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)(
rνS̄e

i2πνS̄(x)
−1

)
r−1




= S̄ ⊕ R̄.

2. R̄⊗ S̄ =



logr

1 +


(
rµS̄e

i2πµS̄(x)

− 1
)(

rµR̄ei2πµR̄(x)

− 1
) 

r−1

 , 1− logr

1 +


(
r1−ηR̄ei2πηR̄(x)

− 1
)(

r1−ηS̄e
i2πηS̄(x)

− 1
) 

r−1


1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)(
r1−νS̄e

i2πνS̄(x)
−1

)
r−1





=



logr

1 +


(
rµS̄e

i2πµS̄(x)

− 1
)(

rµR̄ei2πµR̄(x)

− 1
) 

r−1

 , 1− logr

1 +


(
r1−ηR̄ei2πηR̄(x)

− 1
)(

r1−ηS̄e
i2πηS̄(x)

− 1
) 

r−1


1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)(
r1−νS̄e

i2πνS̄(x)
−1

)
r−1




= S̄ ⊗ R̄.
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3. ζ(R̄⊕ S̄) = ζ



1− logr

1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)(

r1−µS̄e
i2πµS̄(x)

− 1
) 

r−1

 , logr

1 +


(
rηR̄ei2πηR̄(x)

− 1
)(

rηS̄e
i2πηS̄(x)

− 1
) 

r−1

 ,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)(
rνS̄e

i2πνS̄(x)
−1

)
r−1





=



1− logr


1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)ζ(

r1−µS̄e
i2πµS̄(x)

− 1
)ζ


(r−1)2ζ−1


, logr


1 +


(
rηR̄ei2πηR̄(x)

− 1
)ζ(

rηS̄e
i2πηS̄(x)

− 1
)ζ


(r−1)2ζ−1


,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)ζ(
rνS̄e

i2πνS̄(x)
−1

)ζ

(r−1)2ζ−1




.

Now

ζR̄⊕ ζS̄ =


1− logr

1 +

(
r1−µR̄e

i2πµR̄(x)
−1

)ζ

(r−1)ζ

 , logr

1 +

(
rηR̄e

i2πηR̄(x)
−1

)ζ

(r−1)ζ

 ,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)ζ

(r−1)ζ





⊕


1− logr

1 +

(
r1−µS̄e

i2πµS̄(x)
−1

)ζ

(r−1)ζ

 , logr

1 +

(
rηS̄e

i2πηS̄(x)
−1

)ζ

(r−1)ζ

 ,

logr

1 +

(
rνS̄e

i2πνS̄(x)
−1

)ζ

(r−1)ζ





=



1− logr


1 +


(
r1−µR̄ei2πµR̄(x)

− 1
)ζ(

r1−µS̄e
i2πµS̄(x)

− 1
)ζ


(r−1)2ζ−1


, logr


1 +


(
rηR̄ei2πηR̄(x)

− 1
)ζ(

rηS̄e
i2πηS̄(x)

− 1
)ζ


(r−1)2ζ−1


,

logr

1 +

(
rνR̄e

i2πνR̄(x)
−1

)ζ(
rνS̄e

i2πνS̄(x)
−1

)ζ

(r−1)2ζ−1




.

Therefore,
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ζ(R̄⊕ S̄) = ζR̄⊕ ζS̄.

4. ζ1R̄⊕ ζ2R̄ =


1− logr

1 +

(
r1−µR̄e

i2πµR̄(x)
−1

)ζ1

(r−1)ζ1

 , logr

1 +

r
ηR̄e

i2πηR̄(x)−1

)ζ1

(r−1)ζ1


logr

(
1 +

(
rνR̄ei2πνR̄(x)−1

)ζ1
(r−1)ζ1

)



⊕


1− logr

1 +

(
r1−µR̄e

i2πµR̄(x)
−1

)ζ2

(r−1)ζ2

 , logr

1 +

r
ηR̄e

i2πηR̄(x)−1

)ζ2

(r−1)ζ2


logr

(
1 +

(
rνR̄ei2πνR̄(x)−1

)ζ2
(r−1)ζ2

)



=


1− logr

1 +

(
r1−µR̄e

i2πµR̄(x)
−1

)ζ1+ζ2

(r−1)ζ1+ζ2

 , logr

1 +

(
rηR̄e

i2πηR̄(x)
)ζ1+ζ2

(r−1)ζ1+ζ2


, logr

(
1 +

(
rνR̄ei2πνR̄(x)−1

)ζ1+ζ2

(r−1)ζ1+ζ2

)
 .

= (ζ1 + ζ2) R̄.

5.
(
R̄1 ⊗ R̄2

)ζ
=



logr


1 +


(
rµR̄1

e
i2πµR̄1

(x)

− 1

)
(
rµR̄2

e
i2πµR̄2

(x)

− 1

)


r−1


, 1− logr


1 +


(
r1−ηR̄1

e
i2πηR̄1

(x)

− 1

)
(
r1−ηR̄2

e
i2πηR̄2

(x)

− 1

)


r−1



1− logr

1 +

r
1−νR̄1

e
i2πνR̄1

(x)

−1

r
1−νR̄2

e
i2πνR̄2

(x)

−1


r−1





ζ
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=



logr


1 +


(
rµR̄1

e
i2πµR̄1

(x)

− 1

)
(
rµR̄2

e
i2πµR̄2

(x)

− 1

)


ζ

(r−1)2ζ−1


, 1− logr


1 +


(
r1−ηR̄1

e
i2πηR̄1

(x)

− 1

)
(
r1−ηR̄2

e
i2πηR̄2

(x)

− 1

)


ζ

(r−1)2ζ−1



1− logr

1 +

r
1−νR̄1

e
i2πνR̄1

(x)

−1

r
1−νR̄2

e
i2πνR̄2

(x)

−1

ζ

(r−1)2ζ−1





=


logr

1 +

r
µR̄1

e
i2πµR̄1

(x)

−1

ζ

(r−1)ζ

 , 1− logr

1 +

(
r
1−ηR̄1 e

i2πηR̄1
(x)

−1

)ζ

(r−1)ζ

 ,

1− logr

1 +

(
r
1−νR̄1 e

i2πνR̄1
(x)

−1

)
(r−1)ζ




.

6. R̄ζ1 ⊗ R̄ζ2 =


logr

1 +

(
rµR̄e

i2πµR̄(x)
−1

)ζ1

(r−1)ζ1−1

 , 1− logr

1 +

(
r1−ηR̄e

i2πηR̄(x)
−1

)ζ1

(r−1)ζ1−1

 ,

1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)ζ1

(r−1)ζ1−1





⊗


logr

1 +

(
rµR̄e

i2πµR̄(x)
−1

)ζ2

(r−1)ζ2−1

 , 1− logr

1 +

(
r1−ηR̄e

i2πηR̄(x)
−1

)ζ2

(r−1)ζ2−1

 ,

1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)ζ2

(r−1)ζ2−1





=


logr

(
1 +

(
rµei2πµR̄(x)−1

)ζ1+ζ2

(r−1)ζ1+ζ2−1

)
, 1− logr

1 +

r
1−ηR̄e

i2πηR̄(x)
)ζ1+ζ2

(r−1)ζ1+ζ2−1

 ,

1− logr

1 +

(
r1−νR̄e

i2πνR̄(x)
−1

)ζ1+ζ2

(r−1)ζ1+ζ2−1




= R̄ζ1+ζ2 .

□
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3.1 Complex Picture Fuzzy Frank Arithmetic Aggregation Operators

Definition 3.4. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be CPFNs’ collection.

Then, a function pn → p

CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
=

n⊕
k=1

(
wkR̄k

)
,

is known as the CPFFWA operator with w = (w1, w2, . . . , wn)
t as the weight vector of R̄k(k = 1, 2, . . . , n), wk ∈

[0, 1] and
∑n

k=1wk = 1.

As a result, the following consequential theorem is obtained.

Theorem 3.5. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be CPFNs’ collection,

then the aggregated value is also a CPFN, and

CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
=

n⊕
k=1

(
wkR̄k

)

=

 1− logr

(
1 +

∏n
k=1

(
r
1−µR̄k

ei2πµR̄(x)

− 1

)wk
)
, logr

(
1 +

∏n
k=1

(
r
ηR̄k

ei2πηR̄(x)

− 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
r
νR̄k

ei2πνR̄(x)
)wk

)
 .

Proof. Method of mathematical induction would be used for proving this theorem. We take n = 2, and by
using Frank operations for CPFNs, we get

CPFFWA
(
R̄1, R̄2

)
=

2⊕
k=1

wk = w1R̄1

⊕
w2R̄2

=



1− logr

1 +

r
1−µR̄1

e
i2πµR̄1

(x)

−1

w1

(r−1)w1−1

 , logr

1 +

(
r
ηR̄1

e
i2πηR̄(x)

−1

)w1

(r−1)w1−1

 ,

logr

1 +

r
νR̄1

e
i2πνR̄1

(x)
w1

(r−1)w1−1





⊕



1− logr

1 +

r
1−µR̄2

e
i2πµR̄2

(x)
w2

(r−1)w2−1

 , logr

1 +

r
ηR̄2

e
i2πηR̄2

(x)
)w2

−1

(r−1)w2−1

 ,

logr

1 +

r
νR̄2

e
i2πνR̄2

(x)
−1

)w2

(r−1)w2−1




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=

 1− logr

(
1 +

∏2
k=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)
, logr

(
1 +

∏2
k=1

(
r
ηR̄k

e
i2πµR̄k

(x)

− 1

)wk
)
,

logr

(
1 +

∏2
k=1

(
r
νR̄k

e
i2πνR̄k

(x)

− 1

)wk
)

 .

[
∵

2∑
k=1

wk = 1

]

Therefore, for n = 2, the result is true.

By considering the given result as true for n = s, we have,

CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
=

s⊕
k=1

wkR̄k

=

 1− logr

(
1 +

∏s
k=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)
, logr

(
1 +

∏s
k=1

(
r
ηR̄k

e
i2πηR̄k

(x)

− 1

)wk
)
,

logr

(
1 +

∏s
k=1

(
r
νR̄k

e
i2πνR̄k

(x)

− 1

)wk
)

 .

Now, for n = s+ 1, we have,

CPFFWA
(
R̄1, R̄2, . . . , R̄n+1

)
=

s+1⊕
k=1

wkR̄k =

s⊕
i=1

wkR̄k

⊕
ws+1R̄s+1

=



1− logr

1 +

∏s
k=1

r
1−µR̄k

e
i2πµR̄k

(x)

−1

wk

(r−1)
∑s

i=1
wi−1

 ,

logr

1 +

∏s
k=1

r
ηR̄k

e
i2πηR̄k

(x)

−1

wk


(r−1)
∑s

i=1
wi−1

 ,

logr

1 +

∏s
k=1

r
νR̄k

e
i2πνR̄k

(x)

−1

wk

(r−1)
∑s

i=1
wi−1







102 Iftikhar H, Mehmood F. Trans. Fuzzy Sets Syst. 2024; 3(1)

⊕



1− logr

1 +

r
1−µR̄S+1

e
i2πµR̄S+1

(x)

−1

wS+1

(r−1)wS+1−1



logr

1 +

r
ηR̄S+1

e
i2πηR̄S+1

(x)

−1

wS+1
(r−1)wS+1−1



logr

1 +

r
νR̄S+1

e
i2πνR̄S+1

(x)

−1

wS+1

(r−1)wS+1−1





=


1− logr

(
1 +

∏s+1
i=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)
,

logr

(
1 +

∏s+1
i=1

(
r
ηR̄k

e
i2πηR̄k

(x)

− 1

)wk
)
,

logr

(
1 +

∏s+1
i=1

(
r
νR̄k

e
i2πνR̄k

(x)

− 1

)wk
)

 .

as
s+1∑
k=1

wk = 1.

Which shows the result is valid for n = s + 1, if it is valid for n = s. Hence, method of induction shows
the validity of our result, no matter what natural number n is. □

Example 3.6. For R̄1 =
(
0.5ei2π(0.5), 0.3ei2π(0.1), 0.1ei2π(0.4)

)
, R̄2 =

(
0.1ei2π(0.4), 0.5ei2π(0.4), 0.4ei2π(0.2)

)
, R̄3 =(

0.1ei2π(0.1), 0.1ei2π(0.2), 0.7ei2π(0.5)
)
, R̄4 =

(
0.6ei2π(0.2), 0.1ei2π(0.2), 0.3ei2π(0.3)

)
with weights = (0.2, 0.3, 0.1, 0.4)

and r = 2, step by step working of the operator is given as follows:

CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
=


1− logr

(
1 +

∏n
k=1

(
r
1−µR̄k ei2πµR̄(x) − 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
r
ηR̄k ei2πηR̄(x) − 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
r
νR̄k ei2πνR̄(x) − 1

)wk
)



=



1− log2

 1 +
(
21−(0.5)ei2π(0.5) − 1

)0.2
+
(
21−(0.1)ei2π(0.4) − 1

)0.3
+
(
21−(0.1)ei2π(0.1) − 1

)0.1
+
(
21−(0.6)ei2π(0.2) − 1

)0.4
 ,

log2

 1 +
(
2(0.3)e

i2π(0.1) − 1
)0.2

+
(
2(0.5)e

i2π(0.4) − 1
)0.3

+
(
2(0.1)e

i2π(0.1) − 1
)0.1

+
(
2(0.1)e

i2π(0.2) − 1
)0.4

 ,

log2

 1 +
(
2(0.1)e

i2π(0.4) − 1
)0.2

+
(
2(0.4)e

i2π(0.2) − 1
)0.3

+
(
2(0.7)e

i2π(0.5) − 1
)0.1

+
(
2(0.3)e

i2π(0.3) − 1
)0.4




=
(
0.321ei2π(0.321), 0.205ei2π(0.216), 0.330ei2π(0.297)

)
.
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Theorem 3.7. (Idempotent). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a col-

lection of CPFNs which are all identical, i.e., R̄k = R̄ for all k, where R =
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), vR̄e

i2πνR̄(x)
)
,

then CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
= R̄.

Proof. As for every R̄k = R̄, therefore,

CPFFWA (p̄1, p̄2, . . . , p̄n) =

=

 1− logr

(
1 +

∏n
k=1

(
r1−µR̄ei2πµR̄ (x) − 1

)wi
)
, logr

(
1 +

∏n
k=1

(
rηR̄ei2πηR̄ (x) − 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
rνR̄ei2πνR̄ (x) − 1

)wk
) 

=

 1− logr

(
1 +

∏n
k=1

(
r1−µR̄ei2πµR̄ (x) − 1

)wk
)
, logr

(
1 +

∏n
k=1

(
rηR̄ei2πηR̄ (x) − 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
rνR̄ei2πνR̄ (x) − 1

)wk
) 

=

 1− logr

(
1 +

∏n
k=1

(
r1−µR̄ei2πµR̄ (x) − 1

)∑n
k=1 wk

)
, logr

(
1 +

∏n
k=1

(
r1−ηR̄ei2πηR̄ (x) − 1

)∑n
k=1 wk

)
,

logr

(
1 +

∏n
k=1

(
r1−νR̄ei2πνR̄ (x) − 1

)∑n
k=1 wk

)


=

 1− logr

(
1 +

∏n
k=1

(
r1−µR̄ei2πµR̄ (x) − 1

))
, logr

(
1 +

∏n
k=1

(
r1−ηR̄ei2πηR̄ (x) − 1

))
,

logr

(
1 +

∏n
k=1

(
r1−νR̄ei2πνR̄ (x) − 1

)) 
=
(
µR̄e

i2πµR̄(x), ηR̄e
i2πηR̄(x), vR̄e

i2πvR̄(x)
)
= R̄.

Hence, it completes the proof. □

Theorem 3.8. (Boundedness). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be

CPFNs’collection. Let R̄− = min
{
R̄1, R̄2, . . . , R̄n

}
, and R̄+ = max

{
R̄1, R̄2, . . . , R̄n

}
. Then,

R̄− ≤ CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
≤ R̄+.

Proof. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n is a collection of CPFN. Let

R̄− = min
{
R̄1, R̄2, . . . , R̄n

}
=
(
µ−

R̄k
e
i2πµR̄k

(x)
, η−R̄k

e
i2πηR̄k

(x)
, ν−R̄k

e
i2πνR̄k

(x)
)
,

and

R̄+ = max
{
R̄1, R̄2, . . . , R̄n

}
=
(
µ+

R̄k
e
i2πµR̄k

(x)
, η+R̄k

e
i2πηR̄k

(x)
, ν+R̄k

e
i2πνR̄k

(x)
)
.

Then, we have,

µ−R̄ke
i2πµR̄k

(x)
=min

k

{
µR̄k

e
i2πµR̄k

(x)
}
, η−R̄k

e
i2πηR̄k

(x)

= max
k

{
ηR̄k

e
i2πηR̄k

(x)
}
, ν−

R̄k
e
i2πνR̄k

(x)
= max

k

{
νR̄k

e
i2πνR̄k

(x)
}

µ+
R̄k

e
i2πµR̄k

(x)
=max

k

{
µR̄k

e
i2πµR̄k

(x)
}
, η+R̄k

e
i2πηR̄k

(x)

= min
k

{
ηR̄k

e
i2πηR̄k

(x)
}
, ν+R̄k

e
i2πνR̄k

(x)
= min

k

{
νR̄k

e
i2πνR̄k

(x)
}
.
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Now,

1− logr

(
1 +

n∏
k=1

(
r
1−
(
µ−R̄ke

i2πµR̄k
(x)
)
− 1

)wk)

≤ 1− logr

(
1 +

n∏
k=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)

≤ 1− logr

(
1 +

n∏
k=1

(
r
1−
(
µ+

R̄k
e
i2πµR̄k

(x)
)
− 1

)wk)
.

logr

(
1 +

n∏
k=1

(
r

(
η+R̄k

e
i2πηR̄k

(x)
)
− 1

)wk))

≤ logr

(
1 +

n∏
k=1

(
r
ηR̄k

e
i2πηR̄k

(x)
−1
)wk

)

≤ logr

(
1 +

n∏
k=1

(
r

(
η−
R̄k

e
i2πηR̄k

(x)
−1

))wk)
.

and

logr

(
1 +

n∏
k=1

(
r

(
ν+R̄k

e
i2πνR̄k

(x)
)
− 1

)wk))

≤ logr

(
1 +

n∏
k=1

(
r
νR̄k

e
i2πνR̄k

(x)

− 1

)wk
))

≤ logr

1 +

n∏
k=1

r

(
ν−R̄

i2πνR̄k
(x)

k

)
− 1

k

 .

Therefore,

R̄− ≤ CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
≤ R̄+.

□

Theorem 3.9. (Monotonicity) Let the two sets R̄k and R̄′
k(k = 1, 2, . . . , n) of CPFNs, if for all k R̄k ≤ R̄′

k,
then CPFFWA

(
R̄1, R̄2, . . . , R̄n

)
≤ CPFFWA

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
.

Proof. Since R̄k ≤ R̄′
k for all k = 1, 2, . . . , n, then, µR̄k

e
i2πµR̄k

(x) ≤ µ′
R̄k

ei2πµ
′R̄k(x), r

ηR̄k e
i2πηR̄k

(x) ≤

η′
R̄k

e
i2πη′

R̄k
(x)

and νR̄k
e
i2πνR̄k

(x) ≥ ν ′
R̄k

ei2πν
′R̄k(x) for all k = 1, 2, . . . , n. Now
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(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk

≥

(
r
1−µ′

R̄k
e
i2πµ′

R̄k
(x)

− 1

)wk

⇒ logr

(
1 +

n∏
k=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)

≥ logr

(
1 +

n∏
i=k

(
r1−µ′R̄ke

i2πµ′R̄k(x)
− 1
)w′

k

)

⇒ 1− logr

(
1 +

n∏
k=1

(
r
1−µR̄k

e
i2πµR̄k

(x)

− 1

)wk
)

≤ 1− logr

(
1 +

n∏
k=1

(
r
1−µ′

R̄k
ei2πµ′

R̄k(x) − 1

)wk
)
.

Similarly, it can be shown that

logr

(
1 +

n∏
k=1

(
r
ηR̄k

e
i2πηR̄k

(x)

− 1

)wk
)

≤ logr

(
1 +

n∏
k=1

(
r
η′
R̄k

e
i2πη′

R̄k (x) − 1

)wk
)
.

And

≥ logr

(
1 +

n∏
k=1

(
rν

′R̄ke
i2πν′

R̄k
(x)

− 1

)wi
)
.

Therefore,

CPFFWA
(
R̄1, R̄2, . . . , R̄n

)
≤ CPFFWA

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
.

Now, the CPFFOWA operator will be introduced.
□

Definition 3.10. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a collection of

CPFNs. The function R̄n → R̄ such that,

CPFFOWA
(
R̄1, R̄2, . . . R̄n

)
=

n⊕
k=1

wkR̄R̄(k),

is defined as the CPFFOWA operator of dimension n with weight vector w = (w1, w2, . . . , wn)
t of

R̄k(k = 1, 2, . . . , n);wk ∈ [0, 1] and
∑n

k=1wk = 1, (R̄(1), R̄(2), . . . , R̄(n)) represents permutation of (k =
1, 2, . . . , n), such that for every k = 1, 2, . . . , n, R̄R̄(k−1) ≥ R̄R̄(k).

By using the above definition, we get the following theorem.

Theorem 3.11. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a collection of

CPFNs. Then, a function R̄n → R̄ containing a weight vector w = (w1, w2, . . . , wn)
t ;wk ∈ [0, 1] and∑n

k=1wk = 1.
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So,

CPFFOWA
(
R̄1, R̄2, . . . , R̄n

)
= ⊕n

wk=1
wkR̄R̄(k)

=


1− logr

(
1 +

∏n
k=1

(
r
1−µR̄R̄(k)e

i2πµR̄k
(x)

− 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
rηR̄(k)e

i2πηR̄k
(x)

− 1

)wk
)
,

logr

(
1 +

∏n
k=1

(
r
νR̄k e

i2πνR̄k
(x) − 1

)wk
))

 ,

is defined as the CPFFOWA operator of dimension n with (R̄(1), R̄(2), . . . , R̄(n)) represents permutation
of (k = 1, 2, . . . , n), such that for every k = 1, 2, . . . , n, R̄R̄(k−1) ≥ R̄R̄(k).

Proof. By using the CPFFOWA operators, the following properties can be easily proved. □

Theorem 3.12. (Idempotent). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a

collection of identical CPFNs, i.e., R̄i = R̄ for all k. Then, CPFFOWA
(
R̄1, R̄2, . . . , R̄n

)
= R̄.

Theorem 3.13. (Boundedness). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be

a collection of CPFNs. Let R̄− = min
{
R̄1, R̄2, . . . , R̄n

}
and R̄+ = max

{
R̄1, R̄2, . . . , R̄n

}
. Then, R̄− ≤

CPFFOWA
(
R̄1, R̄2, . . . , R̄n

)
≤ R̄+.

Theorem 3.14. (Monotonicity). Let R̄k and R̄′
k(k = 1, 2, . . . , n) be any two sets of CPFNs, if R̄k ≤ R̄′

k for
all k. Then, CPFFOWA

(
R̄1, R̄2, . . . , R̄n

)
≤ CPFFOWA

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
.

Theorem 3.15. (Commutativity). Let R̄k and R̄′
k(k = 1, 2, . . . , n) be any two sets of CPFNs, then CPF-

FOWA
(
R̄1, R̄2, . . . , R̄n

)
= CPFFOWA

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
, where R̄′

k denotes the permutation of R̄k(k =
1, 2, . . . , n).

The weights associated with the CPFFWA operator in Definition 3.4 are in the most basic form of a CPF
value, but the weights associated with the CPFFOWG operator in Definition 3.10 are not so. Which tells
the weights associated with the CPFFWAO as well as the CPFFOWAO convey different viewpoints that are
conflicting with one another. However, both viewpoints are intended to be similar in a broad sense. Only to
overcome such a shortcoming, we are now introducing the CPFFHA operator.

Definition 3.16. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) is a collection of

CPFNs. Then, a function R̄n → R̄ such that,

CPFFHA
(
R̄1, R̄2, . . . , R̄n

)
= ⊕n

k=1w̄k
˙̄RR̄(k)

1− logr

(
1 +

∏n
k=1

(
r
1−µ̇R̄R̄(k)e

i2πµR̄k
(x)

− 1

)w̄k
)
,

logr

(
1 +

∏n
k=1

(
r
η̇R̄R̄(k)e

i2πηR̄k
(x)

− 1

)w̄k
)
,

logr

(
1 +

∏n
k=1

(
r
ν̇R̄R̄(k)e

i2πνR̄k
(x) − 1

)w̄k
))


,

is defined as the CPFFHA operator of dimension n with w̄ = (w̄1, w̄2, . . . , w̄n)
t as aggregation associated

weight vector,
∑n

k=1 w̄k = 1, w = (w1, w2, . . . , wn)
t as weight vector of R̄k(k = 1, 2, . . . , n), wk ∈ [0, 1] and



Enhancing Big Data Governance Framework Implementation
Using Novel Fuzzy Frank Operators: An Application to MADM Process. Trans. Fuzzy Sets Syst. 2024; 3(1) 107

∑n
k=1wk = 1. R̄R̄(k) represents kth weighted greatest CPF value for ṗk (ṗk = nwkpk, k = 1, 2, . . . , n), and n

being the balancing coefficient.

Remark 3.17. When w =
(
1
n ,

1
n , . . . ,

1
n

)t
, then R̄k = n × 1

n × R̄k = R̄k for k = 1, 2, . . . , n. When this
happens the CPFFHA operator becomes the CPFFOWA operator. CPFFHA operator becomes the CPFFWA
operator, if w̄ =

(
1
n ,

1
n , . . . ,

1
n

)t
. As a result, the CPFFWA and the CPFFOWA operators are particular

varieties of the CPFFHA operators. Therefore, the CPFFHA operator, which indicates the magnitude of the
stated disagreements and their structured situations, appears to be a generalization of both the CPFFWA and
the CPFFOWA operators.

3.2 Complex Picture Fuzzy Frank Geometric Aggregation Operators

Definition 3.18. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a collection of

CPFNs. Then a function pn → p such that

CPFFWG (R1, R2, . . . , Rn) =

n⊗
k=1

(Rk)
wk ,

is defined as the CPFFWG operator with w = (wk, wk, . . . , wk)
t as the weight vector of Rk(k = 1, 2, . . . , n),

wk ∈ [0, 1] and
∑n

k=1wk = 1.

As a result, the following consequential theorem is obtained.

Theorem 3.19. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a collection of

CPFNs, then by using CPFFWG operator, their aggregated value is also a CPFN, and

CPFFWG (R1, R2, . . . , Rn) =
n⊗

k=1

(Rk)
wk

=


logr

(
1 +

∏n
k=1

(
r
µRk

e
i2πµR̄k

(x)
−1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r1−ηRk

e
i2πηR̄k

(x)

− 1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r1−νRk

e
i2πνR̄k

(x)

− 1

)wk
)


.

Proof. This theorem can be proved by using the method of proof of Theorem 3.5. □

Example 3.20. For R̄1 =
(
0.5ei2π(0.5), 0.3ei2π(0.1), 0.1ei2π(0.4)

)
, R̄2 =

(
0.1ei2π(0.4), 0.5ei2π(0.4), 0.4ei2π(0.2)

)
, R̄3 =(

0.1ei2π(0.1), 0.1ei2π(0.2), 0.7ei2π(0.5)
)
, R̄4 =

(
0.6ei2π(0.2), 0.1ei2π(0.2), 0.3ei2π(0.3)

)
with weights = (0.2, 0.3, 0.1, 0.4)

and r = 2, step by step working of the CPFFWG operator is given as follows:

CPFFWG
(
R̄1, R̄2, . . . , R̄n

)
=


logr

(
1 +

∏n
k=1

(
rµRk

e
i2πµR̄k

(x)

− 1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r1−ηRk

e
i2πηR̄k

(x)

− 1

)wk
)

1− logr

(
1 +

∏n
k=1

(
r1−vRk

e
i2πvR̄k

(x)

− 1

)wk


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

log2


1 +

(
2(0.5)e

i2π(0.5)

−1

)0.2

+

(
2(0.1)e

i2π(0.4)

−1

)0.3

(
2(0.1)e

i2π(0.1)

−1

)0.1

+

(
2(0.6)e

i2π(0.2)

−1

)0.4



1− log2


1 +

(
2(0.3)e

i2π(0.1)

−1

)0.2

+

(
2(0.5)e

i2π(0.4)

−1

)0.3

(
2(0.1)e

i2π(0.2)

−1

)0.1

+

(
2(0.1)e

i2π(0.2)

−1

)0.4



1− log2


1 +

(
2(0.1)e

i2π(0.4)

−1

)0.2

+

(
2(0.4)e

i2π(0.2)

−1

)0.3

(
2(0.7)e

i2π(0.5)

−1

)0.1

+

(
2(0.3)e

i2π(0.3)

−1

)0.4




=
(
0.239ei2π(0.263), 0.272ei2π(0.221), 0.425ei2π(0.357)

)
.

The CPFFWG operator makes it simple to prove the following properties:

Theorem 3.21. (Idempotent). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be

identical CPFNs’ collection, i.e., for every k,Rk = R. So, CPFFWG (R1, R2, . . . , Rn) = R.

Theorem 3.22. (Boundedness). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n)

be CPFNs’ collection. Take R− = min{R1, R2, . . . , Rn} an R+ = max{R1, R2, . . . , Rn}. Then R− ≤
CPFFWG(R1, R2, . . . , Rn) ≤ R+.

Theorem 3.23. (Monotonicity Property). Let the sets Ri and R′
k(k = 1, 2, . . . , n) of CPFNs, if for every

k,Ri ≤ R′
k, we have CPFFWG (R1, R2, . . . , Rn) ≤ CPFFWG (R′

1, R
′
2, . . . , R

′
n).

At this point, CPFFOWG operator has been introduced.

Definition 3.24. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be CPFNs’ collec-

tion. The n-dimensional CPFFOWG operator takes the form of a function Rn → R such that,

CPFFOWG (R1, R2, . . . Rn) =

n⊗
k=1

(
Rρ(k)

)wk ,

where w = (w1, w2, . . . , wn)
t is a representation of weight vector for Rk(k = 1, 2, . . . , n), wk ∈ [0, 1];∑n

k=1wk = 1. Moreover, (ρ(1), ρ(2), . . . , ρ(n)) appear to be representation of permutation of (k = 1, 2, . . . , n),
such that for every k = 1, 2, . . . , n, Rρ(k−1) ≥ Rρ(k).

On the basis of Frank product operation on CPFN utilizing CPFFOWG operators, the following theorem
is constructed.

Theorem 3.25. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) is CPFNs’ collection.

The n-dimensional CPFFOWG operator takes the form of a function Rn → R. So,

CPFFOWG (R1, R2, . . . Rn) = ⊗n
k=1

(
Rρ(k)

)wk
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=


logr

(
1 +

∏n
k=1

(
r
µRρ(k)

ei2πµRk(x)

− 1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r
1−ηRρ(k) − 1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r
1−νRρ(k) − 1

)wk
)

 .

Here w = (w1, w2, . . . , wn)
t is weight vector satisfying wk ∈ [0, 1];

∑n
k=1wk = 1. Moreover, (ρ(1), ρ(2), . . . , ρ(n))

appear to be representation of permutation of (k = 1, 2, . . . , n), such that for every k = 1, 2, . . . , n,Rρ(k−1) ≥
Rρ(k).

The CPFFOWG operator can be used to investigate the properties provided below.

Theorem 3.26. (Idempotent). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n) be a

collection of identical CPFNs, i.e., R̄k = R̄ for all k. Then, CPFFOWG
(
R̄1, R̄2, . . . , R̄n

)
= R̄.

Theorem 3.27. (Boundedness). Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(k = 1, 2, . . . , n)

be a collection of CPFN. Let R̄− = min{R̄1, R̄2, . . . , R̄n} an R̄+ = max{R̄1, R̄2, . . . , R̄n}. Then R̄− ≤
CPFFOWG(R̄1, R̄2, . . . , R̄n) ≤ R̄+.

Theorem 3.28. (Monotonicity). Let the sets R̄k and R̄′
k(k = 1, 2, . . . , n) of CPFNs, if for every k, R̄k ≤ R̄′

k,
then CFFFOWG

(
R̄1, R̄2, . . . , R̄n

)
≤ CPFFOWAG

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
.

Theorem 3.29. (Commutativity). Let the sets R̄k and R̄′
k(k = 1, 2, . . . , n) of CPFNs, then CPFFOWG(

R̄1, R̄2, . . . , R̄n

)
= CPFFOWG

(
R̄′

1, R̄
′
2, . . . , R̄

′
n

)
, where R̄′

k denotes the permutation of R̄k(k = 1, 2, . . . , n).

The weights associated with the CPFFWG operator in Definition 3.18 are in the most basic form of a
PF value, but the weights associated with CPFFOWG operator in Definition 3.24 are in the real form of the
ordered locations of CPF values. The weights given in CPFFWG and CPFFOWG operators convey different
viewpoints that are conflicting with one another in this way. However, both viewpoints are intended to be
similar in a broad sense. Only to overcome such a shortcoming, we are now introducing CPFFHG operator.

Definition 3.30. Let R̄k =
(
µR̄k

e
i2πµR̄k

(x)
, ηR̄k

e
i2πηR̄k

(x)
, νR̄k

e
i2πνR̄k

(x)
)
(where k varies from 1 to n ) be the

CPFNs’ collection. Then, a function R̄n → R̄ such that,

CPFFHG
(
R̄1, R̄2, . . . , R̄n

)
=

n⊗
k=1

(
R̄ρ(k)

)w̄k


logr

(
1 +

∏n
k=1

(
r
1−µ̇R̄ρ(k)

ei2πµρk
(x)

− 1

)w̄k
)
,

1− logr

(
1 +

∏n
k=1

(
r
1−η̇R̄ρ(k)

ei2πηρk
(x)

− 1

)w̄k
)
,

1− logr

(
1 +

∏n
k=1

(
r
1−νR̄ρ(k)ei2πνρk (x) − 1

)w̄k
)

 ,

is defined as the CPFFHG operator of dimension n with w̄ = (w̄1, w̄2, . . . , w̄n)
t as aggregation associated

weight vector,
∑n

k=1 w̄k = 1, w = (w1, w2, . . . , wn)
t as weight vector of R̄k(k = 1, 2, . . . , n), wk ∈ [0, 1] and∑n

k=1wk = 1. R̄R̄(k) represents kth weighted greatest CPF value for ṗk (ṗk = nwkpk, k = 1, 2, . . . , n), and n
being the balancing coefficient.
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Remark 3.31. When w =
(
1
n ,

1
n , . . . ,

1
n

)t
, then R̄k = n× 1

n×R̄k = R̄k for k = 1, 2, . . . , n. When this happens,
the CPFFHG operator becomes the CPFFOWG operator. The CPFFHG operator becomes the CPFFWG
operator, if w̄ =

(
1
n ,

1
n , . . . ,

1
n

)t
. As a result, the CPFFWG and the CPFFOWG operators are particular

varieties of the CPFFHG operators. Therefore, the CPFFHG operator, which indicates the magnitude of the
stated disagreements and their structured situations, appears to be a generalization of both the CPFFWG and
the CPFFOWG operators.

4 Model for the MADM Using Complex Picture Fuzzy Data

The purpose of this part is to discuss an effective strategy for solving the MADM process, as well as a method
that may be used to identify the attribute weights that are necessary.

4.1 An Overview of the DM Issue

An innovative method to MADM problems has been proposed in this part, in which we will use CPF
information along with manipulation of the CPFFWA and CPFFWG operators. For this purpose, let P =
{P1, P2, . . . , Pm} represent a discrete collection of m alternatives to be chosen and Q = {Q1, Q2, . . . , Qn}
represent an order of attributes to be evaluated. Also, the weight vector is w = {w1, w2, . . . , wn} related
to attributes Hj(j = 1, 2, . . . , n) where wk(k = 1, 2, 3, . . . , n) ∈ R such that wk > 0;

∑n
k=1wk = 1. We let

P = (πij)m×n = ((µij , ηij , vij))m×n as the CPF decision matrix, where πij is the possible value for which the
alternative Fi satisfies the attribute Hj with the condition µij + ηij + vij ≤ 1 and µij , ηij , vij ∈ [0, 1]. The
illustration of this algorithm has been given following:

4.2 Determination of the Attribute Weights

During the decision-making process, DM challenges inevitably include numerous attributes. They don’t have
to give each other the same amount of weight. Take, for example, a decision where, in one case, the product’s
price is more important than its functionality; in another, the product’s functionality may be more important
than its price, reliability, or other considerations. This means that while solving a problem, various attributes
play a role, each with its relevance. For DM to be very effective, selecting the appropriate attribute weights
is crucial. Following is the method that can be taken into account for computing the attributes’ weights
accurately.

For a CPFN, R̄ =
(
µR̄(x)e

i2πµR̄(x), ηR̄e
i2πηR̄(x), vR̄e

i2πvR̄(x)
)
, its hesitation degree has been given as:

τ(p) = 2−
(
µR̄e

i2πµR̄(x) + νR̄e
i2πνR̄(x)

)
.

Cases involving DM always require an algorithm which has a lesser hesitancy degree due to the fact
that attribute plays an important role during making process. Simply, we can say that an algorithm with
lesser hesitancy degree would be more accurate than the one having a greater hesitancy degree. As a result
the object would be more important when the hesitancy degree is lesser as compared to when hesitancy is
greater. Keeping this in consideration, the following hesitancy matrix R has been constructed for the given
alternatives

R =


τR̄11

τR̄12
· · · τR̄1n

τR̄21
τR̄22

· · · τR̄2n
...

...
. . .

...
τR̄m1

τR̄m2
· · · τR̄mn

 .
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Each τR̄pq
has been calculated by using hesitation function. Hence, the weight vector Ŵj is determined

as

Ŵj =
2−

(
1
m

∑m
i=1 τR̄ij

)
∑n

j=1

(
2−

(
1
m

∑m
i=1 τR̄ij

)) .

Algorithm

Following is a presentation of the proposed MADM problem using CPF data related to the proposed CPFFWA
and CPFFWG operators:

Step I: Construction of the CPF decision matrix P = (πij)m×n = ((µij , ηij , vij))m×n.

Step II: Transformation of the matrix P = (πij)m×n = ((µij , ηij , vij))m×n into a normalize PF matrix

P ′ =
(
π′
ij

)
m×n

=
((

µ′
ij , η

′
ij , v

′
ij

))
m×n

by Equation (1).

π′
ij =

{
(µij , ηij , vij) , if Hj a benefit attribute

(vij , ηij , µij) , if Hj a cost attribute
(1)

Step III: Determination of attribute weights of alternatives by using hesitation function, and the following

Ŵj =
2−

(
1
m

∑m
i=1 τR̄ij

)
∑n

j=1

(
2−

(
1
m

∑m
i=1 τR̄ij

)) .
Step IV: Calculation of the information σk, which is collective, for the alternative Ak with the aid of

following equation:

σf = CPFFWA
(
π′
f
′
′, π

′
f2f

, . . . , J ′
fn

)
=

n⊕
k=1

(wkπfk)

=

 1− logr

(
1 +

∏n
k=1

(
r1−µ′pfk − 1

)wk
)
, logr

(
1 +

∏n
k=1

(
rη

′pfk − 1
)wk

)
,

logr

(
1 +

∏n
k=1

(
rv

′pfk − 1
)wk

)  . (2)

And

σf = CPFFWG
(
πf1

′, πf2
′, . . . , π′

fn

)
=

n⊗
k=1

(γfk)
wk

=

 logr

(
1 +

∏n
k=1

(
rµ

′pfk − 1
)wk

)
, 1− logr

(
1 +

∏n
k=1

(
r1−η′pfk − 1

)wk
)
,

1− logr

(
1 +

∏n
k=1

(
r1−v′pfk − 1

)wk

 . (3)

Step V: Usage of definition 2.3 to calculate the score value for each alternative.

Step VI: The optimal decision is to select Fk if ∆ (σf ) = maxl {∆(σl)}.
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Figure 2: Sequential representation of the algorithm.

5 Numerical Illustration

In order to show the potential assessment of commercialization with the aid of PF data, we are prepared to
draw a numerical problem in this part.

A BDGF is of great importance for companies since it regulates the rules under which data flows through
different streams and appropriate access is granted to the users. Most of the companies work very much
on improving their data assets but fail to understand that a robust data governance framework is needed
in which segregation of users’ access to sensitive data, access to the data within the organization among
stakeholders in hierarchical order is of primary importance, and the responsibilities of the employees are well
organized. Failing to have this type of robust framework can lead to uncertain results for the company, hence
making the company’s survival vulnerable.

Suppose a renowned international organization has come up with the idea of utilizing a handsome amount
from its net annual profit in order to improve the company’s reputation. Due to increasing risks and mal-
functioning in their data assets, the company decides to use the amount in an optimized implementation of
its BDGF.

BDGF covers more than one area to be focused on, and also cost attributes and benefit attributes
spread uncertainty among decision makers. This brings them to think: In what order the BDGF should be
implemented? What area of the BDGF should be focused on very first, followed by the next and so on. Hence
an MADM problem arises to be solved for true implementation of the framework so that the company could
get the most benefit and make its data assets more profitable. Following are the alternative choices/focus
areas of the BDGF which have gained managing board’s attention:

1. A1 : Policy and Standards

2. A2 : Data Quality

3. A3 : Data Privacy and Security

4. A4 : Architecture
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Table 2: Decision matrix containing information about alternatives and attributes.

B1 B2

A1

(
0.5ei2π(0.5), 0.3ei2π(0.1)0.2ei2π(0.4)

)
A1

(
0.1ei2π(0.4), 0.5ei2π(0.4)0.4ei2π(0.2)

)
A2

(
0.6ei2π(0.2), 0.2ei2π(0.3)0.1ei2π(0.4)

)
A2

(
0.2ei2π(0.6), 0.4ei2π(0.2)0.3ei2π(0.1)

)
A3

(
0.5ei2π(0.5), 0.3ei2π(0.1)0.2ei2π(0.4)

)
A3

(
0.3ei2π(0.3), 0.3ei2π(0.4)0.2ei2π(0.1)

)
A4

(
0.3ei2π(0.6), 0.1ei2π(0.1)0.3ei2π(0.2)

)
A4

(
0.4ei2π(0.2), 0.2ei2π(0.4)0.3ei2π(0.4)

)
A5

(
0.2ei2π(0.7), 0.4ei2π(0.1)0.4ei2π(0.1)

)
A5

(
0.5ei2π(0.3), 0.1ei2π(0.1)0.1ei2π(0.6)

)
B3 B4

A1

(
0.7ei2π(0.5), 0.1ei2π(0.2)0.1ei2π(0.1)

)
A1

(
0.6ei2π0.2, 0.1ei2π(0.2)0.3ei2π(0.3)

)
A2

(
0.4ei2π(0.1), 0.1ei2π(0.1)0.1ei2π(0.7)

)
A2

(
0.2ei2π0.3, 0.6ei2π(0.3)0.1ei2π(0.3)

)
A3

(
0.6ei2π(0.4), 0.1ei2π(0.5)0.1ei2π(0.1)

)
A3 0.5ei2π(0.1), 0.2ei2π0.1

(
0.2ei2π(0.1)

)
A4

(
0.5ei2π(0.5), 0.2ei2π(0.1)0.2ei2π(0.2)

)
A4

(
0.4ei2π(0.4), 0.3ei2π(0.4)0.2ei2π(0.1)

)
A5

(
0.8ei2π(0.2), 0.1ei2π(0.2)0.1ei2π(0.2)

)
A5

(
0.5ei2π(0.2), 0.4ei2π(0.2)0.1ei2π(0.1)

)
5. A5 : Data Warehouse and Business Intelligence (BI)

As it is difficult to choose amongst the options because they each meet distinct criteria, the problem of
making a decision arises. Keeping this in view, the governing board has therefore established the following
noteworthy attributes:

1. B1 : Profit enhancement.

2. B2 : Benefits of the clients.

3. B3 : Maintenance cost.

4. B4 : Mangement support.

Given that each alternative claims to maximize a distinct attribute, making a decision in this situation is
challenging. A1, A2, A3, A4 and A5 are focus areas of the BDGF.Moreover, B1, B2, B4 are related to benefit
attributes, and B3 is related to cost attributes. Let P = (πij)m×n = ((µij , ηij , vij))m×n, a CPF matrix, be
the representation of the alternative Ai with respect to the attributes Bi. Table 2 shows the assessment of
the alternatives.

We use the CPFFWA and the CPFFWG operators to create an MADM theory with CPF data for the
sake of choosing the best alternative Ai(i = 1, 2, 3, 4, 5) by the following way:

Step I: The CPF decision matrix P = (πij)m×n = ((µij , ηij , vij))m×n has been created as follows:

Step II: By a careful exploitation of Equation (1), the CPF matrix of table 1 has been normalized as

P ′ =
(
π′
ij
′
)
m×n

=
((

µ′
ij , η

′
ij , v

′
ij

))
m×n

given as follows:

Step III: Now we determine the weights of attributes by using the hesitancy function and

Ŵj =
2−

(
1
m

∑m
i=1 τR̄ij

)
∑n

j=1

(
2−

(
1
m

∑m
i=1 τR̄ij

)) .
The resultant attributes weights are obtained:

Ŵ = (0.268012, 0.259366, 0.242075, 0.230548).
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Table 3: Transformed decision matrix.

B1 B1

A1

(
0.5ei2π(0.5), 0.3ei2π(0.1), 0.2ei2π(0.4)

)
A1

(
0.1ei2π(0.4), 0.5ei2π(0.4), 0.4ei2π(0.2)

)
A2

(
0.6ei2π(0.2), 0.2ei2π(0.3), 0.1ei2π(0.4)

)
A2

(
0.2ei2π(0.6), 0.4ei2π(0.2), 0.3ei2π(0.1)

)
A3

(
0.5ei2π(0.5), 0.3ei2π(0.1), 0.2ei2π(0.4)

)
A3

(
0.3ei2π(0.3), 0.3ei2π(0.4), 0.2ei2π(0.1)

)
A4

(
0.3ei2π(0.6), 0.1ei2π(0.1), 0.3ei2π(0.2)

)
A4

(
0.4ei2π(0.2), 0.2ei2π(0.4), 0.3ei2π(0.4)

)
A5

(
0.2ei2π(0.7), 0.4ei2π(0.1), 0.4ei2π(0.1)

)
A5

(
0.5ei2π(0.3), 0.1ei2π(0.1), 0.1ei2π(0.6)

)
B3 B4

A1

(
0.1ei2π(0.1), 0.1ei2π(0.2), 0.7ei2π(0.5)

)
A1

(
0.6ei2π(0.2), 0.1ei2π(0.2), 0.3ei2π(0.3)

)
A2

(
0.1ei2π(0.7), 0.1ei2π(0.1), 0.4ei2π(0.1)

)
A2

(
0.2ei2π(0.3), 0.6ei2π(0.3), 0.1ei2π(0.3)

)
A3

(
0.1ei2π(0.1), 0.2ei2π(0.5), 0.6ei2π(0.4)

)
A3

(
0.5ei2π(0.1), 0.2ei2π(0.1), 0.2ei2π(0.1)

)
A4

(
0.2ei2π(0.2), 0.2ei2π(0.1), 0.5ei2π(0.5)

)
A4

(
0.4ei2π(0.4), 0.3ei2π(0.4), 0.2ei2π(0.1)

)
A5

(
0.1ei2π(0.2), 0.1ei2π(0.2), 0.8ei2π(0.2)

)
A5

(
0.5ei2π(0.2), 0.4ei2π(0.2), 0.1ei2π(0.1)

)
Table 4: Aggregated vales.

CPFFWA CPFFWG

σ1
(
0.35ei2π(0.32), 0.20ei2π(0.20), 0.36ei2π(0.33)

)
σ1

(
0.23ei2π(0.26), 0.27ei2π(0.23), 0.42ei2π(0.35)

)
σ2

(
0.30ei2π(0.48), 0.26ei2π(0.20), 0.18ei2π(0.18)

)
σ2

(
0.23ei2π(0.40), 0.34ei2π(0.22), 0.23ei2π(0.23)

)
σ3

(
0.36ei2π(0.27), 0.24ei2π(0.21), 0.26ei2π(0.20)

)
σ3

(
0.30ei2π(0.20), 0.25ei2π(0.29), 0.31ei2π(0.26)

)
σ4

(
0.32ei2π(0.37), 0.18ei2π(0.20), 0.31ei2π(0.25)

)
σ4

(
0.31ei2π(0.31), 0.19ei2π(0.25), 0.33ei2π(0.31)

)
σ5

(
0.34ei2π(0.39), 0.20ei2π(0.13)0.24ei2π(0.19)

)
σ5

(
0.27ei2π(0.31), 0.26ei2π(0.14)0.42ei2π(0.28)

)
It is worth noting that

∑n
j=1 Ŵj = 1

Step IV: By taking r = 2, and using the CPFFWA and the CPFFWG operators, the collective values
σf (f = 1, 2, 3, 4, 5) alternatives Ai ’s have been obtained as follows:

Step V: The definition 2.3 has been used to compute score values ∆ (σi) (i = 1, 2, 3, 4, 5) of the overall
CPFNσi(1, 2, 3, 4, 5) as follows:

Note 3: There may occur many instances, although the probability is somewhat very low, that the score
values of two or more alternatives becomes equal. In that case the order of the alternatives is decided by
their accuracy values.

Step VI: Finally, we can say that the company should select A2 as the most preferable alternative in both
the cases. So the enterprise should: first consider focusing on Data Quality, then on Data Warehouse and
Business Intelligence (BI), followed by Data Privacy and Security, Architecture, and Policy and Standards

5.1 Analysis of Changing the Parameter r on the Outcome of Decision-making:

Various values, for the sake of ranking our considered alternatives, of operational parameter r could be applied
in our proposed method. Keeping this in consideration, we set numerous r values for classifying the innovative

Table 5: Order of alternatives for implementation.

Operators ∆ (σ1) ∆ (σ2) ∆ (σ3) ∆ (σ4) ∆ (σ5)
Alternatives’

Ranking/Order

CPFFWA 0.5096 0.6018 0.5540 0.5445 0.5851 A2 > A5 > A3 > A4 > A1

CPFFWG 0.4300 0.5413 0.4820 0.4963 0.4701 A2 > A5 > A3 > A4 > A1
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Figure 3: Score values obtained by CPFFWA and CPFFWG operators.

Table 6: Behavior of alternative with changing values of r in the CPFFWA operator.

r ∆(σ1) ∆ (σ2) ∆ (σ3) ∆ (σ4) ∆ (σ5) Order of ranking
Optimal

alternative

2 0.4958 0.6033 0.5428 0.5330 0.5741 A2 > A5 > A3 > A4 > A1 A2

3 06819 0.7497 0.7115 0.7053 0.7313 A2 > A5 > A3 > A4 > A1 A2

4 0.7495 0.8016 0.7714 0.7665 0.7870 A2 > A5 > A3 > A4 > A1 A2

10 0.8482 0.8805 0.8623 0.8594 0.8718 A2 > A5 > A3 > A4 > A1 A2

30 0.8972 0.9191 0.9068 0.9048 0.9132 A2 > A5 > A3 > A4 > A1 A2

numerical MADM example in order to investigate the adaptability and sensitivity of the parameter r.

From table 6 and figure 4, it is evident that if 2 ≤ r ≤ 30 although the obtained aggregated outcomes
of the alternatives Ai(i = 1, 2, 3, 4, 5) are different yet the order of ranking does not change. The order of
ranking of the alternatives is in this case is depicted to be A2 > A5 > A3 > A4 > A1. Moreover, the figure
3 depicts that the value of alternatives keeps on becoming refined as the value of parameter r increases. For
example, the value of alterative 2 starts from 0.6033 and reaches 0.9191 as the value of r reaches 30, hence
showing a refined behavior. The similar trend can also be observed for the remaining alternative from the
figure 3.

From table 7 and figure 5, it is evident that if ≤ r ≤ 30, altought the obtained aggregated outcomes of
the alternatives Ai(i = 1, 2, 3, 4, 5) are different yet the order of ranking does not change. The order of raking

Table 7: Behavior of alternative with changing values of r in the CPFFWG operator.

r ∆(σ1) ∆ (σ2) ∆ (σ3) ∆ (σ4) ∆ (σ5) Order of ranking
Optimal

alternative

2 0.4300 0.5413 0.4820 0.4963 0.4701 A2 > A5 > A3 > A4 > A1 A2

3 0.2713 0.3415 0.3041 0.3131 0.3257 A2 > A5 > A3 > A4 > A1 A2

4 0.2150 0.2706 0.2410 0.2481 0.2350 A2 > A5 > A3 > A4 > A1 A2

10 0.1294 0.1629 0.1451 0.1494 0.1415 A2 > A5 > A3 > A4 > A1 A2

30 0.0876 0.1103 0.0982 0.1011 0.0958 A2 > A5 > A3 > A4 > A1 A2
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Figure 4: Departure of value of alternatives from their initial values to the finest value as r increases.

Figure 5: The value of alternatives keeps on becoming refined as the value of parameter r increases.

of the alternatives is in this case is depicted to be A4 > A3 > A5 > A1 > A2. It is to be noted that although
order of ranking of the alternatives are different, yet the best alternative is the same i.e., A2. Moreover, the
figure 5 depicts that the value of alternatives keeps on becoming refined as the value of parameter r increases.
For example, the value of alterative 2 starts from 0.5413 and reaches 0.1103 - depicting the maximum refining-
as the value of r reaches 50, hence showing a refined behavior. The similar trend can also be observed for
the remaining alternative from the figure 5.

Generally, we can say that our proposed method has enough flexibility and accessibility which clearly
allows decision makers to take the value of parameters based upon their choice.

It should be noted that CPFFWG operator has shown more flexible behavior than CPFFWA operator in
our proposed MADM method by giving more refinement in the score values of the alternatives. Contrary to
CPFFWG, the CPFFWA does not show that much flexibility. Therefore, it can be concluded that CPFFWG
operator has responded more to variation in values of r than CPFFWA in this MADM problem and becomes
more important for smoothly solving this type of MADM problem while keeping variations in values of r
according to the decision maker’s choice.
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Table 8: Comparison of our suggested operators.

Aggregation
Operators Score values Ranking/Order

A1 A2 A3 A4 A5

Current work 0.4958 0.6033 0.5428 05330 0.5741 A2 > A5 > A3 > A4 > A1

Current work 0.5494 0.6396 0.5791 0.5744 0.6018 A2 > A5 > A3 > A4 > A1

CPFHWA[64] -0.4151 -0.4934 -0.3868 -0.3376 -04312 A2 > A5 > A3 > A4 > A1

CPFHWG[64] -0.4969 -0.3737 -0.3545 -0.3174 -0.479 A2 > A5 > A3 > A4 > A1

PFHWA[62] 0.5029 0.5640 0.5546 0.5085 0.5519 A2 > A5 > A3 > A4 > A1

PFHWG[62] 0.4002 0.4956 0.4865 0.4892 0.4192 A2 > A5 > A3 > A4 > A1

CIFWA[15] 0.36284 0.4516 0.4371 0.4216 0.4501 A2 > A5 > A3 > A4 > A1

6 Comparative Studies

We contrast our suggested Frank aggregation operators with other current, well-known aggregation operators
in the CPF context to ensure their usefulness and to explore their merits. Table 3 presents the comparison
outcomes.

6.1 Comparison with Picture Fuzzy (PF) Operators:

We contrast our suggested approach with PFSs operators. When compared to the PFHWG and PFHWA
operators given by Wei [62], we can see that in the presence of parameter r they appear to be mere particular
incidences of our suggested operators. Moreover, these operators also suffer from the absence of a periodicity
function due to which they just become very particular cases of our suggested operators when periodicity
functions are taken to be zero. Furthermore owing to the fact the order of alternatives (sequence of im-
plementation of the BDGF) remains unaltered, our approach becomes more consistent. These observations
incline us to state that our newly established techniques are therefore more broadly applicable.

6.2 Comparison with CIF Operators:

We compare the operators of CIFSs with our proposed method. In contrast to the CIFWA operators [15],
we can observe that they seem to be just specific instances of our proposed operators when parameter r is
present. Moreover, these operators lack a hesitation function, which makes them special instances of our
proposed operators when the hesitancy functions are assumed to be zero. Furthermore, our method becomes
more consistent because the alternatives’ order (sequence of implementation of the BDGF doesn’t change.
These findings lead us to the following conclusion: When compared to CIF operators, our recently developed
methods are therefore more widely applicable.

6.3 Comparison with CPF Operators:

We contrast our suggested approach with CPFSs operators. When compared to the CPFHWA and CPFHWG
operators [64] we can see that the ranking of the alternatives does not change. The score values obtained
by these operators are compared with our suggested operators and are shown in Table 8, the ranking order
(sequence of implementation of the BDGF has been shown in Table 9.

Additionally, our observation is also that some AOs [65] and [56] are not capable of dealing with our
decision matrix. Our suggested operators, which are based on the t-norm and t-conorm of Frank, are more
sophisticated and may take into account the link between different arguments. Our suggested operators also
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Table 9: Comparison of our suggested operators.

Aggregation Operators Framework Ranking/Order

CPFFWA (our proposed) CPFSs A2 > A5 > A3 > A4 > A1

CPFFWG (our proposed) CPFSs A2 > A5 > A3 > A4 > A1

CPFHWA[64] CPFSs A2 > A5 > A3 > A4 > A1

CPFHWF[64] CPFSs A2 > A5 > A3 > A4 > A1

CIFWA[15] CIFSS A2 > A5 > A3 > A4 > A1

CPyFWA[65] CPyFs Failed
CIVFWA[56] CIVFSs Failed
PFHWA[62] PFSs A2 > A5 > A3 > A4 > A1

PFHWG[62] PFSs A2 > A5 > A3 > A4 > A1

display Lukasiewicz sum and product as the parameter gets closer to infinity. In light of the various values of
r, we have come to the conclusion that practically all of the arithmetic and geometric aggregation operations
related to CPFNs are, in fact, a part of CPF Frank aggregating operator.

Figure 6: comparison with CPFHWA and CPHWG operators.

7 Conclusion

In conclusion, our study has developed a novel approach, CPFSs, which extends standard PFSs and IFSs. The
study concentrated on the MADM problems, demonstrating the versatility and usefulness of CPFSs through
the use of multiple aggregation approaches. Our research revealed compelling findings, demonstrating the
stability and superiority of complicated CPFFA operators. Specifically, the use of the CPFFWA, CPFFWG,
CPFFHA, and CPFFOWA operators has enhanced the applicability of CPFSs for MADM problems. In
aggregating complex judgment criteria, Frank weighted geometric performed admirably. The methodological
approach, which included Frank techniques for aggregation, gave a methodical framework for addressing
MADM problems more rigorously than in the frameworks of PFSs, IFSs, CIFS etc. This research article has
enabled decision makers to make more sound and appealing decisions for their maximum benefit. Despite
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these encouraging outcomes, it is critical to recognize some limits. The study concentrated on a specific
set of aggregation approaches and may not cover the complete range of options. The use of CPFSs in real-
world applications necessitates additional validation and testing. To address the aforementioned limitations
and extend the impact of our findings, future research directions should explore the following: Investigate
extensions of CPFSs, such as complex q-rung picture fuzzy sets, to enhance the scope and applicability of the
proposed model. Extend the application of CPFSs to various decision-making techniques beyond MADM,
including but not limited to COPRAS [66], and VIKOR[67]. Explore and develop additional complex picture
fuzzy aggregation operators utilizing different t-norms and t-conorms to enhance the flexibility and robustness
of the proposed model. Conduct extensive empirical studies to validate the proposed CPFS-based model in
diverse real-world decision-making scenarios, ensuring their practical relevance and reliability. Our method
also finds its applications in some notable problems such as plastic waste management [68], electric vehicle
charging station site selection problems[69], and bio-medical waste management[70] etc. By focusing on
the results obtained and providing a detailed methodological overview, we aim to offer a comprehensive
understanding of the capabilities and limitations of CPFSs, facilitating their practical adoption in decision-
making processes.
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