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Abstract 

Proper operation of distributed generation resources (DGs) in power systems has considerable 

advantages, including decreasing losses, reducing congestion in feeders, improving voltage 

profile, and enhancing stability, reliability, and security. On the other hand, using capacitor banks 

helps improve voltage profile and power quality in distribution systems. The optimal allocation 

of capacitor banks (CBs) and DGs has a significant impact on the efficiency of the distribution 

systems. This paper presents a method for distribution system planning based on the optimal 

allocation of DGs and CBs. The main objectives of the proposed method are to improve the 

voltage profile, reduce investment and operation costs, and reduce renewable energy curtailment. 

The planning problem is solved through multi-objective scheduling based on a two-stage fuzzy 

method and the ɛ-constrained optimization. The stochastic two-stage method is used to model 

uncertainty. The proposed method is implemented on an IEEE 33-bus test network in MATLAB 

and evaluated under three scenarios. It is proven that the voltage profile can be improved in the 

scenario of allocating capacitor banks based on lower investment costs compared to other 

scenarios. However, the voltage profile is improved more in the scenario of simultaneous 

allocation of capacitor banks and DGs by investing in more costs. In general, the proposed method 

properly improves the distribution system’s performance in different aspects . 

 

Keywords: Multi-Objective Optimization, Capacitor Bank Allocation, DG Allocation, Two-Stage 

Method. 
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 1. INTRODUCTION 
 

 Most distribution systems are passive radial 

networks with unidirectional power flow. 

Upon the introduction of DGs to distribution 

networks, these systems are converted to 

active systems with bidirectional power flow 

[1]. DGs bring benefits, such as reducing 

losses, decreasing congestion in feeders, 

improving stability, voltage profile, and 

power quality, peak-shaving, and reducing 

investment, operation, and reliability costs. 

In addition, the power systems become more 

secure [2]. Studies have shown that power 

losses in a distribution system comprise 

power system losses [3]. Operationally 

speaking, real power loss directly affects the 

power system’s efficiency. However, to 

preserve voltage in the allowed range and 

free transmission capacity, the reactive 

power flow in the feeders should be limited 

to a certain value [4]. With optimal operation 

management of DG units, the reactive power 

flow can be controlled, and the losses can be 

reduced [5]. However, the main problem with 

using DG units is finding the optimal 

capacity and location, considering the 

operation constraints. The application of DG 

units in distribution systems leads to the 

inverse power flow direction, resulting in 

high losses and overloading [6]. In addition, 

the high penetration level of DG units in the 

system reduces the balance between 

consumption and generation, which increases 

losses [7]. In distribution systems, power loss 

is an essential factor for increasing system 

efficiency. To this end, optimal allocation of 

capacitor banks (CBs), network 

configuration, and DG allocation are well-

known methods [8]. 

Proper planning of the penetration level 

of DGs affects reducing active and reactive 

losses [9]. DG resource owners tend to sell 

more energy. On the other hand, a 

distribution system operator (DSO) seeks to 

absorb more local power generation capacity 

to control the network and curb power losses, 

operation costs, and emission of destructive 

pollutants. However, improper determination 

and measurement of DG resources aggravate 

power losses, which is undesired for DSOs 

[10].  

With the growth of demand and updates 

in distribution and power networks, 

investment in energy has increased 

significantly. On the other hand, 

requirements for higher power quality have 

motivated investors to consider improving 

power quality and reliability and reducing 

harmonic current and voltage distortions 

more accurately [11]. A common strategy to 

improve power quality is to install CBs to 

compensate for reactive power, correct the 

power factor, reduce energy loss, and 

preserve the bus voltage. CBs are costly 

components whose capacity, location, and 

switching influence stability and power 

quality significantly [12]. Therefore, their 

proper allocation is crucial for maximizing 

energy loss reduction and improving losses. 

Various parameters like voltage constraints, 

load changes, and other parameters have 

complicated the configuration of 

capacitances and their switching. 

Numerous studies have addressed the 

optimal allocation of DG units and CBs. In 

[13], a method has been presented for 

distribution system planning, considering 

flexibility requirements and adjustment laws. 

In this study, mixed integer linear 
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programming has been used based on local 

resources and passive elements in the 

distribution network. In [14], a method has 

been presented to design active distribution 

systems, considering active network 

management and optimization for load 

curtailment. In this paper, the researchers 

have presented an optimal load curtailment 

model for distribution planning. The 

proposed method seeks to determine the 

optimal type, location, and capacity of the 

feeders, DGs, CBs, static compensators, and 

regulators. In [15], a robust two-stage 

optimization method has been presented for 

planning active distribution networks 

coupled with urban transportation networks. 

Load uncertainty, renewable energy 

resources, and traffic demand have been 

considered in this study. In [16], a method has 

been presented for planning distribution 

networks considering uncertainty, 

prolonging investment, hydrogen storage 

devices, and wind resources. The authors in 

[17] have focused on the effect of load 

changes on the planning of a distribution 

system and optimal allocation of DGs, 

considering the reduction of energy losses. In 

[18], distribution system planning based on 

MICP in a radial distribution network has 

been presented for optimal allocation. The 

proposed model is based on hybrid integer 

conical programming. In [19], the planning 

of distribution systems and the optimal 

allocation of DGs have been studied in a 

radial distribution network based on the 

stability index under load growth. In [20], a 

model has been presented for the 

optimization of distribution systems, the 

allocation of DG resources, and the 

configuration of distribution networks based 

on the BF-SD algorithm considering the 

phase imbalance. The authors in [21] have 

studied the multi-objective optimal power 

flow with DG resource allocation using 

TLBO and MIPSO algorithms. In [22], a 

method based on environmental, technical, 

and economic goals has been presented for 

the optimal allocation of DG resources in 

distribution networks.  

Ref. [23] has contributed to designing, 

modeling, and scheduling DG resources, 

including wind and solar systems, using a 

particle swarm algorithm. DGs are used to 

supply the output load during peak hours of 

the day and night. Probability distribution 

functions are used, and outputs are expressed 

as probability density distribution functions 

instead of absolute numbers. In [24], 

microgrid optimal scheduling considering 

normal and emergency operations has been 

investigated. A chance-constrained model is 

developed to handle normal operation and 

emergency conditions of the microgrid, 

including DG outage and unwanted 

islanding. Storage purchase from the 

upstream network is also considered. In 

addition, the uncertainty of loads and 

renewable resources is included in the model. 

Ref. [25] has been dedicated to comparing 

network reliability indicators before and after 

the introduction of DGs and analyzing their 

impact on improving network reliability. The 

improvement of indicators based on customer 

satisfaction, including the reduction of SAIFI 

and SAIDI, is evaluated. More precisely, the 

improvement of the most important index 

based on load and energy, i.e., energy not 

supplied (ENS), is investigated. In order to 

reduce the distribution system loss, the 

simultaneous optimal placement of DG 
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resources and capacitors in radial distribution 

systems has been studied in [26] in which the 

crow search algorithm has been used for the 

optimization. Ref. [27], an optimization 

approach based on an arithmetic optimization 

algorithm (AOA) is proposed for specifying 

the optimal allocation of distribution 

generations/generators (DGs) and capacitor 

banks (CBs) in radial distribution systems. 

The AOA is a new population-based meta-

heuristic algorithm that is essentially based 

on using basic arithmetic operators in 

mathematics. The proposed approach is 

employed to specify the optimum placement, 

capacity, and power factor of DGs and CBs 

to decrease the distribution systems’ total 

power loss and voltage deviation. In Ref. [28] 

introduces the Energy Valley Optimizer, a 

novel tool designed for the strategic 

placement of distributed generation units and 

capacitor banks. This placement is crucial not 

only for optimizing energy loss and 

enhancing bus voltage stability but also for 

promoting sustainable energy use and 

reducing environmental impact over the long 

term. By minimizing energy loss and voltage 

fluctuations, the optimizer contributes to a 

more sustainable and resilient energy system. 

Ref.  [29] proposes a two-stage procedure to 

enhance the distribution system performance 

by determining the optimal sizes and 

locations of distributed generations (DGs) 

and capacitors considering single and multi-

objective functions. In stage-1, two voltage 

sensitivity factors (VSFs) based on voltage 

deviation (VD), and voltage stability index 

(VSI) are proposed to reduce the search space 

(SS) by selecting the candidate buses for DGs 

and capacitors placement. In stage-2, the 

chaotic bat algorithm (CBA) is applied to 

find the optimal sizes and locations of DGs 

and capacitors, according to different 

objective functions (OFs) and system 

constraints. The considered OFs are real 

power loss reduction, total VD minimization, 

and total VSI maximization. The multi-OF, 

which aims to optimize these objectives 

simultaneously, is also considered.  

The present paper proposes a novel 

method to optimally allocate the DG 

resources and capacitor banks. Multiple 

objectives are considered, including reducing 

operation and investment costs, improving 

voltage profile and reliability, and reducing 

curtailment costs. Moreover, uncertainties 

are included in the proposed method using 

stochastic modeling. The multi-objective ɛ-

constrained optimization method is used to 

solve the planning program. In addition, 

fuzzy decision-making is used to select the 

best solution among non-dominated 

solutions. 

This paper is organized as follows. Section 2 

describes the problem formulation, including 

objective functions and constraints. Section 3 

describes the solution approach, including 

the optimization method, uncertainty 

modeling, and fuzzy decision-making. 

Section 4 describes the results and 

discussion. Finally, Section 5 is dedicated to 

conclusion. 

 

2. PROBLEM FORMULATION  
 

This section presents the cost function of 

optimal DG and CB allocation. In this 

modeling, the objectives are to minimize the 

operation and investment costs, improve 

reliability and voltage profile, and reduce 

power curtailment. In general, distribution 

network companies are responsible for 
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satisfying the consumers’ requirements and 

managing CBs and DGs in the distribution 

system. The objectives of interest are 

described below. 

 

A. Objective functions 
 

The first objective function is to minimize 

CB and DG costs. Costs include the DG 

investment cost (CDG), which is given in Eq. 

(1) [27]: 
 

𝐶𝐷𝐺 = ∑ 𝑃𝐷𝐺𝑖𝐼𝑛𝑣𝐷𝐺

𝑁𝐷𝐺

𝑖=1

 (1) 

 

in which Pdgi is the capacity of the DG units 

in MW, INVdg is the investment cost of the 

unit in $/MW, and Ndg is the number of units 

installed on the system. The investment cost 

of the CB (Ccap) is calculated as follows [27]: 
 

𝐶𝑐𝑎𝑝 = ∑ 𝑄𝐶𝑎𝑝𝑗𝐼𝑛𝑣𝑐𝑎𝑝

𝑁𝑐𝑎𝑝

𝑗=1

 (2) 

 

in which Qcapj is the capacity of the capacitor 

bank in MVar, INVcap is the investment cost 

of the CBs in $/MW, and Ncap is the number 

of banks installed in the system. 

Along with investment costs, operation 

and maintenance costs are also considered. 

Here, the maintenance and operation costs 

include fuel cost and annual maintenance 

cost. The operation cost (CoDG) for DG units 

is calculated by  
 

𝐶𝑂𝐷𝐺 = [∑𝑃𝐷𝐺𝑖 ∗ 𝑂𝐷𝐺 ∗ 𝑂ℎ

𝑁𝑑𝑔

𝑖=1

]

∗∑(
1 + 𝑖𝑛𝑓

1 + 𝑖𝑛𝑡
)𝑦

𝑇

𝑦=1

 

(3) 

 

in which ODG represents the operation and 

maintenance cost of the DG unit in $/MWh, 

and Oh represents the total number of 

operation hours in a year, which is 8760. 

Also, T denotes the number of years of the 

planning period, y denotes the year of 

operation, Inf denotes the inflation rate, and 

Int denotes the interest rate used to convert 

these costs to the current value. For the CBs, 

the cost only includes the maintenance cost 

(Cmcap) that is considered with the parameter 

MCcap [27]. 
 

𝐶𝑀𝑐𝑎𝑝 = [MCcap] ∗∑(
1 + 𝑖𝑛𝑓

1 + 𝑖𝑛𝑡
)𝑦

𝑇

𝑦=1

 (4) 

 

The second objective function, which is 

considered in the allocation problem, is 

reliability improvement. The following steps 

are taken to calculate reliability. The majority 

of distribution systems are radial. The annual 

failure rate (AFR), average outage time 

(AOT), and annual outage time (UOT) are the 

main parameters of reliability [28].  
 

𝐴𝐹𝑅 = ∑ 𝜆𝑗

𝑁𝑠𝑒𝑐

𝑗=1

 (5) 

  

𝐴𝑂𝑇 = ∑ 𝜆𝑗

𝑁𝑠𝑒𝑐

𝑗=1

∗ 𝑔𝑗 (6) 

  

𝑈𝑂𝑇 =
𝐴𝑂𝑇

𝐴𝐹𝑅
=
∑ 𝜆𝑗
𝑁𝑠𝑒𝑐
𝑗=1 ∗ 𝑔𝑗

∑ 𝜆𝑗
𝑁𝑠𝑒𝑐
𝑗=1

 (7) 

 

in which 𝜆𝑗 and gj are the AFR and the AOT 

of the jth feeder, respectively. The current 

passing through the feeder sections has two 

active (IA) and reactive (IR) components. 

Optimal installation of DG resources and 

CBs partially supports the power demand, 
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which reduces the magnitude of the current 

passing through the feeder sections. This 

reduction minimizes the costs. The allocation 

of CBs and DGs improves reliability. Before 

optimal allocation, each section of the feeder 

has an uncompensated failure rate of λuncomp
j. 

After allocation, if the feeder’s current 

component is completely compensated, the 

failure rate reaches 75% of λuncompj [28], 

which is represented by λcompj. If the feeder’s 

current is not completely compensated, its 

failure rate is defined linearly by 

compensation percentage. The new failure 

rate after allocation is defined as  
 

𝜆𝑗𝑛𝑒𝑤 = 𝛽𝑗 ∗ (𝜆𝑗
𝑢𝑛𝑐𝑜𝑚𝑝

− 𝜆𝑗
𝑐𝑜𝑚𝑝

)             (8) 

+𝜆𝑗
𝑐𝑜𝑚𝑝

 

 

in which β is the compensation factor 

calculated by 
 

𝛽𝑗
𝐴𝑅 = |

𝐼𝑗
𝑛𝑒𝑤

𝐼𝑗
𝑜𝑙𝑑 | 

          = |
√(𝐼𝑗

𝐴𝑛𝑒𝑤)2+(𝐼𝑗
𝑅𝑛𝑒𝑤)2

√(𝐼𝑗
𝐴𝑜𝑙𝑑)2+(𝐼𝑗

𝑅𝑜𝑙𝑑)2
               (9) 

 

in which A represents the active part, R 

represents the reactive part, and 𝛽𝑗
𝐴𝑅

 

represents the factor in which the active and 

reactive parts of the current are considered. 

Also, new indicates after allocation, and old 

indicates before allocation. The absolute 

value of the current is used in the 

calculations. ECOST is used for reliability 

calculations. Thus, Crel is determined by 
 

 𝐶𝑟𝑒𝑙 = ∑ 𝐿𝑖
𝑎𝑣𝑔
𝐶𝑖
𝑖𝑛𝑡𝜆𝑗

𝑛𝑒𝑤𝑛
𝑏=2 ∗

∑ (
1+𝑖𝑛𝑓

1+𝑖𝑛𝑡
)𝑦𝑇

𝑦=1  
(10) 

in which 𝐿𝑖
𝑎𝑣𝑔

 is the average load connected 

to bus i in KW and 𝐶𝑖
𝑖𝑛𝑡 is the load 

disconnection cost in $/kW. Here, the total 

outage time of 𝐿𝑖
𝑎𝑣𝑔

 is related to the outage of 

each section of the feeder with 𝜆𝑗 = 𝜆𝑗
𝑛𝑒𝑤.  

Therefore, the first objective function 

considered in the planning is calculated as 

follows: 
 

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑑𝑔 + 𝐶𝑐𝑎𝑝 + 𝐶𝑂𝐷𝐺

+ 𝐶𝑀𝑐𝑎𝑝 + 𝐶𝑟𝑒𝑙 
(11) 

  

𝐹1 = 𝐸𝑐𝑜𝑠𝑡 = ∑ 𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙
𝑚

𝑀

𝑚=1

 (12) 

 

in which M is the number of scenarios and 

Costm
total is the corresponding cost for the mth 

scenario.This objective function is 

formulated as follows: 
 

𝑓𝑉𝑜𝑙𝑡 =
1

𝑇
∑

1

𝑁𝐵𝑢𝑠
∑|𝑉𝑖

𝑁𝐵𝑢𝑠

𝑗=1

𝑇

𝑦=1

− 𝑉𝑅𝑒𝑓| 

(13) 

 

in which Nbus is the number of network buses 

and Vi is the real per unit voltage of the bus. 

It should be noted that Vref is also 1 pu. The 

average voltage of the buses should be close 

to 1 pu so that the voltage profile can be 

improved. Therefore, the second objective 

function based on stochastic modeling is 

calculated as follows:  
 

𝐹2 = 𝐸𝑓𝑉𝑜𝑙𝑡 = ∑ 𝑓𝑣𝑜𝑙𝑡
𝑚

𝑀

𝑚=1

 (14) 

 

in which the third objective function, which 

is related to the power curtailment cost, is 

given as:  
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𝐹3,𝑖 = 𝑃𝑒𝑛𝑖(𝑃𝐷𝐺𝑖
𝑟𝑎𝑡𝑒𝑑 − 𝑃𝐷𝐺𝑖) (15) 

 

in which i is the index of the buses, n is the 

number of network buses, and j is the index 

of the buses. In addition, 𝑃𝐷𝐺𝑖 and 𝑃𝐷𝐺𝑖
𝑟𝑎𝑡𝑒𝑑 are 

the injected active power and the rated PV 

output at bus i, respectively. Also, Peni is the 

penalty factor of bus i for power curtailment.  

The third objective function based on 

stochastic modeling is calculated as follows:  
 

𝐹3 = 𝐹𝐷𝐺𝐶𝑢𝑟𝑡 = ∑∑𝐹3.𝑖

𝐼

𝑖=1

𝑀

𝑚=1

 (16) 

  

B. Constraints 
 

The constraints of the allocation problem for 

the DG units and the CBs are as follows [30]:  
 

𝑃𝐷𝐺
𝑀𝑖𝑛 ≤ ∑𝑃𝑑𝑔𝑖

𝑁𝑑𝑔

𝑖=1

≤ 𝑃𝐷𝐺
𝑀𝑎𝑥 (17) 

  

𝑄𝑐𝑎𝑝
𝑀𝑖𝑛 ≤ ∑ 𝑄𝑐𝑎𝑝𝑗

𝑁𝑐𝑎𝑝

𝑗=1

≤ 𝑄𝑐𝑎𝑝
𝑀𝑎𝑥 (18) 

  

𝑃𝐷𝐺
𝑀𝑖𝑛 = 0.1 ∗ ∑ 𝑃𝑙𝑜𝑎𝑑𝑏

𝑁𝑏𝑢𝑠

𝑏=2

 (19) 

  

𝑄𝑐𝑎𝑝
𝑀𝑖𝑛 = 0.1 ∗ ∑ 𝑄𝑙𝑜𝑎𝑑𝑏

𝑁𝑏𝑢𝑠

𝑏=2

 (20) 

  

𝑃𝐷𝐺
𝑀𝑎𝑥 = 0.6 ∗ ∑ 𝑃𝑙𝑏

𝑁𝑏𝑢𝑠

𝑏=2

 (21) 

  

𝑄𝑐𝑎𝑝
𝑀𝑎𝑥 = 0.6 ∗ ∑ 𝑄𝑙𝑏

𝑁𝑏𝑢𝑠

𝑏=2

 (22) 

 

in which Pmin
DG and Pmax

DG are the minimum 

and maximum power generation of the DGs, 

respectively. Also, Qmin
cap and Qmax

Cap are the 

minimum and maximum reactive power of 

the CBs, respectively. Also, Plb and Qlb are 

the active and reactive load power in bus b, 

respectively. 

Another constraint that should be 

considered is the power flow constraint as 

follows: 
 

𝑃𝐺𝑏 − 𝑃𝐿𝑏 − 𝑉𝑖 ∑ 𝑉𝑗[𝐺𝑏𝑗 cos(𝜃𝑏𝑗)

𝑗∈𝑁𝑖

+ 𝐵𝑏𝑗 sin(𝜃𝑏𝑗)) = 0 

(23) 

  

𝑄𝐺𝑏 − 𝑄𝐿𝑏

− 𝑉𝑏 ∑ 𝑉𝑗[𝐺𝑏𝑗 sin(𝜃𝑏𝑗)

𝑗∈𝑁𝑖

− 𝐵𝑏𝑗 cos(𝜃𝑏𝑗)) = 0 

(24) 

 

in which 𝑃𝐺𝑏 is the active power generated on 

bus b, 𝑃𝐿𝑏 is the active power on bus b, 𝑉𝑏 is 

the voltage of bus b, 𝑉𝑗 is the voltage of bus j, 

𝜃𝑏𝑗 is the angle between bus b and j, 𝑄𝐺𝑏 is 

the reactive power generation on bus b, and 

𝑄𝐿𝑏 is the reactive power on bus b.  

The line capacity constraint is as follows: 
 

𝑆𝑖𝑗
𝑚𝑖𝑛 ≤ 𝑆𝑖𝑗 ≤ 𝑆𝑖𝑗

𝑚𝑎𝑥 (25) 
 

in which Sij is the apparent power of line ij, 

and Sij
min and Sij

max are the minimum and 

maximum apparent power, respectively.  

The multi-scenario balance should be 

satisfied. The stochastic model has a higher 

number of energy balance constraints than 

certain methods.  

 

3. SOLUTION APPROACH 
 

This paper considers demand uncertainty as 

stochastic scheduling. Then, the load is 

modeled. The power system operator should 
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predict the demand at each hour of the 

upcoming hours. Since the prediction process 

has errors, the demand prediction is not 

accurate. The demand prediction uncertainty 

is usually modeled with a normal distribution 

density function. To create a limited number 

of demands at each hour, a distribution curve 

is developed likeFig. 1.  

 

 
Fig. 1. 7-interval Gaussian distribution 

approximation. 

 

In the proposed method, the demand error 

is assumed to be of normal distribution, and 

the weights Pd are determined using the area 

under the upper and lower constraint curves 

of each interval [31]: 
 

𝑃𝑑 = 1/𝜎𝑑√2𝜋∫ 𝑒−(𝑥−𝑑𝑓)
2

𝑢𝑗

𝑙𝑗

/2𝜎𝑑
2𝑑𝑥 

(26) 

 

in which uj and Ij are the upper and lower 

demand constraints in each interval and df 

and 𝜎d are the predicted demand and std of 

the normal PDF, respectively. Stochastic 

modeling is carried out using the Markov 

process. Then, multi-objective modeling is 

carried out. 

The ϵ-constrained method is a proper 

technique for solving multi-objective 

functions [32]. In the ϵ-constrained method, 

ranges of N-1 objective functions are 

required for N objective functions. The pay-

off table is the most common technique to 

obtain these ranges. The pay-off concept, 

which shows the relationship between all 

possible events or acts and the values 

associated with the consequences, can help 

decision-making concerning competitive bid 

determinations. In this method, N-1 functions 

are used as additional constraints. A 

comprehensive description of the payment 

table and the ranges of the objective functions 

is given in [33]. Despite the advantages of the 

ϵ-constrained method, it has two major 

problems: first, the range of the objective 

functions in the efficient set might not be 

optimal; second, the optimal solutions that 

are generated by the ϵ-constrained method 

might not be dominant. The lexicographic 

method is suggested to overcome the first 

problem, and the ϵ-constrained technique is 

suggested to solve the second problem, 

according to [32]. The importance of the 

objective function for generating Pareto 

solutions is modeled using the hybrid 

aggregated-weighted ϵ-constrained method. 

In previous studies, efforts have been made 

to implement lexicographic optimization and 

the hybrid aggregated-weighted ϵ-

constrained method for solving multi-

objective optimal allocation problems. In this 

study, the lexicographic optimization and the 

hybrid aggregated-weighted ϵ-constrained 

method are used to solve the stochastic 

optimal multi-objective allocation problem. 

The modified ϵ-constrained method is given 

below.  

The hybrid aggregated-weighted ϵ-

constrained method can be modeled by: 
 

𝑀𝑖𝑛 /𝑀𝑎𝑥   𝐹1(𝑥)

+
𝑑𝑖𝑟1𝑟1
𝑊1

∑
𝑤𝑛𝑆𝑛

𝑛𝑘

𝑟𝑛

𝑁

𝑛=2

 
(27) 
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This equation is constrained by 

  

𝐹𝑛(𝑥) − 𝑑𝑖𝑟𝑛𝑆𝑛
𝑛𝑘 − 𝑒𝑛

𝑛𝑘 = 0     
𝑆𝑛
𝑛𝑘 ∈ 𝑅+, 

𝑛𝑘 = 0, 𝑎, … . , 𝑞𝑛, 𝑛 = 2, , 𝑁 

(28) 

  

𝑒𝑛
𝑛𝑘 =

𝐹𝑛
𝑚𝑖𝑛(1 + 𝑑𝑖𝑟𝑛)

2
− 𝐹𝑛

𝑚𝑎𝑥(−1 + 𝑑𝑖𝑟𝑛)

+
𝑑𝑖𝑟𝑛𝑟𝑛𝑛𝑘

𝑞𝑛
       

𝑛𝑘 = 0,1, … 𝑞𝑛  , 𝑛 = 2,… ,𝑁 

(29) 

 

in which dirn is the direction of objective 

function n, and dirn is -1 when the objective 

function n is minimized and +1 when the 

objective function is maximized. The main 

relationship should be optimized to achieve 

non-dominated optimal Pareto solutions. 

These relationships and the optimization are 

based on the method presented in [34].  

Fuzzy decision-making could be 

employed by the system operator to select 

one of the optimal Pareto solutions. The 

fuzzy decision-making can select the best 

solution among non-dominated solutions. In 

this technique, the linear membership 

function is calculated for each objective 

function in the optimal Pareto solution. 

The linear membership for the nth 

objective function that should be minimized 

or maximized is defined by the following 

equations: 
 

𝜇𝑛
𝑟

=

{
 
 

 
 0                           𝐹𝑛

𝑟 ≤ 𝐹𝑛
𝑚𝑖𝑛

𝐹𝑛
𝑚𝑎𝑥 − 𝐹𝑛

𝑟

𝐹𝑛
𝑟 − 𝐹𝑛

𝑚𝑖𝑛
       𝐹𝑛

𝑚𝑖𝑛 ≤ 𝐹𝑛
𝑟 ≤ 𝐹𝑛

𝑚𝑎𝑥

1                           𝐹𝑛
𝑚𝑎𝑥 ≤ 𝐹𝑛

𝑟

 
(30) 

𝜇𝑛
𝑟

=

{
 
 

 
 1                           𝐹𝑛

𝑟 ≤ 𝐹𝑛
𝑚𝑖𝑛

𝐹𝑛
𝑚𝑎𝑥 − 𝐹𝑛

𝑟

𝐹𝑛
𝑟 − 𝐹𝑛

𝑚𝑖𝑛
       𝐹𝑛

𝑚𝑖𝑛 ≤ 𝐹𝑛
𝑟 ≤ 𝐹𝑛

𝑚𝑎𝑥

0                           𝐹𝑛
𝑚𝑎𝑥 ≤ 𝐹𝑛

𝑟

 
(31) 

 

The total membership of rth optimal 

Pareto solution based on independent 

membership functions of μr
n is calculated as 

follows:  
 

𝜇𝑟 =
∑ 𝑊𝑛𝜇𝑛

𝑟𝑁
𝑛=1

∑ 𝑊𝑛
𝑁
𝑛=1

 (32) 

 

The system operator can select the value 

of wn to prioritize the objective functions 

depending on the system conditions. The best 

optimal Pareto solution is selected by the 

fuzzy decider by selecting the maximum 

value for μr. There are several solution 

methods to determine the Pareto function. 

The three goals of Pareto optimization can be 

defined and measured as follows: the 

distance from the set of non-dominant results 

to the Pareto front should be minimized, 

proper distribution of the obtained solutions 

should be established, and the size of the 

obtained non-dominant front should be 

maximized.  

The problem of optimal stochastic 

planning multi-objective optimal allocation 

is solved using the stochastic planning 

method to consider the demand uncertainty. 

According to stochastic two-stage planning, 

the decision-making variables are divided 

into two groups, including fixed subsets, e.g., 

here-and-now sets, and the expectation and 

observation variables. The optimal values of 

the expectation and observation variables 

depend on different scenarios, and their 

optimal values are obtained after the 

scenarios are realized. The optimal values of 
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the here-and-now variables are fixed for all 

scenarios.  

The here-and-now variables are obtained 

in the first stage, and the expectation and 

observation variables are obtained in the 

second stage. The first stage of the stochastic 

problem is implemented using load 

predictions to obtain the optimal values of the 

here-and-now variables. The Monte Carlo 

and the corresponding scenarios are obtained 

in parallel using the described method. Then, 

the second stochastic planning stage is 

implemented to obtain the optimal values of 

the expectation and observation variables. 

Since the stochastic planning method is used, 

three objective functions with expected 

values of the scenarios are used. The 

expected values of the expectation and 

observation variables depend on the 

scenarios and their weights, which are 

obtained by aggregating the corresponding 

values adopted from the scenarios. Finally, 

the Pareto fronts of the objective functions 

are obtained using the modified ϵ-constrained 

optimization method, and fuzzy decision-

making is used to attain the best compromise 

solution.  

The procedure for solving the problem is 

that first the input information including load, 

capacitor banks and DG products is received. 

Then, the input variables of the hybrid 

constrained ϵ optimization, i.e., its input 

settings, are obtained. After that, the 

objective functions are calculated. That is, 

the optimization method takes into account a 

starting point, for example, the positions and 

capacities for the capacitor bank and 

distributed generation, and based on them, 

the objective functions are calculated. It 

should be considered that by calculating the 

objective functions, all variables are 

calculated probabilistically and the functions 

are calculated for all scenarios. Once the 

calculation procedure is completed, the 

variable optimization procedure is changed 

again and more favorable points are sought 

for the location and capacity of distributed 

generation units and capacitor banks, and the 

objective functions are calculated again. 

These steps are repeated until the termination 

criterion of the hybrid-constrained ϵ 

optimization algorithm is met. 

The flowchart of the proposed method is 

shown in Figure 2. 

 

4. RESULTS AND DISCUSSION 
 

In this study, an IEEE 33-bus test system was 

used to analyze the performance of the 

proposed method. The baseline kV of this 

network was 12.66kV. In this network, the 

main breaker was located in the main feeder. 

To calculate the reliability of the reference 

bus, it was considered 1. The feeder section 

with maximum impedance had a maximum 

failure rate of 0.5 failures per year, and the 

feeder section with minimum impedance had 

a minimum failure rate of 0.1 failures per 

year [33]. The failure rates for other sections 

were calculated using a linear relationship 

between these two rates.  

After allocating the DG resources and 

CBs, if section j was compensated 

completely, its failure rate was reduced to 

75% of λuncomp; otherwise, λnew was 

calculated through descriptive relationships 

for partial compensation. The time required 

for fault detection and switching was half an 

hour, and the repair time was considered four 

hours [35].  
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Since allocating DG resources and CBs 

would affect the reliability of other 

components like transformers, all other 

components of the distribution network 

except feeder sections were considered to be 

reliable. Table 1 presents the economic 

factors of the DG resources. Table 2 presents 

the economic factors of the CBs. Table 3 

reports the total economic parameters.  

For all case studies, the modified ϵ-

constrained optimization method was applied 

to the objective function.  

Scenario 1: Optimal planning of optimal 

allocation of DG resources  

Scenario 2: Optimal planning of optimal 

allocation of CBs  

Scenario 3: Optimal planning of optimal 

allocation of DGs and CBs simultaneously  

 

A. Scenario 1: Analyzing the Results of DG 

Allocation  
 

In this section, only DG resource allocation 

and its impact on the system is evaluated. It 

is assumed that three DGs are installed. The 

purpose is to examine the problem with two 

and three objectives. In this case, the first 

objective function is to minimize the costs, 

which is considered the main objective 

function. Also, the side objectives include 

improving the voltage profile and reducing 

generation curtailment; the weight factors for 

F1, F2, and F3 are selected as 1, 1, and 1. 

However, the decider (system operator) 

might require different weights to obtain the 

desired solutions. Fig. 3 and Fig. 4 show the 

two objective solutions of the optimization 

output. As it can be seen inFig. 3, by 

installing DG resources and increased 

investment costs, the power curtailment  

decreases. It can be inferred from Fig. 4 that 

by increasing the investment cost on the set 

of solutions, the voltage profile improves. As 

mentioned, the voltage profile improvement 

objective function is obtained by minimizing 

the difference between the voltage of each 

bus from 1 pu, which is a very small number. 

The figures show the average real voltage for 

fvoltage to help understand the voltage profile 

improvement and closeness to 1 pu. Also, the 

voltage at the output of the objective function 

refers to average voltage profile of all buses. 

Fig. 5 shows the output set of the Pareto 

solutions of the three-objective solution. The 

best solution among the solutions in Fig. 5 is 

selected by the fuzzy method based on the 

operator’s decision about compromising 

among different objectives, which is given in 

Table 4.  

 

Table 1. Economic parameters of DGs [27]. 

Parameter Value 

Investment cost ($/MW) 3180000 

Operation cost ($/MWh) 36 

 

Table 2. Economic parameters of CBs [27]. 

Parameter Value 

Investment cost ($/MVar) 4000 

Operation cost ($/Year) 
10% of 

investment cost 

 

Table 3. Total economic parameters [27]. 

Parameter Value 

Inflation rate  )%( 9 

Interest rate  )%( 12.5 

Ks ($/MWh) 49 
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According to Table 4, buses 4, 11, and 31 

represent the locations of DG output with the 

given capacities. Table 4 also shows the 

reliability cost (5.0604×105), which has 

improved by 21% compared to the base 

scenario.  

 

 

Fig. 2. The flowchart of the proposed method. 
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Fig. 3. The set of Pareto fronts of the two-objective solution of the first scenario (objectives: cost and 

power curtailment). 

 
 

 
Fig. 4. The set of Pareto fronts of the two-objective solution of the first scenario (objectives: cost and 

voltage profile). 
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Fig. 5. The set of Pareto outputs of three-objective solution in the first scenario. 

 

 

Table 4. The outputs of the fuzzy method for 

selecting the best solution of three objective 

solutions for the first scenario. 

Parameter Value 

Location of DG1 Bus 4 

Capacity of DG1 (MW) 0.7526 

Location of DG2 Bus 11 

Capacity of DG2 (MW) 0.7397 

Location of DG3 Bus 31 

Capacity of DG3 (MW) 0.7413 

Investment cost of DGs ($/year×105) 7.9702 

Operation cost of DGs ($/year×106) 6.1079 

Reliability cost ($/year×105) 5.0604 

Total cost ($/year×106) 7.411 

Power curtailment cost ($/year×106) 5.887 

 

B. Scenario 2: Analyzing the results of CB 

Allocation  
 

This section examines the allocation of CBs 

and its impact on the test system. It is 

assumed that three CBs are installed. The 

purpose is to examine the problem with two 

and three objectives. To this end, in the 

modified ϵ-constrained method, the first 

objective function, which is cost 

minimization, is considered the main 

objective function. The other objectives 

include improving the voltage profile and 

power curtailment, and the weighting factors 

for all objective functions are set to 1. Figs. 6 

and 7 show the two objective solutions of the 

optimization output for CB allocation. Also, 

it can be inferred that the desired voltage 

profile can be achieved by less investment 

cost in CB allocation.  
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Fig. 6. The set of Pareto fronts of the two-objective solution of the second scenario (objectives: cost and 

power curtailment). 

 

 
Fig. 7. The set of Pareto fronts of two objective solutions of the second Scenario (objectives: cost and 

voltage profile). 
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Fig. 8. The set of Pareto fronts of the three-objective solution in the second scenario. 

 

Fig. 8 shows the output set of the Pareto 

solutions of the three-objective solution. The 

output of the fuzzy method for operator 

decision is given in Table 5. This solution is 

selected among the solutions given in Fig. 8. 

According to Table 5, buses 12, 26, and 29 

are the output locations of the CBs with given 

capacities. The reliability cost (5.998×105) is 

also shown in this table, which has improved 

by 6% compared to the base case. This 

improvement arises from voltage profile 

enhancement and the reduction of its impacts 

on the power supply. It should be mentioned 

that CB allocation does not result in much 

difference compared to the base case, which 

is due to the dependency of CBs on voltage, 

and the impact of these CBs is more obvious 

in the voltage profile. Considering the lower 

costs, the CBs help the voltage profile; by 

installing them with DGs, simultaneously, 

more objectives are realized, which are 

discussed in the next section. 

 

Table 5. The results of the fuzzy method for 

selecting the best solution of the three-objective 

solutions for the second scenario. 

Parameter Value 

Location of CB1 Bus 12 

Capacity of CB1 (MVar) 0.4472 

Location of CB2 Bus 26 

Capacity of CB2 (MVar) 0.4490 

Location of CB3 Bus 29 

Capacity of CB3 (MVar) 0.4674 

Investment cost of CBs ($/year×103) 5.418 

Operation cost of CBs ($/year×103) 4.572 

Reliability cost($/year×105) 5.998 

Total cost($/year×105) 6.098 

Power curtailment cost ($/year×107) 1.401 
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C. Scenario 3: Analyzing results of 

Allocating DGs and CBs  
 

This section reports the results of the 

simultaneous allocation of CBs and DGs. It is 

assumed that three DGs and three CBs can be 

installed. In this scenario, like the two 

previous scenarios, the problem is examined 

with two and three objectives. To this end, in 

the modified ϵ-constrained method, the first 

objective function, which is cost 

minimization, is considered the main one. 

Also, side objectives include improving 

voltage profile and power curtailment. The 

weighting factors for all objective functions 

are 1. Figs. 9 and 10 depict the set of two 

objective solutions for the simultaneous 

allocation of CBs and DGs. According to 

these figures, more desired solutions are 

obtained compared to the first and second 

scenarios, and the voltage profile is improved 

properly.  

Fig. 11 shows the set of the three-

objective Pareto fronts for the third scenario. 

The output of the fuzzy method for operator 

decision is given in Table 6. This solution is 

selected among the solutions presented inFig. 

1, based on which the best solution for 

operating among the set of solutions is 

obtained using the fuzzy method.  

According to Table 6, buses 12, 25, and 

30 are the output locations of the CBs, and 

buses 12, 24, and 30 are the optimal locations 

of the DGs. The reliability cost (4.53×105) is 

also shown in this table, which has improved 

by 30% compared to the base case, and it is 

better than the first and second scenarios. 

Also, considering all figures, it can be 

inferred that the best voltage profile occurred 

in the third scenario, which is due to the 

optimal simultaneous allocation of CBs and 

DGs. Also, the power curtailment cost of the 

network in this scenario is better than that in 

the two other Scenarios. 

 

 
Fig. 9. The set of Pareto fronts of two objective solutions in the third scenario (objectives: cost and 

power curtailment). 
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Fig. 10. The set of Pareto fronts of two objective solutions in the third scenario (objectives: cost and 

voltage profile). 

 

 
Fig. 11. Pareto fronts of three-objective solutions in the third scenario. 
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curtailment reduction is rarely discussed in 

the literature. Moreover, this paper used two-

stage stochastic fuzzy modeling compared to 

[26]. The results proved the higher efficiency 

and accuracy of the proposed method by 

considering the uncertainty. 

 

Table 6. The results of the fuzzy method for 

selecting the best solution among the three-

objective solutions for the third scenario. 

Parameter Value 

Location of DG1 Bus 12 

Capacity of DG1 (MW) 0.7415 

Location of DG2 Bus 24 

Capacity of DG2 (MW) 0.7383 

Location of DG3 Bus 30 

Capacity of DG3 (MW) 0.7422 

Location of CB1 Bus 12 

Capacity of CB1 (MVar) 0.3450 

Location of CB2 Bus 25 

Capacity of CB2 (MVar) 0.2615 

Location of CB3 Bus 30 

Capacity of CB3 (MVar) 0.4422 

Investment cost of DGs 

($/year×105) 
7.0776 

Operation cost of 

DGs($/year×106) 
6.3428 

Investment cost of 

CBs($/year×103) 
4.644 

Operation cost of 

CBs($/year×103) 
3.919 

Reliability cost($/year×105) 4.531 

Total cost($/year×106) 7.512 

Power curtailment 

cost($/year×106) 
5.495 

 

5. CONCLUSION  
 

This paper proposed a novel method for the 

optimal allocation of DG resources and CBs. 

Reducing operation and investment costs, 

improving voltage profile and reliability, and 

reducing curtailment costs were considered 

objective functions. The multi-objective ϵ-

constrained optimization method was used to 

solve the problem. The proposed method was 

implemented on an IEEE 33 bus test system 

in three scenarios. The proposed method 

improved the performance of the system in 

different terms, including voltage profile and 

reliability. Moreover, it was concluded that 

the voltage profile improvement could be 

achieved in the scenario of capacitor banks' 

allocation by lower investment costs 

compared to other cases. As a result of the use 

of DG and capacitor banks, less voltage 

deviation and lower curtailment costs were 

obtained. Also, the reliability of the network 

would be better due to equipping the network 

with DGs and capacitor banks, and ultimately 

more desirable goals could be achieved. 
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