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Abstract 

Regarding the significance of energy distribution smart grids and the operation of smart grids, this 

paper presents a novel method to reduce power loss in these grids. The proposed method 

determines the injected reactive power and tap of an on-load tap changer (OLTC) optimally using 

an optimization algorithm. Loss reduction, voltage profile improvement, costs caused by reactive 

power injection by the capacitor in the grid, conservation voltage reduction (CVR), and 

transformer loss are considered as objective functions. The new Whale Optimization Algorithm 

(WOA) is employed as the Volt/VAR Optimization (VVO) algorithm in this paper. The algorithm 

inspired by the hunting behavior of humpback whales has a high convergence speed, fewer 

parameters to adjust, and a balance between exploitation and exploration phases. In addition to 

the above advantages, the WOA has accurate convergence and an effective variety of solutions. 

The suggested method is applied to the standard IEEE 33-bus system. According to the 

optimization results, the operating conditions of the distribution smart grid has been improved and 

the loss has been significantly reduced. Furthermore, the WOA provides better performance in 

solving the given optimization problem. 

 

 

Keywords: Smart grid, whale optimization algorithm, energy losses, voltage-var optimization, 

capacitor placement. 

  

1. INTRODUCTION 
 

 In recent years, many electric power 

 

 

 
companies have upgraded and improved the 

operation of their distribution networks using 

smart grid technologies such as Energy 

Management System (EMS), Distribution 
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Management System (DMS), and System 

Automation (SA). Some companies have 

enhanced the accuracy of their network by 

utilizing technologies provided by such smart 

grid components, such as advanced metering 

infrastructure (AMI). The United States and 

several European countries have proposed 

the concept of smart grids to achieve the goal 

of making power systems safer, more 

reliable, more flexible, more environmentally 

friendly, more controllable, and more 

efficient [1]. The term “smart grid” refers to 

the modernization of power grids, which 

includes the integration of various 

technologies such as distributed generation 

(DG), controllable loads, communication 

systems, and storage devices in both islanded 

and grid-connected operation modes [2]. In 

[3], with the optimal placement of distributed 

resources and rearrangement of the 

distribution network, the suggested method 

randomly aims to reduce network costs and 

increase the profits of owners of distributed 

resources, as well as reduction of network 

losses. In reference [4], the method of the 

optimal distribution of scattered resources 

and rearrangement of the network aims to 

reduce network costs and network losses, as 

well as reducing unmet loads. The smart grid 

upgrades the present network to a 

participatory, responsive, and organized 

network. Based on the documents of the 

strategic expansion of European electricity 

networks in the future, the smart grid is an 

electrical network that can integrate the 

actions of all related users, generators, 

customers, and those that do both, to provide 

secure, economical, and sustainable 

electricity supply [5]. High emission levels, 

high power loss, poor power quality, and low 

reliability are the main challenges to tackle in 

these systems. Distributed energy resources 

are small-scale sources, controllable loads or 

energy storage devices that are a proper 

solution to deal with these challenges. They 

are normally smaller in scale than relative 

power plants and may include photovoltaic 

(PV) panels, wind turbines (WTs), energy 

storage (ES) devices, combined heat and 

power (CHP) diesel generators, and 

controllable loads [6]. 

 With rising energy costs as well as 

electricity prices in many countries, 

distribution companies must increasingly 

look for optimal methods to minimize power 

loss based on distributed power and control 

circuit topologies in a smart grid. Voltage and 

reactive power control in the distribution 

system is an important issue in terms of 

reliability. Today, the distribution system is 

highly loaded and a significant voltage drop 

occurs during peak times in the feeders, 

leading to the violation of the allowable 

voltage limits. Moreover, increasing the 

penetration level of renewable DGs has 

resulted in a high injection of active power, 

which can increase the voltage in some 

conditions [7]. Volt-VAR optimization 

(VVO) is one of the well-known energy 

distribution network optimization methods 

commonly used by power companies. The 

VVO is an advanced optimization method 

that optimizes the voltage or reactive power 

(VAR) of a distribution network based on the 

load voltage profile of a default compact 

feeder. One solution to store energy is to 

adjust and reduce the CVR, which attempts 

to bring the customer's voltage levels to the 

lower range of the ANSI spectrum, 114-126 

V, so that energy consumption is reduced 
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without expecting a change in consumption 

status of customers [8]. Volt-VAR control 

actuators, such as LTCs and VRs, can be 

classified as Volt-VAR control components 

and are well-coordinated as VVO and CVR 

objectives [9]. In smart grids, bilateral 

electricity and data exchange between the 

power grid and consumers are normally used 

to create an extensive and automated energy 

distribution network [2]. 

 One of the methods to reduce losses is to 

use capacitors in the distribution system. 

Thus, the location and size of capacitors 

should be determined optimally in the 

distribution system, which can be founded by 

using optimization algorithms [ 10]. 

 Most of the VVO methods, which have 

been studied by different companies, are 

centralized or the scenarios are performed on 

a daily basis [11]. Authors in [12] utilize the 

EPSO evolutionary algorithm to control the 

day-ahead operational planning, which runs 

every hour for voltage control purposes. This 

algorithm should be implemented as a 

software module suitable for microgrid 

operation that runs every hour so that it 

provides the control operations required to 

maintain the voltage profile within an 

allowable range. The papers [9 and 13] deal 

with the decentralized VVO method, which 

operates the Volt-VAR control components 

(VVCC) within the substation and feeder 

using a local control and the particle swarm 

optimization (PSO) algorithm. The 

advantage of a decentralized method to a 

centralized method is that it does not 

encounter the high volume of information 

sent from AMI to the support office and from 

VVO to VVCCs in the distribution network 

substations, and, in this paper, we have 

presented a decentralized, practical VVO 

method that can be well-coordinated with the 

distributed power and control topology in 

microgrids [13]. Since the VVO subsets may 

conflict with each other (for example, 

minimizing losses can increase the voltage, 

while the CVR tries to reduce the terminal 

point voltage) in some operating conditions, 

the fuzzy method is used in [9] to facilitate 

weighting of each subset of the VVO’s 

objective function.  

 The present paper employs the WOA for 

its optimization algorithm and uses the 

fuzzification method to accurately determine 

the weighting coefficients of each subset of 

the VVO’s objective function. 

 The paper is arranged in five sections. 

After the Introduction section and listing the 

nomenclature, Section 2 provides the 

topology, main objectives, constraints, and 

characteristics of the optimization algorithm. 

Section 3 first introduces the case study and 

then it describes various operation scenarios, 

and finally, Section 4 concludes the paper. 

 

2. SMART GRID-COMPATIBLE VVO 
 

2.1. Structure of the VVO Network 
 

Fig. 1 shows the proposed VVO in a 

distribution feeder sample [8]. As illustrated 

in Fig. 1, the data of AMI can be sent to the 

VVO instrument at any quasi-real-time 

period (that is, every 15 minutes) (see Fig. 1, 

the AMI flow path). The VVO tool that 

includes an algorithm capable of gathering 

the required AMI data solves optimization 

problems. It is based on network constraints 

and gives control commands to Volt-VAR 

control components such as CBs, LTCs, and  
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Fig. 1. Structure of the proposed VVO in a distribution network. 

 

VRs located at the substation along with the 

downstream feeder nodes. 

 The information required by the VVO 

tool includes the following: active power, 

reactive power, voltage, current, and power 

factor (PF). In addition, the optimization 

parameters include VR and LTC tap steps as 

well as the size and number of capacitor bank 

units. As explained, the objective function 

has the ability to minimize several important 

operating costs, including network losses, 

replaceable parallel capacitor, voltage 

deviation, and VR and CVR loss costs. 

Finally, control decisions such as the optimal 

location and size of the capacitor banks, the 

number of capacitor banks, and the VR and 

CVR tap steps are determined via the VVO 

tool and sent to the relevant Volt-VAR 

control components. 

 The VVO sends optimization results to 

VVCCs as a control command to reconfigure 

the distribution network based on the new 

optimal settings (refer to the power flow path 

in Fig. 1). This topology is aligned with the 

controlled structure and distributed command 

of microgrids such that the VVO is located in 

the medium voltage (MV) substation and can 

receive local AMI and global specifications 

from DMS/SCADA. 

 

2.2. Objective Function and Constraints of 

the VVO 

 

The objective function of the VVO, in 

general, can be represented as (1): 
 

,

1 1

.

1

2

l L i l

LOSS l base i

l i

MinO F

S V V 
= =

= =

=

 +   − 
 

 

   (1) 

 

where 

( )
0.5

2 2

, , ,LOSS l LOSS l LOSS lS P Q= +
            

                    

 

    (2) 

 The current injection model can be as (3). 

The power flow is in the form of the 

backward-forward sweep (BFS) method and 

can be obtained using (3)-(6): 
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(5) 
 

 The required constraints of the proposed 

VVO are described as follows.  

  
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 Bus voltage magnitude: 

min max

, , ,
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i t i t i t

i t
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 

→  
              

                    

 

  (7) 

The active power output of each feeder: 

min max

, , ,i t i t i tP P P                          (8) 

 

The reactive power output of each feeder: 

min max

, , ,i t i t i tQ Q Q                                           (9) 

 

Active power balance based on power flow: 

, , ,: i t Gi t Loadi tt T P P P  = −                         (10) 

 

Reactive power balance based on power 

flow: 

, , , ,: i

i t Gi t Loadi t c tt T Q Q Q Q  = − +      (11) 

Active power of the DG: 

min max

, , ,DGi t DGi t DGi tP P P 
        (12) 

Reactive power of the DG: 

min max

, , ,DGi t DGi t DGi tQ Q Q 
                                

(13) 

 

Thermal limits of the feeder: 

max

, ,l t l tS S            (14) 

LTC/VR constraints of the transformer: 

,

,
1

100tr t

tr tV
tap


+ =Turn ratio of the 

OLTC/VR                                  

 (15) 

 

 

where 

 max max

, , ,,..., 1,0,1,...,tr t tr t tr ttap tap tap − −
    

(16) 

 
 

LTC and VR, in this study, are set to have 33 

taps (the first tap is zero). Therefore,  

tr,tV = %0.3125 . 

 Thirty-two tap steps from 0.95 to 1.05 

p.u. (based on the ANSI stnadard). For 

instance, for a full turn ration: 
 

 
0.1

0.003125
32

=  or equally 03125% 

 

, 1 16(0.003125) 105tr t = + =
 

 

Capacitor bank (CB) constraints: 
 

 max

, , , , ,, 0,1, 2,...,i i i i

c t c t c t c t c tQ q  =  =  

      

(17) 

 

where ,

i

c tQ is the capacity of the CB, ,c tq

denotes the VAR amount of each CB, and ,

i

c t

shows the integer number of CB units.  

 Maximum compensation by the CB: 
 

, ,

1 1

I I
i i

c t L t

i i

Q Q
= =

                                 
(18) 

 
 

where, i is the feeder number and L shows the 

number of the last feeder.  
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 When the operator tends to consider VR 

and CVR losses, the objective function of the 

final VO can be presented as (19):  
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 As one can observe, each subset of the 

VVO’s objective function includes a 

weighting coefficient, which obtained using 

(20): 
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 
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 
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 (20) 

 To determine the fuzzy coefficients, the 

fuzzification method has been used in this 

paper. In this method, the network operator 

must first determine the minimum and 

maximum values for each VVO objective 

subset according to the technical/economic 

operation scenarios of the network. Then, if 

the optimized values of a subset are 

less/greater than the minimum desired value, 

the fuzzy weight will be equal to one/zero. If 

the optimized value is between minimum and 

maximum, a number between zero and one 

will be determined based on the algorithm 

presented in (21) for example for the weight 

loss coefficient. 
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,min ,max
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 


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−
→ =

−

 → =
 

(21) 

 Therefore, by fuzzification of fuzzy 

coefficients, the VVO’s objective function 

reaches the desired value according to the 

network operating conditions. 

 

2.3. Whale Optimization Algorithm 
 

This paper presents a smart grid-compatible 

energy optimization and conservation tool 

using the AMI data. This section describes 

the whale optimization algorithm (WOA), 

which is based on the imitation of the 

humpback whale hunting method, as the 

optimization algorithm of the proposed VVO 

tool. The advantages of the WOA are high 

convergence speed, a fewer number of 

parameters, and providing a balance between 

exploitation and exploration. The multi-

objective WOA, in addition to the 

abovementioned merits, provides accurate 

convergence, accurate Pareto fronts, and an 

effective variety of solutions [12].  

 According to the mentioned needs, the 

WOA has been used in this paper. The WOA 

can support the solution of continuous 

linear/nonlinear optimization problems with 

either continuous or discrete variables. 

According to [12], the WOA is a meta-

heuristic method that was developed in 2016 

inspired by the life of humpback whales. This  

 

 
Fig. 2. Bubble-net feeding behavior of 

humpback whales. 
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method employs the bubble creating attack 

strategy to hunt prey. Fig. 2 shows the 

foraging behavior of this animal, which is 

called the bubble net feeding method [14].  

 The following is a mathematical model of 

the WOA resulting from the encircling the 

prey using spiral bubbles, feeding 

maneuvers, and search for prey. 

 

2.3.1. Encircling the Prey 
 

The humpback whale identifies the prey and 

surrounds it. It then updates its position 

relative to the optimal solution on the 

iterative path from start to maximum iteration 

according to the following equations. 
 

*. ( ) ( )D C X t X t
→→ → →

= −       (22) 

 

*( 1) ( )X t X t A D
→→ → →

+ = −                     (23) 

 

where t represents the current iteration, A and 

C are coefficient vectors, *X is the position 

vector of the best solution obtained so far, 

and X shows the location vector of the object. 

 Vectors A and C are calculated as 

follows: 
 

2 .A a r a
→ → → →

= −        (24) 

  

2.C r
→ →

=                          
(25) 

 
 

where, a is the linear vector decreasing from 

2 to 0 during the iteration period (in both 

exploration and exploitation phases), and r

is a random vector in the range [0, 1]. 

 

2.3.2. Bubble-Net Attacking Method 

(Exploitation Phase) 
 

Two methods are designed as follows: 

A) Reduction of the encircling 

mechanism 

 This technique is used by linearly 

reducing the value of a from 2 to 0. The 

random value of A is in the range [-1, 1]. 
 

B) Spiral position update  

 The spiral equation is used to update the 

position between the whale and the prey, that 

is a spiral motion: 
 

' *( 1) . .cos(2 ) ( )blX t D e l X t
→ →→

+ = +                          (26) 

 

where, 1 is a random number between [-1, 1], 

b is a constant logarithmic form, and

' *( ) ( )D X t X t
→

= −  expresses the distance 

between whale i and the best solution 

obtained so far. 
 

*

*
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 
−  
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 +  

 

 

(27) 

 

2.3.3. Search for prey (exploration phase) 
 

The vector A can be used for exploration in 

the search for prey. The vector also has 

values greater than one or less than minus 

one. Exploration follows two conditions: 

The exploration of the WOA algorithm is 

augmented by | | 1A   ,avoiding local optima 

to find the global optimal. 

A < 1: The best solution is selected to update 

the current search agent position. 

 

3. VVO CASE STUDY RESULTS AND 

ANALYSIS 
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Fig.3. Single-line diagram of the 33-bus test distribution feeder. 

 

Table 1. Average load data of the 33-bus distribution feeder. 

Node 

No. 

Active 

Power (KW) 

Reactive Power 

(KVAR) 

Node 

No. 

Active 

Power (KW) 

Reactive 

Power 

(KVAR) 

1 100 60 17 60 20 

2 100 60 18 90 40 

3 90 40 19 90 40 

4 120 80 20 90 40 

5 60 30 21 90 40 

6 60 20 22 90 40 

7 200 100 23 90 50 

8 200 100 24 420 200 

9 60 20 25 420 200 

10 60 20 26 60 25 

11 45 30 27 60 25 

12 60 35 28 60 20 

13 60 35 29 120 70 

14 120 80 30 200 100 

15 60 10 31 150 70 

16 60 20 32 210 100 

   33 60 40 
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Table 2. ZIP coefficients. 

ZIP coefficients Z I P 

Active power 0.418 0.135 0.447 

Reactive power 0.515 0.023 0.462 

 

Table 3. Comparison of results before and after capacitor placement. 

Location of 

capacitors 
Bus 1 Bus 7 Bus 23 Bus 30 

Capacitor size 25 kvar 300 kvar 25 kvar 300 kvar 

Tap size 0.95 1.25   

Active losses 

Before installing 

the capacitor: 

150.4648 KW 

After installing 

the capacitor: 

130.699 

Reduction rate: 

%13.1365 
 

Reactive losses 

Before installing 

the capacitor: 

100.1157 kvar 

After installing 

the capacitor: 

86.7465 KW 

Reduction rate: 

%13.3537 
 

Minimum 

voltage (pu) 

Before installing 

the capacitor: 

0.96193 

After installing 

the capacitor: 

0.9689 

  

Maximum 

voltage (pu) 

Before installing 

the capacitor: 

1.04 

After installing 

the capacitor: 

1.04 

  

Voltage 

adjustment 
% 0.032449    

Annual cost ($) 

Before installing 

the capacitor: 

24525.7581 

After installing 

the capacitor: 

21303.9353 

Annual 

reserve: 

3221.8228 

 

 

3.1. Simulation 
 

A 33-bus experimental distribution system 

[12] has been utilized to test the proposed 

VVO tool. Fig. 3 shows the single-line 

diagram of the system under study [9].  

 The network consists of 33 buses with 33 

terminal points, i.e. smart meters. Power is 

supplied from an HV/MV substation to a 

radial distribution network. Four shunt 

capacitor banks, the locations of which are 

optimally determined by the algorithm, are 

placed in the system. The range of capacity 

of capacitive banks is from 25 to 300 kVar. 

Moreover, an OLTC is placed in the HV/MV 

substation and a VR is on the bus 13, both of 

which are in the 32nd tap. The average 

active/reactive power loads of the case study 

are shown in Table 1.  

 In order to accurately model the loads, 

this paper uses the ZIP coefficients listed in 

Table 2 [9].  

 The outputs taken from the smart meters 

every 15 minutes are the active power of the 

nodes, the reactive power of the nodes, node 

voltages, branch currents, and power factors 

of the nodes. The VVO tool is designed and 

programmed in MATLAB software and the 

current path of the distribution load is carried 

out through BFS with 100 sweeps. The 

maximum and minimum values of the 
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apparent power loss desired, 

( )LOSS,min LOSS,maxS ,S , are considered by the 

operator as 0.35 and 0.1 p.u., respectively. In 

addition, the maximum and minimum 

voltage values required, ( )dev,min dev,maxV ,V , 

are 10 and 0.1. The maximum and minimum 

values of CVR are set 0.01 and 0.001, 

respectively, and for VR losses, the 

maximum and minimum settings are 0.05 and 

0.005 p.u., respectively. For the scenario with 

weighting coefficients, the loss cost is 

defined based on the electricity price (0.12 

$/kWh). The cost of voltage deviation is  

assumed to be eight times higher than the loss 

cost. Furthermore, the loss costs of VR and 

CVR are assumed to be ten times higher than 

the voltage deviation cost based on the 

operating needs of the distribution network. 

 

3.2. Operation Scenarios 
 

To investigate the effects of different subsets 

of the VVO’s objective function, six 

exploitation scenarios are presented in this 

section. 

Scenario 1: The VVO is performed without 

fuzzification and without minimizing the 

operation cost of the CB. 

 

   

Fig. 4. Distributed feeder node voltages in different scenarios. 
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Fig. 5. Comparison of capacitors in different scenarios. 
 

 

Scenario 2: The VVO is performed without 

fuzzification and with minimizing the 

operation cost of the CB. 

Scenario 3: The VVO is performed without 

fuzzification but without minimizing the 

operating cost of the CB. 

Scenario 4: The VVO is performed without 

fuzzification but with minimizing the 

operating cost of the CB. 

Scenario 5: Minimizing VR, where CVR 

losses is added to the VVO and the VVO is 

performed without fuzzification. 

Scenario 6: Minimizing VR, where CVR 

losses is added to the VVO and the VVO is 

performed with fuzzification using weighting 

coefficient calculations.  

 

3.3. Results 
 

The network bus voltages for different 

operating scenarios (scenarios 2, 4, 5, and 6) 

are shown in Fig. 4. Fig. 5 illustrates the kVar 

values of shunt capacitor banks, andFig. 6 

shows the VR and LTC taps in all operating 

scenarios under-study, identified by the VVO 

tool. Fig. 7 illustrates the active power losses 

of Scenario 6, compared to a system without 

the VVO. Fig. 8 exhibits the voltage profile 

of the system nodes in Scenario 6 for all 

quasi-real-time periods. Fig. 9, the WOA 

convergence, shows the VVO tool for 

Scenario 6. At each simulation real-time 

interval (i.e. every 15 minutes), the VVO tool 

attempts to compensate for the system's 

reactive power to minimize distribution 

network losses. This is realized through 

replaceable shunt capacitive banks. 

 

4. CONCLUSION 
 

This paper presents a smart grid-compatible 

Volt-Var optimization tool using the WOA. 

To determine the weighting coefficient of 

each subset of the VVO’s objective function, 
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Fig. 6. Comparison of tap-changers in different scenarios. 
 

 

Fig. 7. Line losses. 
 

 
Fig. 8. Node voltages of Scenario 6 for 96 real-time quasi-periods. 
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Fig. 9. The WOA convergence of the VVO tool in Scenario 6. 

 

the fuzzification method is utilized in this 

algorithm and different scenarios are 

compared for a 33-bus test distribution 

feeder. The results highlight that employing 

the VVO tool, which uses the WOA and 

fuzzification;distribution networks are 

optimized according to the technical and 

economic requirements of the distribution 

network. 

 

Nomenclature 

 

,

i

l tS       apparent power loss (kVA) 

, ,loss l tP   active power loss of feeder-l at time-t 

(kW) 

 , ,loss l tQ     reactive power loss of feeder-l at                    

time-t (kVAR) 

S             complex power (kVA) 

V             voltage magnitude (V) 

P             active power (kW) 

Q             reactive power (kVAR) 

C             cost ($) 

I             current (A) 

baseV         base voltage of system (V) 

,l tS           power limit of feeder-l at time-t 

 velV         velocity of particle is PSO 

             off-nominal turn ratio of OLTC and 

VR 

Tap         tap unit 

V          voltage change 

Trans VRP −    active power loss of VR 

,

i

c t        integer value for capacitor bank units 

,

i

c tq           VAr value for each bank unit 

,

i

c tQ             capacitor bank capacity 

, , ,       weighting factors 

1 2,           acceleration constants in WOA 

1 2,r r             random values (between 0 and 1) 

Loss            loss 

dev            deviation of voltage 

[B]             branch current matrix 

[BIBC]      bus-injection to branch-current 

matrix 

[BCBV]    branch-current to bus-voltage 

matrix 
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G, Load      generator, load 

X                position of particle 

Min, Max    minimum, maximum 

DG             distributed generation 

END          last nodes of feeder 

CVR         conservation voltage reduction set 

VR            voltage regulator 

Fuzzy       Fuzzification factor 

c,k           capacitor bank, iteration 

i, j           indices for buses 

I, J          indices for the last buses 

t, T         time interval, last time interval 

l, L         feeder number, last feeder 
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