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Abstract 

Deciding the roof type with a large ventilation spans for uses in the flower and plant exhibitions that can operate beyond the exhibition space 
functions as it can provide a desirable climate for the growth of its plants, it can be designed and enhanced according to the geographical site of 
it. Deciding and designing the roof form can prevent dissipations in energy and assets and develops a construction with high efficiency together 
with low costs of maintenance, only if it is done in an intelligent way. The independent variables in this research are the climate conditions, and 
form of the structure is considered as the intervening variables together with factors like the internal air current and sub climates and the levels 
of thermal comfort for individual occupants as the dependent variables. The aim of conducting this master thesis which is considered as an 
interdisciplinary research, is to reach for proper patterns in covering the ventilators in greenhouses with large spans by using the climate 
information of the north-Iran region. The main question of this research is the most efficient roof form in regard to natural ventilation in mild 
and humid climate condition? Research method the study is modeling and computer simulation in a way that they are evaluated with the 
prevalent forms of exhibitions and greenhouses with large vents in the terms of the external wind flow impacts and natural ventilation in their 
interior and analyzed by employing Computational Fluid Dynamics (CFD) and moving particle semi-implicit (MPS) simulation. Results 
indicate that form of a building has an obvious impact on the internal airflow and the curved forms have a better impact on the internal 
circulation of air. As an instance, in the convex geometries, the airflow speed rate drops in the center of the construction while in the concave 
geometries it is quite the opposite as the speed is reduced around the sidewalls of the construction and the thermal comfort becomes a different 
point along with natural ventilation. 

Keywords: Exhibition Roof, Geometrical Form, Natural Ventilation, Computational Fluid Dynamics (CFD), Thermal Comfort. 

1. Introduction 
One of the most important issues in the greenhouses with 
large spans is to develop and control suitable conditions for 
the ventilation. According to the research (Baeza, E. J. et al. 
2007), the best way for cooling the greenhouse is to employ 
natural ventilation which should work along with a mix of 
efficient air exchange in order to discharge the high-
temperature air that is done by a specific desirable condition 
under the roofing of greenhouse. The form of roofing, 
number and placement location of ventilator spans has a 
noticeable impact on the improvement of the air flow and 
the possibility of developing natural ventilation. There are a 
variety of options for deciding different geometries for the 
roof of the greenhouses with large ventilation spans. The 
geometrical potentials for each of these roof types regarding 
the efficient feedback compared to the natural flow of the 

wind according to the necessity of efficiency and points 
revolving the sustainability in planning and construction of 
such buildings. According to (Bartzanas, et al. 2004) since 
most of the greenhouses in the world employ natural 
ventilation in order to cool down the greenhouse during the 
hot season of the year and to absorb the humidity of the air 
during the cold seasons and also to provide carbon dioxides 
from the fresh outside air. For the greenhouses with broad 
and geometrical shapes with low heights, the difference 
between the intake shutters and exhaust pop-up vent should 
be increased for the ventilation to work well (Perén, J. I., et 
al. 2016). Type of the climate is a decisive factor in 
choosing the geometrical shape of the ceiling for an 
enhanced ventilation. As an instance, for the case of 
moderate and humid north-Iran climate due to the 
comparatively high humidity of the air which is considered 
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as a perfect climate for agriculture in Koppen-Geiger 
classification, and the possibility of analysis and evaluations 
over deciding the type of ceiling geometry by computational 
methods and simulations. The main question of this research 
is the impact of wind on the roofing shell with the form of a 
greenhouse with large spans in a temperate and humid 
climate. According to the present concerns on the topics 
related to sustainability and also by acknowledging the 
scarcity of energy sources, in order to construct a 
sustainable building certain specification of the construction 
site climate and conditions should be simulated toward the 
issues of ventilation, etc., to avoid energy dissipation and 
unrecoverable damages to the environment. According to 
the developments in technology and computer simulations 
through the past decades, observation has been made on 
greenhouses with wide spans as the wind-tunnel together 
with manual experimentations were used for this purpose in 
the past. With the use of computational fluid dynamic 
(CFD) methods we can simulate the function of wind under 
the ceiling. We can evaluate the conditions that occur under 
the ceiling in different times of the year by employing these 
proven methods and predict some facilities to supply in 
regard to the placement of pop-up ventilator spans together 
with their number and size in order to identify the frames 
that brings the best feedback in the ventilation process. The 
applied points in the simulations include the relocation of 
heat and airflow and thermal comfort for human beings and 
plants. 

1.1.
 

Literature Review 

Different studies are conducted on the subject of the 
windflaw in the interior spaces with wide spans, including 
the work of Mr. (Ameer, S. Et al, 2016) which inspected 
different forms of ceilings and their functions toward the 
distribution of interior air flow in the scale of small urban 
buildings. A number of five ceiling types are evaluated in 
this research: Flat, pitched or gabled roofs with different 
heights together with shelving curved roofs, the wind speed 
potential in developing natural ventilation under the roofs 
was analyzed in the different type of the roofs as the final 
results for the gabled roofs with different heights were 
compared with the ASHRAE and CIBSE standards and it is 
nominated as the best form. 
Another issue that greenhouses with wide spans would face 
is the correct position of the pop-up ventilators, in his 
research (Khaoua. S, 2006) on the subject of locating 
ventilator pop-ups in front or opposite to the wind and 
comparing the efficiency of the mentioned methods for an 
external wind with a 1 mile per second (1 m/s) and the 
weather temperature of 30 degrees centigrade the ventilation 
rates were calculated accordingly between 9 to 26.5 for the 
pop-up ventilator spans facing the wind and 12.7 to 3.7 for 
the spans opposite to the wind. Although, according to 
(Bartza-nas et al. 2004) it indicates that the best ventilation 

rates do not necessarily signify the best function in the 
greenhouse. 
According to the research of (Kim et al, 2010), the 
efficiency of ventilation in surrounded spaces depends on 
other factors including currents of the external wind, type, 
and height of the pop-up ventilator spans. On the subject of 
singularity or plurality for the number of pop-up spans in 
the greenhouses, in (Rico- Garcia, 2006), researchers 
concluded that ventilating a greenhouse with a tall ceiling 
and long windows is better than those greenhouses which 
include numerous ceiling spans, and the fact that the role of 
air temperature on flowing the air and provide natural 
ventilation raises in hot climate conditions altogether with 
the air transfer rates. 
In greenhouses with broad intake spans, environmental 
factors should be provided in desirable for the plants in the 
terms of temperature and humidity in addition to the thermal 
welfare of the visitors. In a study by (Roy, J. C., et al. 
2008), a research was made on the temperature and 
humidity level on the surface of the plants by using 
Computational Fluid Dynamics (CFD). 
A major number of studies regarding the use of CFD in 
architecture is related to the buildings with medium scales 
and in order to simulate the mutual ventilation between 
them, as the research of (Ramponi. R, 2012) has a focus on 
various different parameters including: development of the 
calculation field, clarity in the development of network 
calculations, turbulent kinetic energy after the border of 
atmospheric layers, values of each simulation. 
If we pay to more detail to the impacts of airflow in the 
interior spaces of a greenhouse and a plants exhibition place 
with a broad intake spans, we should consider the existence 
of trees with different heights and their impact on the 
internal flow of the air. In the research of (Endalew. A., 
2009), the impact of the wind speed on the trees by 
computer simulation together with real simulations in 
smaller scales in the wind tunnel. Results indicated that 
growth in density of the trees crest would decrease the 
airflow speed in the lower parts of the tree. 
An important topic of the analysis is to survey a 
combination of transferential energy simulation in the 
building and the interior airflow. In  (Zhai, Z. et al. 2004), in 
order to reach a natural convection in the building, a grid 
pattern with the distance of 0.005 meter and the distance of 
0.1 meter for forced convection of the interior air. 
Only a few of studies are done about the applications of 
(CFD) in the context of architecture and the work of 
(Kaijima, S., Bouffanais, R., Willcox, K., & Naidu, S. 
(2013) is one of the rare studies which is conducted by the 
architects regarding the connection between CFD and its 
application in architecture. This research uses a toolkit that 
facilitates the CFD illustrations for the architects, which can 
help to convert the exports from Fluent software together 
with Rhino 3D modeling software into sets of meaningful 
visual compositions for the architects. Another study has an 
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performed by ANSYS Fluent with K-epsilon with two 
formulas in a pressure-based method. 

3. Data Collection 

The first topic is to discover about the climate condition of 
the research area (Lahijan city). More than one sources were 
used to take geographical data including the following 
factors: 

● Maximum and minimum temperature (°C) 
● Field of sight (km) 
● Air pressure (mb)  
● Percentage of cloudy weather possibility (%) 
● Humidity in percentage (%) 
● Maximum and minimum wind speed (m/s) 
● Average storm frequency 
● Number of foggy days 
● Per capita for the rainy and cloudy days 

● Snowfall rates (cm) 
● Rainfall rates (Mm) 
● Ultra Violet (UV) rates. 

Description of the weather in Lahijan
 

The dry season of the year is not persistent (for near a 
month during June) and the rainfalls are present in most of 
the cases. 
Rainfalls are not in the same level for all regions in the 
province and the freezing days were scarce and scattered as 
the temperature barely reaches a -1 degrees in centigrade. 
According to the chart of windflow in Rasht, it is dominant 
in the west direction which also include northwest in some 
of the seasons in the year. Although in the months of June 
and July the air humidity develops difficult sultry conditions 
which would generally be broken with summer rainfalls in 
the north and a desirable thermal condition will be replaced. 

            Table 1  
           Climate chart of Lahijan. (Source: Lahijan synoptic station located in Falahat garden, 2016). 

Annual Temperature average 17.1°c Minimum average annual air 
speed  

2 ms-1 

Average of annual maximum temperature 22,1°c Annual average of air speed 3 ms-1 

Average of annual minimum temperature 12.2°c Maximum annual humidity in 
October 

87% 

Difference between the minimum and 
maximum temperature through the year 

9.9°c Minimum annual humidity in 
July 

56% 

Average temperature in the coldest month of 
year (January) 

1.1°c Average Annual air humidity 75% 

The average temperature in the warmest 
month of the year (August) 

33.9°c Maximum annual air pressure in 
November 

102460 pa 

Average annual maximum air velocity in 
spring 

20.3°c Minimum annual air pressure in 
July 

100970 pa 

Average annual maximum air speed in 
summer 

26.6°c Average annual air pressure in 
July 

101635 Pa 

Average annual maximum air speed in 
autumn 

13.9°c Annual average of sun radiation 14.8Mj/m2 

Average annual maximum air speed in 
winter 

7.6°c Maximum annual sun radiation in 
July 

24.6Mj/m2 

Average annual maximum air speed 4 ms-1Maximum Annual Radiation of 
the Sun in december 

6.2Mj/m2 

4. Studied Models 

Different greenhouses and exhibition spaces for plants and 
flowers are constructed in the world with different forms 
and in different climates throughout the history, each of 
them is planned and constructed by famous architects with 
their own specifications, this levels of experience can act as 
a pattern for further studies. The modelled forms are 
developed based on the form of these greenhouses together 
with different geometries for a better comparison. 

6 Modelling is based on the previous constructed forms of 
greenhouse or spaces with flower and plant exhibition 
purposes and two other samples are different form than 
these six types which are introduced in order to test the 
function of internal airflow pattern. 
The ventilator of these six models were fixed and a number 
of 6 air intake shutters were considered on the sidewalls and 
one exhaust air vent is designed on the top of each models. 
The simulation conditions which are listed in the tables 4, 5 
and 6 are applied equally for all of these models. 
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Appendix: A 
Nomenclatures

 

Interior temperature of greenhouse (c) Tc Area of the greenhouse roofing  (m2) Ac

 

Exterior temperature  Ti Area of the greenhouse roof covers  (m2) Af

Temperature of greenhouse floor ( °c) Tf Specific heat capacity.(m) d 
Equivalent radiant temperature (°c) Tsky Specific heat capacity  (Jkg-1°c-1) Cpa

 

Heat loss factor of the greenhouse cover.(W·m-2·c-1) u Gravity (m3kg-1s-2) g 
Wind Speed outside of the greenhouse (ms-1) v Height of the greenhouse crest (m)  h 
Greenhouse air volume (m3)   vg Heat transfer coefficient Between the shell and the air outside 

(wm-2°c-1)
 
 

hc-o 

Width of the Greenhouse w Heat transfer coefficient  from fluid (wm-2°c-1)  hf

Viscosity of molecules (m 2/s) µ Enthalpy of interior humidity( Jkg-1) Ii

 

Stefan–Boltzmann constant σ Enthalpy of exterior greenhouse humidity (Jkg-1) I.

 

Level of air movement (m 3/s) Q Thermal conduction (W·K-1·m-1) k 
Surrounded air volume (m 3) V Length of the greenhouse (m)  l 
Density (Kg/m 3) ρ Greenhouse ventilation level (kgs-1) ma

Time (s) t Air exchange rates for an hour (h-1) Na

Air exhaust time (s) Texhaust Pressure (pa) P 
Average Air exhaust (s) Tage Temperature transfer rate between the covers and the outside Qc-o

 

Turbulent Prandtl number from Turbulence kinetic energy kα Turbulent kinetic energy Due to floating property (m2/s-2) Gb

Turbulent Prandtl number for energy dissipation rates kα Turbulent kinetic energy according to the average gradient 
per hour (m2/s-2) 

Gk

 

Supply Sɸ 

Components of the air speed UV W 

Amount of air movement ɸ
Appendix: B 
                                   Abbreviations 

Computational Fluid DynamicCFD

 

Finite Volume MethodFVM

 

Local Mean AgeLMA

 

Cubic Feet per MinuteCFM

 

Air Change per HourACH

 

Partial differential equationPDE

 

Predicted Percentage of Dissatisfied PeoplePPD

 

Mean Radiant Temperature MRT 
Predicted Mean Vote PMV 
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