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Abstract  
 

The architectural layout design is a well-known algorithmic problem in computer-aided architectural design. It is the assignment of discrete 

space elements to their corresponding locations while attempting to satisfy geometrical and topological goals in their layout. This task requires 

maintaining consistency to ensure that the requirements are met and is exploratory and iterative in nature. The complexity of this problem 

has encouraged researchers to explore computational approaches for predicting the space layouts. This activity, takes place during the 

preliminary design phase and is highly significant, as it impacts later stages of the building lifecycle. Therefore, these methods has the 

potential to enhance the effectiveness and efficiency of spatial layout in design and suggested to make the work of architects easier and faster. 

Numerous methods have been proposed to solve the space layout design problem. Each one can be viewed as a rule-based strategy that 

attempts to simulate space layout design using some high-level rules. However, for producing space layout designs, in addition to the 

quantitative criteria that may be tested and assessed in a logical process, numerous non-quantitative elements also exist. These qualitative 

criteria are frequently based on a variety of factors and are challenging to describe; thus, hard-coding them would not be possible or effective. 

It would be best if the program could learn these rules from existing examples. Some potential solutions can be found in the rapidly expanding 

field of machine learning, which can serve as a tool for decision-making. Deep learning, a subfield of machine learning, can adaptively 

achieve goals by learning from data and interpreting experiences. The generative adversarial network (GAN), is a deep learning algorithm 

that has shown remarkable outcomes in the development of 2D designs. In this paper, GAN is applied to generate automated space layouts 

with given boundaries. A specialized training dataset, comprising 660 existing apartment layouts from Hamadan, is prepared, with each 

layout labelled using different colours to represent various spaces for training the model. After the model is trained, the boundary lines of 12 

new apartments are tested. The performance of the model is also evaluated using two methods: the pixel accuracy measure as the quantitative 

method and a qualitative assessment by an expert architect based on the evaluation criteria. The results show that the proposed model 

successfully generates space layout plans from predefined boundaries. This issue indicates its potential for application in other cases and 

designs. We propose this model as a tool to facilitate the architectural layout design process, enabling architects to quickly and precisely meet 

client requests particularly in the projects with complex topological constraints.   
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1.  Introduction 

New computer-based methods are suggested in the 

expansive research area of computer-aided architectural 

design to make the work of architects easier. Since the 

1960s, the space allocation problem has been referred to as 

the space layout design problem in the field of computer-

aided architectural design. One of the most challenging 

tasks in architectural design is space layout design, which 

takes place in the early stages of the design process (Latha 

et al., 2022). It is the process of placing a set of discrete but 

independent spatial elements while striving to achieve 

geometrical, topological, and performance goals in their 

layout.  Due to the fact that it has an impact on the next 

phases of the building lifecycle, it is particularly significant 

(Regateiro et al., 2012). This activity is exploratory and 

iterative in character, requiring constant maintenance to 

assure that various requirements are fulfilled. Therefore, 

the automated design technique is receiving a lot of 

attention because it may be a way for researchers to quickly 

plan complex architecture programs or find solutions for 

spatial design. The goal of implementing such a technique 

does not entail the replacement of architects, but rather the 

development of strong tools to quickly solve problems, and 

select the best tool for advancing design (Guo & Li, 2017). 

Topological and geometrical constraints are the resultant of 

subjective and objective criteria that is embedded in the 

spatial layouts. Objective criteria are quantitative factors 

that could be tested and assessed in a logical and numerical 

process such as architectural program, the energy 

efficiency, regulations, design standards, client preferences 

and others. The subjective criteria, however, are non-

quantitative factors that related to the expertise of the 

designer such as the design's aesthetic, cultural, economic 

and social aspects. Many strategies have been proposed to 

solve the space layout design problem. Most of these 

approaches can be viewed as a rule-based strategy that 

makes an effort to simulate space layout design using some 

high-level rules (Rahbar et al., 2022). However, in addition 
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to the quantitative criteria that may be tested and assessed 

in a logical process, numerous non-quantitative elements 

are existing for producing spatial layout designs. Although 

there are tools to assist architects in creating floor plans, 

none actively contribute to the intelligent design of the 

plan. They would need to follow both the explicit and 

implicit rules of floor plan design, which would take a great 

deal of intelligence. From the perspective of an architect, a 

successful layout is evaluated as a possible solution, that 

takes into account both subjective and objective factors. 

Due to the fact that these rules and considerations are 

frequently based on a variety of criteria and are challenging 

to specify, hard coding them would be next to impossible. 

Furthermore, even if it were possible, this task would take 

a lot of time and be highly subjective. It would be 

preferable if the program could learn these rules from 

existing examples (build precedent) rather than hard-

coding them into the program. Precedents represent 

knowledge in design in a holistic way which provides some 

assurance of the success of a design as heuristic devices. 

This falls into the artificial intelligence (AI) problem space. 

The rapidly expanding filed of machine learning (ML) may 

offer some viable solutions (Russell & Norvig, 2016). ML 

is the science of programming created for computers to 

learn from data (Geron, 2017). It is the field of study that 

gives computers the ability to learn without being explicitly 

programmed (Ozerol & Arslan Selçuk, 2023). Deep 

learning is a machine learning technique that layers 

computing units- or neurons- into what is called an artificial 

neural network.  Their name and structure are inspired by 

the human brain, mimicking the way that biological 

neurons signal to one another. Where machine learning 

algorithms generally need human correction when they get 

something wrong, deep learning algorithms can improve 

their outcomes through repetition (Topuz & Çakici 

Alp, 2023). The automation of jobs involving the 

recognition of qualitative patterns in data has undergone a 

revolutionary change with the advent of deep neural 

networks. It is distinct from more traditional design 

computing methods. One significant distinction is that deep 

neural networks learn patterns through the training process 

rather than being structured on rules or previous 

algorithms. This is in contrast to earlier generative design 

methods. For instance, design rules that specify which 

forms can be created by their repeated application can be 

used to create new designs in shape grammar. Deep 

learning, however, uses generative design, where the rules 

for how to combine them are not predetermined. Instead, 

they are found by the DNN using design data. A DNN 

should theoretically be able to learn latent or known rules 

that the architects may have purposefully or intuitively 

implemented in their work if one has enough examples 

from a design collection (Imdat et al., 2018). On 

classification tasks, these deep discriminative models have 

performed so well that they have even been able to 

outperform human experts. Deep neural networks can do 

generative tasks, in which new data patterns can be created, 

in addition to discriminative tasks. Although they have 

received less studied, these "deep generative models" are 

becoming a significant field of study. The (GAN) is one 

deep generative model that has demonstrated excellent 

outcomes in generation designs. By giving training data in 

pairs, Goodfellow is credited with being the first team to 

propose the generative adversarial network in machine 

learning (Goodfellow et al., 2014).According to 

Goodfellow, the fundamental challenge for AI is being able 

to complete activities that people can accomplish with ease 

but formally find challenging. Such issues are resolved 

intuitively by people. Formally describing the process of 

designing in architecture is also quite challenging. An 

architect is capable of drawing a building plan without 

considering any cognitive components of the design. 

However, a highly intricate and complex process is 

unfolding in the mind behind the drawing action. To 

effectively train an algorithm, it would not be possible to 

describe these design processes. Instead of attempting to 

formally explain the design for autonomous design 

processes, an algorithm can infer meaningful solutions 

through drawing datasets. Today with the concept of big 

data, algorithms can evaluate data, and deep learning 

algorithms can be trained without the need to formalize 

processes (Goodfellow et al., 2016). GANs have shown a 

level of generative sophistication that has not been matched 

by earlier work in computer-generated design. Numerous 

design-related disciplines could be impacted by their 

capacity to learn from examples and extrapolate that 

learning into the creation of new instances. The generation 

of 2D images of plans and facades has investigated their 

use in architecture (Newton, 2019). In this paper, a method 

of using generative adversarial networks was applied to 

generate automated space layouts. It focuses on generating 

automated 2D layouts with a set footprint, windows, and an 

entrance door that are inputs to the suggested algorithm 

from the designer. To achieve this, we take the following 

actions: creating a specific dataset for the model, using the 

dataset to train the model, and then assessing the model 

using the test findings of the new footprint. 

 

2. Research Background 

2.1 Rule-based methods 

Studies on the autonomous production of plans in 

architectural design started in the 1960s. The problem of 

space layout design has been considered in a variety of 

ways. Liggett and Mitchell described a software system 

that uses quadratic assignment, which is focused on finding 

the best places for a group of related objects, to generate 

high-quality solutions to both small and large space 

planning challenges concerned with operating efficiency 

(Liggett & Mitchell, 1981). In order to solve the challenge 

of office layout planning, Jagielski and Gero developed a 

genetic programming approach, a subset of the 

evolutionary (Jagielski & Gero, 1997). Jo and Gero 

suggested a design approach based on an 

evolutionary/genetic algorithm for developing large office 

layouts (Jo & Gero, 1998). The use of a genetic 

engineering-based extension to genetic algorithms for 

space layout design challenges was described by Gero and 

Kazakov (Gero & Kazakov, 1997). With a prototypical 

example in the context of the 2D spatial design of homes, 

Rosenman presented a case-based model of design that 

https://link.springer.com/chapter/10.1007/10721187_4#auth-Mike-Rosenman
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uses an evolutionary approach for the adaptation of 

previously stored design solutions (Rosenman, 1999). A 

mathematical programming approach was used by 

Medjdoub and Yannou to create an architectural 

conceptual CAD that, crucially, avoids the inherent 

combinatorial complexity of practical space layout issues 

(Medjdoub & Yannou, 2000). Michalek et al provided a 

model that provides a method for optimizing the 

arrangement of architectural floor plans that benefits from 

the effectiveness of gradient-based algorithms and uses 

evolutionary algorithms to make discrete decisions 

(Michalek et al, 2002). By including the physics of motion 

into the space plan elements, Arvin and House employed 

physically-based space planning to automate the 

conceptual design process. This methodology offers a 

responsive design process, enabling a designer to make 

choices that have instantaneous effects on the entire design 

(Arvin & House, 2002). An issue with architectural 

layout that uses evolutionary algorithms to decide how to 

arrange units was taken into consideration by Bausys and 

Pankrasovaite (Bausys & Pankrasovaite, 2005). With the 

help of the layout evolutionary multi-objective 

optimization and interactive evolutionary computation, 

Inoue and Takagi developed a framework for a room layout 

planning support system (Inoue & Takagi, 2008). Merrell 

et al described a technique that uses a Bayesian network 

trained on real world data to automatically generate 

building layouts (Merrell et al., 2010). 

Based on a squarified treemap algorithm, Marson and 

Musse presented a revolutionary method for creating house 

floor designs with semantic information (Marson & Musse, 

2010). Thakur et al demonstrated a technique that uses 

evolutionary algorithms to create an architectural layout for 

a single flat with consistently shaped spaces (Thakur et al., 

2010). Koenig and Schneider concentrated on interactive 

evolutionary algorithms and computer-based generative 

solutions for architectural layout issues (Koenig & 

Schneider, 2012). Liu et al suggested a method for 

automatically generating various floor plans with 

corresponding 3D geometry that all adhere to the design 

requirements and constraints (Liu et al., 2013). Bao et al 

used simulated annealing to create candidate layouts in 

order to tackle the issue of generating and investigating 

building layouts that satisfy specific requirements. By 

employing quadratic programming to remedy broken hard 

constraints, they restore the validity of the arrangement 

(Bao et al., 2013). Rodrigues et al demonstrated a prototype 

tool for the space planning stage that uses evolutionary 

algorithms to automatically develop various floor plans in 

accordance with the preferences and needs of the architect 

(Rodrigues et al., 2014). Helme and Derix provided an 

overview of a number of experimental hybrid semi-

automated techniques that have been used in design 

processes where users can direct physics-based simulations 

to provide input for programmatic distribution of layouts 

(Helme & Derix, 2014). Utilizing a simulated annealing 

algorithm, Yi et al proposed a design decision-making 

methodology for configuration based on optimal 

environmental performance (Yi et al., 2014). Two 

evolutionary algorithm-based techniques for creating 

rectangular architectural layouts were presented by Koenig 

and Knecht (Koenig & Knecht, 2014). By combining a 

rectangular Voronoi subdivision with a genetic algorithm, 

Chatzikonstantinou introduced a new method for creating 

architectural layout configurations that is appropriate for 

use in computational optimization scenarios 

(Chatzikonstantinou, 2014). Dino demonstrated a design 

tool for evolutionary algorithm-based space layout 

optimization (Dino, 2016). Hua demonstrated a technique 

for creating irregular floor plans automatically. It creates 

topologically viable layouts by using simulated annealing 

and sub-graph matching. (Hua, 2016). Guo and Li used a 

technique for automatically creating a spatial architectural 

plan using a multi-agent topology finding system (Guo & 

Li, 2017). Using an interactive evolutionary algorithm, 

Bahrehmand et al introduced an interactive layout solver 

that aids designers in layout planning by offering 

personalized space configurations based on architectural 

guidelines and user preferences (Bahrehmand et al., 2017). 

Bisht described a technique that makes use of graph theory 

to convert an adjacency graph into a dimensioned floor 

design (Bisht, 2022). In Table 1, an overview of these 

methods (Weber et al., 2022) is presented. 

2.2 Machine learning methods 

With regard to the methods described above, it can be 

deduced that each one can be viewed as a rule-based 

strategy that makes an effort to simulate space layout 

design using a few high-level rules. In contrast to 

previously described approaches, Machine learning models 

have shown that they can derive information from data and 

use that knowledge to make decisions (Creswell, 2018). On 

the other hand, there is a long history of architectural 

education and practice that emphasizes learning from 

precedent. Built precedent can be a useful tool for decision-

making in the architectural design process. They are 

utilized as a reference for developing space layouts in both 

professional and educational settings (Grover et al., 2018). 

There has been a resurgence of interest in referential 

automated layout techniques as a result of advancements in 

computing and ML technology. This is a technique to 

imitate how architects make decisions based on their 

expertise and experience. There are a number of 

algorithmic techniques for referential design, but the most 

popular are machine learning algorithms that employ deep 

neural networks, such as GANs, to discover closest 

matches (Weber et al., 2022). In order to recognize spaces 

in a layout and to create a furnished plan from a labelled 

image, Huang and Zheng used the Conditional generative 

adversarial network (c-Gan) algorithm for both tasks. They 

showed how GAN might be used to generate furniture 

layouts and recognise floor plans. Based on the room 

program and its opening location, their model would design 

the infill of rooms using colored patches (Huang & Zheng, 

2018). In the same year, Nathan Peters advocated using 

GANs to address program repartition in a single-family 

modular homes based on the house footprint in his Harvard 

thesis (Peters, 2017). Rahbar translated the image of an 

apartment footprint directly into a labelled layout design 

using a conditional GAN model (Rahbar et al., 2019). 

Three key steps of the pix2pix algorithm were used by 

https://link.springer.com/chapter/10.1007/10721187_4#auth-Mike-Rosenman
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Chaillou. A parcel outline was used to generate a building 

footprint in the initial step. In the second stage (program 

repartition), each area inside the footprint was assigned a 

color. The furnished layout was generated at the third stage 

(Chaillou, 2019). In Table 2, an overview of these methods 

is presented. 

Table 1  

Automatic space layout creation methods. 

Author(s) Typology Optimizer Inputs Output 

Gero  Residential Genetic Algorithm Number and areas of rooms Floorplan, based on grid 

Rosenman 
et al Residential Genetic Algorithm 

Tree representation of 

program 

Floorplan, differentiated rooms 

connected 

Arvin and House Public Physically Based Area, adjacency 

Modeling architectural design 

objectives in physically based space 

planning 

Inoue and Takagi Residential Evolutionary algorithm Area, location preference 
Assigned program on existing layout, 

differentiated boundaries 

Merrell et al Residential 

1. Baysian network for 

Program generation, 2. 

Metropolis algorithm 

Area, foot print, aspect 

ratio, adjacency, adjacency 

type 

Program layout 

Bao, et al 
Residential, 

Office 

Quadratic Programming, 

simulated annealing 

Boundary, total floor area,  

courtyards 
Massing with specified floor area 

Yi et al Residential Simulated annealing Programmatic units Aggregation of modular 

Chatzikonstantinou Residential 

Rectangular Voronoi 

Subdivision, Genetic 

Algorithm 

Area, weighted adjacency 

matrix 
Volumetric Arrangement of layout 

Hua Residential 
Mathematical 

Programming 

raster image or vector 

graphic, area, adjacency 

Layout on input image or vector 

graphic. 

Medjdoub and 

Yannou 
Residential 

Mathematical 

Programming 

Adjacency, area, min 

width/depth, 
Assigned program on existing layout 

Michalek et al Residential 

Genetic Algorithm, 

Mathematical 

Programming 

Areas, adjacency 

Design topology (with adjacencies) 

(tree) and assigned program existing 

layout 

Bausys and 
Pankrasovaite Residential Genetic Algorithm 

Program description (with 

min and max size), 

bounding box 

Layout in bounding box 

Marson and Musse Residential 
Squarified Tree  map 

 KD Tree 
Areas, connectivity Assigned program on existing layout 

Liggett and Mitchell Office Quadratic assignment Areas, adjacency Assigned program on existing layout 

Jo & Gero Office Genetic Algorithm Areas, adjacency Assigned program on existing layout 

Gero & Kazakov Office Genetic Algorithm Areas, adjacency Assigned program on existing layout 

Jagielski and Gero Office Genetic Algorithm Areas, adjacency Assigned program on existing layout 

Thakur et al Residential Genetic Algorithm Area Assigned program on existing layout 

Guo and Li Residential Agent based 
Program graph, area of 

rooms 

Generated layout assigned to Grid 

voxel 

Koenig & Schneider Residential Genetic Algorithm Connectivity, hierarchy Assigned program on existing layout 

Liu et al Residential Non-linear least squares 
Connectivity, Areas, Wall 

fabrication specification 

Rooms inside boundary, precast 

concrete walls 

Koenig and Knecht Residential Genetic Algorithm Connectivity, hierarchy Assigned program on existing layout 

Rodrigues Residential 
Mathematical 

Programming 
Areas, connectivity Assigned program on existing layout 

Dino Office Genetic Algorithm 
Program description, 

geometric properties 
Room tiles in existing grid 

Bisht Residential Graph theory 

Dimensional constraints, 

adjacency Program layout 

Bahrehmand et al Residential Genetic Algorithm 
Areas, adjacency, window 

door or entrance.  
Program layout 
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Table 2 

Machine learning methods in the literature. 

Author(s) Typology Matching  Inputs Output 

Huang & Zheng Residential c-GAN 
Labelled image of 

floorplans 
Furnished floorplan 

Peters Residential c-GAN Boundary 
Rooms color coded in boundary, manual 

tracing for vectors  

Chaillou Residential c-GAN Boundary of building 
Rooms color coded in boundary manual 

tracing for vectors  

Rahbar et al Residential c-GAN Boundary of building Rooms color coded in boundary 
 

3. Research Methodology 

GAN has recently emerged as the best architecture for the 

synthesis of images, on the basis of the dataset used to train 

the GAN model. Image-to-image translation is one of the 

uses for generative adversarial networks. The goal of 

image-to-image translation is to create a new image that is 

connected to the mapping relationship between the input 

and output images using a neural network model. Deep 

generative models have shown superior performance over 

competing methods by learning from and interpreting data  

to synthesis designs with a level of sophistication and 

adaptability. In this study, a conditional generative 

adversarial network named Pix2Pix is used to support a 

model for residential layout generation. In Figure 1 shows 

the research methodology flowchart. This paper's primary 

objective is to suggest an approach for predicting the 

possibility of a space layout using data-driven processes. 

The procedure and the representation's outcomes could be 

used for the new field of architectural probability problems. 

Figure 2 illustrates the research procedure diagram  

 

 

 

 
Fig. 1. Proposed automated design methodology. 

 

 
 

Fig. 2. Research methodology procedure. 
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Fig. 4. Translating of label to scene example.  

3.1 Pix2Pix 

Pix2Pix is a form of Conditional generative adversarial 

network for general purpose image-to-image translation.  

By providing training data in pairs, Ian Goodfellow and his 

colleague proposed the generative adversarial networks 

(Goodfellow et al., 2014). The GAN model is founded on 

the idea that a generator and a discriminator, two neural 

networks, compete with one another. A generator model 

named G is for creating new logical synthetic images and a 

discriminator model named D is for classifying images as 

real (from the data set) or fake (generated). A set of data is 

used to train the D model to recognize images. When 

properly trained, this model can distinguish the difference 

between a real example taken from the dataset and a fake 

image that isn't from the dataset. The G model, however, is 

trained to generate images that look like images from the 

same dataset. The D model gives some feedback on the 

output quality of the G model as it generates images. In 

reaction, the G model adjusts producing images that are 

even more realistic. The G model tries to deceive the D 

model while the D model tries to recognize the fake images. 

The two networks are trained concurrently in an adversarial 

phase. A GAN gradually improves its ability to create 

relevant synthetic images through this feedback loop 

(Chaillou, 2019). GANs are generative models that learn 

the mapping G: z  y from a random noise vector z to an 

output image y (Goodfellow et al., 2014). The Conditional 

GAN is an extension of the GAN architecture that gives 

users control over the output generated image by basing it 

on an input source image. As opposed to this, Conditional 

GANs learn a mapping from observed image x and random 

noise vector z, to y, G: {x; z}  y (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An adversarially trained discriminator, D, which is trained 

to do as well as feasible at spotting the generator's fakes, 

cannot separate the outputs from the real images that the 

generator, G, produces. The objective of a conditional 

GAN is made up of two part: L1 loss and adversarial loss. 

The adversarial loss can be expressed as: 

         LcGAN(G, D) =E x,y [logD(x, y)] + 

                                 E x z [log (1- D(x, G(x,z))], 

where an adversarial D seeks to maximize this aim while G 

seeks to minimize it. Conditional GANs learn a conditional 

generative model in the same way that GANs learn a 

generative model of the data. This makes it possible to 

conditionally generate an output image that matches an 

input image for image-to-image translation tasks. 

It has been useful in the previous approaches to mix the 

GAN objective with a more traditional loss, like L2 

distance. The generator's task is to not only deceive the 

discriminator but also to be close to the ground truth output 

in an L2 sense, while the discriminator's job stays 

unchanged. Phillip Isola and his colleague explore 

investigate this possibility, using L1 distance rather than L2 

as L1 encourages less blurring. L1 distance is added to the 

generator loss to encourage the low- frequency correctness 

of the generated image: 

          LL1(G) = E x,y,z [ǁ  y - G(x,z) ǁ  1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And the final objective function is as follows: 

G = arg min max LcGAN (G,D) + λLL1(G) 
                 G        D 

Pix2Pix was presented by Phillip Isola in 2017. The 

generation of an image is dependent on a given image in 

this application of conditional GANs to the problem of 

image-to-image translation. To map the input to the 

corresponding output set y, the input x sets are loaded into 

the trained Pix2Pix models. It developed into a viable 

foundation for complex image-to-image translation tasks, 

such as translating maps to satellite photos, black-and-

white photos to color, product drawings to product photos, 

sketches to photos, labels to scenes, day to night and more. 

A translation of labels to scenes is shown in Figure 4. In the 

case of Pix2Pix, the discriminator is given a source image 

and a target image, and it then determines if the target is an 

acceptable translation of the source image or not (Isola, 

2017). 

 

 

 

 

 

 

 

 

 

Fig. 3. The architecture of Conditional GAN. 
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3.2 Preparation of the data set 
 

Regarding the procedure of Pix2Pix training, a pair of 

same-sized images are required as training dataset. In the 

scope of the study, the data set is prepared to train Pix2pix 

model. . This training dataset includes 660 ideal apartment 

plans of Hamadan. The similar social, economic, and 

cultural conditions were effective in the selection of plans. 

So the plans of the District 1 and District 2 of Hamadan 

were collected. The training dataset contains a pair of 

images, the first is the boundary representation of the 

project as an input and the second one is the available 

layout design as a conditional target image. First, the real 

cases of apartment floor plans are collected. Second, the 

collected floor plans are labeled manually using the 

different colors to represent spaces, i.e. color labeled map. 

AutoCAD software is used to generate the source and target 

image representations based on actual sizes, each layout is 

precisely drawn. As the vector drawing is transformed into 

a raster image, the drawings are proportionally resized. A 

sample of preparing source image (input) from an 

apartment floor plan is illustrated in Figure 5. An example 

apartment plan is located on the left. For Pix2Pix's input 

picture, the right image is created. It only has the 

apartment's boundary wall. There are no differences in the 

thickness of the boundary wall for each dataset. The 

skylights in the plan of northern apartments, columns and 

staircases and are not included. Terraces are regarded as an 

extension of adjacent areas. Walls, windows and entrance 

of footprint are the input image's low features. For the 

output picture, the appropriate image (a colored layout as 

target) is produced. Each space is labeled with a specific      

color. The colors used to label the spaces are shown in 

Figure 6. The low-level features used to train the network 

are the RGB colors. The network learns how to map the 

input images to their matching output images during the 

Pix2Pix training process. Figure 7 displays a portion of the 

660 collection. All of the plans in the dataset are 

normalized based on their area in order to define the size of 

each apartment. The Pix2pix model is trained on all of the 

660 dataset which is described in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Training the Pix2Pix 

Following the data preparation phase, the data set is used 

to train a Pix2Pix GAN model in Keras. The open-source 

software library known as Keras offers an interface for 

TensorFlow, an open-source framework for numerical 

Figure 5. Preparation of the source image (footprint) from the 

original plan.  

 

Fig. 6. Labeling the floor plan for Pix2Pix training, labeled 

output image (Right) and Label colors of spaces (Left). 
 

 

  

Fig. 7. A part of the training dataset. 
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computation and large-scale machine learning used for 

artificial neural networks. Each image is imported, resized, 

and then divided into "footprint plan" and "color labeled 

plan" sections. The output consists of images with a width 

and height of 256x256 pixel. Figure 7 illustrates the 

generator and discriminator parts that made up the model's 

architecture. In order to account for mapping of footprint to 

color labeled plan pictures over the whole training data, the 

discriminator and generator models' parameters are 

changed during the Pix2Pix training process. This model's 

discriminator employs a "PatchGAN" classifier from a 

convolutional neural network.  Instead of using the entire 

area for classification of images, the PatchGAN uses 

patches of a particular size. This trains the generator to 

produce more realistic images. Pix2Pix uses a "U-Net-

based" architecture as its image-to-image translation. The 

discriminator gains the ability to classify a pair of images 

as real or fake. While this is happening, the generator learns 

how to deceive the discriminator into the generated image 

is a real image. The U-Net generator is considered an 

encoder-decoder model. It is a structure that uses a skip 

connection to link the encoder layer and the decoder layer 

directly. In comparison to a simple encoder-decoder 

architecture, the skip connection enables learning that is 

more stable. The model generates a space layout plan from 

a footprint. It employs a convolutional and de-

convolutional layer with the option of layer skipping. Each 

source image that is input is divided into a number of 

tokens by the generator. The generator performs the 

encoding-decoding process by first down sampling or 

encoding the input image to a bottleneck layer and then up 

sampling or decoding the bottleneck representation to the 

output image's size. In this procedure, a new image is 

produced using the experience it has gained from the 

training dataset (48). The generated image and the input are 

inserted as a pair into the discriminator model in the next 

phase. The discriminator model simply checks and 

penalizes a small patch of the image pair to determine 

whether the provided images are fake or real. It takes data 

from both the training set and the generator. To train GAN 

models, many thousands of iterations are required. 
 

4. Results and Evaluation 
 

In this section, we evaluate the outputs of the model. There 

is no established method for evaluating the performance of 

GAN algorithms; nevertheless, there are numerous 

alternative methods that can be employed. The two 

categories of GAN evaluation methodologies are 

qualitative and quantitative approaches. In this paper, we 

applied both approaches to comprehend GAN behavior. 

Manually inspecting and judging the generated samples 

(rating and preference judgment) is one of the most 

common and effective qualitative assessments for 

evaluating GANs. An expert architect does the qualitative 

evaluation of the model in this paper. In addition to 

qualitative evaluation, the effectiveness of GAN algorithm 

productions can be measured using a variety of quantitative 

techniques. Some of these methods assess the resolution 

quality of the GAN-generated image, while others use 

statistical calculations to determine whether the training 

dataset and the GAN outputs are similar (Borji, 2019). In 

this study the pixel accuracy measure is proposed for the 

evaluation of the trained model. Pixel accuracy is 

calculated by dividing the number of correctly mapped 

pixels from an input image of a particular class in the 

synthesized image, by all pixels in that class. 

4.1 Evaluation through the quantitative method 

After the training process, we use the pixel accuracy 

measure to evaluate the model's outputs. When external 

areas, exterior walls, windows and the entry door pixels 

retaining their labels and interior areas are mapped to the 

color other than the values used for other classes, this is 

considered a correct mapping. Since the boundary where 

the classes meet is only a smaller piece of an image, errors 

are likely to occur along this area. The accuracy scores are 

calculated separately for five classes: External area, 

exterior walls, windows, entry door and interior area. The 

use of correct colors in the right locations relates to the 

label pixel accuracy score. We need to define a tolerance 

level that allows for some deviations from the real values 

since the model could generate pixels that resemble the 

colors used in the ground truth images but do not have 

exactly the same RGB values. As shown by the label pixel 

accuracy values in Table 3, external areas and interior areas 

being correctly rendered. The boundary is not shifted either 

as that would affect the accuracy scores for the external 

areas. It seems like the exterior walls, windows and the 

entry door pixels are to some extent overtaken by the 

bordering other classes, since visual inspection of the 

synthesized images does not show any indications of the 

model using the wrong colors. The entry door pixels seem 

to suffer from surrounding classes bleeding into them the 

most as the accuracy scores are considerably lower than the 

scores for the other classes. The entry door also occupies a 

smaller area of the image, so any pixel deviations will 

affect the accuracy percentages more. 

 

Table 3 

 Average label pixel accuracy scores. 
Average label pixel accuracy (%) 

External 

area 

Exterior 

walls 
Windows 

Entry 

door 

Interior 

area 

100 88.4 76.8 57.7 100 

 

4.2. Evaluation through the qualitative method 
 

The qualitative evaluation of the model is done by an expert 

architect after the training phase. To this end, 12 different 

types of the test data’s boundary lines with different 

dimensions and designs are given to the model as input 

datasets. These boundary lines were not present in the 

training data set before. Table 4 shows the output generated 

by the model based on its learning process. The 

experimental data including boundary lines are shown in 

the first column. The second column displays the model’s 

output. The third column shows a sample layout which 

designed by an expert architect. There is also a column of 

average score resulting from the evaluation of the model by 
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an expert architect. The scores range from 1 to 7 for each 

criterion with numbers from 1= extremely weak to 7= 

extremely strong. In Table 5 the scores of each criterion for 

the 12 test data is presented. Since there are always multiple 

solutions for each case, the only significant criterion for the 

evaluation of the model is the learning of the rules and 

latent basic concepts for production of an architectural 

spatial layout. For this purpose, several evaluation criteria 

in two categories, namely topological and geometrical, are 

used to evaluate the model’s ability by an expert architect. 

The geometrical criteria included the correct dimensions of 

the spaces and the correct proportions of the spaces in 

relation to the total area. The topological criteria included 

the correct orientation of spaces, the correct zoning relative 

to the entrance, the correct arrangement of the spaces 

relative to each other and relative to the location of the 

windows and openings. The dimensions criterion evaluated 

the correct dimensions of the spaces. The proportions 

criterion, evaluated the area of each space in relation to the 

total area. The orientation criteria, evaluated the correct 

orientation of each spaces. The entrances criterion 

evaluated the correct division of the spaces into two public 

and private zones according to the location of the entrance. 

The arrangements criterion evaluated the correct location 

of each space in relation to windows, openings and other 

spaces. In sample 1, there are no elongated and 

disproportionate rooms, and the model preserved the 

dimensions of each layout. In sample 2, however, all 

spaces, including the WC, the bathroom, the living room, 

the bedrooms and the kitchen, are proportionate to the total 

area. In sample 4 the area of the WC and that of the 

bathroom are not compatible with desirable spatial 

proportions either. In sample 5, the dimension of master's 

bathroom shows that the model has not correctly learned 

the dimensions. In real life cases, the location of an 

entrance is such that it connects a public space to a private 

one. As can be seen, in all samples, the arrangement 

relative to the entrance has completely separated the public 

and private spaces.  All samples have windows in the living 

area, kitchen, and bedrooms. That shows that the model has 

accurately figured out how to arrange the spaces in relation 

to the windows. A further indication that the model has 

successfully learned the proper arrangement of the areas 

relative to one another is the lack of a bathroom or WC in 

the middle of the kitchen, living room, or bedrooms. The 

scores of the evaluation criteria and the resulting output 

showed that some of the desirable drawing and layout 

design patterns have been appropriately learned by the 

model. The correct zoning relative to the location of the 

entrance, the correct arrangement of the spaces that require 

light adjacent to windows and the correct arrangement of 

the spaces relative to each other and the correct orientation 

of spaces are among the well-learned instances. This study 

showed that the production of a spatial arrangement layout 

by the model was successful. Simultaneous consideration 

of and attention to all impactful factors in the design 

process, especially the latent design rules and patterns 

pertaining to the experiences of the designer, is one of the 

benefits of utilizing generative adversarial networks in 

solving design problems.  

       Table 4 

       Outputs of the trained Pix2Pix. 

 Test data’s boundary line Output of the Model  Sample layout design Average Score  

1 

 
  

 

6.83 

2 

 
  

 

6.66 

3 

   

6.91 
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4 

   

6.58 

5 

 
  

6.75 

6 

  
 

7 

7 

 
 

 

6.91 

8 

  
 

6.66 

9 

 
  

6.75 

10 

  
 

6.83 
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11 

   

6.91 

12 

   

6.75 

 

Table 5 

 The test data's scores of each criterion. 

 

 

5. Discussion 
 

 

With the evolution of the digital age, the profession of 

architecture has developed new ways to resolve its design 

problems. These new ways have enabled designers to gain 

a different perspective and allow them to increase design 

quality. Recently the latest technological developments, 

machine learning and deep learning, have received 

considerable attention in the field of architecture because 

of the powerful learning and forcasting potentials of neural 

networks. The experiments in this study demonstrate the 

possibility of using these models for generative 

architectural designs. The Pix2Pix is used to generate space 

layout plan which is helpful in preliminary stages of design. 

Instead of generating the final floor plan, generating space 

layout plans are investigated which are more abstract and 

requires less dataset. In GANs models, the more training 

data is provided, the more accurate the output from the 

artificial intelligence becomes and the closer it gets to the 

user's expectations. In this study, the training data consisted 

of 660 images, which exceeded the number used in 

previous studies. The results of this study are consistent 

with the user expectations and desirable drawing patterns. 

Therefore, the most important requirement for improving 

responsiveness and achieving ore desirable geometrical 

criteria is increasing the quantity of training data in the 

process of training the artificial intelligence model.  

6. Conclusion 

In this study, the use of the generative adversarial network 

for 2D architectural design problems was investigated. 

Based on the given boundaries, generative adversarial 

network successfully learn both subjective and objective 

criteria in the built precedent on its own and improve the 

performance to generate space layout designs. The 

validation by an expert shows that the proposed model has 

Test 

data 

Evaluation criteria 

 

Average 

score 

Topological Geometrical 

Zoning relative 

to the entrance  

arrangement 

relative to each 

other 

arrangement relative to 

the windows and 

openings 

orientation 

preferences 

 

Space 

dimension 

 

 

 Space 

area  

 

1 7 7 7 7 6.5 6.5 6.83 

2 7 6.5 6.5 7 6.5 6.5 6.66 

3 7 7 7 6.5 7 7 6.91 

4 7 6 7 7 6.5 6 6.58 

5 7 6.5 7 7 6.5 6.5 6.75 

6 7 7 7 7 7 7 7 

7 7 7 6.5 7 7 7 6.91 

8 7 6.5 7 7 6 6.5 6.66 

9 7 7 7 7 6 6.5 6.75 

10 7 6.5 7 6.5 7 7 6.83 

11 7 7 6.5 7 7 7 6.91 

12 7 7 7 7 6 6.5 6.75 
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been successful in generating space layout plans to satisfy 

topological and geometrical constraints. This issue 

indicates the flexibility and efficiency of the model for use 

in other cases and designs.  The neural network learns 

multiple features through dataset training, and as a result, 

develops space layout plans with hidden semantic. The 

research findings of the training models show that the 

algorithm learns the procedure of translating an input 

image (given boundaries) to an output image (space layout 

plan). It mimics the fundamental conversion patterns in the 

input and output images of the training dataset. Based on 

the dataset that was presented to the algorithm, the Pix2Pix 

model fully organized the topology of the spaces that were 

generated.  In general, more training datasets with 

authorized layout designs might produce layouts that are 

better in geometrical constraints. Preprocessing and 

training all need for designer involvement. As a result, it is 

not entirely automated, and post processing (such as vector 

drawing) is still required for the pixel-based end results to 

be employed as architectural representations. This type of 

model assists architects in reducing time spent on repetitive 

tasks especially in the project with complex topological 

constraints.  
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