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Combination of a modified fuzzy network DEA approach with ML 

algorithms and its application in the automobile manufacturing 

industry 

Abstract 

This paper proposes, for the first time, the integration of a new network Data Envelopment Analysis (DEA) 

approach with Artificial Intelligence (AI) techniques to predict the efficiency score of multi-process 

production and service systems with imprecise data. In many cases, accurate and sufficient information is 

not available, and the data is imprecise. Structural complexity and imprecise data lead to a large volume of 

variables and constraints in models that assess the performance of systems. The use of AI techniques, such 

as Machine Learning (ML) algorithms, is impressive for accurately predicting the performance scores of 

network systems in fuzzy data environments. The findings indicate that of the three AI algorithms 

examined- Logistic Regression (LR), Random Forest (RF), and Decision Tree (DT)- the RF algorithm has 

almost the highest accuracy in predicting interval efficiency scores and is utilized to predict the efficiency 

score of new DMUs. 

Keywords: Data envelopment analysis (DEA), Performance evaluation, Fuzzy Network DEA, 

Machin Learning (ML) algorithms, After-sales services. 

Subject classification code:  C44, C61 
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1. Introduction 

Data Envelopment Analysis (DEA) is a robust 

performance evaluation method that employs 

mathematical programming to assess the 

efficiency of homogenous Decision-Making 

Units (DMUs) (Charnes et al. 1978). Production 

and service systems, in many businesses, have a 

network multi-stage structure, where the outputs 

of one sub-division are the inputs of another 

stage. Performance evaluation of multi-stage 

DMUs, as a network system, involves 

considering the intermediate activities between 

sub-processes. Taking into account the inner 

relationships between components in a network 

system provide managers with useful information 

to make effective decisions. Evaluating a multi-

stage DMU by considering the interrelation 

between sub-divisions reveals that the 

inefficiency of which sub-division causes the 

overall inefficiency. In many network DEA 

models, constraints related to intermediate 

activities are considered as inequalities. In this 

paper, we propose modified approaches to deal 

with intermediate activities. Free links between 

the stages are assumed in this study. 

In addition to the structural complexity of DMUs, 

dealing with imprecise data is another issue in the 

performance evaluation process. In many real-

world situations, there are no clear boundaries for 

information. To address such vague concepts, 

fuzzy techniques are employed, through which 

the quantitative concepts can be incorporated into 

mathematical models and made applicable for 

managerial policies. In this paper, we propose 

fuzzy network DEA models to evaluate the 

overall efficiency of network systems in 

imprecise environment. 

The complexity of the structure and imprecise 

data introduce numerous variables and 

constraints to the mathematical model used for 

calculating the efficiency score of network 

systems. Furthermore, to evaluate the 

performance of a new DMU, the relative 

efficiency scores of all DMUs must be 

recalculated. Additionally, in many scenarios, 

such as medical resource allocations during 

epidemics, it is crucial to predict the required 

resources and performance for the future. AI can 

be employed in conjunction with performance 

evaluation approaches to tackle the 

computational burdens and make accurate 

predictions. Utilizing ML techniques enables 

more efficient handling of large amounts of data 

compared to conventional methods (Batta, 2020). 

By implementing ML methods, the efficiency 

values of new DMUs can be found without re-

measuring the whole DMUs (Zhang et al., 2022).  

In this paper, we utilize modified fuzzy network 

DEA models to calculate efficiency scores, which 

are then used as training and testing data sets for 

ML algorithms. Subsequently, the best-

performing algorithm is identified and used to 

predict the efficiency score of new DMUs. We 

apply these approaches to assess the performance 

of after-sales services departments in an 

automobile company. A company offers post-

purchase assistance to its customers, which 

encompasses transportation, installation, and 

commissioning services, as well as maintenance, 

supply and distribution of spare parts, 

instructional documentation for product usage, 

warranty provisions, and more (Rebelo et al. 

2021). High quality after-sales services result in 

satisfied and loyal customers. Increasing 

customer retention enhances the company's brand 

reputation and leads to additional business from 

word-of-mouth sales, recommendations and 

customer referrals. The after-sales services 

department is a fundamental part of a company.  

A notable proportion of the revenue in the 

manufacturing industry is related to after-sales 

service activities. Optimizing the performance of 

the after-sales service department in a 

manufacturing business involves providing 

customers with perfect support, such as on time 

delivery and warranty (obligations undertaken by 

the seller), repair or replacement, etc. This results 

in a high level of customer satisfaction benefiting 

the seller. The production of goods and the 

provision of services involve multi-process 

operations. Evaluating production operations and 
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services to optimally allocate resources, reduce 

costs, ensure customer satisfaction, and achieve 

similar objectives is fundamental in management 

and decision-making. In this study, we consider 

the level of customer satisfaction and the degree 

of obligation fulfilment as fuzzy data.  

 

The contributions of this paper are as follows:  

1) Instead of considering a single-stage black box 

structure, which results in missing information 

from inner processes, here, a network DEA 

approach has been applied to investigate the 

effect of each sub-process performance on the 

overall efficiency score. 2) In the previous 

network DEA and traditional DEA models for the 

evaluation of DMUs, the objective is to maximize 

input contraction or output expansion.  Here, our 

model optimizes the performance of the overall 

system by both input contraction and output 

expansion. 3) In many network DEA models, 

constraints related to intermediate activities are 

considered as inequalities (Fukuyama, H. & 

Mirdehghan, 2012, Fukuyama & Matousek, 

2017, Shafiei Nikabadi et al., 2017, and Niknafs 

et al., 2020) which, as will be shown in this paper, 

may lead to contradictions in optimality. In this 

paper, we present modified approaches to deal 

with intermediate activities. 4) We treat the level 

of customer satisfaction and the grade of 

obligation fulfilment as fuzzy numbers. By 

employing fuzzy methods, qualitative 

information can be incorporated in to the 

mathematical model allowing for more accurate 

simulations of real-world situations. This helps 

managers design effective strategies when 

dealing with inexact information. In addition, 

Through the combination of our network 

approach with the fuzzy method, we obtain a 

crisp interval efficiency score by which we are 

able to analyze and interpret the performance of a 

complex network system with vague and 

imprecise data. 5) This paper, for the first time, 

presents a combination of a modified fuzzy 

network DEA approach with AI techniques to 

predict the performance of multi-process 

production and service systems. 6) The network 

DEA approach proposed in this paper is 

applicable for performance evaluation of DMUs 

with interval data. 

 

The next section reviews research studies 

conducted in network DEA, fuzzy DEA and 

fuzzy network DEA. Section 3 contains notations 

and preliminaries necessary to present the fuzzy 

network DEA method and ML algorithms. 

Section 4 covers a modified fuzzy network DEA 

model to evaluate the crisp interval efficiency 

scores of two-stage DMUs with fuzzy data. The 

application of the proposed approach in 

evaluating the performance of 21 after-sales 

service representatives of an Iranian auto-making 

company is provided in Section 5. Furthermore, 

an integrated approach including the combination 

of proposed fuzzy network DEA models with ML 

algorithms is developed to predict the efficiency 

scores of 60 after-sales service representatives. 

2. Literature review 

As the studies that took into account the internal 

structure of network systems, (Koushki, 2017) 

proposed a dynamic DEA network approach to 

evaluate two-stage structure DMUs where the 

activity and performance of DMU in one period 

affected its efficiency in the next. According to 

the results of the proposed dynamic model, the 

inefficiencies of DMU’s improve considerably. 

(Galagedera et al., 2018) developed a network 

DEA model to assess the overall and stage-level 

performance of the fund management function as 

a three-stage production process. The stage-level 

processes operate under environmental 

conditions and levels of risk exposure, which are 

treated as conditions imposed on the intermediate 

measures (products). (Koushki, 2018) presented 

DEA approaches to achieve the most productivity 

in two-stage DMUs. (Shahbazifar et al., 2021) 

introduced network DEA models to assess and 

rank the groups of production systems utilizing 

average and minimum performance criteria. 

(Kooshki and Mashayekhi Nezam Abadi, 2018) 

proposed a two-stage network DEA model to 

identify the Most Productive Scale Size (MPSS) 

pattern in supplier-manufacturer supply chains. 

(Fukuyama et al., 2023) proposed a dynamic 
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network DEA model to evaluate three-stage 

DMUs incorporating dual-role data, serving as 

both the final outputs in one period and the 

carryover inputs in the next period. They utilized 

a transformation function to characterize the 

production technology. (Koushki, 2023) 

introduced a modified network DEA approach 

and extended it to centralized method for 

evaluating units with a multi-stage structure. 

(Wanke et al., 2023) derived a deterministic 

linear programming model from a stochastic two-

stage network DEA model in the presence of 

stochastic ratio data. (Emami et al., 2024) 

explored the issue of constant cost distribution 

within a particular two-stage system. They 

conducted a series of allocations based on 

common weights and size, implementing a min-

max strategy to minimize the disparity between 

efficient allocations and those based on size. 

(Zheng et al., 2024) applied network DEA to 

evaluate a two-sided platform operation system 

by dividing it into two sub-processes: Marketing 

and Service (MS) sub-process and Value-

Creating (VC) sub-process. (Xiao et al., 2024) 

developed a single-stage hierarchical additive 

self-evaluation model by integrating the well-

established cross-efficiency method. They 

proposed a combination of a max-min secondary 

goal model and the Criteria Importance Through 

Inter-Criteria Correlation (CRITIC) method to 

expand the basic hierarchical self-evaluation 

model. (Gerami, 2025) evaluated bank branches 

as two-stage DMUs using a network DEA 

approach. 

As the studies conducted on fuzzy DEA, (Singh 

and Pant, 2020) introduced a fuzzy DEA method 

that integrates fuzzy weights within the objective 

function and employs alpha cuts to establish the 

fuzzy interval.  (Ebrahimnejad and Amani, 2021) 

developed two virtual fuzzy DMUs, namely the 

fuzzy ideal DMU (FIDMU) and the fuzzy anti-

ideal DMU (FADMU), while addressing the 

issue of undesirable outputs. They also put 

forward a fuzzy ranking algorithm designed to 

facilitate the comparison and ranking of the fuzzy 

efficiencies of DMUs. In a separate study, (Lu, 

2021) developed a fuzzy network DEA approach 

for selecting advanced manufacturing technology 

(AMT) alternatives, taking into account multiple 

decision-makers (DMs) and weight restrictions. 

(Yang et al., 2022) extended a model utilizing 

triangular intuitionistic fuzzy numbers to assess 

the efficiency scores associated with solid waste 

recycling. Their approach integrated the 

Technique for Order Preference by Similarity to 

Ideal Solution (TOPSIS) method alongside the 

entropy weight method to ascertain the 

proportion of solid waste recycling. (Zadmirzaei 

et al., 2024) proposed a fuzzy undesirable slacks-

based DEA method aimed at assessing 

environmental efficiency through the application 

of the directional distance function and the 

concept of weak disposability. They also 

explored various combined methodologies, 

including Artificial Neural Networks (ANN), 

ANN enhanced with particle swarm optimization 

(PSO), and the artificial immune system (AIS), to 

address inefficiencies. Additionally, (Sahil and 

Danish Lohani, 2024) advanced the network two-

stage DEA framework by integrating undesirable 

outputs and shared resources within intuitionistic 

fuzzy contexts, utilizing parabolic intuitionistic 

fuzzy numbers. (Gholami Golsefid et al., 2024) 

evaluated the cost and revenue efficiency of two-

stage systems under fuzzy data assumption. 

(Yang and Yang, 2025) developed models for the 

supplier selection problem in multi-stage supply 

chains under uncertain conditions. 

In research focused on the integration of DEA 

methods with ML techniques, (Kuo et al., 2010) 

proposed a model for selecting green suppliers 

that combines ANN and two multi-attribute 

decision analysis (MADA) approaches: DEA and 

analytic network process (ANP). (Vlahogianni et 

al., 2016) applied DEA alongside neural network 

regression to evaluate the efficiency of bus depots 

and routes in the Athens bus system in Greece. 

(Nandy and Singh, 2020) applied a combined 

fuzzy DEA-ML method in the agricultural 

production. (Jomthanachai et al., 2021) applied a 

combination of the DEA and ML approaches for 

risk management. They utilized the DEA cross-
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efficiency method to assess a group of risk factors 

derived from the Failure Mode and Effects 

Analysis (FMEA). (Shi and Zhao, 2023) 

proposed an integrated ML-DEA approach to 

predict the performance of DMUs. Efficiency 

scores are measured and labeled as the good, the 

acceptable, and the underperforming classes 

utilizing RF, support vector machine, and LR 

classifiers. Then, Synthetic Minority 

Oversampling Technique (SMOTE) with 

Manhattan distance metric is used to solve class 

imbalance in the labeled, high-dimensional 

dataset. (Rezaee et al., 2024) employed a 

combined DEA-ML method to project DMUs 

onto a benchmark efficiency level by adjusting 

actionable and feasible inputs and outputs. 

Few studies have been conducted on integrating 

network DEA with ML algorithms. To bridge this 

gap, this study introduces a combination of a 

modified fuzzy network DEA with ML 

algorithms to evaluate the sub divisions and 

calculate the overall efficiency of DMUs with a 

network structure.  

3. Notations and preliminaries 

3.1. Series Two-stage DMU 

In a DMU with a two-stage series structure, there 

are intermediate activities between the stages 

denoted by vector Z . Stage 1 may have outputs 

that leave the system, and Stage 2 may have 

inputs except Z . Many production and service 

systems have a series structure. The models 

proposed in this paper can be used to evaluate 

series two-stage DMUs in general. Here, we will 

consider an after-sales service department in 

detail. The after-sales service department is 

viewed as a two-stage system consisting of 

reception (Stage 1) and repair (Stage 2) centers. 

The personnel costs and the degree of obligations 

fulfilled by the after-sales service team are inputs 

of stage1. Income from selling spare parts are the 

outputs of Stage 1. Other outputs of stage1 are 

cars in need of repairs. The transfer of these cars 

from Stage 1 to Stage 2 is considered an 

intermediate activity between the two stages. 

Cars in need of repairs and labor are inputs of 

Stage 2, while general income and customer 

satisfaction are the outputs of Stage 2. 

We denote an after-sales service department by 

DMU . Consider    ( 1,.., )jDMU j n  with a 

two-stage structure. In Stage 1, let jX  (costs 

and obligations fulfilment) be the vector of inputs 

, jZ  (cars needing repairs) and jV  be the vectors 

of the outputs (income from selling the spare 

parts). jZ  and jR  (labor) are the vectors of the 

inputs of Stage 2, and jY (general income and 

customer satisfaction)                                                                                                                                                                                                             

is the output vector. A network with two stages 

connected in a series structure is depicted in 

Figure1. 
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                                                  Stage1                                                  Stage2                  

               Obligations Fulfilment                                 Cars in Need of Repairs                                 Customer Satisfaction                                                                                                                                                                                                                                                                                                                       

                               Costs                                                                                          General Incomes 

 

                                Income from selling spare parts                                     Labor 

Fig.1. DMU with two-stage structure: after-sales service department 

3.2. Fuzzy arithmetic 

We treat the level of customer satisfaction and the 

degree of fulfilment of obligations by the after-

sales service department as fuzzy numbers. Fuzzy 

arithmetic is a suitable method to deal with 

inexact qualitative data (Zadeh, 1965). Let U

represents universe of discourse and UA . 

function  1,0: UA  is called membership 

function and )(xA  is the grade of membership 

of x  in A . The fuzzy subset of A  is defined as 

 Uxxx A |))(,(  . The  cut set of A  

is defined as    1,0,)(|   xxA A . The 

support set of A  is defined as  

 0)(|)(  xxAS A . A triangular fuzzy 

number represented as ),,,( cbaA  , is a fuzzy 

number with a membership function as follows: 

𝜇𝐴(𝑥)

=

{
 
 

 
 
𝑥 − 𝑎

𝑏 − 𝑎
 ,       𝑎 ≤ 𝑥 ≤ 𝑏                                                    

      
𝑐 − 𝑥

𝑐 − 𝑏
 ,        𝑏 ≤ 𝑥 ≤ 𝑐                                                     

0   ,         𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                             
         

 

 

3.3. An overview of ML 

In this paper, we utilize modified fuzzy network 

DEA models to calculate efficiency scores, which 

are then used as training and testing data sets for 

ML algorithms. Subsequently, the best-

performing algorithm is identified and used to 

predict the efficiency score of new DMUs. ML is 

a robust method for data analysis that combines 

elements of mathematics, statistics, artificial 

intelligence, and computer science to extract 

insights from input data and autonomously 

generate predictions. This predictive 

functionality is achieved by examining input data 

to yield specific outputs through two main 

learning approaches: supervised learning and 

unsupervised learning (Sarker, 2021). Supervised 

learning is especially adept at handling 

classification and regression tasks, utilizing a 

range of algorithms, including DT, RF, and LR. 

DT is a supervised machine learning model that 

functions as a predictor applicable to both 

regression and classification tasks, as noted by 

(Guggari et al., 2018). Typically, decision trees 

comprise two categories of nodes: internal nodes 

and leaf nodes. Internal nodes signify decisions 

made based on specific features, whereas leaf 

nodes indicate the predicted outcome or class 

label. The journey from the root node to a leaf 

node encompasses a series of decisions that 

culminate in the final prediction (Koulinas et al., 

2020). The primary challenges associated with 

Reception Repair Center 
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DTs involve identifying the most effective 

feature for data partitioning and determining 

which features should be chosen at each stage 

throughout the decision tree's operation (Ramos 

et al., 2022). RF is a supervised ML model known 

for its ability to deliver highly accurate 

predictions while minimizing the risk of 

overfitting. This technique, as indicated by its 

name, involves the random creation of a 

collection of decision trees, which are 

subsequently utilized in conjunction to generate 

predictions. Each decision tree within the random 

forest is trained on a randomly selected subset of 

the training data, as well as a random selection of 

features. The final output of the random forest is 

achieved by aggregating the predictions made by 

all the individual decision trees (Lee and Keck, 

2022).LR is powerful supervised ML algorithm 

frequently employed for predictive tasks or for 

categorizing data into distinct classes. In its 

fundamental form, LR utilizes a logistic function, 

as defined below, to model a binary dependent 

variable; however, it can be adapted to 

accommodate multiple classes. This function 

effectively transforms any real number into a 

value that lies between 0 and 1. The logistic 

function can be mathematically expressed as

( . )

1
( )

1 w value b
p value

e 



,where 𝑣𝑎𝑙𝑢𝑒 

represents the input variable, 𝑝(𝑣𝑎𝑙𝑢𝑒) indicates 

the predicted probability, 𝑤 denotes coefficients 

(weights) vector, and 𝑏 shows the bias term, 

commonly known as intercept (Hosmer and 

Lemeshow, 2000). 

4. Performance evaluation 

4.1. Network DEA 

To measure the efficiency score of oDMU  based 

on the contraction of input values or the 

expansion of output values (but not both) without 

considering intermediate products jZ  , the input-

oriented and output-oriented CCR models 

(Charnes et al.,  1978) are defined as models (1) 

and (2) respectively. 
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(2)                            0     
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1

1

*
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


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ojj

YY
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These models only consider the overall input and 

output jj YX   and  of the system. However, the 

network structure of DMU, involving the series 

relationships and connectivity between the 

stages, should be considered. The intermediate 

vector jZ  is the output of stage 1 and also is the 

input of Stage 2. Constraint related to vectors 

njZ j ,...,1,     as the outputs of Stage 1 is  

o

n

j

jj ZZ 
1

1  and as the inputs of Stage 2 is 

o

n

j

jj ZZ 
1

2  . Therefore, the connectivity 

between the stages implies that 





n

j

jj

n

j

jj ZZ
1

2

1

1        (3). 

Many existing models to evaluate DMUs with 

network structure considered inequalities 

   ,  
1

2

1

1

o

n

j

jjo

n

j

jj ZZZZ  


 related to the 

intermediate activities. However, according to 
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these inequalities, in optimality we will have

   ,  *

1

*2*

1

*1

o

n

j

jjo

n

j

jj ZSZZSZ 








     (4), 

where 0  , ** 


SS . Thus, in optimality if at 

least one slack variable is non-zero, then 

equalities 









  *

1

*2*

1

*1 -   , SZZSZZ o

n

j

jjo

n

j

jj      (5) 

result in 



n

j

jj

n

j

jj ZZ
1

2

1

1   which contradicts 

the series relation between two stages. The 

constraint (3) can be rewritten by using free 

variables as 

SZZSZZ o

n

j

jjo

n

j

jj  


   ,  
1

2

1

1           (6), 

where S  is a free in sign vector and the 

intermediate values are assumed as free links. S

represents the reduction or increment of oZ  value 

needed to obtain the optimal intermediate 

products.  In the previous network DEA and 

traditional DEA models for evaluation of DMUs, 

the objective is to maximize input contraction or 

output expanding.  Here, our model optimizes the 

performance of the overall system by both input-

contraction and output-expansion. Assume that 

the input reduction and output increment factors 

of Stage 1 are denoted by
21   and    , 

respectively. Thus, the constraints related to 

inputs and outputs will be as  

 
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
n

j

ojj

n
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ojj VVXX
1

2

1

1

1

1   ,         (7). 

Similar assumptions can be considered for the 

inputs and outputs of Stage 2.   

According to the above discussion, our proposed 

network DEA model to calculate the overall 

efficiency of a two-stage DMU as the mean of the 

efficiency scores of the stages, considering 

intermediate activities within the system, and 

constraints (6) and (7), is as follows: 
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A feasible solution for model (8) is given by 

considering 


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Definition 1. A oDMU
 
is efficient if and only if 
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optimal solution of model (8). 
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the data vectors as 
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),,,,( *
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efficient. 

Proof. Assume 2121
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optimal values of 
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solving the following model. We should prove 
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If 1ˆ
1   , then from ,1ˆ,1ˆ,1ˆ

122    we 

have 
*

2

*

1

*

2

*

1

*

22

*

11

*

22

*

11

ˆ

ˆ

ˆ

ˆ
















 , which 

contradicts the optimality of .  and ,, *

2

*

1

*

2

*

1 

Assuming   1ˆor    1ˆor    1ˆ
122   , results 

in a similar contradiction.■  

To obtain the Linear form of model (8), divide 

the constraints containing 
1

j  by 2 , and the 

constraints containing 
2

j  by 2 . Then,  let 

  
1

  and  
1

2

2

2

1





  . Therefore, the 

objective function will be equal to )(
2

1
21   , 

where 
212111   and    . 

Consequently, the linear form of model (8) is 

obtained as follows: 

 

(10)                     ,...,1         0,    

        1 , 1     

    

    

     

      

    

..

)(
2

1
  min
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2211

1

2

1

2

2
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1

2
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1
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1

1

1

21

nj

YY

RR

SZZ

SZZ

VV

XXts

jj

n

j

ojj

n

j

ojj

o

n

j

jj

o

n

j

jj

n

j

ojj

n

j

ojj


















































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Where

.,...,1,
1

 ,
1

,
1

,
1

2

2

2

1

2

2

21

2

1 njSSSSjjjj 








  

Note that the constraints 

2211  and    are obtained from 

.1 and

 ,  , 1  , 

1

2121111









According  to  Definition 1, oDMU   is efficient 

iff in optimality we have 

1  and  1 ,1 ,1 *

2

*

2

*

1

*

1   .   

 

4.2. Fuzzy network DEA 

Assume that the inputs, outputs and intermediate 

values are triangular fuzzy numbers. MKQI ,,,
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and P  are the dimensions of the vectors

VZYX ,,, and R , respectively. For Ii ,...,1 , 

assume that ijX
~

 is the set of i -th input of 

),...,1(   njDMU j   and consider similar 

assumptions for mjkjqj VZY
~

,
~

,
~

and pjR
~

where 

 ,...,1  ,  ,...,1 ,  ,...,1 MmKkQq  and 

Pp ,...,1 . For  1,0 , let 

   )(|)
~

(min)
~

( ~ ijXijij

L

ij xXSxX
ij

 and 

   )(|)
~

(max)
~

( ~ ijXijij

U

ij xXSxX
ij

. 

Hence, we obtain a crisp interval 

 
 u

ij

m

ij

l

ij

m

ij

U

ij

L

ij

XXXX

XX

)1(,)1(

)
~

(,)
~

(








  

for a fuzzy input value. Crisp intervals related to 

mjkjqj VZY
~

,
~

,
~

and pjR
~

 can be obtained by similar 

methods. According to crisp intervals obtained 

for fuzzy data, the pessimistic and optimistic 

values of efficiency scores of 

),...,1(   njDMU j   can be calculated. 

In the optimistic viewpoint: 1) The inputs of  

under-evaluation, oDMU , have the lower bound 

values, while the input values of other DMUs are 

in upper bound. 2) The outputs of  under-

evaluation, oDMU , have the upper bound values 

while, the output values of other DMUs are in the 

lower bound. 

In the pessimistic viewpoint, the levels of inputs 

and outputs are now adjusted unfavorably for the 

under-evaluation DMU and in favor of the other 

units. It is notable that since intermediate 

products are produced by one stage and used by 

another stage, they should not be considered as 

inputs or outputs. Therefore, in both pessimistic 

and optimistic situations, we consider the same 

values, such as the middle value, for intermediate 

products. The crisp upper and lower bounds of the 

interval efficiency of oDMU , based on model 

(10), are determined from the pessimistic and 

optimistic viewpoints as follows: 
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)13(   ,...,1  ,  ,...,1     
2

)
~

()
~

(~ njKk
ZZ

z

U

kj

L

kj

kj 





. 

The symbols UL   and  represent the lower and 

upper bounds of interval data, respectively. After 

solving models (11) and (12) the interval efficiency 

of oDMU is obtained as ],[ UL

   . A feasible 

solution for model (11) is given by considering 

















1,1,0
~~

,,,...,1,2,1,0
~

,1
~

212121 





LL

l

j

l

o

SS

ojnjl
. 

A feasible solution for model (12) is obtained by 

similar consideration.  

According to the data interval formulation, the 

 cut method provides the efficiency score 

range of a DMU for individual possibility levels 

separately as the data intervals change for 

different   levels. Specifically, the minimum 

possible value of efficiency scores is provided at 

0  when  n 1,...,o|  min
o

*  L

 , where 

o

L

  is the optimal efficiency score of oDMU  in 

pessimistic viewpoint. This means that for any 

 1,0 , the efficiency score of no DMU in 

pessimistic viewpoint falls below 
* . Models 

(11) and (12) can be used to calculate interval 

efficiency when the data is not fuzzy numbers but 

is interval.   

 

5. Numerical results and interpretations 

5.1. Analysis of efficiency scores measured 

using the novel DEA approach and 

comparison with traditional DEA results 

We apply our approaches to assess 21 after-sales 

service departments located in a province in Iran 

in the year 2023. These departments are 

associated with an Iranian automobile factory. 

Each department is considered a two-stage DMU. 

In ),...,1(   njDMU j  , inputs of Stage 1, are 

denoted by jx1  and jx2 , where jx1  represents 

the total costs. The degree of obligation 

fulfillment undertaken by the department, 

denoted by jx2 , is considered a triangular fuzzy 

number. The vectors jV , jZ  and jR  are defined 

in Section 3.1. General income and level of 

customer satisfaction                                                                                                                                                                                                                           

(considered as triangular fuzzy number) are the 

outputs of stage2 denoted by jy1  and jy2 , 

respectively. The costs and income values are in 

millions of dollars.  
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Table 1. Data 

 
 

DMU 
1jx  

2jx  
jR  

jV  
1jy  

2jy  
jZ  

 

1 1.21 (3,5,7) 56 3.28 1.33 (2,5,9) 2100 

2 1.05 (3,5,8) 41 3.60 .99 (5,6,7) 1954 

3 .63 (4,5,8) 37 1.40 .54 (4,5,8) 1258 

4 .83 (5,7,9) 45 1.69 .57 (4,6,9) 1823 

5 .32 (3,7,9) 20 .85 .44 (3,5,8) 984 

6 .94 (3,5,8) 34 1.90 .61 (3,4,6) 1205 

7 .71 (5,8,9) 37 1.33 .51 (4,7,9) 1360 

8 .19 (4,7,9) 18 .44 .19 (2,4,8) 871 

9 .95 (3,4,8) 51 1.05 .67 (3,5,7) 1900 

10 1.39 (3,5,7) 70 3.89 1.54 (3,6,9) 2410 

11 .30 (3,4,7) 22 .78 .43 (3,7,9) 934 

12 .55 (3,8,9) 24 .92 .68 (3,5,9) 895 

13 .31 (3,6,9) 30 .82 .57 (2,4,8) 1100 

14 .60 (3,6,9) 38 1.21 .82 (3,4,7) 1273 

15 .29 (4,6,9) 19 .73 .34 (5,6,7) 876 

16 .75 (3,6,8) 45 1.56 .97 (6,7,9) 1723 

17 .79 (5,6,9) 55 1.93 1.10 (5,7,8) 1983 

18 .74 (4,5,7) 41 1.51 .32 (2,4,7) 1830 

19 .88 (4,5,7) 36 1.50 .55 (3,5,9) 1698 

20 .43 (3,5,9) 25 .98 .23 (2,5,6) 950 

21 .48 (3,4,7) 26 1.17 .79 (3,6,8) 823 

 

 

 

We solve models (11) and (12) without 

considering the intermediate products which 

results in the interval ],[ UL

   for the efficiency 

scores shown in Table 2. Models (11) and (12) 

without constraints related to the intermediate 

products are the traditional black box DEA 

models. Then, these models are solved to 

calculate  interval efficiency scores ],[ UL

  . By 

using the traditional black box DEA method, 

efficiency scores of DMUs are calculated based 

on inputs and outputs of the overall system, while 

the intermediate activities within the system are 

neglected.  
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Table 2. Results of solving models (11) and (12) in classic and network cases for 6.  

 

 
DMU ],[ UL

   ],[ UL

    

 

],[ 11

UL

    

 

],[ 22

UL

    

 

1 [.9246,1] [.7861,.8908] [.7906,1] [.7816,.7816] 

2 [1,1] [.8973,.9077] [1,1] [.7946,.8154] 

3 [.7016,1] [.5683,.6554] [.6563,.6563] [.4803,.6546] 

4 [.6382,1] [.5121,.7974] [.5948,.5948] [.4293,1] 

5 [.9471,1] [.7901,.9083] [.8167,.8167] [.7635,1] 

6 [.7134,1] [.5948,.6879] [.5992,.7142] [.5904,.6615] 

7 [.6114,1] [.5408,.6447] [.5551,.5551] [.5266,.7344] 

8 [.8617.,1] [.6500,.9048] [.7862,.8097] [.5138,1] 

9 [.5357,1] [.4840,.6703] [.5357,.8333] [.4323,.5072] 

10 [.9787,1] [.8395,.9314] [.8162,1] [.8629,.8629] 

11 [.9684,1] [.8122,.9166] [.8333,.8333] [.7011,1] 

12 [.9324,1] [.7306,.7643] [.5287,.5287] [.9324,1] 

13 [1,1] [.7358,.8145] [.8462,.8463] [.6253,.7827] 

14 [.8111,1] [.6646,.6739] [.6190,.6525] [.7101,.7228] 

15 [.9089,1] [.8394,.9104] [.8206,.8208] [.8583,1] 

16 [.8061,1] [.6672,.7140] [.6250,.6250] [.7094,.8030] 

17 [.9151,1] [.7016,.7054] [.7236,.7238] [.6797,.6870] 

18 [.6146,1] [.4461,.5422] [.6146,.6521] [.2776,.4323] 

19 [.5895,1] [.5100,.6775] [.5172,.6521] [.5028,.7028] 

20 [.7150,1] [.5786,.7239] [.7150,.7150] [.4422,.7328] 

21 [1,1] [.8753,.9166] [.7506,.8333] [1,1] 

 

According to the results shown in Table 2, it can 

be inferred that: 1) The classic traditional DEA 

approach concludes that in the optimistic point of 

view, all departments are efficient and it cannot 

recognize any difference between the 21 system 

performances. 2) The efficiency scores obtained 

by applying our network method have improved 

compared to those obtained by using the 

traditional DEA method. 3) The results obtained 

by using the classic black box DEA approach 

show that Departments No. 2,13, and 21 are 

efficient and Department No. 10 is the closest in 

ranking. However, the results obtained by solving 

our network model imply that no department is 

efficient in the both stages. 4) Through the 

combination of our network approach with the 

fuzzy method, we obtain a crisp interval 

efficiency score by which we are able to analyze 

and interpret the performance of a complex 

network system with vague and imprecise data. 

5) In the pessimistic point of view, the reception 

part of Department No. 19 and the repair center 

of Department No. 18 have the lowest efficiency 

scores and require the most improvement in input 

values compared to other inefficient DMUs.  

Tables 3 and 4 contain the values of costs, labor, 
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and income required to achieve the optimal 

efficiency score in both of pessimistic and 

optimistic scenarios.  

 

 

 

 

 

 

Table 3. Optimal solutions of the fuzzy network models for 6.  in pessimistic viewpoint 

 

 
DMU 

1jx  
2jx  

jR  
jV  

1jy  
2jy  

1 .95 3.82 47 3.28 1.33 9 

2 1.05 6.2 32 3.60 .99 8.52 

3 .42 3 17 1.40 .54 4.64 

4 .50 3 19 1.69 .57 5.20 

5 .26 3 15 .85 .44 4.20 

6 .56 3 20 1.90 .61 5.25 

7 .40 3 19 1.33 .51 5.80 

8 .14 3 9 .44 .19 3.20 

9 .71 3 25 2.01 .67 5.80 

10 1.13 4.53 60 3.89 1.54 9 

11 .25 3 17 .78 .43 5.40 

12 .29 3 22 .92 .68 5.85 

13 .26 3 18 .82 .57 4.90 

14 .37 3 27 1.21 .82 7.05 

15 .23 3 16 .73 .34 5.6 

16 .47 3 31 1.56 .97 8.34 

17 .57 3 37 1.93 1.10 9 

18 .45 3 11 1.51 .32 3.20 

19 .45 3 18 1.50 .55 4.73 

20 .30 3 11 .98 .23 3.80 

21 .36 3 26 1.17 .79 4.8 
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Table 4. Optimal solutions of the fuzzy network models for 6.  in optimistic viewpoint 

 
DMU 

1jx  
2jx  

jR  
jV  

1jy  
2jy  

1 1.21 4.20 43 3.28 1.33 8.08 

2 1.05 4.20 33 3.60 .99 6.4 

3 .41 3 24 1.40 .54 6.20 

4 .54 4.05 27 1.69 .57 7.20 

5 .26 3 20 .85 .44 6.20 

6 .67 3 22 1.95 .61 4.80 

7 .39 3 27 1.33 .51 7.80 

8 .15 3 18 .44 .19 5.60 

9 .77 3 42 1.17 1.16 9 

10 1.39 4.20 70 3.89 1.90 9 

11 .25 3 22 .79 .43 7.80 

12 .28 3 24 .92 .68 6.60 

13 .25 3 23 .82 .57 5.60 

14 .37 3 27 1.26 .82 5.20 

15 .22 3 19 .73 .34 6.4 

16 .46 3 36 1.59 .97 7.80 

17 .56 3.32 37 1.93 1.10 7.40 

18 .48 3 17 1.64 .32 5.20 

19 .57 3 25 1.82 .55 6.60 

20 .30 3 18 1.01 .32 5.40 

21 .40 3 26 1.35 .79 6.8 

 

 
In the pessimistic viewpoint, the greatest 

reduction occurs in the cost value of Department 

No. 19 and the labor value of Department No. 18 

compared to the cost and labor values of other 

inefficient departments. These results are 

consistent with the efficiency scores of each 

stage as shown in Table 2. Furthermore, the 

income from selling spare parts (output of stage 

1) has significantly increased in department No. 

9. 

In real-life situations, the improvement of input 

and output values depends on financial, 

environmental, and social limitations and may 

not be fully achievable in reality. For example, 

the results show that in Department No. 18, labor 

should be reduced from 41 to 11 (30 workers). 

However, this would impose significant costs 

related to payoffs and settlements for the 

manager, who can only afford to make 

settlements for 7 workers. As another example, 

the results show that in Department No. 9, the 

income from selling spare parts should be 

increased significantly. This could be achieved 

by selling at a higher price, selling more products, 

or selling strictly for cash without any conditional 

sales. 
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5.2. Estimating the efficiency scores using 

ML algorithms  

Data related to after-sales service departments 

during 60 periods is shown in Table 5. Table 6 

contains efficiency intervals related to the data 

presented in Table 5, obtained by using the fuzzy 

network DEA method proposed in this paper 

(models (11) and (12)  for 6. ).  

 
 

 

Table 5. Data related to 60 after-sales service departments 

 
 

DMU 
1jx  

2jx  
jR  

jV  
1jy  

2jy  
jZ  

 

1 1.21 (3,5,7) 56 3.28 1.33 (2,5,9) 2100 

2 1.05 (3,5,8) 41 3.60 .99 (5,6,7) 1954 

3 .63 (4,5,8) 37 1.40 .54 (4,5,8) 1258 

4 .83 (5,7,9) 45 1.69 .57 (4,6,9) 1823 

5 .32 (3,7,9) 20 .85 .44 (3,5,8) 984 

6 .94 (3,5,8) 34 1.90 .61 (3,4,6) 1205 

7 .71 (5,8,9) 37 1.33 .51 (4,7,9) 1360 

8 .19 (4,7,9) 18 .44 .19 (2,4,8) 871 

9 .95 (3,4,8) 51 1.05 .67 (3,5,7) 1900 

10 1.39 (3,5,7) 70 3.89 1.54 (3,6,9) 2410 

11 .30 (3,4,7) 22 .78 .43 (3,7,9) 934 

12 .55 (3,8,9) 24 .92 .68 (3,5,9) 895 

13 .31 (3,6,9) 30 .82 .57 (2,4,8) 1100 

14 .60 (3,6,9) 38 1.21 .82 (3,4,7) 1273 

15 .29 (4,6,9) 19 .73 .34 (5,6,7) 876 

16 .75 (3,6,8) 45 1.56 .97 (6,7,9) 1723 

17 .79 (5,6,9) 55 1.93 1.10 (5,7,8) 1983 

18 .74 (4,5,7) 41 1.51 .32 (2,4,7) 1830 

19 .88 (4,5,7) 36 1.50 .55 (3,5,9) 1698 

20 .43 (3,5,9) 25 .98 .23 (2,5,6) 950 

21 .48 (3,4,7) 26 1.17 .79 (3,6,8) 823 

22 .21 (3,5,7) 18 .58 .33 (5,7,9) 920 

23 1.45 (5,7,9) 71 4.60 1.87 (5,7,9) 2983 

24 .74 (4,5,7) 41 1.65 .73 (4,5,8) 1370 

25 .55 (3,5,7) 23 1.09 .57 (4,6,9) 1571 

26 .41 (3,5,7) 20 1.07 .68 (4,6,7) 1120 
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DMU 
1jx  

2jx  
jR  

jV  
1jy  

2jy  
jZ  

 

27 .22 (5,6,9) 19 .91 .51 (2,4,8) 1000 

28 .42 (3,4,8) 29 1.26 .49 (5,7,9) 1190 

29 .58 (3,6,9) 37 .93 .33 (3,5,7) 1346 

30 .95 (4,5,7) 55 1.32 .88 (3,5,7) 1770 

31 .39 (4,7,9) 33 .80 .29 (5,7,9) 910 

32 .66 (4,8,9) 43 1.08 .57 (3,7,9) 1000 

33 .19 (3,7,9) 22 .52 .20 (3,5,9) 895 

34 .31 (3,4,8) 40 .82 .47 (5,7,9) 1100 

35 .77 (5,7,9) 41 1.38 .79 (3,4,7) 1573 

36 .90 (4,8,9) 50 1.03 .88 (5,6,7) 1890 

37 .90 (4,6,8) 48 1.18 .79 (5,7,9) 1723 

38 .47 (5,7,9) 22 .93 .51 (5,7,8) 1190 

39 .93 (4,8,9) 41 1.11 .55 (2,4,7) 1460 

40 .25 (4,5,7) 19 .77 .39 (3,5,9) 864 

41 .33 (4,5,9) 25 .98 .45 (5,7,8) 950 

42 .48 (3,4,7) 21 .97 .49 (4,6,8) 1370 

43 .21 (4,8,9) 16 .58 .33 (2,5,9) 859 

44 1.45 (3,8,9) 60 1.97 .89 (4,6,7) 2391 

45 1.63 (4,5,8) 61 2.40 1.11 (4,5,7) 2680 

46 .98 (5,7,9) 45 .99 .33 (2,5,9) 1791 

47 .17 (3,7,9) 20 .61 .26 (3,5,7) 887 

48 .29 (5,7,9) 34 .90 .56 (3,4,6) 1205 

49 .38 (6,8,9) 28 .95 .51 (5,7,9) 1112 

50 .47 (4,7,9) 22 1.09 .79 (2,4,8) 1086 

51 1.78 (3,4,8) 65 3.05 1.71 (3,4,7) 2900 

52 .70 (3,5,7) 37 1.33 .77 (4,7,8) 1379 

53 1.30 (3,4,6) 49 2.78 1.22 (3,7,9) 2840 

54 .65 (3,8,9) 34 .92 .55 (3,5,9) 1352 

55 .49 (3,6,9) 29 .88 .45 (2,4,8) 1210 

56 .46 (3,4,8) 38 1.21 .77 (3,4,7) 1320 

57 .35 (4,6,9) 26 .73 .43 (5,6,7) 915 

58 1.75 (3,5,6) 65 3.56 1.87 (3,7,9) 3000 

59 1.79 (3,4,6) 71 3.2 1.89 (5,7,8) 3100 
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DMU 
1jx  

2jx  
jR  

jV  
1jy  

2jy  
jZ  

 

60 .93 (4,5,7) 45 1.09 .71 (2,4,6) 2050 

 

 

 

Table 6. Efficiency intervals related to the data presented in Table 5, obtained by solving models (11) and (12)  for 6.  

 

 

We consider 80% of the dataset for training and 

allocate the remaining 20% for testing across 

three ML algorithms: LR, RF, and DT. To 

prepare the data for ML algorithms, it is 

transformed into crisp intervals, as outlined in 

Section 4.2 for 6. . During the training 

phase, the specific combination of input, output, 

and intermediate values that contributes to the 

efficiency score of the DMU is identified. 

following this, the trained ML model is utilized 

to predict efficiency scores for the testing data. 

The efficiency scores for the testing data are 

calculated using the fuzzy network DEA method, 

and the predicted values produced by the ML 

algorithms are displayed in Table 7. 

 

 
 

Table 7. Fuzzy network DEA efficiency intervals as the test data and their predicted values by combined DEA-ML algorithms 

 
DMU DEA  

 
 

LRDEA   

 

DTDEA   

 

RFDEA    

 

1 [.52,.96] [.43,.79] [.48,.89] [.49,.81] 

DMU  𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒄𝒚  
𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 

 
 

DMU  𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚  
𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 

  

 

DMU  𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚  
𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 

 

1 [.66,.83] 21 [.71,.91] 41 [.73,.98] 
2 [.80,.89] 22 [.82,1] 42 [.67,1] 
3 [.46,.67] 23 [1,1] 43 [.68,.95] 
4 [.39,.60] 24 [.60,.67] 44 [.42,.48] 
5 [.52,.96] 25 [.66,1] 45 [.51,.65] 
6 [.52,.65] 26 [.85,1] 46 [.32,.49] 
7 [.40,.69] 27 [.94,1] 47 [.72,1] 
8 [.42,1] 28 [.73,1] 48 [.63,.74] 
9 [.45,.63] 29 [.40,.56] 49 [.63,.88] 

10 [.73,.82] 30 [.48,.56] 50 [.82,.90] 
11 [.63,.82] 31 [.49,.85] 51 [.78,1] 
12 [.57,.80] 32 [.43,.64] 52 [.59,.79] 
13 [.47,.82] 33 [.57,1] 53 [.75,1] 
14 [.51,.68] 34 [.57,1] 54 [.43,.66] 
15 [.58,.94] 35 [.53,.59] 55 [.48,.69] 
16 [.52,.77] 36 [.46,.55] 56 [.66,.78] 
17 [.49,.71] 37 [.46,.63] 57 [.58,.86] 
18 [.42,.55] 38 [.68.92] 58 [1,1] 
19 [.48,.63] 39 [.37,.46] 59 [.88,.88] 
20 [.44,.68] 40 [.73,1] 60 [.48,.55] 
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DMU DEA  

 
 

LRDEA   

 

DTDEA   

 

RFDEA    

 

2 [.42,1] [.34,.96] [.41,.96] [.38,.88] 

3 [.47,.82] [.45,.70] [.44,.69] [.45,.79] 

4 [.66,1] [.64,.92] [.62,.94] [.64,.89] 

5 [.73,1] [.61,.96] [.69,1] [.70,.94] 

6 [.57,1] [.49,.89] [.49,.92] [.54,.93] 

7 [.57,1] [.44,.91] [.53,.98] [.52,.94] 

8 [.73,1] [.69,.89] [.72,.95] [.69,.93] 

9 [.67,1] [.62,.97] [.65,.93] [.64,.86] 

10 [.68,.95] [.63,.87] [.63,.94] [.66,.90] 

11 [.72,1] [.56,.98] [.69,.98] [.72,.97] 

12 [.58,.86] [.56,.82] [.58,.84] [.56,.86] 

 

 

The values of Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), Absolute Error 

(MAE), and accuracy of three DEA-ML 

algorithms in predicting pessimistic and 

optimistic ranges of efficiency scores related to 

the testing data are presented in Figure4. 
 

 

 

Fig.4. Comparison of three DEA-ML algorithms in predicting efficiency score ranges 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Testing Data (Pessimistic Scenario)

LR

DT

RF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Testing Data (Optimistic Scenario)

LR

DT

RF



20 
 

According to the results depicted in Figure4, the 

DEA-RF algorithm has the highest accuracy in 

predicting efficiency scores under pessimistic 

scenario (model (11)), while the DEA-DT 

algorithm is the best in prediction of scores under 

optimistic scenario (model (12)), with a slightly 

higher accuracy value than the DEA-RF 

algorithm. Therefore, the DEA-RF algorithm has 

nearly the best performance in both pessimistic 

and optimistic scenarios and is used to predict the 

efficiency score of new DMUs.  

6. Conclusion and directions for future 

research 

In recent years, various types of DEA methods 

have been widely developed due to the different 

structures and data types of DMUs. Efficiency 

evaluation of DMUs with complex network 

structures involves network DEA approaches that 

consider the inner relationships between sub- 

processes. We have presented a modified 

network DEA model in which the efficiency 

score of overall system have been optimized by 

using different input reduction and output 

increment factors simultaneously. Furthermore, 

our network DEA model has been wisely 

designed so that the interactions between the 

stages are reflected truly. In addition to the 

structural complexity, data (i.e. inputs, outputs 

and intermediate products) come in various types 

in real world situations. Many processes involve 

imprecise, inexact, vague and qualitative 

information. Decision making in the presence of 

uncertain information is one of the main concerns 

in managerial issues. Fuzzy approaches make it 

possible to incorporate qualitative information 

into a mathematical formulation, empowering 

decision makers to adopt managerial policies. We 

have proposed a fuzzy network model to assess 

the after-sales service section in an auto-making 

company, where the levels of obligation 

fulfilment and customer satisfaction are 

considered as fuzzy data. Numerical results show 

that by employing our network method, the 

efficiency scores of after-sales service 

departments have improved compared to the 

efficiency measures calculated by solving the 

traditional DEA model. To deal with the 

computational complexity, we have integrated 

our fuzzy network approach with ML algorithms 

to predict the efficiency score ranges of DMUs 

from pessimistic and optimistic perspectives. The 

algorithm with the best performance is used to 

predict the performance of new DMUs. Applying 

fuzzy approaches in dealing with qualitative 

information helps in designing effective 

strategies for organizational management. 

Analyzing the performance of after-sale services 

departments over multiple periods is a major 

managerial concern. This analysis involves using 

the dynamic network DEA method, where the 

outputs in one period are carried over as the 

inputs to the next period. This topic warrants 

consideration for future studies. 
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