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Abstract.  In this paper, a fractional multi- objective multi- 

product solid transportation problem with interval costs, supply, 

demand, and conveyances is investigated based on fuzzy 

programming approach. To minimize the problem, the order 

relations that represent the decision maker's (DM) performance 

between interval costs, supply, demand and conveyances are 

defined by the right limit, and the left limit. Through the 

deterministic problem is obtained, a fuzzy programming approach 

is applied by defining membership functions. A linear membership 

function is being used for obtaining optimal compromise solution. 

Finally, a numerical example is given to the utility of the approach. 

Keywords: Multi-Objective Multi-Product Solid Ttransportation 

Problem; Interval Numbers; Inexact Programming; linear 

Membership Function; Fuzzy Programming; Fractional 
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1. Introduction 

The solid transportation problem (STP) is a generalization of the well- 

known transportation problem (TP) in which three-dimensional 

properties are taken into consideration in the objective and constraint 

set instead of source and destination. The STP was first stated by Shell 

(1955). Haley (1962) introduced a solution procedure for solving STP 

which is an extension of the modified distribution method. Pandian and 

Anuradha (2010) proposed a new method for solving STP based on the 

principle of zero point method introduced by Pandian and Natarajan 

(2010). Ammar and Khalifa (2014) introduced fuzzy multi- objective 

STP and determined the stability set of the first kind corresponding to 

the obtained solution. Ammar and Khalifa (2015) presented multi- 

objective multi- item STP with fuzzy numbers in the supplies, demands, 

capacity of conveyances, and costs. Khalifa (2015) studied multi- 

objective multi- item STP with possibility objective functions coefficients 

and determined objective multi- objective multi- item STP involving 

fuzzy numbers in the objective functions coefficients, and treatment the 

problem using the fuzzy programming technique and global criteria 

methods. Ida et al. (1995) studied multi- criteria STP involving fuzzy 

numbers. Using general fuzzy cost and time, Ojha et al. (2009) studied 

entropy based STP. Under stochastic environment, Yang and Yuan 2007 

investigated a bicriteria STP.  Kundu et al. (2014) investigated multi- 

objective STP under various uncertain environments. Rani and Gulati 

(2015) introduced fully fuzzy multi- objective multi- item STP and 

applied fuzzy programming approach to find the fuzzy optimal 

compromise solution of the problem. Kumar and Dutta (2015) studied 

multi- objective STP with fuzzy coefficients for the objectives and 

constraints and applied fuzzy goal programming for obtaining fuzzy 

optimal compromise solution. Under some restriction on transported 

amount, Baidya et al. (2016) introduced six new transportation models 

with breakability and vehicle cost. Jimenez and Verdegay (1999) solved 

fuzzy STP by applying an evolutionary algorithm based on parametric 

approach. Nagarajan et al. (2014) introduced a solution procedure for 

stochastic multi-objective interval STP. Cui and Sheng (2012) 

introduced an expected constrained programming for an uncertain STP 

problem. Uddin et al. (2018) developed a utility function using a fuzzy 
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membership function that's by considering deviations of objective 

function from the goal value to obtain the target goal for a 

multiobjective TP. Fractional Programming (FP) is a decision problem 

arises to optimize the ratio subject to constraints. In real world decision 
situations, MOLFP programming arises very frequently. As, for instance, 

the ratio between inventory& sales, actual cost & standard cost, 

output& employee, measuring relative efficiency of decision making unit 

in the public/ or nonprofit sectors, Data Envelopment Analysis (DEA) & 

many other areas of economics, non- economics and indirect applications. 

Charnes and Cooper (1962) studied a linear fractional programming 

(LFP) problem and showed that it can be optimized by solving two 

linear programs. Ammar and Khalifa (2009) studied LFP problem with 

fuzzy parameters. Ammar and Khalifa (2004) introduced a parametric 

approach for solving multi-criteria LFP problem. Luhandjula (1984) 

applied fuzzy programming approach for solving MOLFP problem. 

Nykowski and Zolkiewski (1985) solved the MOLFP problem by 

converting it into the multi- objective linear programming (MOLP) 

problem. Gupta and Chakraborty (1999) have been introduced a 

methodology for a restricted class of MOLFP problem in the sense that 

there exists some values of decision variables for which the numerator is 

positive and the denominator is positive for all values of decision 

variables in the feasible region, and then applied fuzzy approach for 

solving the problem by defining a linear membership function. 

Radhakrishnan and Anukokila (2014) used fractional goal programming 

approach for solving STP with interval cost.  

The rest of the paper is organized as : In section 2; some preliminaries 

need are presented. In section 3, a multi- objective multi- product solid 

transportation problem with interval costs, supply, demand is 

formulated. In section 4, a fuzzy programming approach for solving the 

problem is given. In section 5, an interactive procedure for obtaining the 

optimal compromise solution is suggested. In section 6, A numerical 

example is given for illustration. Finally, some concluding remarks are 

reported in section 7. 
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2. Preliminaries 

In  order  discuss  our  problem  conveniently,  we  shall  state some  

necessary results on interval arithmetic ( see, Moore ,1979 ;  Kauffmann 

and Gupta, 1988). 

Let � ( � ) = �[ 	 
 , 	 � ] : 	 
 , 	 � ∈ � = ( − ∞ , ∞ ) , 	 
 ≤ 	 � � denote the set of all 
closed interval numbers on� , where 	 
  is the left limit and 	 � is the 
upper the right limit.  

Definition1.  Assume that: � = [ 	 
 , 	 � ] , � = [ � 
 , � � ] ∈ � ( � ) , we define: 
(i) [ 	 
 , 	 � ] ( + ) [ � 
 , � � ] = [ 	 
 + � 
 , 	 � + � � ]                               (1) 
(ii) [ 	 
 , 	 � ] ( − ) [ � 
 , � � ] = [ 	 
 − � � , 	 � − � 
                                (2) 
(iii)  [	
 , 	�](⋅)[�
, ��] = [ min   ( 	 . 
 � 
 , 	 
 . � � , 	 � . � 
 , 	 � . � � ) , max   ( 	 . 
 � 
 , 	 
 . � � , 	 � . � 
 , 	 � . � � ) ]  (3) 
(iv) [	
 , 	�](/)[�
, ��] =  min !	
�
 , 	
�� , 	��
 , 	���" , max !	.
�
 , 	
�� , 	��
 , 	���"# (4) 

(v) $ [ 	 
 , 	 � ] = %[ $ 	 
 , $ 	 � ] , $ ≥ 0 [ $ 	 � , $ 	 
 ] , $ < 0                                                 (5) 
Where, $ ∈ � .  
 (vi) The order relation ≤ 
�   in � ( � )  is defined by: [	
 , 	�](≤
�)[�
, ��]  if and only if 	
 ≤ �
, 	� ≤ �� ,                  (6.1)  
                                                                      [ 	 
 , 	 � ] ( < 
�  ) [ � 
 , � � ]  if and only if [ 	 
 , 	 � ] ( ≤ 
�  ) [ � 
 , � � ] , and [ 	 
 , 	 � ] ( ≠ ) [ � 
 , � � ] .                              (6.2)   
Proposition1. (Ishibuchi andTanaka (1990)). 

If � = [ 	 
 , 	 � ] ( ≤ 
�  ) � = [ � 
 , � � ] , then � = � .  
Proposition2. (Ishibuchi andTanaka (1990)). � = �  if and only if , (6.1), and  (6.2)  hold.  
Proposition3. (Gupta and Chakraborty, 1999). 

If *+ > 0, and *- > 0, then 
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. = /012/3401243 , 5 ≥ 0 has the maximum value .6 = 7	5�89/*9, 8-/*-, : =1,2, . . . , =�and the minimum value minN = �89/*9 , 8-/*-, : = 1,2, . . . , =�. 
3. Problem formulation and solution concepts 

A fractional multi- objective multi- product solid transportation problem 

is formulated as follows 

Min?@ = .@(5)A@(5) = ∑ ∑ ∑ ∑ CD89EF@G H
, D89EF@G H�I 59EFGJFKLMEKLN9KLOGKL∑ ∑ ∑ ∑ CD*9EF@G H
 , D*9EF@G H�I 59EFGJFKLMEKLN9KLOGKL , 
P = 1,2,3, . . . , R 

Subject to 

S S 59EFGJ
FKL

M
EKL ≤ TU	9GV
 , U	9GV�W = �9; ∀:, Z, 
S S 59EFGJ

FKL
N

9KL ≥ CD�EGH
 , D�EGH�I = �E; ∀[, Z, 
S S S 59EFGM

EKL
N

9KL
O

GKL ≤ [(\F)
, (\F)�] = ]F; ∀$, 
59EF@G ≥ 0; ∀:, [, $, Z.                                     (7) 

Where Z(= 1,2, . . . , ^) products can be transported from 7 origins �9(: = 1,2, . . . , 7) to =destination �E([ = 1,2, . . . , =) by means of ]F($ =1,2, . . . , _) conveyances, and P(= 1,2, . . . , R) objectives are to be 
minimized. 

To solve the problem (7), the following conditions must be satisfied: 

S TU	9GV
 , U	9GV�WN
9KL ≥ S CD�EGH
, D�EGH�IM

EKL , Z = 1,2, . . . , ^ 
and 

S[(\F)
, (\F)�]J
FKL ≥ S S CD�EGH
, D�EGH�I .M

EKL
O

GKL  

Definition2.  (Interval- valued efficient solution). Apoint5 ∗ ∈ a ( � 9 , � E , b F ) , : = 1 , 2 , . . . , 7 ; [ = 1 , 2 , . . . , = ; $ = 1 , 2 , . . . , _ ,    is said to be 
interval- valued efficient solution to the problem (7) if and only if there 



6 H. Abd El-wahed Khalifa 

does not exist another5 ∈ a ( � 9 , � E , b F ) , such that:? @ ( 5 ) ≤ ? @ ( 5 ∗ ) ,  and ? @ ( 5 ) < ? @ ( 5 ∗ )  for at least one P .  
It follows that the problem (7) can be rewritten as follows 

Min(?@)� = U.@(5)V�
UA@(5)V
 = ∑ ∑ ∑ ∑ D89EF@G H�59EFGJFKLMEKLN9KLOGKL∑ ∑ ∑ ∑ D*9EF@G H
 59EFGJFKLMEKLN9KLOGKL , P = 1,2,3, … , R 

Subject to 

S S 59EFGJ
FKL

M
EKL ≤ U	9GV�; ∀:, Z, 
S S 59EFGJ

FKL
M

EKL ≥ U	9GV
; ∀:, Z, 
S S 59EFGJ

FKL
N

9KL ≤ D�EGH�; ∀[, Z, 
S S 59EFGJ

FKL
N

9KL ≥ D�EGH
; [, Z, 
S S S 59EFGM

EKL
N

9KL
O

GKL ≤ (\F)� , ∀$, 
S S S 59EFGM

EKL
N

9KL
O

GKL ≥ (\F)
; ∀$, 
59EF@G ≥ 0; ∀:, [, $, Z.                             (8) 

4. Fuzzy programming approach for solving the problem 

Bellman and Zadeh (1970) introduced three basic concepts: fuzzy goal 

(G), fuzzy constraints (T), and fuzzy decision (D) and explored the 

applications of these concepts to the decision making under fuzziness. 

Their fuzzy decision is defined as follows: d = e ∩ g                       (9) 

This problem is characterized by the membership function hi(5) = 7:=(hj(5), h+(5)),                           (10) 
To define the membership function of the problem (8), let us follow: 
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Calculate the individual minimum as: ((?@)�)(?@)�•N9M=min �(?@)�(5): 5 ∈ a�,              (11) 
The individual maximum as: ((?@)�)(?@)�•Nl1=max�(?@)�(5): 5 ∈ a�,              (12) 
Where,ais the feasible region of the problem (8).  
On the basis of definition of ((?@)�)N9M, and,((?@)�)Nl1, the 
membership functions for the problem(8)  as follows  (Biswal (1992)):  

( )

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

min

max

min max

max min

max

1, ( ) ,

( )

( ) , ( ) ,

0, ( ) ,

U U

r r

U U

r rU U U U

r r r r rU U

r r

U U

r r

Z x Z

Z Z x

Z x Z Z x Z

Z Z

Z x Z

µ

    ≤        −             = ≤ <                   −          ≥    

 (13) 

Following the fuzzy decision of Bellman and Zadeh (1970) with the 

linear membership function (13) a fuzzy programming model to the 

problem (8) can be written as follows: A	5 7:=@KL,m,...,n�h@((?@)�)�, 
Subject to 

S S 59EFGJ
FKL

M
EKL ≤ U	9GV� , : = 1,2, . . . , 7; Z = 1,2, . . . , ^, 
S S 59EFGJ

FKL
M

EKL ≥ U	9GV
 , : = 1,2, . . . , 7; Z = 1,2, . . . , ^, 
S S 59EFGJ

FKL
N

9KL ≤ D�EGH� , [ = 1,2, . . . , =; Z = 1,2, . . . , ^, 
S S 59EFGJ

FKL
N

9KL ≥ D�EGH
, [ = 1,2, … , =; Z = 1,2, … , ^, 
S S S 59EFGM

EKL
N

9KL
O

GKL ≤ (\F)�, $ == 1,2, … , _, 
S S S 59EFGM

EKL
N

9KL
O

GKL ≥ (\F)
, $ == 1,2, . . . , _, 
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59EF@G ≥ 0; ∀:, [, $, Z, 0 < o ≤ 1.                              (14) 
                            

Problem (14) can be transformed into the following problem A	51 o 
Subject to                                                                                                              

 h@((?@(5))�) ≥ o, 
S S 59EFGJ

FKL
M

EKL ≤ U	9GV� , : = 1,2, . . . , 7; Z = 1,2, . . . , ^, 
 
S S 59EFGJ

FKL
M

EKL ≥ U	9GV
 , : = 1,2, . . . , 7; Z = 1,2, . . . , ^, 
S S 59EFGJ

FKL
N

9KL ≤ D�EGH�, [ = 1,2, . . . , =; Z = 1,2, . . . , ^, 
S S 59EFGJ

FKL
N

9KL ≥ D�EGH
, [ = 1,2, . . . , =; Z = 1,2, . . . , ^, 
S S S 59EFGM

EKL
N

9KL
O

GKL ≤ (\F)� , $ == 1,2, . . . , _, 
S S S 59EFGM

EKL
N

9KL
O

GKL ≥ (\F)
, $ == 1,2, . . . , _, 
59EF@G ≥ 0; ∀:, [, $, Z, 0 ≤ o ≤ 1.                            (15) 

Where, o is an auxiliary variable.  
By the transformationp = 5q, the problem (15) becomes A	51 o 
Subject to                                                                                                                h@(q(.@(p/q))�) ≥ o, q(A@(p/q))
 ≤ 1, 

S S(p/q)9EFGJ
FKL

M
EKL ≤ U	9GV� , : = 1,2, . . . , 7; Z = 1,2, . . . , ^, 
S S(p/q)9EFGJ

FKL
M

EKL ≥ U	9GV
 , : = 1,2, . . . , 7; Z = 1,2, . . . , ^, 
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S S(p/q)9EFGJ
FKL

N
9KL ≤ D�EGH� , [ = 1,2, . . . , =; Z = 1,2, . . . , ^, 
S S(p/q)9EFGJ

FKL
N

9KL ≥ D�EGH
, [ = 1,2, . . . , =; Z = 1,2, . . . , ^, 
S S S(p/q)9EFGM

EKL
N

9KL
O

GKL ≤ (\F)� , $ == 1,2, . . . , _, 
S S S(p/q)9EFGM

EKL
N

9KL
O

GKL ≥ (\F)
, $ == 1,2, . . . , _, 
p9EF@G ≥ 0, q > 0; ∀:, [, $, Z; 0 < o ≤ 1.                              (16) 

5. A solution procedure  

Step 1: Calculate the individual minimum and maximum of each 

objective function under the given constraints. 

Step 2: Define the membership function, h@((?@(5))�), and, P = 1,2, . . . , R, 
as mentioned in equation (13). 

Step 3: Construct the fuzzy programming problem (14), and its 

equivalent linear programming problem (15). 

Step 4: Solve problem (16) by using integer-programming approach to 

obtain an integer optimal compromise solution and hence 

evaluate the R objective functions at the resulted optimal 
compromise solution. 

Step 5: Stop. 

6. Numerical example 

Consider the following problem with Z = 1 , 2 = : = $ , [ = 1 , 2 , 3  
A:=?L = ∑ ∑ ∑ ∑ CD89EFLG H
, D89EFLG H�I 59EFGmFKLrEKLm9KLmGKL∑ ∑ ∑ ∑ CD*9EFLG H
 , D*9EFLG H�I 59EFGJFKLMEKLN9KLOGKL , 
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A:=?m = ∑ ∑ ∑ ∑ CD89EFmG H
, D89EFmG H�I 59EFGmFKLrEKLm9KLmGKL∑ ∑ ∑ ∑ CD*9EFmG H
 , D*9EFmG H�I 59EFGJFKLMEKLN9KLOGKL , 
Subject to 

S S 5LEFLm
FKL

r
EKL ≤ [(	LL)
 , (	LL)�] = [24,26] S S 5mEFLm

FKL
r

EKL ≤ [(	mL)
 , (	mL)�] 
= [32,35] 

S S 5LEFmm
FKL

r
EKL ≤ [(	Lm)
 , (	Lm)�] = [34,37] 
S S 5mEFmm

FKL
r

EKL ≤ [(	mm)
 , (	mm)�] = [28,30] 
S S 59LFLm

FKL
m

9KL ≥ [(�LL)
, (�LL)�] = [16,19] S S 59LFmm
FKL

m
9KL ≥ [(�Lm)
, (�Lm)�] 

= [23,25] 
S S 59mFLm

FKL
m

9KL ≥ [(�mL)
, (�mL)�] = [20,22] S S 59mFmm
FKL

m
9KL ≥ [(�mm)
, (�mm)�] 

= [18,19] 
S S 59rFLm

FKL
m

9KL ≥ [(�rL)
, (�rL)�] = [15,18] S S 59rFmm
FKL

m
9KL ≥ [(�rm)
, (�rm)�] 

= [17,19] 
S S S 59ELGM

EKL
N

9KL
O

GKL ≤ [(\L)
 , (\m)�] = [48,51] S S S 59EmGr
EKL

m
9KL

m
GKL ≤ [(\m)
, (\m)�] 

= [53,56] 59EF@G ≥ 0; ∀:, [, $, Z. 
Where, the unit transportation penalties are given in Tables 1-8 as 

follow:  
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   Table 1.  Penalties/costs cz{|LL 
i         

 j    j    

 1 2 3  1 2 3  

1 [7, 9] [6, 10] [12, 14]  [11, 13] [8, 10] [8, 12]  

2 [10, 12] [7, 9] [13, 15]  [11, 13] [8, 10] [16, 18]  

k  
1    2    

Table 2.  Penalties/costs dz{|LL  
i         

 j    j    

 1 2 3  1 2 3  

1 [2, 4] [1, 3] [4, 6]  [5, 7] [4, 8] [7, 9]  

2 [3, 5] [ 7, 9] [11, 13]  [8, 12] [6, 10] [16, 18]  

k  
1    2    

Table 3.  Penalties/costs cz{|Lm 
i         

 j    j    

 1 2 3  1 2 3  

1 [10, 12] [8, 10] [10, 12]  [12, 14] [6, 10] [9, 11]  

2 [12, 14] [ 8, 12] [14, 16]  [16, 18] [10, 12] [13, 15]  

k  
1    2    

Table 4.  Penalties/ costs dz{|Lm  
i         

 j    j    

 1 2 3  1 2 3  

1 [7, 9] [7, 9] [12, 14]  [11, 13] [8, 10] [8, 12]  

2 [10, 14] [7, 9] [13, 15]  [11, 13] [8, 10] [16, 18]  

k  
1    2    
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Table 5.  Penalties/ costs cz{|mL 
i         

 j    j    

 1 2 3  1 2 3  

1 [5, 7] [4, 6] [8, 10]  [4, 8] [5, 7] [7, 9]  

2 [7, 9] [5, 7] [7, 9]  [6, 8] [9, 11] [9, 11]  

k  
1    2    

  Table6.  Penalties/ costs dz{|mL 
i         

 j    j    

 1 2 3  1 2 3  

1 [7, 9] [5, 9] [12, 14]  [10, 13] [8, 10] [6, 12]  

2 [10, 14] [7, 9] [13, 15]  [11, 13] [8, 10] [16, 18]  

k  
1    2    

Table 7.  Penalties/ costs cz{|mm 
i         

 j    j    

 1 2 3  1 2 3  

1 [7, 9] [5, 9] [12, 14]  [11, 13] [8, 10] [8, 12]  

2 [9, 13] [6, 8] [13, 15]  [12, 14] [8, 10] [16, 18]  

k  
1    2    

Table 8.  Penalties/ costs dz{|mm 
i         

 j    j    

 1 2 3  1 2 3  

1 [1, 3] [2, 6] [7, 11]  [9, 11] [8, 12] [8, 10]  

2 [10, 12] [13, 

15] 

[7, 11]  [9, 13] [7, 11] [13, 17]  

k  
1    2    
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Referring to the problem(8), the equivalent multi- objective ordinary 

problem is  

A:=(?L)� = ∑ ∑ ∑ ∑ D89EFLG H�59EFGmFKLrEKLm9KLmGKL∑ ∑ ∑ ∑ D*9EFLG H
 59EFGJFKLMEKLN9KLOGKL , 
                   A:=(?m)� = ∑ ∑ ∑ ∑ D/~���� H�1~������������~������∑ ∑ ∑ ∑ D4~���� H�1~������������~������ , 
Subject to 

1 1 1 1 1 1

111 121 131 112 122 132
26,x x x x x x+ + + + + ≤
 5mLLL + 5mmLL + 5mrLL + 5mLmL + 5mmmL + 5mrmL ≤ 35, 

2 2 2 2 2 2

111 121 131 112 122 132
37,x x x x x x+ + + + + ≤

 5mLLm + 5mmLm + 5mrLm + 5mLmm + 5mmmm + 5mrmm ≤ 30, 5LLLL + 5mLLL + 5LLmL + 5mLmL ≥ 16, 5LLLm + 5mLLm + 5LLmm + 5mLmm ≥ 23, 5LmLL + 5mmLL + 5LmmL + 5mmmL ≥ 20, 
2 2 2 2

121 221 122 222
18,x x x x+ + + ≥  5LrLL + 5mrLL + 5LrmL + 5mrmL ≥ 15, 5LrLm + 5mrLm + 5Lrmm + 5mrmm ≥ 17, 5LLLL + 5LmLL + 5LrLL + 5mLLL + 5mmLL + 5mrLL + 5LLLm + 5LmLm + 5LrLm + 5mLLm + 5mmLm+ 5mrLm ≤ 51, 5LLmL + 5mLmL + 5LmmL + 5mmmL + 5LrmL + 5mrmL + 5LLmm + 5mLmm + 5Lmmm + 5mmmm + 5Lrmm+ 5mrmm ≤ 56, 59EFG ≥ 0; ∀:, [, $, Z. 

Where, 

( )

1 1 1 1 1 1 1 1 1

111 121 131 211 221 231 112 122 132

1 1 1 1 2 2 2 2 2

212 222 232 111 121 131 211 221

2 2 2 2 2 2 2

231 112 122 132 212 222 232

9 10 14 12 9 15 13 10 12

13 10 18 12 10 12 14 12

16 14 10 11 18 12 15

U
p

ijk

x x x x x x x x x

c x x x x x x x x

x x x x x x x

 + + + + + + + +

= + + + + + + + +

+ + + + + + +

          
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D*9EFLG H

= �25LLLL + 15LmLL + 45LrLL + 35mLLL + 75mmLL + 115mrLL + 55LLmL + 45LmmL + 75LrmL+85mLmL + 65mmmL + 165mrmL + 75LLLm + 75LmLm + 125LrLm + 105mLLm + 75mmLm+135mrLm + 115LLmm + 85Lmmm + 85Lrmm + 115mLmm + 85mmmm + 165mrmm � 
  ( )

1 1 1 1 1 1 1 1 1

111 121 131 211 221 231 112 122 132

2 1 1 1 2 2 2 2 2

212 222 232 111 121 131 211 221

2 2 2 2 2 2 2

231 112 122 132 212 222 232

7 6 10 9 7 9 8 7 9

8 11 11 9 9 14 13 8

15 13 10 12 14 10 18

U
p

ijk

x x x x x x x x x

c x x x x x x x x

x x x x x x x

 + + + + + + + += + + + + + + + + + + + + + + + 


 D*9EFmG H


= �75LLLL + 55LmLL + 125LrLL + 105mLLL + 75mmLL + 135mrLL + 115LLmL + 85LmmL + 65LrmL+115mLmL + 85mmmL + 165mrmL + 15LLLm + 25LmLm + 75LrLm + 105mLLm + 135mmLm+75mrLm + 95LLmm + 85Lmmm + 85Lrmm + 95mLmm + 75mmmm + 135mrmm � 
The steps of the solution procedure as follow: 

1. (A:=   (? L )� )Nl1     (A:=   (? L )� )N9M           ( )2
max

4.5
U

Min Z
  =  

(A:=   (? m )� )N9M                   
2. The membership functions are: 

hL((?L(5))�) = ⎩⎨
⎧1, (?L(5))� ≤ 0.9375,4.5 − (?L(5))�3.5625 , 0.9375 ≤ (?L(5))� < 4.50, (?L(5))� ≥ 4.5, , 

hm((?m(5))�) = ⎩⎨
⎧1, (?m(5))� ≤ 0.615,4.5 − (?m(5))�3.885 , 0.615 ≤ (?m(5))� < 4.50, (?m(5))� ≥ 4.5, , 

3. Solve the problem corresponding to problem (16) as Max o 
Subject to 
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�9pL + 10pm + 14pr + 12p� + 9p� + 15p� + 13p� + 10p�+12p� + 13pL- + 10pLL + 18pLm + 12pLr + 10pL� + 12pL�+14pL� + 12pL� + 16pL� + 14pL� + 10pm- + 11pmL + 18pmm+12pmr + 15pm� − 3.5625o + 4.5q � ≥ 0, 
1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24

7 6 10 9 7 9 8 70

92 8 11 11 9 9 14
0,

13 8 15 13 10 12 14

10 18 3.885 4.5

y y y y y y y y

y y y y y y y

y y y y y y y

y y tλ

 + + + + + + +    + + + + + + +   ≥+ + + + + + +     + + − +  
 

�2pL + pm + 4pr + 3p� + 7p� + 11p� + 5p� + 4p�+7p� + 8pL- + 6pLL + 16pLm + 7pLr + 7pL� + 12pL�+10pL� + 7pL� + 13pL� + 11pL� + 8pm- + 8pmL + 11pmm+8pmr + 17pm�
� ≥ 1, 

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17

18 19 20 21 22 23 24

7 5 12 10 7 13 11 8 6

11 8 16 2 7 10 13 1,

7 9 8 8 9 7 13

y y y y y y y y y

y y y y y y y y

y y y y y y y

 + + + + + + + +    + + + + + + + + ≥   + + + + + + +  
 pL + pm + pr + p� + p� + p� − 26q ≥ 0, p� + p� + p� + pL- + pLL + pLm − 35q ≥ 0, pLr + pL� + pL� + pL� + pm- + pmL − 37q ≥ 0, pLr + pL� + pL� + pmm + pmr + pm� − 30q ≥ 0, pL + p� + p� + pL- − 16q ≥ 0, pLr + pL� + pL� + pmm − 23q ≥ 0, pm + p� + p� + pLm − 20q ≥ 0, pL� + pL� + pm- + pmr − 18q ≥ 0, pr + p� + p� + pLm − 15q ≥ 0, pL� + pL� + pmL + pm� − 17q ≥ 0, pL + pm + pr + p� + p� + p� + pLr + pL� + pL� + pL� + pL� + pL� − 51 ≥ 0, p� + p� + p� + pL- + pLL + pLm + pL� + pm- + pmL + pmm + pmr + pm� − 56q≥ 0, p� ≥ 0; ∀�, q > 0; 0 ≤ o ≤ 1. 

The solution is 5LmLL = 1.38, 5LrmL = 0.14, 5LLLm = 0.90, ?L = [1.3225,2.734], ?m = [0.74,1.785]. 
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7. Concluding remarks 

In this paper, fractional multi- objective multi- product solid 

transportation problem with interval costs, supply, demand, and 

conveyances has been investigated based on fuzzy programming 

approach. The advantages are that the problem with interval- valued 

allows the DM to deal with a situation realistically. To deal with the 

minimization problem, the order relations who represent the decision 

maker's (DM) performance between interval costs, supply, demand and 

conveyances has been defined by the right limit, the left limit, the center 

and the width of intervals. Through the deterministic problem is 

obtained, a fuzzy compromise approach has been applied by defining 

membership functions. A linear membership function has been used for 

obtaining optimal compromise solution.  
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