بررسی شاخص های رشدی و عملکرد کیفی گیاه گشنیز (Coriandrum sativum L.) تحت تغذیه روی و کاربرد بیوچار در شرایط تنش شوری
محورهای موضوعی : فناوری های تولید پایدار
سحر سادات فتح اللهی
1
,
علی محمدی ترکاشوند
2
*
,
مرضیه قنبری جهرمی
3
1 - دانشجوی کارشناسی ارشد، گروه علوم باغبانی و زراعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استاد، گروه علوم و مهندسی خاک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه علوم باغبانی و زراعی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
کلید واژه: گشنیز, تنش شوری, بیوچار, تغذیه روی, عملکرد اسانس,
چکیده مقاله :
تأثیر ترکیبی بیوچار و روی بر هر دو ویژگی کمی و کیفی گشنیز (Coriandrum sativum L.) با استفاده از طرح آزمایشی فاکتوریل در چارچوب بلوکهای کامل تصادفی، سطوح شوری (0، 100 و 200 میلیمولار کلرید سدیم)، دو سطح بیوچار (0 و 5 درصد حجمی) از طریق اضافه کردن به بستر کشت و دو سطح محلولپاشی روی (0 و 100 میلیگرم در لیتر) با استفاده از سولفات روی مورد ارزیابی قرار گرفت. کاربرد ترکیبی شوری 200 میلیمولار، 5 درصد بیوچار حجمی و محلولپاشی روی 100 میلیگرم در لیتر منجر به افزایش قابلتوجه 03/22 درصدی وزن تر اندام هوایی و افزایش قابلتوجهی به میزان 85/43 درصد در وزن خشک ریشه شد که این امر پتانسیل محلولپاشی بیوچار و روی برای بهبود اثرات نامطلوب تنش شوری بر رشد گیاه را نشان میدهد. علاوه بر این، مطالعه حاضر بر تأثیر مثبت محلولپاشی بیوچار و روی بر روی تولید اسانس در مقایسه با تیمار شاهد تأکید میکند. به طور خاص، بیشترین عملکرد اسانس 63/15 میلیگرم در هر بوته در تیمار حاوی 5 درصد بیوچار حجمی و 100 میلیگرم در لیتر محلولپاشی روی بهدست آمد، در حالی که تیمار شاهد، بدون محلولپاشی روی و بیوچار، کمترین میزان اسانس (21/11 میلیگرم در بوته) را به دست آورد. این نشان دهنده افزایش 40/39 درصد در عملکرد اسانس در هنگام استفاده از تیمار بیوچار 5 درصد همراه با محلولپاشی روی 100 میلیگرم در لیتر، در مقایسه با تیمار شاهد است. که این امر نشاندهنده نقش کلیدی تاثیر بیوچار و روی در راندمان تولید اسانس در گشنیز در شرایط تنش شوری میباشد.
This greenhouse study employed to investigate the effects of salt on plant growth. Three different levels of salinity (0, 100, and 200 mM sodium chloride) were applied to the plants by irrigation water. Additionally, two levels of biochar (0% and 5% by volume) were incorporated into the substrate to examine its potential impact on plant response. The present study aimed to assess the effects of zinc sulfate on growth, specifically focusing on two levels of zinc foliar application: 0 mg/L and 100 mg/L. The results indicated a notable reduction in both the wet and dry mass of root and shoot structures when subjected to salt-induced stress. The concurrent implementation of a salinity level of 200 mM, a biochar concentration of 5% by volume, and a foliar application of 100 mg/L zinc resulted in a notable 22.03% enhancement in shoot fresh weight and a substantial 43.85% rise in root dry weight. The results indicate a substantial rise in the production of essential oil, up to 39.40%, when employing a 5% biochar treatment in conjunction with a 100 mg/L zinc foliar application, in comparison to the control treatment that lacks these interventions. The aforementioned study highlights the significant impact of interventions on the production of essential oil in coriander plants subjected to salinity stress conditions. The present study investigates the effects of salinity stress on coriander plants and explores the potential of biochar and zinc nutrition in mitigating these effects. Additionally, the study examines the impact of these treatments on the performance of coriander essential oil.
Afshari, M., Pazoki, A., and Sadeghipour, O. 2021. Foliar‐applied silicon and its nanoparticles stimulate physio‐chemical changes to improve growth, yield and active constituents of coriander (Coriandrum sativum L.) essential oil under different irrigation regimes. Silicon 1-12.
Agegnehu, A., Bird, M.I., Nelson, P.N., and Bass, A.M. 2015. The ameliorating effects of biochar and compost on soil quality and plant growth on a Ferralsol. Soil Research 53, 1-12.
Ali, Sh., Muhammad, R., Muhammad, F.Q., Yong, S.O., Muhammad, I., Muhammad, R., Muhammad, S.A., Farhan, H., Mohammad, I Al-W., and Ahmad, N.Sh. 2017. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environmental Science and Pollution Research 24, 12700-12.
Altland, J.E., and James, C.L. 2013. Effect of biochar type on macronutrient retention and release from soilless substrate. HortScience 48, 1397-402.
Amiripour, A., Ghanbari Jahromi, M., Soori, M.K., and mohammadi Torkashvand, A. 2021. Changes in essential oil composition and fatty acid profile of coriander (Coriandrum sativum L.) leaves under salinity and foliar-applied silicon. Industrial Crops and Products 168, 113599.
Ashnavar, M., Bahmanyar, M.A., Akbarpour, V., and Ghorbani, N. 2017. Effect of nanophosphorus and vermicompost on yield, yield components of Chamomile. Journal of Crops Improvement 19(1), 177-187.
Atkinson, Ch.J., Jean, D.F., and Neil, A.H. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and soil 337, 1-18.
Aziz, E.E., Al-Amier, H., and Craker, L.E. 2008. Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. Journal of herbs, spices & medicinal plants 14, 77-87.
Bai, X., Dai, L., Sun, H., Chen, M., and Sun, Y. 2019. Effects of moderate soil salinity on osmotic adjustment and energy strategy in soybean under drought stress. Plant physiology and biochemistry 139, 307-13.
Bakhtiari, M., Mozafari, H., Karimzadeh Asl, Kh., Sani, B., and Mirza, M. 2020. Bio-organic and inorganic fertilizers modify leaf nutrients, essential oil properties, and antioxidant capacity in medic savory (Satureja macrantha L.). Journal of Biological Research-Bollettino della Società Italiana di Biologia Sperimentale 93.
Biranvand, M., Rezainejad, A., and Hosseini, S.Z. 2017. Effect of two species of mycorrhizal fungi (Glomus mosseae and G. intraradices) on some morphological and physiological characteristics of fragrant geranium (Pelargonium graveolens L.) under salinity stress. Journal of soil-plant relations 8, 107- 21.
Corwin, D.L., and Scudiero, E. 2019. Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. Advances in agronomy 158, 1-130.
Dai, Zh., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, Ph.C., and Jianming, X. 2017. Potential role of biochars in decreasing soil acidification-a critical review. Science of the Total Environment 581, 601-11.
Farouk, S., and Omar, M.M. 2020. Sweet basil growth, physiological and ultrastructural modification, and oxidative defense system under water deficit and silicon forms treatment. Journal of Plant Growth Regulation 39, 1307-31.
Garajeh Kazemi, M., Malakyar, F., Weng, Q., Feizizadeh, B., Blaschke, T., and Lakes, T. 2021. An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran. Science of the Total Environment 778, 146253.
Ghasemi-Soloklui, A.A., Didaran, F., Kordrostami, M., and Al-Khayri, J.M. 2023. Plant mediation to tolerate cadmium stress with selenium and nano-selenium. Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications (Springer).
Gorgini Shabankareh, H., Sabouri, F., Saedi, F., and Fakheri, B.A. 2017. Effects of different levels of humic acid on growth indices and essential oil of lemon balm (Melissa officinalis L.) under different irrigation regimes. Crop Science Research in Arid Regions 1(2), 166-176.
Hafez, E.M., Alaa Omara, EL.D. Alhumaydhi, F.A., and El‐Esawi, M.A. 2021. Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar', Physiologia Plantarum 172, 587-602.
Hasanuzzaman, M., Nahar, K., and Fujita, M. 2013. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. Ecophysiology and responses of plants under salt stress 25-87.
Hassanvand, F., Rezaei Nejad, A., and Fanourakis, D. 2019. Morphological and physiological components mediating the silicon-induced enhancement of geranium essential oil yield under saline conditions. Industrial Crops and Products 134, 19-25.
Jabalbarezi, B., Zarei, M., Karimian, N., and Saharkhiz, M.J. 2016. Effect of Arbuscular Mycorrhizal Fungi on Nutrients Uptake, Some Growth Indices and Essence Oil Content of Satureja hortensis under Salinity Stress Conditions. Water and Soil Science 25(4/2), 285-299.
Keabetswe, L., Shao, G.Ch., Cui, J., Lu, J., and Stimela, T. 2019. A combination of biochar and regulated deficit irrigation improves tomato fruit quality: A comprehensive quality analysis. Folia Horticulturae 31, 181-93.
Khalid, U., Sher, F., Noreen, S., Lima, E.C., Rasheed, T., Sehar, S., and Amami, R. 2022. Comparative effects of conventional and nano-enabled fertilizers on morphological and physiological attributes of Caesalpinia bonducella plants. Journal of the Saudi Society of Agricultural Sciences 21, 61-72.
Liu, X., Zhang, A., Ji, Ch., Joseph, S., Bian, R., Li, L., Pan, G., and Paz-Ferreiro, J. 2013. Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant and soil 373, 583-94.
Ma, Y., Rosenheck, R., and He, H. 2020. Psychological stress among health care professionals during the 2019 novel coronavirus disease Outbreak: Cases from online consulting customers. Intensive and Critical Care Nursing 61, 102905.
Major, J., Rondon, M., Molina, D., Riha, S.J., and Lehmann, J. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and soil 333, 117-28.
Mancarella, S., Orsini, F., Van Oosten, M.J., Sanoubar, R., Stanghellini, C., Kondo, S., Gianquinto, G., and Maggio, A. 2016. Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany 130, 162-73.
Mansoor, Sh., Kour, N., Manhas, S., Zahid, Sh., Wani, O.A., Sharma, V., Wijaya, L., Alyemeni, M.N., Alsahli, A.A., and El-Serehy, H.A. 2021. Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere 271, 129458.
Morales-Covarrubias, M., Soledad, M., García-Aguilar, N., Bolan-Mejía, M.C., and Puello-Cruz, A.C. 2016. Evaluation of medicinal plants and colloidal silver efficiency against Vibrio parahaemolyticus infection in Litopenaeus vannamei cultured at low salinity. Diseases of Aquatic Organisms 122, 57-65.
Nourzad, S., Ahmadian, A., and Moghaddam, M. 2015. Proline, Total Chlorophyll, Carbohydrate Amount and Nutrients Uptake in Coriander (Coriandrum Sativum L.) under Drought Stress and Fertilizers Application. Iranian Journal of Field Crops Research 13(1), 131-139.
Oni, B.A., Oziegbe, O., and Olawole, O.O. 2019. Significance of biochar application to the environment and economy. Annals of Agricultural Sciences 64, 222-36.
Pandey, V., Patel, A., and Patra, D.D. 2016. Biochar ameliorates crop productivity, soil fertility, essential oil yield and aroma profiling in basil (Ocimum basilicum L.). Ecological Engineering 90, 361-66.
Razzaghi, F., Obour, P.B., and Arthur, E. 2020. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 361, 114055.
Sahab, S., Suhani, I., Srivastava, V., Chauhan, P.S., Singh, R.P. and Prasad, V. 2021. Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. Science of the Total Environment 764, 144164.
Said-Al Ahl, H.A.H., and EA Omer, E.A. 2011. Medicinal and aromatic plants production under salt stress. A review. Herba polonica 57.
Said-Al Ahl., H.A.H., Abou-Ellail, M., and Omer, E.A. 2016. Harvest date and genotype influences growth characters and essential oil production and composition of Petroselinum crispum plants. Journal of Chemical and Pharmaceutical Research 8, 992-1003.
Seifikalhor, Maryam, Sasan Aliniaeifard, Françoise Bernard, Mehdi Seif, Mojgan Latifi, Batool, H., Didaran, F., Bosacchi, M., Rezadoost, H., and Li, T. 2020. γ-Aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems. Scientific reports 10, 3356.
Shrivastava, P., and Kumar, R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences 22, 123-31.
Singh, A., Singh, N.B., Afzal, Sh., Singh, T., and Hussain, I. 2018. Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of materials science 53, 185-201.
Sturikova, H., Krystofova, O., Huska, D., and Adam, V. 2018. Zinc, zinc nanoparticles and plants. Journal of hazardous materials 349, 101-10.
Tolay, I. 2021. The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. PLoS One 16, e0246493.
Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A. and Singh, S. 2014. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. Journal of environmental management 146, 189-97.
Zhang, Y., Ding, J., Wang, H., Su, L., and Zhao, C. 2020. Biochar addition alleviate the negative effects of drought and salinity stress on soybean productivity and water use efficiency. BMC Plant Biology 20, 1-11.
Zörb, Ch., Geilfus, C-M., and Dietz, K-J. 2019. Salinity and crop yield. Plant biology 21, 31-38.