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In the present work, a Thermal Combined Cycle (TCC) power plant is optimized 

using particle swarm optimization (PSO). The design parameters of the plant 

considered are air compressor pressure ratio, compressor isentropic efficiency, the 

gas turbine outlet temperature, inlet fuel in combustion chamber and inlet fuel in 

HRSG, the steam temperature entering the high pressure steam turbine, the steam 

pressure entering the high pressure steam turbine, the steam mass flow rate entering 

the high pressure steam turbine and steam turbine isentropic efficiency. In addition, 

to optimally find the optimum design parameters, an exergoeconomic approach with 

multi-objective function is employed. The demanded power on the fixed design 

parameter is 360 MW of net power output. Since, environmental pollution and 

energy shortage are the two factors limiting the development of the society; 

nevertheless, this analysis tends to optimally find the design parameters which result 

in a decrease in the fuel mass flow rate. Also, this reduction (about 6.4%) in the mass 

flow rate and increasing exergetic efficiency can decrease the environmental 

impacts. The results show that exergy efficiency and cost product for plant are 8% 

and 3% better than base case, respectively. Finally, the analysis and comparison 

between the results of the current research and two other researches was done and 

the results are reported. Based on this comparison, the efficiency of the turbines in 

the current research is 0.68% less than the first research and 5.02% more than the 

second research. 
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1. Introduction 

Exergy analysis is a thermodynamic analysis 

technique based on the second law of 

thermodynamics which provides an alternative and 

illuminating means of assessing and comparing 

processes and systems rationally and meaningfully. In 

particular, exergy analysis yields efficiencies which 

provide a true measure of how nearly actual 

performance approaches the ideal, and identifies more 

clearly than energy analysis the causes and locations 

of thermodynamic losses. Consequently, exergy 

analysis can assist in improving and optimizing 

designs. Increasing application and recognition of the 

usefulness of exergy methods by those in industry, 

government and academia has been observed in recent 

years. Exergy has also become increasingly used 

internationally. [1] 

Kallio and Siroux in a research present a review of 

exergy and exergy-economic approaches to evaluate 

hybrid renewable energy systems in buildings. In the 

first part of the paper, the methodology of the exergy 

and exergo-economic analysis is introduced as well as 

the main performance indicators. The influence of the 

reference environment is analyzed, and results show 

that the selection of the reference environment has a 

high impact on the results of the exergy analysis. In 

the last part of the paper, different literature studies 

based on exergy and exergo-economic analysis 

applied to the photovoltaic-thermal collectors, fuel-

fired micro-cogeneration systems and hybrid 

renewable energy systems are reviewed. It is shown 

that the dynamic exergy analysis is the best way to 

evaluate hybrid renewable energy systems if they are 

operating under a dynamic environment caused by 

climatic conditions and/or energy demand. [2] 

Exergy analysis is another useful tool that can link 

the energy system with its surrounding environment. 

The exergy analysis reveals the actual system 

efficiency that makes it ideal for system tuning. The 

careless utilisation of energy resources would have 

indirect side effects on economics and environment, 

exergy analysis is a useful method to show the impact 

of using energy resources on the environment, reveal 

the efficiency improvement, identify the magnitudes 

of wastes and losses, and calculate the quality of the 

energy resources. [3] 

 Exergy analysis is also one of the premier tool for the 

system analysis, by performing it we can actually 

relate the system with its overall surroundings. Exergy 

analysis yields ideal parameters that would be 

beneficial for the maintenance/tuning of the system. 

This analysis is also used to stop the careless 

utilization of energy resources by putting forward the 

indirect side-effects which it causes on our 

environment. Through monitoring the consumption of 

resources, the overall efficiency of system also 

increases while it would also be useful to calculate the 

total waste a system generates during the overall 

process. There are number of articles/studies found 

that conducted exergy analysis and used the results to 

increase the systems efficiency. [4] 

The exergo-economic analysis is used to create a 

relation between the costs and exergy flows of the 

energy system. The exergo-economics are based on 

the exergy flows, exergetic and non-exergetic 

costs.  [2] 

In another research from Kazemi et al, 11 alternatives 

of natural gas combined cycle power plants based on 

post-combustion, pre-combustion or oxy-fuel 

combustion CO2 capture with monoethanolamine 

(MEA) or activated methyldiethanolamine (a-MDEA) 

and potential ORC implementation were simulated, 

economically optimized and environmentally assessed 

to shed light on these gaps. The results show the 

important role of thermodynamic efficiency in the 

system's environmental performance. The system 

based on post-combustion CO2 capture with a-MDEA 

and ORC showed a superior economic profile as well 

as a better environmental performance in terms 

of climate change and fossil resource depletion. [5] 

Kun Yang et al propose a combined cooling, heating, 

and power (CCHP) system driven by biomass and 

solar energy integrated with an organic Rankine cycle 

(ORC). Its exergy, exergoeconomic, and 

environmental performances are investigated. First, 

the thermodynamic parameters of each material and 

energy flow for the proposed CCHP system are 

simulated using Aspen Plus. Second, the exergy and 

exergoeconomic performances of the system are 

investigated, and an environmental analysis of the 

system is performed. The results show that the unit 

exergy costs (UEC) of domestic hot water, electricity 

generated by an internal combustion engine (ICE) and 

https://www.sciencedirect.com/topics/engineering/laws-of-thermodynamics
https://www.sciencedirect.com/topics/engineering/laws-of-thermodynamics
https://www.sciencedirect.com/topics/engineering/thermodynamic-loss
https://www.sciencedirect.com/topics/engineering/exergy-method
https://www.sciencedirect.com/topics/engineering/energy-systems
https://www.sciencedirect.com/topics/engineering/natural-gas-combined-cycle
https://www.sciencedirect.com/topics/engineering/methyldiethanolamine
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermodynamic-efficiency
https://www.sciencedirect.com/topics/engineering/climate-change
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/fossil
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/resource-depletion
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the ORC, and chilled/heated water under 

summer/winter conditions are 2.742/2.742, 

6.713/6.629, 12.930/12.930, and 27.100/12.530 

MW/MW, respectively, with corresponding unit 

exergoeconomic costs (UEEC) of 41.11/41.11, 

124.40/139.20, 181.80/181.80, and 507.10/302.60 

USD/MWh, respectively. [6] 

The results of another research showed that diesel 

reduced the plant's efficiency by 0.00022 compared to 

using natural gas, which was the least of the other 

alternatives. The environmental analysis revealed that 

diesel produced the least amount of CO2 eq, but 

biodiesel-nanoparticle had a better CO2 footprint due 

to the higher absorption of CO2 in the cultivation 

phase of the raw material for biodiesel. The economic 

analysis for the fuels was carried out over ten years 

and based on the lifetime of the equipment purchased. 

Consequently, the total cost over the ten years for 

diesel was $967332.5161, which was $124475.8381 

less than that for biodiesel-nanoparticle and 

$240935.3341 less than that for fuel oil. Finally, an 

overall comparison was made between the fuels using 

the AHP method. As the environmental criterion was 

the most important decision criterion, biodiesel-

nanoparticle fuel was chosen with a marginal 

difference compared to diesel. [7] 

In other work, a novel combined cooling and power 

(CCP) system is proposed for waste heat recovery of a 

natural gas-biomass dual fuel gas turbine (DFGT) 

based on the organic Rankine cycle (ORC) 

and absorption refrigeration cycle (ARC). 

Comprehensive thermodynamic, exergoeconomic, 

and environmental performance and parametric 

analysis of this system are performed. Results show 

that under the design condition, thermal 

efficiency, exergy efficiency, levelized cost of exergy 

(LCOE), and levelized environmental impact of 

exergy (LEIOE) of the system are 68.88%, 42.10%, 

and 21.16 $/GJ, and 5208.82 mPts/GJ, respectively. 

Among all the components, combustion chamber has 

the highest exergy destruction rate. The parametric 

analysis indicates that the thermal and exergy 

efficiencies rise by increasing the gas turbine inlet 

temperature (GTIT) and ORC turbine inlet pressure or 

by decreasing the preheated air temperature (PAT) 

and exhaust gas outlet temperature at high-

temperature vapor generator. The LCOE and LEIOE 

present similar trends in most cases, which are most 

affected by the PAT and GTIT. [8] 

On the other hand Mathematical Optimization is a 

branch of applied mathematics which is useful in 

many different fields. Here are a few examples: 

• Manufacturing • Production • Inventory control • 

Transportation • Scheduling • Networks • Finance • 

Engineering • Mechanics • Economics • Control 

engineering • Marketing • Policy Modeling 

In the optimization basic optimization problem 

consists of: [9] 

• The objective function, f(x), which is the output 

you’re trying to maximize or minimize.  

• Variables, x1 x2 x3 and so on, which are the inputs – 

things you can control. They are abbreviated xn to 

refer to individuals or x to refer to them as a group. 

 • Constraints, which are equations that place limits on 

how big or small some variables can get. Equality 

constraints are usually noted hn (x) and inequality 

constraints are noted gn (x). 

Genetic Algorithm (GA) is a search-based 

optimization technique based on the principles 

of Genetics and Natural Selection. It is frequently used 

to find optimal or near-optimal solutions to difficult 

problems which otherwise would take a lifetime to 

solve. It is frequently used to solve optimization 

problems, in research, and in machine learning. 

Genetic Algorithms (GAs) are search based 

algorithms based on the concepts of natural selection 

and genetics. GAs are a subset of a much larger branch 

of computation known as Evolutionary Computation. 

GAs were developed by John Holland and his students 

and colleagues at the University of Michigan, most 

notably David E. Goldberg and has since been tried on 

various optimization problems with a high degree of 

success. In GAs, we have a pool or a population of 

possible solutions to the given problem. These 

solutions then undergo recombination and mutation 

(like in natural genetics), producing new children, and 

the process is repeated over various generations. Each 

individual (or candidate solution) is assigned a fitness 

value (based on its objective function value) and the 

fitter individuals are given a higher chance to mate and 

yield more “fitter” individuals. This is in line with the 

Darwinian Theory of “Survival of the Fittest”. [10] 

In recent years, exergoeconomic concepts have been 

used with search algorithms, such as genetic algorithm 

and evolutionary algorithm, to find out realistic 

optimal solution(s) of thermal systems. 

Lorencin et al used a genetic algorithm (GA) approach 

to design of multi-layer perceptron (MLP) for 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/waste-heat-recovery
https://www.sciencedirect.com/topics/materials-science/dual-fuel
https://www.sciencedirect.com/topics/engineering/gas-turbine
https://www.sciencedirect.com/topics/chemical-engineering/rankine-cycle
https://www.sciencedirect.com/topics/engineering/absorption-refrigeration
https://www.sciencedirect.com/topics/engineering/parametric-analysis
https://www.sciencedirect.com/topics/engineering/parametric-analysis
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermodynamic-efficiency
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermodynamic-efficiency
https://www.sciencedirect.com/topics/engineering/exergy-efficiency
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/combustion-chamber
https://www.sciencedirect.com/topics/engineering/exergy-destruction-rate
https://www.sciencedirect.com/topics/engineering/parametric-analysis
https://www.sciencedirect.com/topics/engineering/parametric-analysis
https://www.sciencedirect.com/topics/engineering/turbine-inlet-temperature
https://www.sciencedirect.com/topics/engineering/turbine-inlet-temperature
https://www.sciencedirect.com/topics/engineering/inlet-pressure
https://www.sciencedirect.com/topics/materials-science/exhaust-gas
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/vaporizer
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combined cycle power plant power output estimation. 

Dataset used in this research is a part of publicly 

available UCI Machine Learning Repository and it 

consists of 9568 data points (power plant operating 

regimes) that is  divided on training dataset that 

consists of 7500data points and testing dataset 

containing 2068 data points. Presented research was 

performed with aim of increasing regression 

performances of MLP in comparison to ones available 

in the literature by utilizing heuristic algorithm. [11] 

 

2. The PSO concept 

It is necessary to explore approaches that integrate 

intelligence based on natural phenomena (soft 

computing methods), which are at the forefront of 

current research. One solution to this issue is to use the 

particle swarm optimization (PSO) technique. PSO is 

a soft computing optimization method inspired by the 

social behavior of particles, which is inspired by the 

cooperative movement of individuals in a swarm. In 

the context of optimizing photovoltaic systems. PSO 

optimization overcomes oscillations around local 

power points by efficiently locating the global power 

point, even in the case of partial shading. The PSO 

particles adjust their position by moving towards the 

best personal individual and towards the best global 

individual, thereby maximizing the energy efficiency 

of the photovoltaic system. As a result, the PSO 

represents a promising solution for improving 

maximum power point tracking under variable and 

complex weather conditions in solar the solar water 

pumping systems. [12] 

In another article a new methodology were introduced, 

named PSOPARSIMONY, which uses an adapted 

particle swarm optimization (PSO) to search for 

parsimonious and accurate models by means of 

hyperparameter optimization (HO), feature selection 

(FS), and the promotion of the best solutions according 

to two criteria: low complexity and high accuracy. 

This paper also includes a comparison in performance 

with GA-parsimony, our previously published 

methodology based on GA that has been successfully 

applied in a variety of contexts such as steel industrial 

processes, hotel room-booking forecasting, 

mechanical design, hospital energy demand, and solar 

radiation forecasting [13]. 

Optimization algorithms, like the Particle Swarm 

Optimization (PSO), often suffer from premature 

convergence, providing poor convergence quality and 

slow convergence rates. In addition, striking a balance 

between exploration and exploitation adds complexity 

to its implementation. Moreover, while the algorithm's 

simplicity with a few parameters is advantageous for 

ease of use, it poses a significant challenge for 

improvement. This work presents a modified PSO 

variant, the Random Adaptive Backtracking Particle 

Swarm Optimization (RAB-PSO) algorithm. This 

algorithm combines three complementary 

modifications to address the limitations of PSO. Its 

main objective is to improve convergence quality 

while minimizing iteration counts required for 

achieving global minima. [14] 

Hilali et al focuse on the optimization of solar water 

pumping systems (SWPS) by combining the particle 

swarm optimization (PSO) technique on the generator 

photovoltaic (GPV) side and direct torque control 

(DTC) on the pump motor side. The integration of a 

maximum power point tracking system (MPPT-PSO) 

represents a significant advance, enabling maximum 

power to be extracted from the GPV whatever the 

weather conditions. The main objective is to improve 

the energy efficiency of the SWPS system by 

maximizing the electrical power dedicated to the 

pumping system. [12] 

Divasón et al present PSO-PARSIMONY, a new 

methodology to search for parsimonious and highly 

accurate models by means of particle swarm 

optimization. PSO-PARSIMONY uses automatic 

hyperparameter optimization and feature selection to 

search for accurate models with low complexity. To 

evaluate the new proposal, a comparative study with 

multilayer perceptron algorithm was performed with 

public datasets and by applying it to predict two 

important parameters of the force–displacement curve 

in T-stub steel connections: initial stiffness and 

maximum strength. Models optimized with PSO-

PARSIMONY showed an excellent trade-off between 

goodness-of-fit and parsimony. [13] 

Barrios and Gerardo used a hybrid algorithm. This 

algorithm combines three complementary 

modifications to address the limitations of PSO and Its 

main objective is to improve convergence quality 

while minimizing iteration counts required for 

achieving global minimal. [14] 

In the research of Khademi and colleagues, energy, 

exergy and economic analyses is performed for a 

combined cycle power plant (CCPP) with a 
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supplementary firing system. The purpose of this 

analyses is to evaluate the economic feasibility of a 

CCPP by applying an optimization techniques based 

on Evolutionary algorithms. Actually, the 

evolutionary algorithms of Firefly, PSO and NSGA-II 

are applied to minimize the cost function and to 

optimally adjust the operating design variables of a 

CCPP. The input parameters are measured in real case 

study (i.e., Yazd city, Iran) and they are used to model 

and optimize the system performance. In following of 

optimization procedure, a thermo-economic method is 

employed to compare the impact of operating 

parameters from an economic standpoint by 

COMFAR III (Computer Model for Feasibility 

Analysis and Reporting) software. The results showed 

that the optimization results are economically more 

feasible than the base case. In addition, among 

different optimization techniques, Firefly algorithm 

improves the economic justification of CCPP. At the 

end, the results of sensitivity analysis show that by 

decreasing the operation costs, fixed assets and sales 

revenue by 40%, the IRR increases by 6.7%, 42.8% 

and decreases by 41.4%, respectively. Furthermore, 

the lowest sensitivity of IRR is related to operation 

cost, while the highest sensitivity of IRR is 

corresponding to variations of fixed assets.. [15] 

 

Searching procedures by PSO based on the above 

concept can be described as follows: bird flocking 

optimizes certain objective function. Each agent 

knows its best value so far (pbest) and its xy position. 

Moreover, each agent knows the best value so far in 

the group (g best) among pbests. The modified 

velocity of each agent can be calculated using the 

following information.  

 The current positions (x, y)  

 The current velocities (vx, vy)  

 The distance between the current position 

and pbest  

 The distance between the current position 

and g best  

This modification can be represented by the concept of 

velocity. The velocity of each agent can be modified 

by the following equation: 

 

vi
t+1

= wvi
t + c1rand1 × (pbesti − si

t) + c2rand2

× (gbest − si
t)                                                          (1) 

Where, 

t+1: denotes the next iteration number 

t   : denotes the current iteration number                                                                               

 vi
t   : Velocity of agent i at iteration t   

Pbesti: pbest of agent i (the best previous position 

yielding the best fitness value for the ith particle) 

gbest  : gbest of the group (the best position discovered 

by the whole population) 

w: the static inertia weight chosen in the interval (0, 1) 

c1          : the cognitive acceleration coefficient 

c2        : the social acceleration coefficient 

rand    : random number between 0 and 1  

si
t         : Current position of agent i at iteration t  

A suitable selection of weighting function w in (2) 

provides a balance between global and local 

explorations, thus requiring less iteration on average 

to find a sufficiently optimal solution. The following 

weighting function is usually utilized in:  

w

= wmax −
wmax − wmin

itermax

× iter                                                                                                                    (2) 

Where,  

wmax : initial weight,  

wmin : final weight,  

itermax : maximum iteration number,  

iter : current iteration number.  

Using the above equation, a certain velocity, which 

gradually gets close to pbest and gbest can be 

calculated. The current position (searching point in the 

solution space) can be modified and the position of a 

particle is updated every time step using the equation:  

 

   si
t+1 = si

t + vi
t+1                                                                                                                                 

(3) 

The constants c1and c2 represent the weighting of the 

stochastic acceleration terms that pull each particle 

toward the pbest and gbest positions. Lower values 

allow particles to far from the target regions and higher 

values result in the abrupt movement toward, or past, 

target regions. Hence, the acceleration constants c1and 

c2 is often set to be 2.0 according to past experiences.  

The next iteration takes place after all particles have 

been moved. Eventually the swarm as a whole, like a 

flock of birds collectively foraging for food, is likely 

to move close to the best location. The following 

alternative velocity-update equation was developed: 

vi
t+1 = k (vi

t + c1rand1 × (pbesti − si
t) +

c2rand2 × (gbest − si
t))                                                (4) 

Where k is a constant called the constriction 

coefficient. If c1, c2 and k (or w), are correctly chosen, 
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the PSO is guaranteed to be stable without the need for 

special constraints (e.g., Bounding of velocities and 

positions). [14] 

The Accomplish of optimization consists of five steps 

: [16-17] 

Step 1:  Swarm Initialization 

The optimization process begins by randomly 

initializing positions between a minimum and 

maximum per dimension as per Relation (5). The most 

common benchmarks use the same minimum and 

maximum per dimension. For application problems, 

however, these might differ depending on the 

characteristics being optimized; hence, the general 

formula is provided, which uses subscript j to indicate 

the dimension. 

                                  si,j(t = 0) ∈

U(sj
min, sj

max)                                                                                                                      

(5) 

Where j ∈  {1,2, … , n − 1, n} and n denotes the 

problem dimensionally. Velocities are similarly 

initialized according to Relation (6). For application 

problems with a different range of feasible values on 

one dimension than on another, different step sizes per 

dimension would make sense; hence, the general form 

is presented, which avoids unnecessarily imposing the 

same range of feasible values of all characteristics to 

be optimized. 

                                  vi,j(t = 0) ∈

U(−vj
max, vj

max)                                                                                                                             

(6) 

Each particle’s personal best is initialized to its 

starting position as shown in Equation (7). 

pbest⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑
i(t = 0) = s i(t =

0)                                                                                              
(7) 

The global best is always the best of all personal bests 

as shown in Equation (8). 

                                  gbest⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  (t) =

argmin f(pbesti(t))                                                                                                                 

      (8) 

                 ∀pbesti(t)   

 Iterative Optimization Routine 

Once the swarm has been initialized, particles 

iteratively: (i) accelerate (i.e. adjust their velocity 

vectors) toward the global best and their own personal 

bests, (ii) update and clamp their velocities, (iii) 

update their positions, and (iv) update their personal 

bests and the global best. This routine is repeated until 

reaching a user-specified termination criterion. For 

convenience, the relevant equations are restated below 

as needed in order of implementation. 

Setp2: Velocity updating: 

                                          

v⃑ i
t+1 = wv⃑ i

t + c1rand⃑⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑
1,i × (pbest⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑t

i
− s i

t) +

c2rand⃑⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑
2,i × (gbest⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  t − si

t)                                              (9) 

 

vi,j
t+1 =

sign(vi,j
t+1)max(|vi,j

t+1|, vj
max)                                                                                                     

      (10) 

  

Step3: Position updating:     

                                       s i
t+1 = s i

t + v⃑ i
t+1                                                                                           

(11) 

 

Step 4: Memory updating: 

A particle’s personal best is only updated when the 

new position offers a better function value: 

 

         

pbest⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑
i
t+1 {

x⃑ i
t+1 if f(s i

t+1) < 𝑓(pbest⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑
i
t)

pbest⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑
i
t  Otherwise

                                                                                                 

(12) 

The global best is always the best of all personal bests: 

                                  gbest⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  (t + 1) =

argmin f(pbesti(t1))                                                               

     (13) 

                                                              ∀pbesti(t) 

Step 5: Termination criteria examination:  

The algorithm repeats Step 2 to Step 4 until certain 

stopping rules are satisfied. Once terminated, the 

algorithm outputs the gbest⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   and f(gbest⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ) as its 

solution. Rather than accelerating due to external 

physical forces, particles adjust toward solutions of 

relative quality. Each position encountered as particle 

swarm is evaluated and compared to existing bests. 

Though the behavior of each individual is simple, the 

collective result is an optimization algorithm capable 

of maximizing or minimizing problems that would be 

difficult to tackle with straightforward mathematical 

analyses, either because the problem is not well 

understood in advance or simply because the problem 

is quite complicated. 
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3. Exergy and the thermoeconomic mathematical 

Model 

Exergy of stream flow 

The specific exergy at control volume with negligible 

kinetic and potential energies are given by: [4] 

 𝑒𝑥 = 𝑒𝑥𝑃𝐻 + 𝑒𝑥𝐶𝐻                                                                                                                             

(14) 

That the specific physical and chemical exergy of a 

stream are calculated as follows: [4] 

 𝑒𝑥𝑃𝐻  = (ℎ − 𝑇0𝑠)𝑃,𝑇 − (ℎ − 𝑇0𝑠)𝑃0,𝑇0                                                                                            

(15) 

 𝑒𝑥𝐶𝐻 = ∑ 𝑦𝑖𝑒𝑥𝑖
𝐶𝐻 + 𝑅𝑇0 ∑ 𝑦𝑖 ln 𝑦𝑖

𝑗
𝑖=1

𝑗
𝑖=1                                                                                           

(16) 

 Then, the exergy transfer rates at control volume 

inlets and outlets are denoted, respectively, as 𝐸�̇�𝑖 =

�̇�𝑖 𝑒𝑥𝑖 and 𝐸�̇�𝑒 = �̇�𝑒 𝑒𝑥𝑒 .   

Work exergy 

Exergy is determined as the maximum work potential, 

the work transfer rate in the control volume, 

�̇�𝑐𝑣  , equivalent to the exergy transfer rate. 

Heat transfer exergy 

Assuming a uniform temperature distribution at the 

location on the boundary of the control volume, the 

exergy transfer rate, 𝐸�̇�𝑄,𝑗  Connected with the heat 

transfer rate,�̇�𝑗 Can be calculated by the following 

formula: 

𝐸�̇�𝑄,𝑗 = (1 −

𝑇0

𝑇𝑗
) �̇�𝑗                                                                                                                 

                        (17) 

That the Tj is instantaneous temperature. In this paper, 

heat transfer exergy is negligible because assumed 

each component is well isolated. 

 

 

 

3.1 Exergoeconomic analysis 

The target of this study is to minimize the sum cost of 

producing (produced electricity) and maximize the 

exergetic efficiency for the whole system. In this part, 

according to the economic parameters used and also 

the fixed cost of the equipment, the relationship 

between efficiency and cost in this system has been 

investigated. In fact, it has been investigated how the 

efficiency has changed with the cost reduction.The 

objective functions of exergoeconomic optimization 

are: [18-19]  

The above equations expresses that the cost rate 

associated with the product of the stream �̇�𝑃 it equals 

the total rate expenditures made to generate the 

product, namely the fuel cost rate �̇�𝐹 and the cost rates 

associated with capital investment and operations and 

maintenance �̇�𝐶𝐼 + �̇�𝑂&𝑀. 

The capital investment and operating and maintenance 

term of the right-hand side of the above equation 

 �̇�𝐶𝐼 + �̇�𝑂&𝑀 is calculated using the illustrated 

relations in Ref [19]. 

In order to exergoeconomic analysis of each control 

volume, two targets suggested by [19] were calculated 

exergoeconomic factor and the relative cost 

difference, respectively: [19]  

𝑓𝑘 =
�̇�𝑘

�̇�𝑘+�̇�𝐷,𝑘
                                                                                                                                         

(20) 

𝑟𝑘 =
1−𝜀𝑘

𝜀𝑘
+

�̇�𝑘
𝐶𝐼+�̇�𝑘

𝑂&𝑀

𝑐𝐹,𝑘�̇�𝑥𝑃,𝑘
                                                                                                                          

(21) 

When the value of an exergoeconomic factor for a 

component is high, suggesting that a decrease in the 

investment costs of this component at the expensed of 

its exergetic efficiency. The relative cost difference for 

a component expresses the degree to which each 

subsystem contributes to increasing the final cost of 

the products. The exergoeconomic parameters for each 

of the components of the TCC power plant for the base 

case and optimum operating conditions are 

summarized in Table 2 and 5. The r and f parameters 

are generally used in the classical economic exergy 

calculation, but in this research, they were calculated 

and analyzed through the pso algorithm. Due to the use 

of pso algorithm in this research, several random 

points were investigated and the speed of the 

calculation along with the accuracy has increased. [19] 

 

4. Simulations 

4.1 Details and Assumptions 

Obj.Func.     Minimize �̇�𝑃𝑡𝑜𝑡
= �̇�𝐹𝑡𝑜𝑡

 +�̇�𝑡𝑜𝑡
𝐶𝐼  + 

�̇�𝑡𝑜𝑡
𝑂&𝑀                                                                      (18) 

  

Obj.Func Maximum 𝜀𝑡𝑜𝑡 

=

 
(2×�̇�𝑛𝑒𝑡𝐺𝑇

)+�̇�𝑛𝑒𝑡𝑆𝑇

2×(�̇�𝑓𝑢𝑒𝑙𝐶𝐵
+�̇�𝑓𝑢𝑒𝑙𝑆𝐹

)×𝐿𝐻𝑉
                                                                        

(19) 
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The selected case study is DAMAVAND thermal 

combined cycle power plant located in the near of 

Tehran, Iran (see Fig 1). The superheated steam enters 

the two-stage single reheat steam turbine at 520 

°C/90bar and 230 °C/8.5bar, for high and low pressure 

stages, respectively. The condenser pressure is 11 kPa. 

The simulation process and the most important 

parameters are described in this section. In order to 

simulate the existing plant, the following assumptions 

were made:  

1. Ambient pressure (𝑃0) and temperature (𝑇0) of the 

reference environment are considered as 0.9 bar and 

290 K, respectively (local climatic conditions). 

2. The chemical composition of the reference 

environment model constitutes (in mole fractions): 

𝑁2: 0.7646,𝑂2:0.1375, 𝐻2O: 0.0641,𝐶𝑂2: 0.0337 and 

others: 0.0001. 

3. Pressure drop in the pipes and steam generator is 

assumed equal to that in the reference power plants. 

4. Fuel gas temperature is equal to ambient air 

temperature when entering the combustor. 

5. Standard air composition is used for plant air inlet. 

6. Gas fuel ultimate analysis on volumetric basis is:𝑁2: 

0.05,𝐶𝐻4: 0.88,𝐶2𝐻6: 0.04, 𝐶3𝐻8:0.02,𝐶𝑂2:0.01. 

7. All processes are steady state and steady flow with 

negligible potential and kinetic energy effects. 

8. Ideal-gas mixture principles apply to the air and the 

combustion products. 

9. The combustion reaction is complete. 

10. Heat loss from the combustion chamber (CC) is 

neglected. 

11. The air side and water side pressure losses in the 

heat recovery steam generator (HRSG) are existed to 

be 3% and 5-10%, respectively, of the inlet pressure. 

Pressure losses due to friction in pipelines are 

neglected. 

12. The exergies of kinetic and potential are neglected. 

13. The exergetic analyses are made on the lower 

heating value (LHV) basis of natural gas. 

The thermodynamic properties of air and steam were 

found using the Engineering Equation Solver (EES) 

software package. 

 

 

Air, Gas Combustion and Steam property  

The specific heat of air and exhaust gas at constant 

pressure are assumed to be a function of temperature, 

given by the polynomial adopted from [20] as follows: 

In the temperature range of 273-1800 K 

𝐶𝑃𝑎𝑖𝑟
= 0.99871 + 1.06430 × 10−4. 𝑇 + 1.64860 ×

10−7. 𝑇2 − 7.01176 × 10−11. 𝑇3                (22) 

The specific heat capacity of the combustion gases as 

follows: 

In the temperature range of 273-1800 K 

𝐶𝑃𝑔𝑎𝑠
= 0.97031 + 0.67898 × 10−4. 𝑇 + 1.65757 ×

10−7. 𝑇2 − 6.78633 × 10−11. 𝑇3                (23) 

Therefore, enthalpy and entropy of working fluid are 

found using the above polynomials and derived by 

using the ideal gas tables, can be obtained from [21]: 

∆ℎ𝑇 = ℎ298.15 + ∫ ∆𝑐𝑃
𝑇

298.15
𝑑𝑇                                                                                

                           (24) 

∆𝑠𝑇 = 𝑠298.15 + ∫ ∆𝑐𝑃
𝑇

298.15
𝑑𝑇                                                                                                           

(25) 

Where ℎ298.15 And 𝑠298 .15 Are the enthalpy and 

entropy at a reference temperature, respectively. 

Likewise, the main data for steam system in a TCC 

power station give in the table 1. 

 

4.2 Design Parameters 

The 9 decision variables are to be optimized, which 

have been defined as follows: 

– Inlet fuel in Combustion Chamber ṁfuel; 

– Inlet fuel in HRSG�̇�24,�̇�25; 

– Isentropic efficiency of the compressor  𝜂𝑠𝑐𝑜𝑚𝑝
; 



Mostafa Khalatbari et al / Journal of Renewable Energy and Smart Systems     Vol.1, No.2,2024, 81-98 

89 

 

– Steam temperature entering the high pressure steam 

turbine 𝑇13; 

– Steam pressure entering the high pressure steam 

turbine𝑃13; 

– Steam mass flow rate entering the high pressure 

steam turbine ṁ13; 

– Exhaust gas temperature exhalant the gas turbine 

𝑇4&𝑇9; 

– Compressor pressure ratio  𝑟𝑝𝑐𝑜𝑚𝑝.
; 

– Isentropic efficiency of the steam turbine ηST; 

5 Design optimization 

In order to achieve feasible design parameters some 

physical constraints should be considered seriously. 

The decision variables are generated randomly within 

the admissible range mentioned. The list of these 

constraints and their reasons are briefed in Table3. In 

continuing a Particle swarm optimization code is 

developed in Matlab Software Programming .The 

parameter setting of PSO listed Table 4. 

6. Results and discussion 

After modeling and simulating the system, the effects 

of the main parameters on the performance of the 

system were studied. Table 2 summarizes the 

thermoeconomic variables calculated for each 

component of the power plant using main data. Result 

from multi objective optimization is shown in Table 5. 

The table variables include the exergy efficiency ε, 

rate of fuel exergy 𝐸�̇�𝐹 , the rate of product exergy 

𝐸�̇�𝑃, the rate of exergy destruction 𝐸�̇�𝐷, exergy 

destruction ratio 𝑦𝐷 , average costs per unit of fuel 

exergy 𝑐𝐹 , average costs per unit of product exergy 

𝑐𝑃, cost rate of exery destruction �̇�𝐷 , investment and 

O&M cost rate �̇�, relative cost difference 𝑟, 

exergoeconomic factor 𝑓 , and data for various 

components of the power plant in base design and 

various optimizations, respectively. It shows the 

particle swarm solution for TCC power plant with 

objective functions indicated in equations (18-19) in 

multi objective optimization. Optimum design 

parameters of the TCC power plant are obtained in a 

situation with an ambient temperature of 16.6 °C 

which could provide 320 MW of electric power. Table 

6 shows a comparison of the operating decision 

variables (design parameters) in the base design and 

the optimum case. The table shows that ṁ𝑓𝑢𝑒𝑙  

,�̇�24,�̇�25 And 𝜂𝑆𝑇 The optimal values are 6%, 9%, 9% 

and 6% lower in the base case , respectively. 

The comparative results of the base case and the 

optimum case for multi-objective function are given in 

Table 7. It is observed that the exergetic efficiency is 

increased from about 35.7% to 38.62% in the PSO 

method. In the optimized system the total capital 

investment has increased from 9798.1 to 11119 $/h 

while the total exergy destruction has decreased from 

398.27 to 334.39 MW and the product cost per unit 

exergy is decreased by 3%. The decrease in product 

cost can be attributed to higher savings in exergy 

destruction and exergy loss. This is achieved, 

however, with a 11 % increase in capital investment. 

It should be noted that in multi objective optimization 

and the Partial Swarm Optimization each point can be 

the optimized point. Therefore, selection of the 

optimum solution is depending on constraints and 

criteria of each decision-maker. Hence, each decision-

maker may choose a different point as optimum result 

which better suits with his/her desires. 

According to the results obtained from the research of 

Khademi and Colleagues, the overall efficiency of the 

cycle after the optimization was 42.6% and the 

efficiency of the pump and turbine was 83.7 and 

84.8%, respectively. Also, the internal rate of return on 

investment of this power plant according to the used 

algorithms is 47.45% [15] 

Another research was performed with aim of 

increasing regression performances of MLP in 

comparison to ones available in the literature by 

utilizing heuristic algorithm. The GA described in this 

paper is performed by using mutation and crossover 

procedures. These procedures are utilized for design of 

20 different chromosomes in 50 different generations. 

In this study average hourly electrical power output 

was 420.26-495.76 MW. [11] 

But in the current research, the efficiency of gas 

turbine and pump after the optimization is 84.23 and 

44.77%, respectively, and the overall efficiency of the 

desired cycle is 38.62%, and this shows the relative 

closeness of the efficiency of similar components in 

the cycle of the mentioned researches. This 

information and their comparison can be seen in Table 



Mostafa Khalatbari et al / Journal of Renewable Energy and Smart Systems     Vol.1, No.2,2024, 81-98 

90 

 

9. In this table, the percentage of changes in 

parameters such as pump efficiency, turbine 

efficiency, and overall power plant efficiency in the 

current study and two similar studies have been 

calculated and analyzed. 

 

7. Environmental impact analysis (especially NOx 

and 𝑪𝑶𝟐) 

In the recent years, new demands for more energy 

production  at lower cost and reduced environmental 

impact are increased. Global climate change, 

including global warming, refers to the warming 

contribution of the earth of increased atmospheric 

concentration of CO2 and other greenhouse gases. 

CO2 emissions account for about 50% of the 

anthropogenic greenhouse effect. The ultimate global 

warming effect can cause dangerous climatic changes 

on Earth. [1] 

Steadily increasing emissions of other atmospheric 

pollutants such as sulfur and nitrogen oxides are also 

very damaging to the environment. Therefore the 

reduction of all emissions from the energy sector is of 

the utmost importance. 

The major factors affecting NOx production in the gas 

turbine combustor is as follows: [22] 

 Firing temperature 

 Oxygen availability 

 Duration of the combustion 

NOx is formed mainly when the temperatures are high, 

such as those found in the flame of a gas turbine 

combustor. The flame temperature depends on the 

excess air ratio. As excess air is a reduced, theoretical 

flame temperature increase. This has the effect of 

reducing the stack loss and increasing the thermal 

efficiency. Although, higher flame temperatures 

reduce the fuel consumption for a given process 

heating duty, there is one significant disadvantage. 

Higher flame temperatures increase the formation of 

oxides of nitrogen, which are environmentally 

harmful. Very low excess air ratios are beneficial from 

the point of view of NOx formation but are very 

detrimental to efficiency and cause the production of 

large amounts of CO and unburned hydrocarbons. 

In the present work, the combustion reaction is 

assumed complete and air mass flow (�̇�𝑎𝑖𝑟) is 

permanent. Natural gas enters to combustor with 22 

bars and 25 °C. In the initial case, for a 427.8 air/fuel, 

mass ratio (air/fuel ratio in moles: 29.51), the general 

combustion equation of this system in the base case is 

as follows: 

1× [88 CH4+ 4C2H6+2C3H8+CO2+5N2] 

+620[O2+3.76N2] → 103 CO2+2336 N2+420 O2+196 

H2O                                                (26) 

After optimization, general combustion equation 

changes as follows: 

0.936× [88 CH4+ 4C2H6+2C3H8+CO2+5N2] 

+620[O2+3.76N2] → 96.4 CO2+2335.9 N2+432.75 

O2+183.5 H2O                                 (27)                                        

To compare of Eq. 26 and 27, it shows that CO2 

emission has decreased about 6.8 %. Likewise, NOx 

formation is decreased because Excess air and 

theoretical flame temperature are changing according 

to Table 8. 

Also, the results show an increase in the total exergy 

efficiency of about 8% and a decrease in the total cost 

product of about 3%. Exergy efficiency is not an 

alternative to energy security but rather a vital 

component in achieving it. The efficient use of exergy 

is very important to keep supply security and to 

decrease the environmental impact. The most 

important factor in exergy efficiency is energy saving. 

Energy saving, which is generally understood as 

consuming less energy; is minimizing fuel 

consumption, here, is about 6.4% lower from the base 

case. [23] 

 

  

8. Conclusions 

In this paper, a TCC power plant was optimally 

designed using a PSO optimizer technique. Exergy 

and exergoeconomic equations for all parts of a system 

were developed. The decision variables were 

compressor pressure ratio, compressor isentropic 

efficiency, gas turbine outlet temperature, inlet fuel in 

the combustion chamber and inlet fuel in HRSG, 

steam temperature entering the high pressure steam 
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turbine, steam pressure entering the high pressure 

steam turbine, steam mass flow rate entering the high 

pressure steam turbine and steam turbine isentropic 

efficiency as well as nine design limitations for 

configuration of the system. In the present 

optimization problem, the total exergetic efficiency 

and total product cost per unit exergy were considered 

as two objective functions. Also, gas turbines and 

steam turbine network are assumed constant with 

420.73 MW value. The results revealed the level of 

accordance between the two objectives in the case 

study. According to the results obtained from 

modeling as shown in the tables, some conclusions are 

as follows: 

— Combustion chamber, Gas turbine, and 

HRSG have the highest values of the sum 

�̇�𝐷+�̇� and are, therefore, the most important 

components from the thermo economic 

viewpoint. 

— By increasing compressor pressure ratio and 

decrease the isentropic efficiencies of 

compressor, gas turbine and steam turbine as 

suggested by the evaluation of the air 

compressor, gas turbine and steam turbine. 

— By increasing the value of 𝑇2 And 𝑇7 as 

suggested by the evaluation of the 

combustion chamber and HRSG. 

—  An 8% increase in total efficiency and a 3% 

decrease in total product cost per unit exergy 

were found that are reasonable. 

—  The summation of exergy destroyed in all 

components of the optimized cycle is lower 

by about 14% in comparison to basic cycle.  

— Decrease of NOx formation and CO2 

emission. 

— Based on the final comparison, the efficiency 

of the turbines in the current research is 

0.68% less than the first research and 5.02% 

more than the second research. 

Hence; it is observed that PSO can be a superior tool 

for optimization of the TCC power plant in the above 

terms. 

 

 

Nomenclatures 

Ċ— Cost flow rate, $/h 

c — Cost per unit exergy, $/GJ 

𝑟𝑝 — Pressure ratio 

Ėx — Exergy flow rate, MW 

f — Exergoeconomic factor 

ṁ — Mass flow rate, kg/h 

P — Pressure, kPa 

r — Relative cost difference 

T — Temperature, K 

Ẇ— Power, MW 

Ż— Rate of the capital cost 

y — Exergy destruction ratio 

h— Enthalpy 

s— Entropy 

�̇� — Entropy rate 

𝑦— Mole fraction 

 

Greek letters 

𝜂𝑠 — Isentropic efficiency 

ε — exergetic efficiency 

 

Subscripts 

ARC — absorption refrigeration cycle 

CB — combustion chamber 

CCP — combined cooling and power 

D — Destruction 

DFGT — dual fuel gas turbine  

DTC — direct torque control  

e — exit stream 

https://www.sciencedirect.com/topics/engineering/absorption-refrigeration
https://www.sciencedirect.com/topics/materials-science/dual-fuel
https://www.sciencedirect.com/topics/engineering/gas-turbine
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F — Fuel 

FS —  feature selection 

GA — Genetic Algorithm 

GPV — generator photovoltaic 

GT—gas turbine 

GTIT—  gas turbine inlet temperature 

HO — hyperparameter optimization  

i — inlet stream 

ICE — internal combustion engine  

k — component 

L — Loss 

 

LCOE — levelized cost of exergy  

LEIOE — levelized environmental impact of exergy  

MEA — monoethanolamine  

MLP — multi-layer perceptron  

ORC — organic Rankine cycle  

P — Product 

PAT — preheated air temperature  

PSO — particle swarm optimization  

ST— steam turbine 

SWPS — solar water pumping systems  

UEEC — unit exergoeconomic costs  

 

 

 

 

 

 

 

 

 

Table 1: the main data in seam system 

Pressure (bar) 
Temperature 

(K) 

Mass Flow Rate 

(kg/s) 
Stream State 

90.73 793 134.14 steam HP enters the steam turbine 

8.5 503 18 steam LP enters the steam turbine 

0.101 319 152 
Saturate steam 

Quality=0. 879 
Exit Steam turbine 

19.74 320 76.07 Water Entering HRSG 

 

 

Table 2: Base Design Case indexes 

Component ε (%) EẋF EẋP EẋD 

 

yD
* 

(%) 

cF 

($/GJ) 

cP 

($/GJ) 

ĊD 

($/h) 

Ż 

($/h) 

ĊD+Ż 

($/h) 

r 

(%) 

f 

(%) 

https://www.sciencedirect.com/topics/engineering/turbine-inlet-temperature
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Air 

Compressor 
92.63 151.44 140.28 11.16 2.8 19.84 24.09 798 1469.63 2268 22.62 64.82 

Combustion 

chamber 
77.98 394.22 305.6 86.79 21.79 8.56 15.28 2675 82.3 2757 28.23 2.98 

Gas Turbine 85.02 331.04 281.44 49.6 12.45 15.28 19.84 2728 1556.35 4284 27.68 36.32 

HRSG 65.09 121.78 79.26 42.52 10.67 13.73 22.45 2102 1588.69 3691 94.18 43.04 

Steam 

Turbine 
92.66 173.45 160.73 12.72 3.19 16.69 19.84 764 374.09 1138 11.79 32.86 

Condenser 83.16 29.21 24.29 4.92 1.23 0.15 17.92 2.73 7.24 10 73.98 72.63 

Pump 43.84 0.95 0.42 0.53 0.13 19.84 22.82 38 22.82 61 204.81 37.45 

overall plant 35.7 1178.5 420.73 398.27 100 8.56 30.46 12279 9798.1 22078 255.66 44.38 

∗ yD For compressor, combustion chamber, gas turbine and HRSG is equal to add yD’S two compressors, combustion 

chamber, gas turbine and HRSG. 

 Table 3: the Design Parameters and Their Range of Allowable Variation 

Design Parameters Unit From To 

Inlet fuel in Combustion Chamber kg/s 8 11 

Supplementary Firing kg/s 0 2 

Isentropic Efficiency of compressor % 75 90 

Pressure Ratio of compressor _ 9 16 

Change value of  Exhaust temperature of gas turbine Kelvin 817 821 

Change value of  Steam turbine inlet temperature of HP steams Kelvin 793 808 

Change value of  Steam turbine inlet pressure of HP steams Bar 85.5 94.5 

Change value of Steam turbine inlet mass flow rate of HP steams kg/s 134 149 

Isentropic Efficiency of steam turbine % 75 92 

 

 

 

 

             Table 4: simulation setup for PSO algorithm 

Parameter Value 

Population size 400 
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Maximum no. of iteration 200 

Initial of  inertia weigh (wmax )  0.9 

Final of inertia weight (wmin) 0.4 

Cognitive learning rate (c1) 2 

Social learning rate ( c2 ) 2 

Table 5: PSO Optimization indexes 

Component ε (%) EẋF EẋP EẋD 
 

yD (%) 

cF 

($/GJ) 

cP 

($/GJ) 

ĊD 

($/h) 

Ż 

($/h) 

ĊD+Ż 

($/h) 

r 

(%) 

f 

(%) 

Air 

Compressor 
93.12 171.49 159.68 11.81 4.41 19.15 24.51 1017 2082.24 3099 29.09 67.18 

Combustion 

chamber 
88.98 356.82 315.67 39.34 11.76 8.56 14.71 1212 115.56 1328 12.39 8.71 

Gas Turbine 84.23 355.39 299.33 56.06 16.76 14.71 19.15 2968 1458.72 4427 27.94 32.96 

HRSG 64.41 125.84 81.06 44.79 13.39 13.07 21.6 2107 1705.32 3812 99.97 44.73 

Steam 

Turbine 
89.7 179.18 160.73 18.45 5.52 15.71 19.15 1044 364.32 1408 15.49 25.88 

Condenser 81.44 29.82 24.29 5.53 1.66 0.15 17.68 3.07 7.20 10 77.12 70.45 

Pump 44.77 0.95 0.43 0.52 0.16 19.15 20.33 36 23.04 59 202.4 39.04 

overall plant 38.62 1089.3 420.73 334.39 100 8.56 29.51 10308 11119.0 21427 244.64 51.89 

 

Table 6: Comparison exergoeconomic decisions variables of the system for optimum and base case 

Decisions Variables Unit Base case PSO opts. Difference 

Inlet fuel in Combustion Chamber kg/s 9 8.45 -0.06 

Supplementary Firing kg/s 0.64 0.58 -0.09 

Isentropic Efficiency of compressor % 86 85.5 -0.01 

Pressure Ratio of compressor _ 11.8 14.66 0.24 

Exhaust temperature of gas turbine Kelvin 819 819 0.00 

Steam turbine inlet temperature of HP steams  Kelvin 793 802 0.01 
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Table 7 Comparison of Exergy Efficiency and Product Cost per unit exergy ($/GJ) in base case design an optimum 

solutionined at an optimum solution in this paper 

 

 

Table 8: Comparison of Excess air and Flame temperature at an optimum solution in this paper 

Variable Base design case PSO Opt. Difference (%) 

Excess air (%) 209 230 +10 

Flame temperature (K) 1397 1385 -1 

 

 

Table 9: Comparison of common parameters between two studies and the current study 

The percentage of 

changes between  

research (B) and the 

current research (%) 

The percentage of 

changes between  

research (A) and the 

current research (%) 

Current 

study 

Lorencin and 

colleagues  

(B) 

Khademi and 

colleagues 

(A) 

Parameter 

Steam turbine inlet pressure of HP steams Bar 90 92.15 0.02 

Steam turbine inlet mass flow rate of HP steams kg/s 134 139.59 0.04 

Isentropic Efficiency of steam turbine % 88 82.7 -0.06 

Component 

 

Exergy Efficiency Product Cost per unit exergy ($/GJ) 

Base design case PSO Opt. Difference Base design case PSO Opt. Difference 

Air Compressor 92.63 93.12 0.01 24.09 24.51 0.02 

Combustion 

chamber 
77.98 88.98 0.14 

15.28 14.71 -0.04 

Gas Turbine 85.02 84.23 -0.01 19.84 19.15 -0.03 

HRSG 65.09 64.41 -0.01 22.45 21.6 -0.04 

Steam Turbine 92.66 89.7 -0.03 19.84 19.15 -0.03 

Condenser 83.16 81.44 -0.02 17.92 17.68 -0.01 

Pump 43.84 44.77 0.02 22.82 20.33 -0.11 

Overall plant 35.7 38.62 0.08 30.46 29.51 -0.03 
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8.14 13.07 
420.73 420.26-495.76 484 

Maximum production power 

(MW) 

84.56 87.25 44.77 80 - 85 83.7 Efficiency of the pump (%) 

-5.02 0.68 84.23 80 84.8 Efficiency of the turbine (%) 

------ 10.31 38.62 ------ 42.6 Overall efficiency (%) 

 

Figure. 1: The schematic of the TCC power plant system investigated [24] 
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