مطالعه تأثیر طول بلوکهای هاپلوتیپی در بهبود صحت پیش بینی ژنومی به کمک روشهای بیزی در گوسفند DOR: 20.1001.1.17359880.1400.14.2.2.1
محورهای موضوعی : مجله پلاسما و نشانگرهای زیستیرضا سید شریفی 1 * , فاطمه علاء نوشهر 2 , نعمت هدایت ایوریق 3 , جمال سیف دواتی 4
1 - دانشگاه محقق اردبیلی
2 - فارغ التحصیل دکتری اصلاح نژاد دام دانشگاه تبریز
3 - عضو هیات علمی، گروه علوم دامی، دانشکده کشاورزی، دانشگاه محقق اردبیلی
4 - گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران
کلید واژه: عدم تعادل پیوستگی, بیزA, بیزB, مطالعات گسترده ژنومی, SNP, بلوک های هاپلوتیپ,
چکیده مقاله :
زمینه و هدف: عدم تعادل پیوستگی(LD) و طرح ساختار بلوکهای هاپلوتیپ سطح جمعیت پارامترهایی هستند که برای مدیریت مطالعات گسترده ژنومی(GWAS) و درک ماهیت رابطه غیر خطی بین فنوتیپها و ژنوتیپها مفید هستند. در مقایسه با چند شکلی تک نوکلئوتیدی(SNp )، استفاده از آللهای هاپلوتیپ در پیشبینی ژنومی و بهبود صحت پیش بینی کارآمدتر هستند. اما میزان افزایش صحت به چگونگی طراحی بلوکهای هاپلوتیپ بستگی دارد. این مطالعه با هدف آزمون اندازه بهینه برای طول هاپلوتیپ در پیش بینیهای ژنومی صورت گرفت.روش کار: در این مطالعه آللهای هاپلوتیپ با توجه به آللهای SNp در بلوکهای kb 125، kb 250، kb 500 و Mb 1 تعریف و آللهای هاپلوتیپ با فرکانسهای کمتر از 1، 5/2، 5 یا 10 درصد حذف شدند. از دو روش بیزA و بیزB برای پیش بینی اثرات ژنومیSNp ها و هاپلوتیپها در سه صفت با سه سطح وراثتپذیری(تولید شیر (1/0=h2)، وزن لاشه (3/0=h2) و وزن بدن در بلوغ=h2) 45/0)استفاده شد.یافته ها: بیشترین صحت پیشبینی ژنومی در صفت وزن بدن در زمان بلوغ توسط روش بیزB(652/0) در طول بلوک هاپلوتیپی kb 250 و کمترین توسط روش بیزA در صفت تولید شیر(407/0) در طول بلوک هاپلوتیپی Mb 1 حاصل گردید. بلوکهای هاپلوتیپی به طول kb 250 با آستانه فرکانس 1 درصد، بالاترین میزان صحت پیشبینی ژنومی را ارائه دادند. در مقایسه دو روش بیزA و بیزB، روش بیزB صحت برآورد بالاتری هم در مدلهای بر پایه SNp و هم بر پایه آللهای هاپلوتیپ ارائه داد.نتیجه گیری: قرار دادن آللهای هاپلوتیپ به جایSNp ها در مدل آماری، درصورت تعریف مناسب طول هاپلوتیپ، سبب بهبود صحت پیشبینی ژنومی میشود.
Inroduction & Objective: Linkage disequilibrium (LD) advancement map and the specification of population-level haplotype block structures are parameters that are helpful for managing the study of the Genome wide Association (GWAS), and to comprehend the nature of non-linear relationship among phenotypes and genotype. Compared with single nucleotide polymorphisms (SNP), genomic prediction fitting haplotype alleles and improve prediction accuracy; but the increase in accuracy belong how the Haplotype block are characterized. The aim of this study was to test the optimal size for haplotype length in genomic predictions. Material and Method:The Haplotype alleles were defined according the SNP alleles in not covering blocks 125 Kb, 250 Kb, 500 Kb, and 1 Mb. The Haplotype alleles with frequencies below 1, 2.5, 5 or 10% are eliminated. Two methods, Bayes A and Bayes B, were used to predict the genomic effects of SNPs and haplotypes. From Bayes A and B methods to predict the genomic effects of SNPs and haplotypes in three traits with three levels of heritability (milk production (h2 = 0.1), carcass weight (h2 = 0.3) and body weight in Maturity (h2 = 0.45) was used. Results: The highest genomic prediction obtained in body weight at maturity by Bayesian method B (0.652) during 250 kb haplotypic block and the lowest by Bayesian method A in milk production (0.407) during haplotypic block 1 Mb. Haplotype blocks of 250 kb with a frequency threshold of 1% provided the highest genomic prediction accuracy. Comparing Bayes A and Bayes B methods, Bayes B method provided higher estimation accuracy in both SNP-based and haplotype allele-based models. Conclusion: : Placing haplotype alleles instead of SNPs in the statistical model, if the haplotype length is properly defined, improves the accuracy of genomic prediction.
1.Barrett, JC., Fry, B., Maller, J., Daly, MJ. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21; 263–265.
2.Browning, BL., Browning, SR. (2009). A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Journal of Human Genetics, 84; 210–23.
3.Chang, CC., Chow, CC., Tellier, LCAM., Vattikuti, S., Purcell, SM., Lee, JJ. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4; 7.
4.Cuyabano, BCD., Su, G., Rosa, GJM., Lund, MS., and Gianola, D. (2015). Bootstrap study of genome-enabled prediction reliabilities using haplotype blocks across Nordic Red cattle breeds. Journal of Dairy Science, 98(10); 7351-7363.
5.De Los Campos, G., Hickey, JM., Pong-Wong, R., Daetwyler, HD., Calus, MP. (2013). Whole genome regression and prediction methods applied to plant and animal breeding. Genetics, 193; 327-45.
6.Ferdosi, MH., Henshall, J. and Tier, B. (2016). Study of the optimum haplotype length to build genomic relationship matrices. Genetics, 48(1); 75.
7.Gianola, D. (2013). Priors in Whole-Genome Regression: The Bayesian Alphabet Returns. Genetics, 194(3); 573-596.
8.Gabriel, SB., Schaffner, SF., Nguyen, H., Moore, JM., Roy J., Blumenstiel, B. (2002). The structure of haplotype blocks in the human genome. Science, 296; 2225–9.
9.Garrick, D., Fernando, R. (2013). Implementing a QTL detection study (GWAS) using genomic prediction methodology, genome-wide association studies and genomic prediction. Springer, P; 275-298.
10.Goddard, ME. (2008). Genomic selection: prediction of accuracy and maximization of long term response. Genetics, 136(2); 245–257.
11.Habier, D., Fernando, RL., Dekkers, JCM. (2007). The impact of genetic relationship information on genome-assisted breeding values. Genetics, 177(4); 2389-2397.
12.Haldane, JBS. (1919). The combination of linkage values and the calculation of distances between the loci of linked factors. Genetics, 8; 299-309.
13.Hayes, BJ., Chamberlain, AJ., McPartlan, H., Macleod, I., Sethuraman, L., Goddard, ME. (2007). Accuracy of marker-assisted selection with single markers and marker haplotypes in cattle. Genetics, 89(4); 215-220.
14.Hess, M., Druet, T., Hees, A., Garrick, D. (2017). Fixed length haplotypes can improve genomic prediction accuracy in an admixed dairy cattle population. Genetics Selection Evolution, 49; 54.
15.Hill, WG., Robertson, A. (1968). Linkage disequilibrium in finite populations. Theor. Appl. Genetics, 38; 226-231.
16.Meuwissen, T., Hayes, B., Goddard, M. (2013). Accelerating improvement of livestock with genomic selection. In: H. A. Lewin and R. M. Roberts, editors, Annual Review of Animal Biosciences, Vol 1. Annual Review of Animal Biosciences No. 1. Annual Reviews, Palo Alto, p; 221-237.
17.Meuwissen, THE., Hayes, BJ., Goddard, ME. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4); 1819–1829.
18.Nielsen, HM., Sonesson, AK., Yazdi H., Meuwissen, THE. (2009). Aquaculture, 289; 259–264.
19.Sargolzaei, M., Schenkel, FS. (2009). QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25; 680-681.
20.Shirali, M., Miraei-Ashtiani, SR., Pakdel, A., Haley, C., Navarro, P., Pong-Wong, R. (2015). A comparison of the sensitivity of the BayesC and Genomic Best Linear Unbiased Prediction (GBLUP) methods of estimating genomic breeding values under different Quantitative Trait Locus (QTL) model assumptions. Iranian Journal of Applied Animal Science, 5(1); 41-46
21.Solberg, TR., Sonesson, AK., Woolliams, JA., Meuwissen, THE. (2008). Genomic selection using different marker types and densities. Journal of Animal Science, 86; 2447-2454.
22.Sved, JA. (1971). Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Bioinformatics, 2; 125-141.
23.VanRaden, PM. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11); 4414-4423.
24.Villumsen, TM., Janss, L. (2009). Bayesian genomic selection: the effect of haplotype length and priors. BMC Proceedings 3 Supp, l(1); S11.
25.Villumsen, TM,. Janss, L., Lund, MS. (2009). The importance of haplotype length and heritability using genomic selection in dairy cattle. Journal of Animal Breeding and Genetics, 126; 3-13.
_||_