اثر 8 هفته تمرین هوازی بر برخی آنزیم های کبدی و شاخص های آنتروپومتریکی موش های صحرایی در معرض امواج الکترومغناطیس
محورهای موضوعی : بیوشیمی خون و تشخیص نشانگر های زیستیآسیه سید 1 , ام البنین قاسمیان 2 *
1 - گروه فیزیولوژی ورزشی، واحد بهبهان، دانشگاه آزاد اسلامی، بهبهان، ایران
2 - هیات علمی دانشگاه آزاد واحد بهبهان
کلید واژه: امواج الکترومغناطیسی, وزن قلب, نسبت وزن قلب به وزن بدن, تمرین هوازی, آنزیم¬های کبدی,
چکیده مقاله :
زمینه و هدف: میدانهـاي الکترومغناطیسـی بر سیستم قلبی و کبدی انسان تاثیر مخربی دارد. با توجه به نقش فعالیت ورزشی بر سلامت انسان، مطالعه حاضر با هدف بررسی 8 هفته تمرین هوازی بر آنزیمهای کبدی، وزن قلب، وزن بدن و نسبت وزن قلب به وزن بدن موشهای صحرایی در معرض امواج الکترومغناطیسی صورت گرفت.
مواد و روش ها: در این مطالعه تجربی تعداد 32 سر موش صحرایی به طور تصادفی به چهارگروه (1) کنترل بدون هیچ گونه مداخله، (2) کنترل تحت اشعه الکترومغناطیس، (3) گروه تمرین هوازی تحت تاثیر اشعه الکترومغناطیس و (4) تمرین هوازی بدون اشعه الکترومغناطیس و هر گروه 8 سر موش تقسیم شدند. گروه های 2 و 3 هشت هفته به مدت 1 ساعت در روز در معرض اشعه الکترومغناطیس قرار گرفتند. نمونههای گروههای 3 و 4 سه جلسه در هفته به مدت 8 هفته بر روی نوار گردان دویدند. سطوح سرمی آلانین آمینوترانسفراز، آسپارتات آمینوترانسفراز اندازهگیری و گروهها با هم مقایسه شدند.
نتایج: قرار گرفتن در معرض اشعه الکترومغناطیس اثر معنی داری بر سطوح آلانین آمینوترانسفراز و آسپارتات آمینوترانسفراز نداشت اما منجر به افزایش سطوح وزن، افزایش وزن قلب و افزایش نسبت وزن قلب به وزن بدن موش های صحرایی گردید (05/0>P). تمرینات هوازی منجر به کاهش وزن، وزن قلب و نسبت وزن قلب به وزن بدن موشهای صحرایی تحت اشعه الکترومغناطیس گردید (05/0>P). تمرین هوازی همچنین، موجب افزایش سطوح آلانین آمینوترانسفراز و آسپارتات آمینوترانسفراز موشهای صحرایی تحت اشعه گردید (05/0>P). سطوح آسپارتات آمینوترانسفراز در گروه تمرین هوازی به طور معنی داری بالاتر از گروه تمرین هوازی تحت اشعه بود (05/0>P).
نتیجهگیری: به نظر می رسد اشعه الکترومغناطیس اثری بر آنزیمهای کبدی ندارد، درحالیکه موجب افزایش سطوح وزن، وزن قلب و نسبت وزن قلب به وزن بدن موش های صحرایی میگردد. انجام تمرینات هوازی وزن، وزن قلب و نسبت وزن قلب به وزن بدن موشهای صحرایی تحت اشعه الکترومغناطیس را کاهش میدهد و اثر مثبت بر آنزیمهای کبدی دارد.
Background and aim: Electromagnetic fields have a detrimental effect on the human heart and liver system. Considering the impact of physical activity on human health, the present study aims to investigate the effects of 8 weeks of aerobic training on liver enzymes, heart weight, body weight, and the heart weight-to-body weight ratio in rats exposed to electromagnetic waves.
Materials and Methods: In this experimental study, 32 rats were randomly divided into four groups: (1) a control group without any intervention, (2) a control group exposed to wireless electromagnetic radiation, (3) an aerobic exercise group exposed to wireless electromagnetic radiation, and (4) an aerobic exercise group without electromagnetic radiation (each group has 8 rats). Groups 2 and 3 were exposed to electromagnetic radiation for 1 hour a day over eight weeks. The samples from groups 3 and 4 underwent treadmill exercise three times a week for the same duration. Serum levels of were measured, and the groups were compared. alanine aminotransferase and aspartate aminotransferase
Results: Exposure to wireless radiation had no significant effect on alanine aminotransferase and aspartate aminotransferase levels, but it resulted in increased weight, heart weight, and the heart weight-to-body weight ratio in rats (P<0.05). Aerobic exercises led to decreased weight, heart weight, and the heart weight-to-body weight ratio in rats exposed to wireless radiation (P<0.05). Additionally, aerobic exercise increased alanine aminotransferase and aspartate aminotransferase levels in rats under wireless radiation (P<0.05). Notably, aspartate aminotransferase levels in the aerobic exercise group were significantly higher than those in the aerobic exercise group exposed to wireless radiation (P<0.05).
Conclusion: It seems that electromagnetic radiation has no effect on liver enzymes, while it increases the levels of weight, heart weight and the ratio of heart weight to body weight in rats. Performing aerobic exercises reduces the weight, heart weight and ratio of heart weight to body weight of rats exposed to wireless radiation and has a positive effect on liver enzymes.
1. Lin JC. Electromagnetic fields in biological systems: Taylor & Francis; 2012.
2. Kıvrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. Journal of microscopy and ultrastructure. 2017;5(4):167-76.
3. Kashani ZA, Pakzad R, Fakari FR, Haghparast MS, Abdi F, Kiani Z, et al. Electromagnetic fields exposure on fetal and childhood abnormalities: Systematic review and meta-analysis. Open Medicine. 2023;18(1):20230697.
4. Stevens RG. Electromagnetic fields and free radicals. Environmental Health Perspectives. 2004;112(13):A726-A.
5. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany. 2012;2012(1):217037.
6. Gul M, Demircan B, Taysi S, Oztasan N, Gumustekin K, Siktar E, et al. Effects of endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2006;143(2):239-45.
7. Moriles KE, Azer SA. Alanine amino transferase. 2020.
8. Bodera P, Stankiewicz W, Antkowiak B, Paluch M, Kieliszek J, Sobiech J, et al. Influence of electromagnetic field (1800 MHz) on lipid peroxidation in brain, blood, liver and kidney in rats. International journal of occupational medicine and environmental health. 2015;28(4):751-9.
9. Sabban IF, Pangesti G, Saragih HT. Effects of Exposure to Electromagnetic Waves from 3G Mobile Phones on Oxidative Stress in Fetal Rats. Pakistan Veterinary Journal. 2018;38(4).
10. Lai H. Exposure to static and extremely-low frequency electromagnetic fields and cellular free radicals. Electromagnetic biology and medicine. 2019;38(4):231-48.
11. Klabunde RE. Cardiac electrophysiology: normal and ischemic ionic currents and the ECG. Advances in physiology education. 2017;41(1):29-37.
12. Azab A, Ebrahim S. Exposure to electromagnetic fields induces oxidative stress and pathophysiological changes in the cardiovascular system. J Appl Biotechnol Bioeng. 2017;4(2):00096.
13. Adebayo E, Adeeyo A, Ogundiran M, Olabisi O. Bio-physical effects of radiofrequency electromagnetic radiation (RF-EMR) on blood parameters, spermatozoa, liver, kidney and heart of albino rats. Journal of King Saud University-Science. 2019;31(4):813-21.
14. Lagos L. Low level microwave exposure decreases the number of male germ cells and affect vital organs of Sprague Dawley rats. 2010.
15. Kavian Nejad RHN, Mohammad Taghi R, Gharibi F. The effect of mobile phone electromagnetic waves on blood pressure, heart rate and arrhythmia. Scientific journal of Gorgan University of Medical Sciences. 2009;11(3):22-6.
16. Cooper C, Vollaard NB, Choueiri T, Wilson M. Exercise, free radicals and oxidative stress. Biochemical society transactions. 2002;30(2):280-5.
17. Daniela M, Catalina L, Ilie O, Paula M, Daniel-Andrei I, Ioana B. Effects of exercise training on the autonomic nervous system with a focus on anti-inflammatory and antioxidants effects. Antioxidants. 2022;11(2):350.
18. Shamsoddini A, Sobhani V, Chehreh MEG, Alavian SM, Zaree A. Effect of aerobic and resistance exercise training on liver enzymes and hepatic fat in Iranian men with nonalcoholic fatty liver disease. Hepatitis monthly. 2015;15(10).
19. Davoodi M, Moosavi H, Nikbakht M. The effect of eight weeks selected aerobic exercise on liver parenchyma and liver enzymes (AST, ALT) of fat liver patients. 2012.
20. Galedari M, Kaki A. The effect of 12 weeks high intensity interval training and resistance training on liver fat, liver enzymes and insulin resistance in men with nonalcoholic fatty liver. Jundishapur Scientific Medical Journal. 2017;16(5):493-503.
21. Zinvand Lorestani A, Rahmati M. The effect of eight weeks of aerobic training on the levels of enzymes associated with non-alcoholic fatty liver in obese children. Yafteh. 2018;20(2).
22. Bae JC, Suh S, Park SE, Rhee EJ, Park CY, Oh KW, et al. Regular exercise is associated with a reduction in the risk of NAFLD and decreased liver enzymes in individuals with NAFLD independent of obesity in Korean adults. 2012.
23. Pourfazeli B, Azamian Jazi A, Faramarzi M, Mortazavi M. Effect of Eight Weeks Aerobic Training on Oxidative Stress Markers in Rats Exposed to Electromagnetic Microwave Radiation Emitted from Wi-FiRouters. Armaghane Danesh. 2017;22(3):311-24.
24. Ghasemi M JM, Sobhani V, Chavoshi F, Rezaei M, Raffati S. The role of 15-week aerobic exercise training in improving cardiovascular fitness in flight attendants. Journal of Military Medicine. 2022;14(4):285-92.
25. Rawlins J, Bhan A, Sharma S. Left ventricular hypertrophy in athletes. European Journal of Echocardiography. 2009;10(3):350-6.
26. Elmas O. Effects of electromagnetic field exposure on the heart: a systematic review. Toxicology and industrial health. 2016;32(1):76-82.
27. Siddiqi N, Heming T, Shalaby A, Al-Kindi M, Al-Ghafri F, Younas R. Mobile phone electromagnetic waves causing fatty change in the hepatocytes of the developing chick embryo: Are smart phones too close for comfort? Biomedical and Pharmacology Journal. 2017;10(3):1139-47.
28. Rezaie M. Effect of electromagnetic waves generated by base transiver station on liver enzymes in female rats. Zahedan Journal of Research in Medical Sciences. 2013;15(7).
29. Pooladi M, Montzeri A, Nazarian N, Taghizadeh B, Odoumizadeh M. Effect of WiFi waves (2.45 GHz) on aminotransaminases (ALP, ALT and AST) in liver of rat. Archives of Advances in Biosciences. 2018;9(2):13-20.
30. Rajaei F, Mohammadian A. Effects of extremely low frequency electromagnetic field on mouse liver histology. 2013.
31. Amiri H, Shabkhiz F, Pournemati P, Quchan AHSK, Fard RZ. Swimming exercise reduces oxidative stress and liver damage indices of male rats exposed to electromagnetic radiation. Life Sciences. 2023;317:121461.
32. Baharara J, PARIVAR K, Ashraf A, MAJIDI B. The effects of mobile phone waves (940MHz) on embryonic development of hematopoiesis system in Balb/C mouse. 2008.
33. Hasan I, Islam MR. Biochemical and histopathological effects of mobile phone radiation on the liver of Swiss albino mice. Eur J Anat. 2020;24(4):257-61.
34. Peighambarzadeh SZ, Tavana M. Effects of electromagnetic field radiation on biochemical parameters in swiss albino mice. Banat's Journal of Biotechnology. 2017;8(16):48-53.
35. Fathy Assasa M. Effect of cellular phone field on body weight, liver enzymes blood indoces and role of some antioxidant in albino rats. Al-Zahra Assiut Med J. 2010;8(3):68-83.
36. Kulkarni GA, Gandhare WZ. Effect of extremely low frequency electric field on liver, kidney, and lipids of Wistar rats. Int J Med Sci Public Heal. 2015;4:1755.
37. Sani A, Labaran M, Dayyabu B. Effects of electromagnetic radiation of mobile phones on hematological and biochemical parameters in male albino rats. Eur Exp Biol. 2018;8(2):11.
38. Rashidi S AF. Investigating the effect of electromagnetic waves emitted from mobile phones on liver activity and some transaminases in mouse blood serum. Knowledge reference. 2017;2(5):20-35.
39. Valizadeh R, Nikbakht M, Davodi M, Khodadoost M. The effect of eight weeks elected aerobic exercise on the levels of (AST, ALT) enzymes of men patients with have fat liver. Procedia-Social and Behavioral Sciences. 2011;15:3362-5.
40. Silva M, Santos F, Lagares L, Macedo R, Takanami L, Almeida L, et al. Physical Exercise and Changes in AST/ALT Rates in Non-Alcoholic Fatty Liver Disease: A Systematic Review of Clinical Trials. 2023.
41. Moosavi-Sohroforouzani A, Ganbarzadeh M. Reviewing the physiological effects of aerobic and resistance training on insulin resistance and some biomarkers in non-alcoholic fatty liver
disease. KAUMS Journal (FEYZ). 2016;20(3):282-96.
42. Goraca A, Piechota A, Huk-Kolega H. Effect of alpha--Lipoic acid on LPS-induced oxidative stress in the heart. Acta physiologica Polonica. 2009;60(1):61.
43. Baharara J, Zahedifar Z. The effect of low-frequency electromagnetic fields on some biological activities of animals. Journal of Arak University of Medical Sciences. 2012;15(7):80-93.
44. Balanejad S, Parivar K, Baharara J, Mohseni Kochesfahani H. Effect of Combinned rapamycine and of low frequency electromagnetic field on angiogenesis. J Shahrekord Univ Med Sci. 2010;11(3):70-6.
45. Monsefi M. Stereological study of heart volume in male rats after exposure to electromagnetic fields. Iranian South Medical Journal. 2008;10(2):112-8.
46. Cengız A. Aerobic training induced structural changes of the heart. Turkish Journal of Sport and Exercise. 2012;14(3):1-5.
47. Gaeini A, Kazemi F, Mehdiabadi J, Shafiei-Neek L. The effect of 8-week aerobic interval training and a detraining period on left ventricular structure and function in non-athlete healthy men. Zahedan Journal of Research in Medical Sciences. 2012;13(9).
48. Fathi K, Ghorbani F, Mojtahedi H. Effect of 6 week aerobic step training on cardiovascular fitness, body composition, flexibility, anaerobic power and quality of life of female students of isfahan university. Iranian Journal of Ergonomics. 2014;2(2):29-37.
49. Fathi M, Abroun S. The Effect Of Endurance Training On Left Ventricle Hp-1β Gene Expression In Wistar Male Rat. Razi Journal of Medical Sciences. 2015;22(136):60-7.
50. Fathi M, Gharakanlou R, Rezaei R. The effect of 14-week endurance training on left ventricle HDAC4 gene expression of wistar male rat. 2014.
51. Mohammadi R, Matin Homaee H, Azarbayjani M, Baesi K. The Effects of 12 week Endurance Training on glucose amount, Blood insulin and Heart Structure in type 2 diabetic Rats. Community Health Journal. 2017;9(3):29-36.