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Abstract

Vehicular fog computing (VFC) been recognized as an
effective architecture to address rising demands in smart
vehicles. Fog servers deployed on moving or parked vehices
can  provide  spatio-temporal heterogeneity  of
computational resources that capable of accomplishing
computation and deadline intensive-tasks beyond the
capacity which is embedded inside the vehicles. In multi-tier
VFC architecture, vehicles can share idle low cost resources
to increases acceptance tasks. However, the main issue is
choosing optimal destination fog server for executing hard
deadline tasks at each time slot. Therefore, in this work
proposed a federated multi-agent deep Q-learning task
offloading approach to provide collaborative learning and
fast convergence. This approach improves privacy of data
for agents and reduces average response time, energy
consumption and processing cost in vehicular networks.
Software-defined networking (SDN)-based architecture can
provide flexibility, scalability, programmability, and overall
network knowledge. With the help of SDN control plane
configuration, the network can not only adapt to dynamic
network changes, but also respond to emergency
situations. Therefore, SDN technology integrated with

federated reinforcement learning (FRL) method increases programmability, centralized network
management,and dynamic configuration. The results show that the proposed method reduces the
average response time, average energy consumption, and average economic cost of performing tasks
in the network and will increase the successful performance of high-priority tasks in vehicular fog
networks.

Keywords: Vehicular Fog Computing (VFC), Task Offloading, Software-Defined Networking (SDN),
Federated Reinforcement Learning (FRL)


https://sanad.iau.ir/journal/ntds
https://doi.org/10.30495/jce.2022.1962047.1164

o 398531 Olwlono g ool &3 395 (S i 39 (2999 S (559L3

E-ISSN: 3115-705X
https://sanad.iau.ir/journal/ntds

4o S ;3 jeoe0 yl38l0 5 dSawd 2 (e alole Wi asbg (5 lw 392 2550,

2909

toduS

Sy Sl e ilere Ko plsie 4 (VFC) (19,995 4o 3L,
il oe 0ad SO b &S Jlo 50 slag s 50 s 4o slajg e
pll 4y 0l a5 auS pal 3 1) Sl mle Sloj- olad JsXeals
S 50 ek anas cdib Sl S8 Sl b 0s,08 caplly Sleslws
oS mlio ailgs oo ogy085 Y Wiz VFC (6l jo .aiiwn lag 04>
O b B STl ey ally Spdy Gl Gle ) S s anse
Ly lzl glp dage dale do g ol Lol aliues o>
Gl Gly Jhad ke wx Gaes Q-learning aaly (o Lasiygy
e 3 a5, ol o 0 Saity e (R 5 5 Lo 5 50l
A3 oo JualS 9,095 slaasil o |y il anie ¢ (65,50 B pas
(S pdylhasil Wlgs oo (SDN) jee l38le 5 4l e (5 lans
Lol el 1) astls IS Juils 5 (65,40l b8 (6 pdy uliio
Ol yass b Jadd & Wlgh oo 4l SDN J 1S (gamio (gun Sy S
b oliygl slacundg 4 Wl oo aSly 2Bl RSy 385 ASD Sbgy
oads plesl (FRL) J1,ud s09a5 (6 S0k (o9, L aS SDN (sl ply .aws
Ol oSl s3lidn Ry, 45w Gl @l aed o
Pl ez oolaidl anpa (:SShe 5 6551 Sras (ke (Bl
el Cdbge ploul juoli8l cely g aoo oo 2ol 1) asils o Gl
S aale (o5,955 e Slaasd ;o Vb Zuglsl b s

") b il |

g > (ol Sanw | Ol pqr (5 05

O151 oSS (535 w0 I RT 95Ny ¢ JgmelS owiigs 29,5

k.behravan@iau.ac.ir
Mo i gD DM ¢y gunelS wsiigeo 89,5 "
hosseini@um.ac.ir

Aoy plol Mol oo 0BSID (yigmolS wiige 09,5 "
o)l g2 cdpaio

banou.f: h@imamr ac.ir

:‘}j o5ty “5}5,4 U’l’&j ..\»’5 ‘ﬁm‘s (WAL 05; i

mjahanshahi@iauctb.ac.ir

J,iw.a GM’;
BRI ¢ 4 ganolS’  cwdige 89,5 L dlil cail,8 L5 *
c ol pl iageino LSy olol (Mol ym

nazbanou.farzaneh@imamreza.ac.ir

Wkt 4By (5 b9 Gl 8L ol E9:590
VEeF LT YF il s & b
YFo ¥ 51V 2,050 b
VEeF SIYA s &)U

https://doi.org/10.82195/ntds.2025.1224422

Baos (SR98 (6 Sl ygmma l3dle 5 ALl (09,095 e L) addsg ()l g i 019 WS



https://sanad.iau.ir/journal/ntds
mailto:nazbanou.farzaneh@imamreza.ac.ir
mailto:nazbanou.farzaneh@imamreza.ac.ir
https://doi.org/10.30495/jce.2022.1962047.1164

WE ONWYAYENFFlf pgw o e [ gl o/ ooy y55 Slikono g 00 3585 (6b s 55 Cpz58 60 (558 o

doddo—)

Sy A iy SedlS & g Jox hiloog b dunlio 10 45 358 0 pgual (st g ) e slogdle b dduan oas]
JB 5 Joor S (6,503 oy 5l G Lo g Sl oud Bize 355 i blug b (o9 4 059 0] pgeal (nl i
SO L~')-“-‘ g odd 035 pes Yo 3)Lbe A% Jolao YoV Jlo jo ) 0gy055 il Sl puine Koo Sioass|
5 Faiedign B 5 Jo> Glagmyrm T eyman Ghsr JolSS b [ oy Vo o)Ll TV 4 YoYA Lo o oS 05
N s sl glail joiz Gloso S s g diadign (ol b 8o b pbcuadae wiile ciadisn adis Jolug 5o (6 i
el S5, estan s Glagmgre ol (Jl onl b riisuge sge o0l a> U ) )8 (Sadly 48 oS
bog,095 damgs sl Jol S ke g 095 50 99290 390 (Sl alin JJs a4y a5 ates (o &y ol 5 (Sl
S So @ oy 4 lagy05 5l by (65l 2 i DLI ] (6 )9l o jm dnags 5l S0 s b el s
(i sy (5 )by (i 3,505, [Y el oas o ()5 Slaslons wlio b lag 055 40 oS sl 008 gl
J ol bogle )18 oslidl e e G )0 Ygoro a5 S g0 oolatul 35 et pl SO (69, pebae Glwlee miliso jlepl
ool il Sl Wlgs o 4573 2 00 g5 S0y st VL] g JUi YU (sl 51l Tl bl 9,50
Ilass es,57 0 1) oley &

ad Jbly (S (09,095 slaasid 5o T hlse ad Gubl) waisy (s)laygn 5o 05 )-‘"L’ 45l 50,5 03yl sl
Gilso D 5 Sloslore alis 5 aseiio e & Yagly oSyl b Fools LS anly )T 45 a5 ol 0l Byme O s>
aon Polons CuaS el (S8l o515 il b e ol b oailons emme bagyns5 sl sl wlons il sl
Vgare 6o ys s el 52 osMe el aly oKy b oslr LS amly 1o sgame Slowlns alis slpy s,55% sloasl g
T¥lo5 00 03000 (25201, (tugy Lawss il o Shas 5 g g s 00iST )50 4

2 36 4 les by ln oS Jlgasel Jo ol o plaie 4 e 2L, 0ol 53 slaudgaze » ki ol
Slp 1y 355 @ e (5 lone OPENFOY porm S [0l joels alis blug sloasios o adis flug 63,05 slaasl
(29,997 S g S5 RlBI L el 00,8 piie VNV Lo 5o pdy wlido 5, 5ke e 2k, 655 S el
1) 4o sloo,S Slowlrs mlie lg3 oo wisK a5 Cenl ol oanebs Iy S o winlss daxlge JSie b Ylois| ae (sloo 5
sy sadisn & g Joo glapius dlro) 50 o LI Sl oolitul 5 )50 Sy Glaieas V09,055 e (2L, ol Ll
do Slowlore 2b jlinn a5 (rizmes g Sliwlo Cobl )] 6ln (29,995 @l 5 (229,995 40 (b, 0u
5o ada hlog aule e sloo )5 (sliz! lgreds ailgs co lag 095 ouis oolaiw! glaslre mlie «pl plo 0uS oo ool
1Pl eSS g 5 55150 L oSS )

sgame ly Gillss (55l (532 550 55 by (855 s 5 iy dllanl ( Jeb B oyt b Sl 55508 o ol b
a5 W) olgiing M ysmme 3Bl sleaSd o 1) aaly 5 ks n Sl Gl dacusgame (nl @8, slp 2T
4 e JlRley Al 9y, wnl  odle 0y oo 1) by ()lusygn Dloreal 3 jele 0aiiS [ Ko ol o

1 Internet of Vehicles

2 Artificial Intelligence

3 Cloud Computing

4 Mobile Edge Computing

5 Vehicular Edge Computing
6 Road Side Unit

7 Base Station

8 Quality of Service

% Fog Computing

10 vehicular Fog Computing
1 software Defined Networks



2lislez e —aily 8 9l - g s el S —(lg 00 (5 25T abslediz adleg (5 liwygp 909, V1O

Sobwigr 2l o cnl jo st jo IVIas ey s sole g pduillanl Glogeds 4 |, a5t b aas o o)l oaisS J S
oS 50 35 75 (29,955 4o QWL 09> )3 Heme Jl8le 53S0, p (e adilg

ol 2 g JyuS amio | Jlo )l axio gilulaz Goyb I (ead aSid jo g pdy Sl pae &) (sl 5o 138l 5 oS
plod (65laez Jstus g7 Jl3dle 5 aSds IS cpizman ool 0uds ()b S5 amie j0 (s50,a0lip Sl (0,8
aisn g Ul o) peSilie (bl b cmnlies olils aiile SleMb] (pyl cansl (glo 30 5 y50 4 o0ld amio o SleMb
(oo g g eSSy a ], aSed 50 ez se mlie plat il go vl ply el a1 S les S Lad gl 0
38l 5 s e akg (55l ys el Sy g0l (ghlone 4 (S (nl 00551 b S Sialos 5 g0k Sy
TN o sl g 40 0,5 4 (6 )lmssn oo (5 oo (sl s

Jedo & (o ol bl oo 5 055 ) sloans]id az g (009,055 de aSls j0 adbbg (g5lewygp |3 a0
Sl09n T Su (b gy JUIS sla Sis g oS (VL S 20 055 4 25,095 SaSed 0 8 a4y pamie slo S
aiely g lmirgn Sl Wl sl Sy (b (SKisSr al by ol 5 Gl s 0ollS 4y (e aiiliy
Slaoliws fm Jb Sl g oS ool oS job & ad (Slewlre golis 5l 58 JB5le aS0d Gbigy Laome b gy o5
Ll ooy ot (558 (Slahion alts G 4 sl Cews alire

laoliws STl ol )5 log 355 3900 (551 (2l sl W)l 9929 (219,355 40 (AL, )0 ook slail
Jaie aS )3 5505 Slyg e & T Sz s ' ol b il ool wanaly sl el sl sl (B 5350 0l
397 g 5l e yd Ar 5l G Vb (635l g (63l ped Slanlns Slac B b (S 58Ul (slag 095 35T ol ogdle 05
1) el ond Sy Sl clag 055 Slsloes qulis 51 ooliiasl Wl o oyl <y eal s A,38 o LSS, 4o
Talast ases jul i jo Lol ol 5 Slowlore Sloss

Sobes ok (Glowloee Sl e b g5 o0 ) g oSS Canl 4o (g p 50 g oS L 00 Al
Sy )1 (S (T Lot po Celss ;0 35,5 Slog 5 & do y 0 S 5o Sloslne b st S a0 Sl (o
3 Ot A Ho e G AT WS bl ) giasg ol e ol Bl alils gglaie Canlgsy0 04,9 slag p el e e
@ e 5loygpm )0 )k Jolsd pas aS 590 plonil slaisT ay b ae (sloyg e e BLS T eg) (l 5098 (6 AT b g5 s
W LN

550k 1V Lot oo oslinl aindsg (5 )lmiysp it s3T5l S 286 sl T s (5 SOk SlaSSS 5l o 5l
b 0yS (o0 ol Janmmo 5l (als 3,955k ull o Bloly il iSTas 4y (sln 1) aie Conlow dilaiedign b 4 (gl
S (S (6 Tk iy Sl o 4 (@l Ken Soled 50 5 ez Lz ol (B8 sl 5 9590 0o (Jl
Joemdle sLas L by 5 S5 sladare Gl (ol 6550k onoaliie pln g a4 ol (pl Sjlu e (Sl |,
ouds (Byee T Bras (sil (§ SOk S i elide o alaldd iz 4 il ln el Sl My sy 5 00,58
DV aes a8l axslisb sladarse b (s e 6,8 5ke 5 oo b ol

9095 a0 Gl ln |y T Beee 6Tk n s Tl a8 aals liuisn ST Sy Lo i o
o a5 Gl Lo S oo i e Slajg i pul i o 1) L ol 5 (551 Bras S i jsb 4 a5 0 e Sty
LS aly adiz 5 Ligy e g ms il de 9500 Sy gyl dllaie jo (] 50 45 0 oo eolitul dllate e 29,955
Solmsar STl S5 a5 05 0 00l il Jule S lawgi Bras (5550l Al S e dilaie o 50 el (5l 0ol

Ly 655l B pan iy adlsy (6 )Lwygp 51l S S co S 095 4 by o de sla g (sl ay (oee adlg

1 Binary

2 Partial

3 Reinforcement learning

4 Deep Reinforcement Learning

5 Online federated task offloading
6 Deep Learning



WE ONYIYENE 5l age oo | g S/ (soi s laslns 5 00 22365 (6l s 1 (55 (6 (055 dlio

0509y S S o0 s de ddlaie o 0 A oy 0 SIESH ek ]y b g wile) e Sl 4 ae sloyg e o
Lo i (slosgliws T oo Cowd 4 do alisio Gblie (ome 6,050k slo el (30,5 @oz b (5 pmol jow iy (55kwyg
il 5 20
S )b Jl (e 50 5 S o (3l e ' 55 )le (60 el Al 18 S lsie @ 1) akg (g lwgyp Alis Lo @
A el adss ey jo @ylby guiley sl b Coglsl slacao 5 Ly an jopm o ploj b e (Slewlxe
Dy oo 5lai po 1y de layg s 1o 5L Jolsd w0 5 (6551 (g5ledis o2 BeSle Jow o pS e
959> 40 bl Glp |y Gree 650k p e dlele wix L p 0 4y )lwpgr ST SO L e
alizee sblie e ailg (55l9 oo gz b T J1ad aiilg (65l gy SeiSS S oS g0 Slpidey
A8 o0 g (6 el p il (6 5lemisgp S S e
&S > (o8ly sbosls jloslanal b 1) 995 (g3leining 3,50, 9,5ee (b))l sl |y lod S lagjluvact Lo @
5,500, b stelive (21 Ke 5 b oleiing gy & w30 (LS Lo (siludind @l ead oo plnil Lag s>
215 g 9,8es  abily (6 )lysp Aty SEST plo b alie )0 5 990 o0 S0 S e
Ty At a3 5 s Joo 1 (250 003 oo A1) s o Sl ISTY (S el 20 4 Al ol Sl L
Gy oles j0 el oad ools iSO isw jo o Slee bl gl oo 1) golpiiny SuST P s j0 aes 6

el o0 ) B iy

oud plxil b, 2 (559 0

2 kel 553 baadiby (ilewssn slag il 950 jo 1y Sles S Dl (9093 ae ML) Sbgy cosle
SLLolE § S 2 )0 Cuslad poe Jolis 9250 Slalllas moe (slocadgazme ol 4S5y (5 5l B pan 5 uly Gloj GRalS
Slp g atws S o i cpl jo il liBne wlby Slavlbre (Sauomn g de sdjg e Sgdome Lidigy «awlys 0
Soloan WSSy, g abele ST (gl 62Tk p (e a4l S kw0 n SO Sy, el p L e S8
by Slisdon | Jgoo e oo Sl (295095 ae (bl Laoe p3 alale im0l (6550b p (S diste adiby
S (oo dmlio (dle (6 250L la by, 5 Rl sla el @ azgi L) oleiinn (Bs) s

adole S (985 (6 0l » (o it 4B g 5l g 2 B0 9, )Y
bl sarass OMSiw J> lp |y dele 5 s 6 mSob 9 ge Olidos 51 6 o miile (5 w5l i b
A obgr a5l oad @il) aibsg (6 layg p Camlbow o dF] o il a3 515 4 pg)095 ae Ll 4o lowlxe
S5 el 913 5l ealitl b Al (6 )Ly altns 5505 (o S 10 1) g (951 oy 50 5 Ay Cuglsl g 055
Ll 0als =T (SAC) 5,550 ddie Joo p e Gaas sl (5,50l 0 ,s5) 5l eolatuwl b g oo alge,d BsS Lo
e o3b 6l VY] o grae sl 6,80k sl 36 5 o8 cngllan (1Sl yails, fiSTas a4 allie ol Boa
D90 oolitul (29355 oyl sl ol 2 (e aiby G)lwgn ST Eredl Coz)lr Ko 0 Sueaddy Sl
L})J u;‘)j&l.t 9 ..x..,SL_,;a u;'l.w))j)cb 4...] UL'.MJL?LA o)f)\) l) Qo> JM LS.’ LQB)OP ‘w\)lf Jl} BLES T S ds‘soli.ﬂb
Slgiing jemme yl58le 5 aSies (6 ,5lid 5l eolitul b mrg,055 ad Lk, aSies (6 lene o VY] o iaims o plowil | ylojenls
AVE] o ious ) et 1ois VL 25 L )85k (6l e (555 0L 1 (itoe Aoy (65 Lwyg 2 Tk S s
odls oold S g ley 0 ds 0,5 (o> i emas 4l ool bl oals &l 6 S0l 5 s Jieod (5l
Sz by il p el o Slering ania g 2L (i slr e T (onae D 5 09h o0 (S

1 Markov Decision Process
2 Federated
3 Soft Actor-Critic



2lislez e —ail )8 9l - g s el S —(lg 00 (55T abslediz adlg (55l ygp 909, VY

Sl e sl oals Slpiny mlie 3l oolauwl 5 gy dy (o yiws G381 sl DYl o' (V2V) 5,565 4 5,045 (9999
V9] lyan St ans S | by 6ol asn 5 5B el os o ot 5550 s L 2L,
29,095 4o (WLl Lzes j3 by & 2lee 5 )15 (30,5 il (S (srlmiign Sln dntr Sl SH 45 sl sleiiny
0 S 50, oyl 55 et cnlly Sy 5 ilye slacysgama cule, s alie ol QS iy (6l Sl § Kanl
Dy e 0ols Glis ully bz G Jlgte sl (Snly agacms (ols (LaS 51T (DAG) j5ae zé Jlagr SIS S lgie
ORI WY BESK N -TYS FUROW PRESNIEESNI U SRSt IURE IV ot Rt Vi AN I
sras 4D B,k Wl ee a8iby 65l sn Slogeal 5 wiS o ool (giluosly (S 205 Gl eade 5
il ol e e a8l a5 ulie e oll 2 5 0558 o STt 4 1, 555 gulio g a5 39 plil gy aac
S5 Bran Ghg) (nl S (oo oolitul s o JELI WL Sl Jols sl 093 adlsl loly 5l 55095 (mizmen aiiS o0

iS o Sgede | aby eSS o

aole Wiy (o9l (5 IOl ¢ (S it 4B g Gyl g 2 GOS0 g, -

S50k Sl (229,095 e (L) (5 Lie Slaslons 3 Slision SlS Al Sy lie (arass 5 adily 6 )lyg 2
5ol S DAL g yo el T iy obiio (38,5 ool o ¥ ol plSiovin] asile bl 5 sl,ls o ole S5 s
Slogouds 67500 b By (nl v oo sy a6 lwiign s Slovead lp 1) Jhod (loleain Goae (oS
Ol @l i oo S (S5l 5550k Sl ae o 1) ol Ren g bosls pogas muym WY paiz )0 gl
So DA g e yo s o ol 1) pitac S aie g Ll 4 Ll o3l cwlll Gl solgii 5,505, 45 aas o
Sls Wl o 45 Sl o slpiiny (sl oole LS slaasly s Slawls gl JEDI sy (6, Kan 5 &y leo 635l
Dlorouss Jlaleaiz Grae (gl 50k 0,505, 00 (ol | (5551 a5 3l cDloslons @l Jg205 0 Sl
cilizee (slag L Y] (250500 5 glo S o a5 ete Gigel Bk 5l L) lie mrass 5 aheby 5 )kmss
s liw b 6,55k 5 aiby szl oloj (sriio sl Tl GRsE 6x5L LY (MTO) (slarbs vz ()kmis
Blao Ll Glej B wigd oo S5l jode d lager SIS 2 (G SIS Ojg0 4 )5 il is S sty b
SS9k b st g dge |y ele (aiz (5 58k LS 45 wma e i)l 4 Sy e gzl SN g2 e
|y i 5l ool 5 ools 2alS 13l Cosgame coxi ) 5,055 il (5)leigy dnie Wl e eaday Slleaiz
Solose S obml (sl eadim o8 el (50l g, 5l a5 ab &)l jemme Jl3le 5 (glad L) riares e Rl
11y 9995 4o bl (Slhe abidos (gylore [YY] 2 o [V V]055 o oolinnl Sialen 5 polis o pie cpdy wliie
S5Ok 9,509, S o0 5 4l JS13 50 oo g S0 50 o elediz (2058 (6 S0k a2 ) callg 9 008 (o0 a0
ooy ool a5 am e lis bl aes e al)l Jele o gl o Shae b5yl slue oY COMA b 4 doleois 0o
Groe Q 6550k (e inby (6§ lwiygr S5 S ) o] o a8 eslinl i et (Slle b6 5l Wil oo
ol o Slgiing ool LS slaaxls 1o )b Jols g (65,1 B pan st slp (29,095 4o il sl 1,08

oS S Sladir &5 Canl by adby (6 )bwg SeiSS So Lo soleiiay by, 95 de (Sliniod sla)ls S 5
shoslitul g ae sloyg s ;o 5L (s3le Jolaite (555l Bran 5 26 A ie fall aile (09,993 4o SlaaSD ;S gy
B30 gy | adsly (S )lmisan Joe S dsng 55 6yl pe L

1 Vehicle to Vehicle

2 Directed Acyclic Graph

3 Low robustness

4 Scalability

5 Multi Task Offloading

6 Meta reinforcement learning
7 Counterfactual multi-agent



VA VWYSAYE NN ¥ 50l ] mgs o flads | sl Sl ooy 550 Sloabons 5 0085 3555 (60 s 13 (3355 (510 (5515 alowo

ahely (5 5lwsg s 59, 55 3 o alyly Gully oads ploxil sla IS auslis ) Jgar

Table 1. Comparison of completed tasks based on parameters affecting task offloading

&P 5 olasl ol &5 by e by ool ane Lo
o
[f] v x v v x Aoy )093
[y.] x v v x x oy 095
[\y] x x x x x sy 095
[yy] x x * x x AFMEC-g 555
[y¢] x x x x x NIV
Vol x x 7 x v domg 095
[v#] x v v v x plde—g,045
[vv] x x 7 x x domg,04>
[\A] x x x v x demg,00>
[val * v v v x JUW Y
[v-] v * * * x S-MEC-5 055
[vy] x x v x v ad-g 095
[vv] x x x x x plde—g 00>
[vy] x x 4 7 x do—g,095
95 Y Y Y Y Y rhaeg;05>
oleiiny

&l oais 43,8 s j0 a8 ola el L=% | Wload 43,5 a0 a5 ola el b= Vieaslosl

ol o09,-Y

Sl 0l 00l ULAAJ \ JS“: B 5:5)09} do ‘-)AAJL)‘) .}a.,.?:.c 61).: ¢ y9Pre )‘J‘B‘f’)’ 4.1;...4.: » GM ‘é_u‘)c bl 6)Lo.x.a
S5 5" (RSPVS)osl> ,LS oo )L slag 395 sl ool LS axly SO cdigs o 40 Conl algsd dix Jold dilais ;o
o A5 oS o 28 bo aiS oo Jes Ao 5o 5 lgie 4 el aile YU Sl clB L oS > >y (69,09
)M obl.? )LZS ~.\>‘5 P T k51.7:@ J).‘.S ..\.»SLSA Copde ‘) 4.»9} Liﬁ u))‘é )‘).9 L)T SS9y J.ALC as ‘517;0 OJMSJ).MS
488 M3 oS jghailen ol )18 (6wl 00sS J 7S pgs Y o g aijle )8 e sleoasS S ol Y jo ol ouls
iy (5 st S 5loosley Sl om0k 1 (ot alale sz Lk 08 iy (6 s S5 5l Lo
Ao sS.t ML' able |) G‘b‘)"o ..\3‘9."50 By ) )‘)S‘lu).s (_gl.mdiw K9y 2 J‘).\S (5)5\)[.‘ 6[.@0)1»5) JLo.C‘ p....SSA oalazwl
OY leoass J,uS cloads auilojle laas¥ (o aS all ails oaisS S paiz Wilg o jemme l38le 3 aSlll s
WY ;o oaiiS S g S ablie Jate slagliee g lagsgm ;0 )l pae LB WS )18 aSd 4 jo wiil o (Sl
S b e ylle 5 slaased jo Jhad 6550k JleelaiS Ol (6 pml o 5 535 30 Spge ]y 4SS IS Wlgioe 2V
95 2 AL CelS b sla e adgi sl QWS ES 18 o (6,0 Sgn (rovd Wl o csl0Y onbig jo5 JSUS aio
LY Flass cdadlons 0aiiS'eS 15 o saosls cogas w5l oo il slaasios

o S a ] by Glasin wiS Tzl doe &jgo as |y (b Wlgh gos &5 1> o 10 (59,095 SO a5 Ko
algs 0 de sloe,S 4 ladalip (plaisl gl 1) aigs Canlw (Jome 0aiiS J S o] 51 e 00 o Jls )l 095 adsgs yo
O lotis olas 51 pyomn l3le 5 A (5l 008 S Sy 398 gl il ol e b o ol 05

1 Road Side Parked vehicles
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Figure 1. The proposed distributed architecture consists of a global controller and local controllers. Local controllers allocate local resources
and the global controller has global knowledge of the network.
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Figure 2. The fog nodes in the local cluster include moving vehicles such as buses with high computational capacity, cars parked on the side
of the street, and roadside units with idle computational resources, all of which are modeled as M/M/1 priority queues.
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1 Vehicle-to-Vehicle task offloading
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1 Dynamic Programming
2 Q-learning

3 Q-network

4 Bellman equation
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Algorithm 1: Q-Learning Approach

Input: Set of all tasks and set of all possible associations between controllers and predefined servers.

Output: Efficient offloading decisions

 Initialize Qs vy to 0 for all time instants ;

2: for each episode do

3: fort=1to T do

4. At time instant t, an agent acquires the state s¢;

5 An agent chooses an action a=argmax,:Q(s*,a")with probability 1-& or
randomly choose action from action space with probility &;
An agent updates Qs .vyfrom Eq. 41 ;

end for

- end for

:return Q(S,A);

[EEN

DON ;5 .35 g0 ool azge J> o, (30,51 sy (612" (DQN) Gooe Q (g S0k ads 5,505, G 5l ey, !
1, 6995 o a5 05 0 055 (ymass B yiol )l acgazo T (DNN) Gras e a5 Sy 5l oolicil L (Q e s oS,
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229 o0 iy 5 D9 4 DON BT b - sigd oo (Gl j9 0 ST &b b, Jlax 4 6l 5 5
Li(09=(y™Q(s"atl6")° (FV)
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y'=r'+y maxQ'(s',a’|6") .

Algorithm 2: DQN Approach

Input: Set of all tasks and set of all possible associations between controllers and predefined servers.
Output: Efficient offloading decisions

1: Initialize Replay Buffer, Paramter set (6 and 6") of main and target networks, Update interval U;
2: for each episode do

3: fort=1to T do

4: At time instant t, an DQN agent acquires the state s*;
5: An agent chooses an action based on the £ —greedy policy;
1 e-greedy

2 Deep Q-learning Network (DQN)
3 Deep Neural Network (DNN)
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7 Process 5{** to be the next state;

8: Store transition (s,a{”,r® s“*Y) into replay memory;

0: sample random mini-batch of transitions (S,a{”,r® s*1) from replay memory;
10: Compute y* from Eq. 43;

11: The DQN agent uses gradient descent to minimize the loss function as shown in Eq. 42 ;
12: After every U steps, update the parameters of target network ;

7: end for

8: end for

9: return Q(S,A; 6);

Execute action a;, and observe the reward .’ and the next state S¢*1
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Algorithm 3: DQN-based Federated Learning Approach

1:Input: The Initial set of local agents K;

2:0utput: Reward r(® and offloading action a(®;

3:Repeat

4: each local controller agent in cluster k € K updates its parameters set 5 using Algorithm 2;

5. each local controller agent in cluster k € K sends its parameters set 8% to the centralized controller agent;
6: The centralized controller agent aggregates the local parameters

7. sets of k number of fog clusters as 65! = ZREK% * O

8 tet+1;
Quntilt > T
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