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Abstract

DEA methodology allows DMUs to select the weights freely, so in the optimal
solution we may see many zeros in the optimal weight. to overcome this prob-
lem, there are some methods, but they are not suitable for evaluating DMUs
with fuzzy data. In this paper, we propose a new method for solving fuzzy
DEA models with restricted multipliers with less computation, and compare
this method with Liu’[11]. Finally, by the proposed method, we evaluate a flex-
ible manufacturing system with little computation, and then we compared the
computational complexity of our proposed method with that of liu’s method.
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1 Introduction

Data Envelopment Analysis (DEA) is nonparametric technique for
evaluating the relative efficiency of decision making units (DMUs)
with common inputs and outputs.

This technique was initially proposed by Charnes et al.[2] and was
improved by others [1,4].
Recently, the use of data envelopment analysis has been recom-
mended as a discrete alternative multiple criteria tool for evaluation
of manufacturing technologies and flexible manufacturing systems
(FMSs). Khouja [8] introduced a two-phase approach for the selec-
tion of an advanced manufacturing technology from a set of feasible
technology alternatives.

DEA methodology allows DMUs to select the weights that are most
favorable, so in the optimal solution we may see may zeros in the
optimal weight. For resolving of this problem, Thompson et al.[12]
proposed the concept of the assurance region(AR) to restrict the
ratio of any two weighs. And then charnes et al. [2] improved the
approach and called it the Cone-Ratio (CR) method.

In traditional DEA models, we assume that all inputs and outputs
are exactly known. But in real world, this assumption may not
always be true.

On the other hand, in more general cases, the data for evaluation are
stated by natural language such as good, bad, to reflect the general
situation. Mathematical models have been developed to quantify
performance measures such as quality and flexibility for justifying
investment in advanced manufacturing systems. Kahraman [7] de-
veloped a fuzzy hierarchical TOPSIS model for the multi-criteria
evaluation of industrial robotic systems. Also, some researchers
have proposed DEA fuzzy models to evaluate DMUs with fuzzy
data [5,6,10].

However, methods of restriction of multipliers proposed in DEA
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are not suitable for evaluating DMUs with fuzzy data. So Liu [11]
expanded assurance region method for DMUs with fuzzy data.

In this paper, we introduced the fuzzy number in section 2, and
then proposed a new method for the fuzzy AR model in section
3, we introduced the fuzzy CR model in section 4, and provide
a numerical example and evaluate fuzzy FMSs and compare the
proposed method in this paper with Liu’[11].

2 Fuzzy numbers

A fuzzy set A in X is a set of ordered pairs:

A = {(x, µA(x))|x ∈ X}

µA(x) is called the membership function of x in A.
A fuzzy number M is a convex normalized fuzzy set M of real line
R such that :
1) there exists exactly one x ∈ R with µM(x) = 1.
2) µM(x) is piecewise continuous.
The (crisp) set of element that belong to the fuzzy set A at least
to the degree α-cut set:
Aα = {x ∈ X : µA(x) ≥ α}.
The lower and upper end points of any α-cut set, Aα, are repre-
sented by [A]lα and [A]uα, respectively.
For arbitrary fuzzy numbers
D(v, u) =

∫ 1
0 S(α)([u]lα + [u]uα − [v]lα − [v]uα)dα

is the distance between u,v and S(α) is an increasing function and∫ 1
0 S(α) = 1

2
. [9,13,14]

Now, we define the ranking system on F(R) as:
1) u � v if D(v, u) > 0,
2) u ≺ v if D(v, u) < 0,
3) u ∼= v if D(v, u) = 0.
Definition 1 . Let f̃ : X −→ F (R) be a fuzzy function from
X ⊂ F (R) into F (R). The fuzzy number ŨB is a distance based
upper bound for f̃ if D(ŨB, Ã) ≥ 0, ∀Ã, Ã ∈ f̃ .
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3 Fuzzy AR model

Now we consider the AR model [12].

max
s∑
r=1

uryro (1)

s.t.
m∑
i=1

vixio = 1,

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, ..., n,

−vp + C l
pqvq ≤ 0 , vp − Cu

pqvq ≤ 0, ∀p; p < q = 2, ...,m,

−ua +Dl
abub ≤ 0 , ua −Du

abub ≤ 0, ∀a; a < b = 2, ..., s,

ur ≥ 0, r = 1, ..., s,

vi ≥ 0 i = 1, ...,m.

Let us assume that we have a set of DMUs with fuzzy input-output
vectors (x̃j, ỹj), in which x̃j ∈ F (R)≥0 and ỹj ∈ F (R)≥0 where
F (R)≥0 is the family of all nonnegative fuzzy numbers.
Now we consider the AR model and extended this model to the
fuzzy case (FAR):

max
s∑
r=1

urỹro (2)

s.t.
m∑
i=1

vix̃io ∼= 1̃,

s∑
r=1

urỹrj −
m∑
i=1

vix̃ij � 0̃, j = 1, ..., n,

−vp + C l
pqvq ≤ 0 , vp − Cu

pqvq ≤ 0, ∀p; p < q = 2, ...,m,

−ua +Dl
abub ≤ 0 , ua −Du

abub ≤ 0, ∀a; a < b = 2, ..., s,

ur ≥ 0, r = 1, ..., s,

vi ≥ 0 i = 1, ...,m.

We suppose DMUo is the DMU under assessment. We seek a suit-
able upper bound, ŨB, for the objective function; therefore, we
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must minimize d(ŨB,
s∑
r=1

urỹro) under feasibility. So we have:

z = min
∫ 1
0 S(α)([ŨB]uα + [ŨB]lα −

s∑
r=1

ur([ỹro]
u
α + [ỹro]

l
α))dα (3)

s.t
∫ 1
0 S(α)(

m∑
i=1

vi([x̃io]
u
α + [x̃io]

l
α)− (1 + 1))dα = o,

∫ 1
0 S(α)(

s∑
r=1

ur([ỹrj]
u
α + [ỹrj]

l
α)−

m∑
i=1

vi([x̃ij]
u
α + [x̃ij]

l
α))dα ≤ 0, j = 1, ..., n,

−vp + C l
pqvq ≤ 0 , vp − Cu

pqvq ≤ 0,

∀p; p < q = 2, ...,m

−ua +Dl
abub ≤ 0 , ua −Du

abub ≤ 0,

∀a; a < b = 2, ..., s

ur ≥ 0, r = 1, ..., s

vi ≥ 0, i = 1, ...,m.

Theorem 1 : 1̃ is an upper bound for f̃ : U0 −→ F (R) where

f̃(α, β) =
s∑
r=1

urỹro and U0 ⊆ Rk × Rl and o ∈ {1, 2, ..., n}, where

U0 is the feasible set of model(2), corresponding to DMUo.
Proof : considering DMUo is under assessment, we have:∫ 1

0
S(α)(

s∑
r=1

ur([ỹrj]
u
α+[ỹrj]

l
α))dα ≤

∫ 1

0
S(α)(

m∑
i=1

vi([x̃ij]
u
α+[x̃ij]

l
α))dα,

and ∫ 1

0
S(α)(

m∑
i=1

vi([x̃io]
u
α + [x̃io]

l
α)) =

∫ 1

0
2S(α)

and therefore

D(1̃,
s∑
r=1

uroỹro) =
∫ 1
0 2S(α)dα−

∫ 1
0 S(α)(

s∑
r=1

ur([ỹro]
u
α

+ [ỹro]
l
α))dα ≥

∫ 1
0 2S(α)dα

−
∫ 1
0 2S(α)dα = 0
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For simplification, we convert model 3 to model4 by using the fol-
lowing variable changes:

x̂ij =
∫ 1

0
S(α)([x̃ij]

u
α + [x̃ij]

l
α)dα

ŷrj =
∫ 1

0
S(α)([ỹrj]

u
α + [ỹrj]

l
α)dα

U =
∫ 1

0
S(α)([ŨB]uα + [ŨB]lα)dα

Since S(α) is an arbitrary increasing function, we can replace S(α)
by α, for computational simplicity. It is evident that:

−z + U = max
∫ 1

0
S(α)

s∑
r=1

ui([ỹro]
u
α + [ỹro]

l
α)dα.

Therefore model (3) reduces to the following model:

−z + U = max
s∑
r=1

urŷro

s.t.
m∑
i=1

vix̂io = 1,

s∑
r=1

urŷrj −
m∑
i=1

vix̂ij ≤ 0, j = 1, ..., n,

−vp + C l
pqvq ≤ 0 , vp − Cu

pqvq ≤ 0, ∀p; p < q = 2, ...,m,

−ua +Dl
abub ≤ 0 , ua −Du

abub ≤ 0, ∀a; a < b = 2, ..., s,

ur ≥ 0, r = 1, ..., s,

vi ≥ 0, i = 1, ...,m.

(4)
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4 Fuzzy CR model

Consider the CR model [2].

z = max
s∑
r=1

l∑
q=1

βqbqryro (5)

s.t.
m∑
i=1

k∑
p=1

αpapixio = 1,

s∑
r=1

l∑
q=1

βqbqryrj −
m∑
i=1

k∑
p=1

αpapixij ≤ 0, j = 1, ..., n,

αp ≥ 0, p = 1, ..., k,

βq ≥ 0, q = 1, ..., l.

Now we extended the CR model to the fuzzy case (FCR) with
fuzzy parameters :

z = max
s∑
r=1

l∑
q=1

βqbqrỹro (6)

s.t
m∑
i=1

k∑
p=1

αpapix̃io ∼= 1̃,

s∑
r=1

l∑
q=1

βqbqrỹrj −
m∑
i=1

k∑
p=1

αpapix̃ij � 0̃, j = 1, ..., n,

αp ≥ 0, p = 1, ..., k,

βq ≥ 0, q = 1, ..., l.

Theorem 2 : 1̃ is an upper bound for f̃ : U0 −→ F (R), where

f̃(α, β) =
s∑
r=1

l∑
q=1

βqbqrỹro U0 ⊆ Rk ×Rl, and o ∈ {1, 2, ..., n}, where

U0 is the feasible set of model(6), corresponding to DMUo .
Proof :The proof is similar to the proof of theorem 1, and is hence
omitted.
By using the proposed method for the FAR model and theorem 2,
we can easily transform the FAR model to a crisp model as follows:
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−z + U = max
s∑
r=1

l∑
q=1

βqbqrŷro (7)

s.t.
m∑
i=1

k∑
p=1

αpapix̂io = 1,

s∑
r=1

l∑
q=1

βqbqrŷrj −
m∑
i=1

k∑
p=1

αpapix̂ij ≤ 0, j = 1, ..., n,

αp ≥ 0, p = 1, ..., k,

βq ≥ 0, q = 1, ..., l.

5 Numerical example

In this section, to illustrate the use of the methodology developed
here, a numerical example is considered.
We have 12 FMSs with 2 inputs and 4 outputs, the data of which
are summarized in table 1 and table 2. Input1 is a fuzzy number
and input 2 is a crisp number, output 1 is also a crisp number but
other outputs are fuzzy numbers. We know that a crisp number can
be shown as a fuzzy number; therefore, we can solve this example
by our proposed method.
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FMSs Capital and Operating cost Floor space needed

1 (16.17,17.02,17.87) 5

2 (15.64,16.46,17.28) 4.5

3 (11.17,11.76,12.35) 6

4 (9.99,10.25,11.05) 4

5 (9.03,9.50,9.98) 3.8

6 (4.55,4.79,5.03) 5.4

7 (5.90,6.21,6.25) 6.2

8 (10.56,11.12,11.68) 6

9 (3.49,3.67,3.85) 8

10 (8.48,8.93,9.38) 7

11 (16.85,17.74,18.63) 7.1

12 (14.11,14.85,15.59) 6.2

Table 1. Inputs of DMUs

FMSAs Qualitative WIP(10) NO. of Trady Yield(00)

1 42 (43.045.347.6) (13.5,14.2,14,9) (28.6,30.1,31.6)

2 39 (38.1,40.1,42.1) (12.4,13.0,13.7) (28.3,29.8,31.3)

3 26 (37.6,39.6,41.6) (13.1,13.8,14.5) (23.3,24.5,25.7)

4 22 (34.2,36.0,37.8) (10.7,11.3,11.9) (23.8,25.0,26.3)

5 21 (32.5,34.2,35.9) (11.4,12.0,12.6) (19.4,20.4,21.4)

6 10 (19.1,20.1,21.1) (4.8,5.0,5.3) (15.7,16.5,17.3)

7 14 (25.2,26.5,27.8) (6.7,7.0,7.4) (18.7,19.7,20.7)

8 25 (34.13,5.9,37.7) (8.6,9.0,9.5) (23.5,24.7,25.9)

9 4 (16.5,17.4,18.3) (0.1,0.10.1) (17.2,18.1,19.0)

10 16 (32.6,34.3,36.0) (6.2,6.5,6.8) (19.6,20.6,21.6)

11 43 (43.3,45.6,47.9) (13.3,14.0,14.7) (29.5,31.1,32.7)

12 27 (36.8,38.7,40.6) (13.1,13.8,14.5) (24.1,25.4,26.7)

Table 2. Outputs of DMUs

By the proposed method in this paper, we have evaluated FMSs
and the results of the evaluation are summarized in table 3.
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FMSs efficiency

1 0.9733

2 0.9560

3 0.9530

4 0.9953

5 1

6 0.9795

7 1

8 0.9390

9 0.8343

10 0.8303

11 0.9328

12 0.7909

Table 3. Result of the evaluation

By our method, we have evaluated each FMS by solving one LP.
We can compare their efficiencies directly in our method, but for
evaluating each FMS using Liu’s method, we must solve the sev-
eral models for different α-levels, and also in each α-level we should
solve two LPs.
For example, in [11] each FMS has been evaluated at 11 distinct
α-levels; therefore one must solve 2 × 11 = 22 LPs for evaluating
each FMS. And also, after solving multiple models, we cannot com-
pare these results directly and we need to use the ranking of fuzzy
numbers.
Hence, using Liu’s method leads to increasing the computational
complexity, which is not reasonable.
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6 Conclusion

In this paper, we introduced a new method for solving the fuzzy
CR and AR models to evaluate flexible manufacturing systems.
Although there are several methods for evaluating FMSs, they are
not suitable for large problem in fuzzy FMSs, because they require
a lot of computation. In this paper, we proposed a new method for
evaluating FMSs with fuzzy data with little computation.
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