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Abstract

Homotopy analysis method (HAM) is a promising method for handling func-
tional equations. Recent publications proved the effectiveness of HAM in solving
wide variety of problems in different fields. HAM has a unique property which
makes it superior to other analytic methods, this property is its ability to con-
trol the convergence region of the solution series. In this work, we clarified the
advantages and effects of convergence-control parameter through an example.

Keywords: Homotopy analysis method, Convergence-control parameter, Zeroth or-

der deformation equation.

1 Introduction

The basic idea of Homotopy analysis method (HAM) was first proposed by Liao, in
this Ph.D. thesis, in 1992 [9], but nowadays what is known, among scientists, is a
more developed version of it. The first applications of the method is restricted to
some papers of Liao and his colleagues and these are papers where the fundamental
and basic concepts are presented [10, 11, 12]. Then in 2003, Liao published a book ”
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Beyond perturbation: An introduction to homotopy analysis method ”, and he gave a
general introduction of HAM [13]. In this book, Liao proves its superiority over other
classic semi-analytic methods and uses the method to solve a variety of problems and
equations.

It was actually after Liao’s book that the method attracted so many attention.
Scientists and researchers, from various fields, found the method a promising tool
for handling nonlinear equations. The method has been applied to solve so many
problems, among them we can mention equations related to viscous flows of non-
Newtonian fluids [5, 6, 7], KdV type equations [3, 19, 25], nonlinear equations in
heat transfer [1, 2], financial problems [23, 24], differential-difference equations [22],
Laplace equation with Neumann and Dirichlet boundary condition [8], and many other
problems. A simple search in databases will show us that how much the method is
popular. Other than the known applications of HAM in solving functional equation,
there have been some interesting innovations, for example Prof. Abbasbandy and
Liao have proposed a new homotopy-Newton method which is a universalization of the
famous Newton-Raphson method [4]. Also Liao has recently introduced a transform,
called homotopy-transform, which he proves that Euler transform is a special case of
it [14]. Especially, HAM is employed to solve a kind of differential equations, that
neither other analytic methods nor numerical techniques have been able to solve them
[15, 16]. This proves the great potential of the method. In the next section we will give
basic ideas of the method according to latest accepted terminology in the community.

2 Basic idea of HAM

Let us consider the following nonlinear equation in a general form:

N [u(r, t)] = 0, (2.1)

where N is a nonlinear operator, u(r, t) is an unknown function and r and t denote
spatial and temporal independent variables, respectively. For simplicity, we ignore
all boundary or initial conditions, which can be treated without any difficulties. The
objective is to find the unknown function u(r, t), for this Liao chooses an initial guess
of the solution, u0(x, t) and defines a homotopy between this initial guess and the exact
solution. An auxiliary operator L is needed to construct the homotopy and using the
embedding parameter q, q ∈ [0, 1], (which he renames it to homotopy parameter [17])
the homotopy would be:

H[φ(r, t; q);u0(r, t), q] = (1− q)L[φ(r, t; q)− u0(r, t)]− qN [φ(r, t; q)]. (2.2)

This was the first homotopy proposed by Liao [9], later in order to make HAM more
effective, he added an auxiliary function H(r, t) and an auxiliary parameter c0 to the
homotopy equation and defined the new homotopy

H[φ(r, t; q);u0(r, t), H, c0, q] = (1− q)L[φ(r, t; q)− u0(r, t)]− qc0HN [φ(r, t; q)]. (2.3)
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We will later explain that H(r, t) helps to represent the solution in a special format
and c0 is actually a convergence-control parameter (This parameter was erstwhile
denoted by ~, but as this symbol is also used to represent Plank’s constant in quantum
mechanics, Liao himself in [18] has changed it to c0). Enforcing the homotopy to be
zero, we have the so called zeroth order deformation equation (ZODE):

(1− q)L[φ(r, t; q)− u0(r, t)] = qc0H(r, t)N [φ(r, t; q)]. (2.4)

When q = 0 this equation has the obvious solution φ(r, t; 0) = u0(r, t), and if q = 1
then the ZODE is equivalent to the original equation (1). So the original equation is
transformed to a system of equations. For every q0 ∈ [0, 1] we have an equation whose
solution is denoted by φ(r, t; q0). Since the homotopy is a continuous function, as q
increases from 0 to 1, the solution φ(r, t; q) varies continuously from the initial guess
u0(r, t) to the solution u(r, t). What left is to evaluate φ(r, t; q) at q = 1. Expanding
φ(r, t; q) in a Maclaurin series with respect to q, we have

φ(r, t; q) = φ(r, t; 0) +
∞∑
k=1

Dk(φ)qk, (2.5)

where Dk(φ) is the kth order homotopy-derivative of φ, which is defined as:
Definition 2.1: Let φ be a function of the homotopy-parameter q, then

Dm(φ) =
1

m

∂mφ

∂qm
|q=0, m ≥ 0, (2.6)

is called the mth-order homotopy-derivative of φ, where m ≥ 0 is an integer.
The properties of this type of derivative is fairly discussed in [17]. For simplicity

we express (5) as

φ(r, t; q) = u0(r, t) +
∞∑
k=1

uk(r, t)qk, (2.7)

where uk = Dk(φ). This series is called homotopy series. If the homotopy series is
convergent in q = 1 then the solution to the original equation would be

u(r, t) = u0(r, t) +

∞∑
k=1

uk(r, t) =

∞∑
k=0

uk(r, t). (2.8)

So what remains is just to find uk(r, t), for k = 1, 2, · · · . Liao takes mth order
homotopy-derivative from ZODE and constructs the so called high order deformation
equations (HODEs):

L[um(r, t)− χmum−1(r, t)] = c0H(r, t)Dm(N [φ(r, t; q)]), (2.9)

where

χm =

{
0

1

m ≤ 1

m > 1
, (2.10)
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especially for an specific m, the equation is called mth order deformation equation.
Directly substituting series (7) into the ZODE, equating coefficients of the like-

powers of the embedding parameter q, one can get the same HODEs, as proved in [21].
Equations (9) are linear ones, so we transformed a nonlinear equation to a system of
linear ones which can be easily solved using an iterative procedure, this is the main
consequence of HAM. After solving equations (9), we can substitute um(r, t) in (8)
and obtain an approximation of arbitrary order.

3 Validity of HAM

Liao in [13], states the following theorem which clarifies the challenges we have in
HAM:

Theorem 3.1: If the homotopy series (8), obtained from the HODEs (9), is
convergent then the series must converge to the exact solution of (1).

So what remains is just to choose the auxiliary elements in a way that insures the
convergence of the resulted series. To do so we have the four auxiliary elements in
the ZODE, namely L, v0, H and c0. Here we, briefly, mention the role and duties of
these auxiliary elements:

L: The auxiliary (linear) operator, it should have a simple inverse because we
expect the HODEs to be easy-to-solve equations.

v0: The initial guess, It should have a reasonable relation to our desired solution,
so must be in a form logically related to the main problem.

H: The auxiliary function. we know that one of our expectations from a semi-
analytic method is that it should have the potential to represent the solution
in different base functions. The auxiliary function H helps us to have such
representations.

c0: Convergence-control parameter, undoubtedly it is the most important ele-
ment in HAM. Whenever we have a HAM series solution, which is dependent
upon c0, we can use it to control the convergence region of the series.

The early HAM, which is proposed in 1992, didn’t have any convergence-control pa-
rameter or auxiliary function, but in 1997, Liao added these elements to the homotopy
equation and it was start of a revolution in analytic techniques. From the literature
it seems that, in most problems, we can choose the 4 auxiliary elements of HAM, in
such a way that leads the method to convergent series, although we still don’t have
any proof for this assertion.

Liao’s conjecture: If a nonlinear equation has at least one solution, then there is
at least one zeroth order deformation equation for which the homotopy solution series
is convergent to the exact solution.

Liao asserts that we usually can choose the four elements L, H, v0 and c0, in
a suitable way that makes the solution series, obtained from HAM, converge to the
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exact solution. It is not proved yet but we confess that rejecting and giving a coun-
terexample is a hard work because there are many choices for L, H and v0. Moreover
we can’t talk about the convergence problem separately for each auxiliary element,
the role of the four elements are dependent upon each other in this problem.

If we can guess, in a way, that the solution series (8), which is dependent upon c0,
is convergent for some values of c0 then, according to Liao, it is possible to find the
convergence region. Liao proposes the technique of c0-curves for finding this region.
His theorization is as follows: If the series u(r, t) from (8) comes to be convergent for
some values of c0 then, according to Theorem 2.3, for all of these values the series
must converge to the exact solution. Moreover convergence of u(r, t), from (8), results

in the convergence of some dependent quantities like
∂u

∂t
(r0, t0) or

∂2u

∂t2
(r0, t0), where

(r0, t0) is some point in the domain. So if the curves of these quantities are plotted
with respect to c0, the curve must contain a horizontal line segment. According to
Liao, for c0s in this interval, the solution series converges to the exact solution [13].

However it is not always possible to have the exact solution series in a closed form,
so a truncated version of the homotopy series (a suitable mth order approximation)
is used to plot the curves.

Although the technique of c0-curves is a smart method, but there is no powerful
mathematical governing theory for this technique. So there still exist some challenging
questions about the convergence-control parameter.

Is there any guarantee for existence of such c0s?

Is there a best c0? and if so, how can we find it?

Homotopy series is obtained by solving the high order deformation equations, these
equations are derived from the zeroth order deformation equation, which is dependent
upon L, v0 and H, so the convergence of the homotopy series, for some values of c0,
is directly related to the behavior of these elements. The only key for this problem
is Liao’s conjecture, which states that there are always a combination of the four
elements which leads us to the exact solution. So the question of ”existence of a
suitable c0” is equivalent to Liao’s conjecture.

For the question of the best c0, although the technique of c0-curves lead us to
suitable c0s, but they are unable to decide on the best c0. Recently Liao have proposed
a modification of HAM called optimal homotopy analysis approach where instead of
just one convergence-control parameter, he uses a number of them, simultaneously,
and gets good result [18].

4 The role of CCP in HAM

The HAM has a unique property which makes it superior to other analytic methods,
this property is the ability to control the convergence region of the solution series.
HAM does this by adding a convergence-control parameter, c0, to the homotopy
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equation. This parameter doesn’t change the problem under study and the final
series would depend upon this parameter. Here we clarify the advantages and effects
of CCP through an example.

Example 4.1 Consider the diffusion equation ut = (uux)x, with initial condition

u(x, 0) = x2. The solution is u(x, t) =
x2

1− 6t
. Choosing the auxiliary linear operator

L =
∂

∂t
and u0 = 0, we have the homotopy equation

(1− q)φt = c0q(φt − (φxφ)x),

now substituting φ(x, t; q) = u0(x, t) + u1(x, t)q + · · · in the homotopy equation and
equating the like powers of q, we will obtain the HODEs. Solving HODEs, considering
the initial condition, we have

u0(x, t) = x2,
u1(x, t) = −6c0tx

2,
u2(x, t) = −6c0tx

2(−6c0t+ (1 + c0)),
u3(x, t) = −6c0tx

2(−6c0t+ (1 + c0))2,
...

un(x, t) = −6c0tx
2(−6c0t+ (1 + c0))n−1 , n ≥ 1.

So the mth order approximation reads

appm(x, t) = u0(x, t)+u1(x, t)+· · ·+um(x, t) = x2+

m∑
n=1

−6c0tx
2(−6c0t+ (1 + c0))n−1.

(4.1)
First we consider the c0 = −1 case, which is a special case known to be the homotopy
perturbation method,

u0(x, t) = x2,
u1(x, t) = 6tx2,
un(x, t) = (6t)nx2, n ≥ 2 .

So we have

appm(x, t) = u0(x, t) + u1(x, t) + · · ·+ um(x, t) = x2(1 + 6t+ · · ·+ (6t)m)

which results in
lim

m→∞
appm(x, t) = x2(1 + 6t+ (6t)2 + · · · ).

As far as t satisfies
−1

6
< t <

1

6
, this series converges to u(x, t) =

x2

1− 6t
, which is

the exact solution we look for. So in the special case c0 = −1, HAM gives a series

which converges to the exact solution for all x and
−1

6
< t <

1

6
. However this region



Some notes concerning the convergence control parameter in homotopy analysis method 67

is relatively a small one.
Now we turn to the general case, where we leave c0 undetermined. According to
(2.6.1), appm is a geometric series which is convergent whenever |1 + c0 − 6c0t| < 1.
With this condition appm converges to

x2 − 6c0tx
2 1

1− (1 + c0 − 6c0t)
=

x2

1− 6t
,

which is the exact solution.
Two separate cases could be considered:

1. If c0 > 0 then |1 + c0− 6c0t| < 1 results in
1

6
< t <

1

6
+

1

3c0
, so the convergence

region of the solution series, in c0 > 0 case, would be x ∈ R
1

6
< t <

1

6
+

1

3c0

Here it is possible to extend the convergence region by choosing smaller values
of c0. However positive c0s can not guarantee convergence of the solution series

for t <
1

6
, for these values of t we refer to negative c0s.

2. If c0 < 0 then the condition |1+c0−6c0t| < 1, would be equivalent to
1

6
+

1

3c0
<

t <
1

6
, so it is possible to satisfy convergence by suitable negative c0s [20].

This analytic results also can be verified numerically. If we set c0 = 0.2 then, ac-

cording to the just mentioned results the convergence region for t must be
1

6
< t <

1

6
+

1

3(0/2)
=

11

6
. Using this value for c0, we construct the 40th and 80th order

approximation, the errors of these approximations for x = 1 and different values of t

in (
1

6
,

11

6
) are reported in Table 4.1.

Table 4.1
Errors of the 40th and 80th order approximation when c0 = 0.2

m x t=0.3 t= 0.5 t=0.8 t=1 t=1.2 t=1.5

40 1 0.002 2.01E-9 2.04E-25 0 1.88E-25 1.50E-9
80 1 1.20E-6 2.68E-18 3.00E-30 0 5.00E-30 2.01E-18
40 5 0.0526 5.01E-8 5.10E-24 0 4.69E-24 3.76E-8
80 5 4.92E-5 6.70E-17 8.00E-30 0 4.33E-28 5.02E-17



68 M. Paripour, J. Saeidian

It is seen that as we approach boundary points the precision decreases. For ex-
tending the convergence region we have to choose smaller values for c0. For example if

c0 = 0.02 is chosen then the convergence region would extend to
1

6
< t <

1

6
+

1

3(0/02)
,

the errors of this case is also reported in Table 4.2.

Table 4.2
Errors of the 40th and 80th order approximation when c0 = 0.02

m t=0.5 t=1 t=5 t=8 t=12 t=15

40 0/29 0.017 8.80E-16 1.368E-49 8.63E-16 4.88E-5
80 0.057 2.62E-4 7.49E-31 1.82E-98 7.34E-31 2.36E-9

In the presented example we simply determined the valid region of c0 by straight-
forward calculations. This success was mainly because of the general term we had
for representing approximations of arbitrary order, but in other cases, where there
is no general term for the approximations, how can one determine the valid region
for CCP? The only strategy at hand is Liao’s technique of c0-curves. Here we briefly
review Liao’s reasoning. If the series obtained by HAM, which in most cases is de-
pendent upon c0, is convergent for some values of c0, so are related quantities. For
example if the mth order approximation appm is convergent to ue, the exact solu-

tion, we could conclude that other quantities, like
∂

∂t
appm, would converge to

∂

∂t
ue,

similarly
∂2

∂x2
appm would also converge to

∂2

∂x2
ue. But Liao makes a restriction on

deciding these quantities, he confines himself to those quantities which have a physical
explanation.

Suppose that the quantity at hand is
∂2

∂x2
ue, then from convergence of

∂2

∂x2
appm

to
∂2

∂x2
ue, we conclude that for values r0 and t0, from domain of ue, the series

∂2

∂t2
appm(r0, t0) (which is dependent upon c0), must converge to

∂2

∂t2
ue(r0, t0). Now

consider the values of c0, where the quantity
∂2

∂t2
appm(r0, t0) converges, for this values

the quantity converges to a unique value of
∂2

∂t2
ue(r0, t0), we call these values of c0

the valid region of c0 and denote it by Rc0 . So if we plot curve of
∂2

∂t2
appm(r0, t0)

versus c0, it must contain a horizontal line segment under this Rc0 . The curves of
this related quantities versus c0 are called c0-curves.

Liao makes a reverse reasoning and concludes that for the values c0 ∈ Rc0 , appm
must converge to the exact solution. Here we try to compare our analytic results
(which has explicitly given us the Rc0 ), with Liao’s technique of c0-curves.

We plot c0-curves corresponding to
∂

∂t
ue and

∂2

∂x2
ue at (x, t) = (1, 1) for approxima-

tions of order 40 and 80.
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Figure 4.1 : c0-curve corresponding to app40t(1, 1).

Figure 4.2 : c0-curve corresponding to app80t(1, 1).

For
∂

∂t
ue the exact value at (1, 1) is 0.24, by plotting the curves of

∂

∂t
app40(1, 1)

and
∂

∂t
app80(1, 1) we have the corresponding Rc0 to be [0.08, 0.31] and [0.05, 0.35],

respectively, see Figure 4.1 and 4.2.
We accept the valid region for c0 to be the segment [0.05, 0.35], but according to
our analytic calculations we know that these c0s can not satisfy convergence for all
values of t, we know that when c0 ∈ [0.05, 0.35] the convergence is only guaranteed

for t ∈ [
1

6
,

41

6
]. Although the technique of c0-curves managed to give us a valid re-

gion for c0 but in order to have complete region of convergence we have to do more
calculations.

The results of the quantity
∂2

∂t2
ue(1, 1) would be very same as the

∂

∂t
ue(1, 1) case.

There is one more corollary for the presented example, it is mostly seen that when
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we increase the order of approximation, in plotting c0-curves, the valid region, Rc0 ,
gets smaller. But in our example it gets bigger which seems to be an interesting
phenomena. However there is no change in the principle that increasing the order
results in better convergence regions.

5 Conclusion

This work concerns with homotopy analysis method. Unlike other popular analytic
methods, this one doesn’t need any small parameters to be contained in the equation,
instead the method itself introduces an auxiliary parameter −c0−, by which it can
control the convergence region of the solution series. In this work, we clarify the
advantages and effects of convergence-control parameter through an example.
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