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Abstract

In this paper, a new method based on parametric form for approximate solu-
tion of fuzzy linear matrix equations (FLMEs) of the form AX = B, where A
is a crisp matrix, B is a fuzzy number matrix and the unknown matrix X one,
is presented. Then a numerical example is presented to illustrate the proposed
model.
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1 Introduction

The concept of fuzzy numbers and fuzzy arithmetic operations
were first introduced by Zadeh [29], Dubois and Prade [14]. We refer
the reader to [21] for more information on fuzzy numbers and fuzzy
arithmetic. Fuzzy systems are used to study a variety of problems
ranging from fuzzy metric spaces [27], fuzzy differential equations
[5], fuzzy linear systems [3,4,11] and particle physics [15,16].

One of the major applications of fuzzy number arithmetic is treat-
ing fuzzy linear system (FLS) [7,8,9,25,26]. Friedman et al. [18]
introduced a general model for solving a fuzzy n× n linear system
whose coefficient matrix is crisp and the right-hand side column is
an arbitrary fuzzy number vector. They used the parametric form
of fuzzy numbers and replaced the original fuzzy n × n linear sys-
tem by a crisp 2n × 2n linear system and studied duality in FLS
Ax = Bx + y where A, B are real n × n matrices, the unknown
vector x is a vector consisting of n fuzzy numbers and the constant
y is a vector consisting of n fuzzy numbers [19]. In [1,3,4,11] the
authors presented conjugate gradient, LU decomposition method
for solving general FLS or symmetric FLS. Also, Abbasbandy et
al. [6] investigated the existence of a minimal solution of general
dual fuzzy linear equation system of the form Ax + f = Bx + c,
where A, B are real m × n matrices, the unknown vector x is a
vector consisting of n fuzzy numbers and the constant f, c are the
vectors consisting of m fuzzy numbers. Then Allahviranloo et al.
[10] introduced a general model for solving non-square FLS.

Recently, Ezzati [17] proposed a new method for solving an n × n
FLS whose coefficients matrix was crisp and the right-hand side col-
umn was an arbitrary fuzzy number vector by using the embedding
method given in Cong-Xin and Min [12] and replaced the original
n × n fuzzy linear system by two n × n crisp linear systems. It is
clear that in large systems, solving an n×n linear system is better
than solving a 2n × 2n linear system. Since perturbation analysis
is very important in numerical methods, the authors of Wang et al.
[28] presented the perturbation analysis for a class of fuzzy linear
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systems which could be solved by an embedding method. Now, ac-
cording to the presented method in this paper, we can investigate
perturbation analysis in two n× n crisp linear systems.

The paper is organized as follows: In Sect. 2, we introduce the
notation, the definitions and preliminary results that will be used
throughout the paper. In Section 3, we introduce FLMEs and the
model for solving FLMEs is proposed. Then, we review the pro-
posed method in Friedman et al. [18] and Ezzati [17] for solving
fuzzy linear system. The proposed model is illustrated by solving
an example in section 4 and conclusions are drawn in section 5.

2 Preliminaries

Parametric form of an arbitrary fuzzy number is given in [18,24]
as follows.

Definition 2.1 A fuzzy number u in parametric form is a pair
(u, u) of functions u(r), u(r), 0 ≤ r ≤ 1, which satisfy the following
requirements:

1. u(r) is a bounded left continuous non-decreasing function over
[0, 1],

2. u(r) is a bounded left continuous non-increasing function over
[0, 1],

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

The set of all these fuzzy numbers is denoted by E which is a com-
plete metric space with Hausdorff distance. A crisp number α is
simply represented by u(r) = u(r) = α, 0 ≤ r ≤ 1.
For arbitrary fuzzy numbers x = (x(r), x(r)), y = (y(r), y(r)) and
real number k, we may define the addition and the scalar multipli-
cation of fuzzy numbers by using the extension principle as [24]

(a) x = y if and only if x(r) = y(r) and x(r) = y(r),
(b) x+ y = (x(r) + y(r), x(r) + y(r)),
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(c) kx =

 (kx, kx), k ≥ 0,

(kx, kx), k < 0.

Remark 2.1 [2] Let u = (u(r), u(r)), 0 ≤ r ≤ 1 be a fuzzy number,
we take

uc(r) =
u(r) + u(r)

2
,

ud(r) =
u(r)− u(r)

2
.

It is clear that ud(r) ≥ 0, u(r) = uc(r)− ud(r) and u(r) = uc(r) +
ud(r), also a fuzzy number u ∈ E1 is said symmetric if uc(r) is
independent of r for all 0 ≤ r ≤ 1.

Remark 2.2 Let u = (u(r), u(r)), v = (v(r), v(r)) and also k, s are
arbitrary real numbers. If w = ku+ sv then

wc(r) = kuc(r) + svc(r),

wd(r) = |k|ud(r) + |s|vd(r).

3 Fuzzy linear matrix equations

Definition 3.1 A matrix system such as



a11 a12 . . . a1n

a21 ea22 . . . a2n
...

...
...

...

an1 an2 . . . ann





x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
...

...

xn1 xn2 . . . xnn


=



y11 y12 . . . y1n

y21 y22 . . . y2n
...

...
...

...

yn1 yn2 . . . ynn


,

(3.1)
where aik, 1 ≤ i, k ≤ n, are real numbers, the elements yij, 1 ≤
i, j ≤ n in the right-hand matrix are fuzzy numbers and the un-
known elements xkj, 1 ≤ k, j ≤ n are ones, is called a FLMEs.
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Using matrix notation, we have

AX = Y. (3.2)

A fuzzy number matrix

X =
(
x1, x2, . . . , xn

)
,

given by xj = (x1j, x2j, . . . , xnj)
T , 1 ≤ j ≤ n, is called a solution of

the FLMEs (3.2) if

Axj = yj, 1 ≤ j ≤ n, (3.3)

where yj = (y1j, y2j, . . . , ynj)
T is the jth column of fuzzy matrix B.

Consider fuzzy linear system Eq.(3.1). By referring to Remark (2.2)
we have linear matrix equations (LMEs)AX

c(r) = Y c(r),

DXd(r) = Y d(r),
(3.4)

where Xc(r) = (xc1(r), x
c
2(r), . . . , x

c
n(r))T ,

Xd(r) = (xd1(r), x
d
2(r), . . . , x

d
n(r))T ,

Y c(r) = (yc1(r), y
c
2(r), . . . , y

c
n(r))T and

Y d(r) = (yd1(r), yd2(r), . . . , ydn(r))T and D contains the absolute val-
ues of A. We known that if A and D are nonsingular matrices thenX

c(r) = A−1Y c(r),

Xd(r) = D−1Y d(r).
(3.5)

Therefore, we can solve FLS (3.1) by solving LMEs (3.4) and we
have

X(r) = Xc(r)−Xd(r),

X(r) = Xc(r) +Xd(r).
(3.6)

Theorem 3.1 [13] A square crisp matrix is inverse-nonnegative if
and only if it is the product of a permutation matrix by a diagonal
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matrix. And a square crisp matrix is inverse-nonnegative if and
only if its entries are all zero except for a single positive entry in
each row and column.

Finally, we conclude this section by a reviewing on the proposed
method for solving FLS in [18]. Consider FLMEs (3.1) and let X
and Y are fuzzy number vector therefore, we have

Ax = y (3.7)

where x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn).

Friedman et al. [18] wrote the FLS (3.7) as follows:

SX ′ = Y ′, (3.8)

where sij are determined as follows:

aij ≥ 0 =⇒ sij = aij, si+m,j+n = aij,

aij < 0 =⇒ si,j+n = −aij, si+m,j = −aij,
(3.9)

and any sij which is not determined by (3.9) is zero and

X ′ =



x1
...

xn

−x1
...

−xn


, Y ′ =



y
1

...

y
m

−y1
...

−ym


.

The structure of S implies that sij ≥ 0, 1 ≤ i ≤ 2m, 1 ≤ j ≤ 2n
and

S =

B C

C B

 , (3.10)
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where B contains the positive entries of A, and C contains the
absolute values of the negative entries of A, i.e., A = B − C.

Theorem 3.2 [18] The matrix S is a nonsingular matrix if and
only if the matrices A = B − C and B + C are both nonsingular
matrices.

Theorem 3.3 [18] If S−1 exists it must have the same structure
as S, i.e.

S−1 =

D E

E D

 , (3.11)

where

D =
1

2
[(B+C)−1 + (B−C)−1], E =

1

2
[(B+C)−1− (B−C)−1].

We know that if S is a nonsingular matrix then

X ′ = S−1Y ′. (3.12)

Recently, Ezzati [17] considered FLS (3.7) and solved by using the
embedding approach. Ezzati [17] wrote the FLS (3.7) as follows:

A(x+ x) = y + y, (3.13)

where h = (x + x) = (x1 + x1, x2 + x2, . . . , xn + xn)T and y + y =
(y

1
+ y1, y2 + y2, . . . , yn + yn)T .

Theorem 3.4 [17] Suppose the inverse of matrix A in Eq.(3.7)
exists and x = (x1, x2, . . . , xn)T is a fuzzy solution of this equation.
Then x(r) + x(r) is the solution of the following system

A(x(r) + x(r)) = y(r) + y(r). (3.14)

We know that if A is a nonsingular matrix then

h = A−1(y(r) + y(r)).
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Let matrices B and C have defined as Eq.(3.10). Now using matrix
notation for Eq.(3.1), we getBx(r)− Cx(r) = y(r),

Bx(r)− Cx(r) = y(r).

By substituting of x(r) = h− x(r) and x(r) = h− x(r) in the first
and second equation of above system, respectively, we have

(B + C)x(r) = y(r) + Ch (3.15)

and
(B + C)x(r) = y(r) + Ch.

If B + C is a nonsingular matrix then

x(r) = (B + C)−1(y(r) + Ch).

Therefore, we can solve FLS (3.7) by solving Eqs. (3.14)-(3.15).

Theorem 3.5 Assume that Fn, En and On are the number of mul-
tiplication operations that are required to calculate
X ′ = (x1, x2, . . . , xn,−x1,−x2, . . . ,−xn)T = S−1Y (the proposed
method in Friedman et al. [18]), X ′′ = (x1, x2, . . . , xn, x1, x2, . . . , xn)T

from Eqs. (3.14)-(3.15) (the proposed method in Ezzati [17]) and
X ′′ = (x1, x2, . . . , xn, x1, x2, . . . , xn)T from Eqs. (3.5) and Eqs. (3.6),
respectively. Then On ≤ En ≤ Fn and Fn − En = En −On = n2.

Proof. We have

S−1 =

D E

E D

 ,
where

D =
1

2
[(B+C)−1 + (B−C)−1], E =

1

2
[(B+C)−1− (B−C)−1].

Therefore, for determining S−1, we need to compute (B+C)−1 and
(B − C)−1. Now, assume that M is a n× n matrix and denote by
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hn(M) the number of multiplication operations that are required
to calculate M−1. It is clear that

h(S) = h(B + C) + h(B − C) = 2hn(A)

and hence

Fn = 2hn(A) + 4n2.

For computing x+x = (x1+x1, x2+x2, . . . , xn+xn)T from Eq.(3.14)
and x = (x1, x2, . . . , xn)T from Eq.(3.15), the number of multiplica-
tion operations are hn(A) + n2 and hn(B + C) + 2n2, respectively.
Clearly hn(B + C) = hn(A), so

En = 2hn(A) + 3n2

and hence En−Fn = n2. For computingX ′′ = (x1, x2, . . . , xn, x1, x2, . . . , xn)T ,
from Eqs. (3.5) and Eqs. (3.6), the number of multiplication oper-
ations are hn(A) + n2 and hn(D) + n2. Therefore

On = 2hn(A) + 2n2

and hence Fn − En = En −On = n2. This proves theorem. 2

4 Numerical example

Example 4.1 Consider the following FLMEs 1 − 1

1 3


x11 x12
x21 x22

 =

 (−3 + 2r, 2− 3r) (−1 + 2r, 4− 3r)

(7r, 11− 4r) (1 + 4r, 10− 5r)



By using Eqs. (3.4), we have:xc11(r) xc12(r)

xc21(r) xc22(r)

 =

 1 5
2
− r

2

3
2
− r

2
1


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and xd11(r) xd12(r)

xd21(r) xd22(r)

 =

 1− r 3
2
− 3

2
r

3
2
− 3

2
r 1− r

 .
Therefore, x11 = (r, 2− r), x12(r) = (1 + r, 4− 2r), x21 = (2r, 3− r)
and x22(r) = (r, 2 − r). According to this fact that xi ≤ xi, i =
1, 1, are monotonic decreasing functions then the solution xij(r) =
(xij(r), xij(r)) for i, j = 1, 2 is a fuzzy solution.

5 Conclusions

In this paper, we proposed a general model for solving a FLMEs.
The original system (3.1) is replaced by two n × n crisp linear
systems (3.4).
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