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Abstract

A variant of fixed point theorem is proved in the setting of S-metric spaces.
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1 Introduction.

There are different type of generalization of metric spaces in several ways.
For example, concepts of 2-metric spaces and D-metric spaces introduced
by [2] and [3], respectively. The idea of partial metric space was intro-
duced by [5] or the notion of G-metric spaces announced by [6]. Some
authors have proved fixed point type theorems in these spaces (see, e.g.
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[9,10]). Impression of D*-metric space and also S-metric spaces was ini-
tiated by Sedghi, [8,7].

In this paper,we find some new results on S-metric spaces and prove
fixed point type theorem for k-contraction condition on S-metric space
and offer some examples.

2 Basic Concepts of S-metric spaces

In this section we offer some concepts introduced S. Sedghi et al. ([7])
and results (see, e.g. [4,7]). We modify them for our purposes and present
some new considerations.

Definition 2.1 Let X be a nonempty set. We call S-metric on X 1is a
function S: X3 — [0, 00) which satisfies the following conditions for each
x,y,z,a € X

(1) S(x,y,z) =0,

(i1) S(x,y,z) =0 if and only if t =y = z,

(iii) S(z,y,z) < S(xz,z,a) + S(y,y,a) + S(z, z,a).

The set X in which S-metric is defined is called S-metric space.

The standard examples of such S-metric spaces are:

(a) Let X be any normed space, then S(z,y,2) =|| y+2z—2z || + ||
y — z || is a S-metric on X.

(b) Let (X,d) be a metric space, then S(x,y,z) = d(z, z) + d(y, 2) is a
S-metric on X. This S-metric is called the usual S-metric on X.

(c) Another S-metric on (X,d) is S(z,y,2) = d(z,y) + d(z, z) + d(y, 2)
which is symmetric with respect to the argument.

In the paper we will often use a following important relation.

Lemma 2.1 (See[7]). In a S-metric space S(x,z,y) = S(y,y,x) for
z,y € X.

Lemma 2.2 Let (X,5) be a S-metric space. If there ezists sequences
{z,} and {y,} such that lim, ,wx, = = and lim, vy, = y, then
lim,, 00 S(mnammyn) = S(Q?, l‘:y)'
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There exists a natural topology on a S-metric spaces. At first let us
remind a notion of (open) ball.

Definition 2.2 Let (X,S) be a S-metric space. For r > 0 and x € X
we define a ball with the center x and radius v as follows:

Bs(xz,r)={ye X : S(y,y,x) <r}.

This is quite different concept of ball in a usual metric space which shows
the following example:

Example 2.1 Let X = R. Let S(z,y,z2) be a usual S-metric on R for
all x,y,z € R. Therefore

By(z0,2) ={y € X : S(y,y,x0) <2} ={y € R:2d(y, x) < 2}
={y e R:d(y,x0) < 1} = By(xg,1).

By using the notion of ball we can introduce the standard topology on
S-metric space.

Remark 2.1 Any ball is open set in this topology and x, — x means
that S(xp,zn,x) — 0 and {x,} is cauchy sequence if for every ¢ > 0
there exsits a positive integer N, if n,m > N then x,, € By(xy,,€) (which
is the same as &, € By(xp,€)).

We prove the following very important result:

Lemma 2.3 Any S-metric space is a Hausdorff space.

Proof. Let (X,S) be a S-metric space. Suppose = # y and put r =
5S(x,z,y) . Let us show that Bg(z,r) N Bs(y,r) = 0, for z,y € X .
Suppose this is not true then there exists z € X such that z € Bg(x,r)N

Bgs(y, r),therefor by definition of ball we have S(z, z, x) < rand S(z, z,y) <
r. By Lemma 2.1 and (iii), we get

3r=S(z,2,y) <25(2,2,2) + 5(2,2,y) = 25(x, z, 2) + S(y, y,2) <3,

which is a contradiction. O
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The following concepts which will be used in our consideration was in-
troduced in [1,4].

Definition 2.3 (See[l]). An element (x,y) € X x X is called a coupled
fixed point(c.f.p) of a mapping F : X x X — X if F(z,y) = x and
Fly,x) =y.

Remark 2.2 An element (x,y) is a coupled coincidence point of F :
X xX — X if and only if it is usual fized point for mapping F : X x X —
X x X gwen by F(z,y) = (F(x,y), F(y,z)).

Definition 2.4 (See[4]). An element (x,y) € X x X is called a coupled
coincidence point(c.c.p) of the mappings F : X x X — X and g :
X = X if F(z,y) = gz and F(y,z) = gy.

Definition 2.5 Let X be a nonempty set. We say the mappings F :
X xX = X and g : X — X satisfy the L-condition if gF(x,y) =
F(gz,gy),for all x,y € X.

The next notion is modification of usual contraction condition.

Definition 2.6 Let (X,S) be a S-metric space. We say the mappings
F:XxX— X and g: X — X satisfy the k-contraction if

S(F(x,y), F(z,y), F(z,w)) < k(S(gx, gz, 92) + S(gy, 9y, gw)), (2.1)
for all x,y, z,w,u,v € X.

As in classical case this condition is quite important for our results.

3 Main Result

The following crucial lemma help us to prove c.c.p theorem on S-metric
space . The results such kind can be found e.g. in [10].

Lemma 3.1 Let (X, S5) be a S-metric space and F': X x X — X and g :
X — X be two mappings satisfying k-contraction for k € (0, %) If (z,y)
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is a c.c.p of the mappings F' and g, then F(z,y) = gx = gy = F(y,x).

Proof. Since (z,y) is a c.c.p of the mappings F' and g, we have gr =
F(z,y) and gy = F(y,x). Suppose gx # gy. Then by (2.1), and Lemma
2.1, we get

S(gz, gz, 9y) = S(F(z,y), F(z,y), F(y, v))
< k(S(gz, gz, gy) + S(9y, 9y, gx))
= 2kS(gx, gz, gy).

Since gx # gy by (ii) we have S(gz, gx,gy) # 0. Hence 2k > 1 which
is a contradiction. So gz = gy, and therefore F(z,y) = gr = gy =
F(y,z). O

Theorem 3.1 Let (X,S) be a S-metric space and F : X x X — X and
g : X — X be two mappings satisfying k-contraction for k € (0, %) and L-
condition. If g(X) is continuous with closed range such that F(X x X) C
g9(X), then there is a unique x in X such that gr = F(x,x) = z.

Proof. Let xg,yo € X. Since F(X xX) C g(X), we can choose z1,y; € X
such that gz = F(x,y0) and gy; = F(yo,zo). Then starting from the
pair (z1,91), we can choose o, y2 € X such that gzy = F(zq,y;) and
gy2 = F(y1,x1). Then there exists sequences {z,} and {y,} in X such
that gz, = F(xn,y,) and gyni1 = F(Yn,x,). For n € N, from k-
contraction condition, we have

S(9%n, 9n, 9Tn+1) < k(S(9Tn-1, 9Tn-1,92n) + S(9Yn—1, GYn-1, 9Yn)).
From
S(92n-1, 9Tn-1, 9Tn) < k(S(9Tn-2, 9Tn—2, 9Tn—1)+S(9Yn-2, 9Yn—2, GYn-1)),
since the similar inequality is correct for S(gyn—_1, 9Yn—1, gyn), we have
S(9Tn-1, 9Tn-1, 9Tn) + S(gYn—1, 9Yn—1, 9Yn) < 2k(S(9Tn-2, 9Tn—2, gTn_1)

+ S(9Yn—2, 9Yn—-2, GYn—1))
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holds for all n € N. By repeating this procedure enough time,we obtain
for each n € N

—_

S(9%n, 9Tn, gTni1) < =(2k)"(S(gz0, g0, 921) + S(9Y0, 9Y0, g¥1))- (3.1)

[\)

Let m,n € N with m > n + 2. By (iii)and Lemma 2.1, we have

S(gxna gZn, gxm) < 23(9In7 9Tn, §Tnt1 (gxm, GTm, gmn—l—l)

+S
25(9¢na9$n79$n+1 +S(g$n+1agxn+lag$m)
+ 2S5

IN

)
)

25(gn, 9Tn, 9Tni1) (9Tnt1, 9Tni1, 9Tni2)
)

+ S(gxm, 9Tm; §Tn42

< 2372 8(gw, giy 9Tin1) + S(9Tm_1, GTm—15 GTm)-

By (3.1) we will have,

S(9Tn, gTn, 9Tm) < 2302 S (921, 92i, gTit1) + S(9Tim—1, §Tm—1, 9Tm)
< 23072 2(2k) (S (gmo, g0, g71) + S(9%0, 9%0, 9¥1))
+ 1(2k)™ (S (g0, 90, 921) + S(9%0, 9%0, 9Y1))
< (2k)"(S(g0, g0, 91) + S(9Y0, 9Y0: 9Y1))
(14 2k + (2k)* + (2k) + ...]
(

< (S (g, 9o, ga1) + S (g0, Yo, Gy1))-

Letting n,m — oo, we have

n}%gloo S(gxn, gTn, gTm) = 0.
Thus, {gz,} is a Cauchy sequence in g(X). Similarly, {gy, } is a Cauchy
sequence. Since g(X) is closed, {gz,} and {gy,} are convergent to some
x € X and y € X. Since g is continuous, {g(gz,)} is convergent to
gr and {g(gyn)} is convergent to gy. Moreover, since F' and g sat-
isfy L-condition, we have g(gx,+1) = 9(F(zn,yn)) = F(92n, 9yn), and
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9(9Yn+1) = 9(F(Yn, 7)) = F(gYn, g2r). Thus

S(9(92nt1), 9(9Tns1), F(2,y)) < k(S(9(g2n), 9(92n), 92)+S(9(9yn), 9(9¥n), 9y))-

Letting n — oo, and by Lemma 2.2, we get that S(gz, gz, F(z,y)) <

k(S(gx, gz, 92) + S(9y, 9y, 9y)) = 0.
Hence gr = F(z,y),and similarly, gy = F'(y,z). By Lemma 3.1, (x,y) is

a c.c.p of the mappings F' and g. So gxr = F(z,y) = F(y,x) = gy. We
have

S(g:cnﬂ,gxnﬂ,gac) = S(F(xm yn)a F(l‘n,yn), F(x,y))
< k(S(97n, g2, 97) + S(9Yn, GYn, 9Y))-

Letting n — oo, by Lemma 2.2, we get S(z,x,9z) < k(S(z,z,gz) +
S(y,y,9y)). Similarly, S(y,y, gy) < k(S(z, z, gx) + S(y,y, gy)). Thus,

S(x,z, g2) + Sy, v, 9y) < 2k(S(z, z, 9z) + S(y,y, 99)). (3.2)
Since 2k < 1, inequality (3.2) occur only if S(z, z, gz) = 0 and S(y, y, gy) =

0. Hence z = gx and y = gy. Thus, we get gz = F(x,x) = z. To prove
the uniqueness, let z € X with z # x such that z = gz = F(z, z). Then

S(z,z,2) < 2kS(gz, gz, g2)
=2kS(x,x, 2).

Since 2k < 1 we get a contradiction. O
The following result is immediate corollary from the previous theorem g
being the identical mapping.

Theorem 3.2 Let (X, S) be a complete S-metric space and F : X x X —
X be a mapping satisfying following contraction condition

S(F(z,y), F(u,v), F(z,w)) < k(S(x,u, z) + S(y,v,w))

for all x,y,u,v € X and k € (0, %) Then there is a unique x € X such
that F(x,z) = x.

Now we present some examples.
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Example 3.1 Let X = [0,1]. Suppose S(z,y,z) be usual S-metric on
X, for all x,y,z € X. Then (X, S) is a complete S-metric space. Now we
define a map F: X x X — X by F(z,y) = %xy for x,y € X. Also,
define g : X — X by g(z) = x for x € X. Since

|2y — wv| < o —ul + |y —v|

holds for all x,y,u,v € X, we have

1 1
1
< 6(2‘55 —z| + 2|y — w|)
1
= =(S(gz, gu, 92) + S(9y, gv, gw))

holds for all x,y,u,v,z,w € X. It’s clear that F' and g satisfy all the
hypothesis of Theorem 3.1. Therefore F' and g have a unique common
fized point. Here F'(0,0) = ¢g(0) = 0.

Example 3.2 Let X = [0,1]. Suppose S(x,y,z) be usual S-metric on
X, for all x,y,z € X. Then (X,S) is a complete S-metric space. Define
amap F: X x X = X by F(z,y) =1—¢(z +y) forz,y € X. Also,

S(F(x,y), Fu,v), F(z,w)) = [F(z,y) = F(z,w)| + |[F(u,v) = F(z,w)|

= ez tw—yl+ gl ut vl
=5 z—x+w—y 5 z—u+v—w
1 1
< (o=l fu =) + 5 (ly — wl + o - w)
1
= 6(5(377”72) + S(y,U,UJ)).
Then by Theorem 3.2, F' has a unique fixed point. Here x = % 1s the

unique fized point of F, that is F(x,z) = x.
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