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Abstract

A variant of fixed point theorem is proved in the setting of S -metric spaces.
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1 Introduction.

There are different type of generalization of metric spaces in several ways.
For example, concepts of 2-metric spaces and D-metric spaces introduced
by [2] and [3], respectively. The idea of partial metric space was intro-
duced by [5] or the notion of G-metric spaces announced by [6]. Some
authors have proved fixed point type theorems in these spaces (see, e.g.
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[9,10]). Impression of D∗-metric space and also S-metric spaces was ini-
tiated by Sedghi, [8,7].

In this paper,we find some new results on S-metric spaces and prove
fixed point type theorem for k-contraction condition on S -metric space
and offer some examples.

2 Basic Concepts of S-metric spaces

In this section we offer some concepts introduced S. Sedghi et al. ([7])
and results (see, e.g. [4,?]). We modify them for our purposes and present
some new considerations.

Definition 2.1 Let X be a nonempty set. We call S-metric on X is a
function S : X3 → [0,∞) which satisfies the following conditions for each
x, y, z, a ∈ X
(i) S(x, y, z) ≥ 0,
(ii) S(x, y, z) = 0 if and only if x = y = z,
(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
The set X in which S-metric is defined is called S-metric space.

The standard examples of such S -metric spaces are:
(a) Let X be any normed space, then S(x, y, z) =‖ y + z − 2x ‖ + ‖
y − z ‖ is a S -metric on X.
(b) Let (X, d) be a metric space, then S(x, y, z) = d(x, z) + d(y, z) is a
S -metric on X. This S-metric is called the usual S-metric on X.
(c) Another S-metric on (X, d) is S(x, y, z) = d(x, y) + d(x, z) + d(y, z)
which is symmetric with respect to the argument.
In the paper we will often use a following important relation.

Lemma 2.1 (See[7]). In a S-metric space S(x, x, y) = S(y, y, x) for
x, y ∈ X.

Lemma 2.2 Let (X,S) be a S-metric space. If there exists sequences
{xn} and {yn} such that limn→∞ xn = x and limn→∞ yn = y, then
limn→∞ S(xn, xn, yn) = S(x, x, y).
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There exists a natural topology on a S-metric spaces. At first let us
remind a notion of (open) ball.

Definition 2.2 Let (X,S) be a S-metric space. For r > 0 and x ∈ X
we define a ball with the center x and radius r as follows:

Bs(x, r) = {y ∈ X : S(y, y, x) < r}.

This is quite different concept of ball in a usual metric space which shows
the following example:

Example 2.1 Let X = R. Let S(x, y, z) be a usual S-metric on R for
all x, y, z ∈ R. Therefore

Bs(x0, 2) = {y ∈ X : S(y, y, x0) < 2} = {y ∈ R : 2d(y, x0) < 2}
= {y ∈ R : d(y, x0) < 1} = Bd(x0, 1).

By using the notion of ball we can introduce the standard topology on
S-metric space.

Remark 2.1 Any ball is open set in this topology and xn → x means
that S(xn, xn, x) → 0 and {xn} is cauchy sequence if for every ε > 0
there exsits a positive integer N , if n,m > N then xn ∈ Bd(xm, ε)(which
is the same as xm ∈ Bd(xn, ε)).

We prove the following very important result:

Lemma 2.3 Any S-metric space is a Hausdorff space.

Proof. Let (X,S) be a S-metric space. Suppose x 6= y and put r =
1
3
S(x, x, y) . Let us show that BS(x, r) ∩ BS(y, r) = ∅, for x, y ∈ X .

Suppose this is not true then there exists z ∈ X such that z ∈ BS(x, r)∩
BS(y, r),therefor by definition of ball we have S(z, z, x) < r and S(z, z, y) <
r. By Lemma 2.1 and (iii), we get

3r = S(x, x, y) ≤ 2S(z, z, x) + S(z, z, y) = 2S(x, x, z) + S(y, y, z) < 3r,

which is a contradiction. 2
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The following concepts which will be used in our consideration was in-
troduced in [1,4].

Definition 2.3 (See[1]). An element (x, y) ∈ X×X is called a coupled
fixed point(c.f.p) of a mapping F : X × X → X if F (x, y) = x and
F (y, x) = y.

Remark 2.2 An element (x, y) is a coupled coincidence point of F :
X×X → X if and only if it is usual fixed point for mapping F̃ : X×X →
X ×X given by F̃ (x, y) = (F (x, y), F (y, x)).

Definition 2.4 (See[4]). An element (x, y) ∈ X×X is called a coupled
coincidence point(c.c.p) of the mappings F : X × X → X and g :
X → X if F (x, y) = gx and F (y, x) = gy.

Definition 2.5 Let X be a nonempty set. We say the mappings F :
X × X → X and g : X → X satisfy the L-condition if gF (x, y) =
F (gx, gy),for all x, y ∈ X.

The next notion is modification of usual contraction condition.

Definition 2.6 Let (X,S) be a S-metric space. We say the mappings
F : X ×X → X and g : X → X satisfy the k-contraction if

S(F (x, y), F (x, y), F (z, w)) ≤ k(S(gx, gx, gz) + S(gy, gy, gw)), (2.1)

for all x, y, z, w, u, v ∈ X.

As in classical case this condition is quite important for our results.

3 Main Result

The following crucial lemma help us to prove c.c.p theorem on S -metric
space . The results such kind can be found e.g. in [10].

Lemma 3.1 Let (X,S) be a S-metric space and F : X×X → X and g :
X → X be two mappings satisfying k-contraction for k ∈ (0, 1

2
). If (x, y)
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is a c.c.p of the mappings F and g, then F (x, y) = gx = gy = F (y, x).

Proof. Since (x, y) is a c.c.p of the mappings F and g, we have gx =
F (x, y) and gy = F (y, x). Suppose gx 6= gy. Then by (2.1), and Lemma
2.1, we get

S(gx, gx, gy) = S(F (x, y), F (x, y), F (y, x))

≤ k(S(gx, gx, gy) + S(gy, gy, gx))

= 2kS(gx, gx, gy).

Since gx 6= gy by (ii) we have S(gx, gx, gy) 6= 0. Hence 2k ≥ 1 which
is a contradiction. So gx = gy, and therefore F (x, y) = gx = gy =
F (y, x). 2

Theorem 3.1 Let (X,S) be a S-metric space and F : X ×X → X and
g : X → X be two mappings satisfying k-contraction for k ∈ (0, 1

2
) and L-

condition. If g(X) is continuous with closed range such that F (X×X) ⊆
g(X), then there is a unique x in X such that gx = F (x, x) = x.

Proof. Let x0, y0 ∈ X. Since F (X×X) ⊆ g(X), we can choose x1, y1 ∈ X
such that gx1 = F (x0, y0) and gy1 = F (y0, x0). Then starting from the
pair (x1, y1), we can choose x2, y2 ∈ X such that gx2 = F (x1, y1) and
gy2 = F (y1, x1). Then there exists sequences {xn} and {yn} in X such
that gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn). For n ∈ N, from k-
contraction condition, we have

S(gxn, gxn, gxn+1) ≤ k(S(gxn−1, gxn−1, gxn) + S(gyn−1, gyn−1, gyn)).

From

S(gxn−1, gxn−1, gxn) ≤ k(S(gxn−2, gxn−2, gxn−1)+S(gyn−2, gyn−2, gyn−1)),

since the similar inequality is correct for S(gyn−1, gyn−1, gyn), we have

S(gxn−1, gxn−1, gxn) + S(gyn−1, gyn−1, gyn) ≤ 2k(S(gxn−2, gxn−2, gxn−1)

+ S(gyn−2, gyn−2, gyn−1))
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holds for all n ∈ N. By repeating this procedure enough time,we obtain
for each n ∈ N

S(gxn, gxn, gxn+1) ≤
1

2
(2k)n(S(gx0, gx0, gx1) + S(gy0, gy0, gy1)). (3.1)

Let m,n ∈ N with m > n+ 2. By (iii)and Lemma 2.1, we have

S(gxn, gxn, gxm) ≤ 2S(gxn, gxn, gxn+1) + S(gxm, gxm, gxn+1)

= 2S(gxn, gxn, gxn+1) + S(gxn+1, gxn+1, gxm)

≤ 2S(gxn, gxn, gxn+1) + 2S(gxn+1, gxn+1, gxn+2)

+ S(gxm, gxm, gxn+2)

...

≤ 2
∑m−2

i=n S(gxi, gxi, gxi+1) + S(gxm−1, gxm−1, gxm).

By (3.1) we will have,

S(gxn, gxn, gxm) ≤ 2
∑m−2

i=n S(gxi, gxi, gxi+1) + S(gxm−1, gxm−1, gxm)

≤ 2
∑m−2

i=n
1
2
(2k)i(S(gx0, gx0, gx1) + S(gy0, gy0, gy1))

+ 1
2
(2k)m−1(S(gx0, gx0, gx1) + S(gy0, gy0, gy1))

≤ (2k)n(S(gx0, gx0, gx1) + S(gy0, gy0, gy1))

[1 + 2k + (2k)2 + (2k)3 + ...]

≤ (2k)n

1−2k (S(gx0, gx0, gx1) + S(gy0, gy0, gy1)).

Letting n,m→∞, we have

lim
n,m→∞

S(gxn, gxn, gxm) = 0.

Thus, {gxn} is a Cauchy sequence in g(X). Similarly, {gyn} is a Cauchy
sequence. Since g(X) is closed, {gxn} and {gyn} are convergent to some
x ∈ X and y ∈ X. Since g is continuous, {g(gxn)} is convergent to
gx and {g(gyn)} is convergent to gy. Moreover, since F and g sat-
isfy L-condition, we have g(gxn+1) = g(F (xn, yn)) = F (gxn, gyn), and
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g(gyn+1) = g(F (yn, xn)) = F (gyn, gxn). Thus

S(g(gxn+1), g(gxn+1), F (x, y)) ≤ k(S(g(gxn), g(gxn), gx)+S(g(gyn), g(gyn), gy)).

Letting n → ∞, and by Lemma 2.2, we get that S(gx, gx, F (x, y)) ≤
k(S(gx, gx, gx) + S(gy, gy, gy)) = 0.
Hence gx = F (x, y),and similarly, gy = F (y, x). By Lemma 3.1, (x, y) is
a c.c.p of the mappings F and g. So gx = F (x, y) = F (y, x) = gy. We
have

S(gxn+1, gxn+1, gx) = S(F (xn, yn), F (xn, yn), F (x, y))

≤ k(S(gxn, gxn, gx) + S(gyn, gyn, gy)).

Letting n → ∞, by Lemma 2.2, we get S(x, x, gx) ≤ k(S(x, x, gx) +
S(y, y, gy)). Similarly, S(y, y, gy) ≤ k(S(x, x, gx) + S(y, y, gy)). Thus,

S(x, x, gx) + S(y, y, gy) ≤ 2k(S(x, x, gx) + S(y, y, gy)). (3.2)

Since 2k < 1, inequality (3.2) occur only if S(x, x, gx) = 0 and S(y, y, gy) =
0. Hence x = gx and y = gy. Thus, we get gx = F (x, x) = x. To prove
the uniqueness, let z ∈ X with z 6= x such that z = gz = F (z, z). Then

S(x, x, z) ≤ 2kS(gx, gx, gz)

= 2kS(x, x, z).

Since 2k < 1 we get a contradiction. 2

The following result is immediate corollary from the previous theorem g
being the identical mapping.

Theorem 3.2 Let (X,S) be a complete S-metric space and F : X×X →
X be a mapping satisfying following contraction condition

S(F (x, y), F (u, v), F (z, w)) ≤ k(S(x, u, z) + S(y, v, w))

for all x, y, u, v ∈ X and k ∈ (0, 1
2
). Then there is a unique x ∈ X such

that F (x, x) = x.

Now we present some examples.
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Example 3.1 Let X = [0, 1]. Suppose S(x, y, z) be usual S-metric on
X,for all x, y, z ∈ X. Then (X,S) is a complete S-metric space. Now we
define a map F : X × X → X by F (x, y) = 1

6
xy for x, y ∈ X. Also,

define g : X → X by g(x) = x for x ∈ X. Since

|xy − uv| ≤ |x− u|+ |y − v|

holds for all x, y, u, v ∈ X, we have

S(F (x, y), F (x, y), F (z, w)) = 2|1
6
xy − 1

6
zw|

≤ 1

6
(2|x− z|+ 2|y − w|)

=
1

6
(S(gx, gu, gz) + S(gy, gv, gw))

holds for all x, y, u, v, z, w ∈ X. It’s clear that F and g satisfy all the
hypothesis of Theorem 3.1. Therefore F and g have a unique common
fixed point. Here F (0, 0) = g(0) = 0.

Example 3.2 Let X = [0, 1]. Suppose S(x, y, z) be usual S-metric on
X,for all x, y, z ∈ X. Then (X,S) is a complete S-metric space. Define
a map F : X ×X → X by F (x, y) = 1− 1

6
(x+ y) for x, y ∈ X. Also,

S(F (x, y), F (u, v), F (z, w)) = |F (x, y)− F (z, w)|+ |F (u, v)− F (z, w)|

=
1

6
|z − x+ w − y|+ 1

6
|z − u+ v − w|

≤ 1

6
(|x− z|+ |u− z|) +

1

6
(|y − w|+ |v − w|)

=
1

6
(S(x, u, z) + S(y, v, w)).

Then by Theorem 3.2, F has a unique fixed point. Here x = 3
4

is the
unique fixed point of F , that is F (x, x) = x.
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