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Abstract
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1 Introduction

Data Envelopment Analysis (DEA) is a nonparametric method based on
mathematical programming for evaluating the efficiency firms or Decision
Making Unit (DMU) using deterministic inputs and outputs. In real-
world situations, the observed values of the input and output data are
sometimes inexact, incomplete or vague. These kinds of uncertainty data
can be represented as stochastic data. The stochastic data in DEA can
be explained by random variables. Several methods have been associated
with the random data in DEA.

The Iranian Aluminum Company as the first manufacturer of aluminum
in Iran and Middle East is located in the arak city. The company’s prod-
ucts in various lines of production is done 24 hours a day so if a simple
failure occur in machines imposed huge losses to the company. In order
to technical planning, usually unit evaluated maintenance groups, but
this assessment is not a good evaluation, so in this study this is done by
using stochastic DEA models.

Data envelopment analysis (DEA) was emerged in 1978 by Charnes,
Cooper, and Rhodes and the first DEA model was called CCR model [10].
On the basis of the original CCR model, Banker, Charnes and Cooper
developed a variable returns to scale variation in 1984 was called BCC
model [9]. DEA has been widely used for evaluating the performance
and measuring the relative efficiency of a group of firms or Decision-
Making Units (DMUs) that uses multiple inputs and multiple outputs
([5,6,15]). After solving the DEA models, DMUS are converted into two
categories: efficient and inefficient units. However, one of the problems
those researchers faced with how to rank efficient DMUs. So, Andersen
and Petersen [2] introduced super-efficiency models to rank efficient De-
cision Making Units in 1993.

Many studies have been done in this area after the introduction of early
DEA models ([4,21,22]). Mehrabian et al. [24], developed a super-efficiency
model to rank efficient units obtained by their own model. Tone [25] de-
veloped a super-efficiency measure based on the slack based measure in-
troduced in the literature. Ranking papers using super-efficiency models
up to 2002 have been reviewed in Adler et al. [1]. Furthermore, Khod-
abakhshi [17,18] developed a super-efficiency measure based on, improved
outputs, input relaxation model introduced in Jahanshahloo and Khod-

12



abakhshi [36]. Li et al. [19], also, provided a super-efficiency model to
rank efficient units obtained by the CCR model. The conventional DEA
is deterministic, does not require prior weights or explicit specification of
the functional relationships between the outputs and inputs and assumes
that inputs and outputs are measured precisely ([13,14,16]).

However, the uncertainties inherent in the real-life performance mea-
surement problems inhibit using deterministic DEA models in practice.
Therefore stochastic data envelopment analysis models were developed.
Stochastic input and output variations into DEA have been studied by,
for example, Cooper et al. [11,12], Land et al. [30], and Olesen and Pe-
tersen [31], Morita and Seiford [20], Khodabakhshi and Asgharian [34],
Khodabakhshi [17,18]. Several papers have been published on stochastic
DEA in different Journals.

In what follows, some of these applications are reported. Khodabakhshi
[17] proposed an output oriented super-efficiency measure in stochas-
tic data envelopment analysis to evaluate the efficiency Iranian electric-
ity distribution companies. In their own study the concept of chance
constrained programming approaches is used to develop output oriented
super-efficiency model in stochastic data envelopment analysis. Khod-
abakhshi et al. [18] proposed an input-oriented super efficiency measure
in stochastic data envelopment analysis to evaluate chief executive officers
of US public banks and thrifts. Azadi and Farzipoor Saen [3] proposed a
chance-constrained DEA method to assist the decision makers to identify
the most appropriate third-party reverse logistics providers in the pres-
ence of both dual-role factors and stochastic data. Hosseinzadeh Lotfi et
al. [26] presented the stochastic centralized resource allocation method
for allocating centralized resources in the presence of stochastic inputs
and outputs.

Tavana et al. [23] proposed a new chance-constrained DEA model with bi-
random input and output data for evaluating the efficiency of the DMUs
in a stochastic environment that is more suitable and less restrictive in
some real-life problems. There are various types of uncertainties in real-
life problems. Random phenomenon is one class of uncertainty that has
been studied exhaustively. Another class of uncertainty involves twofold
uncertain variables that we use random data.

In this paper, we use a chance-constrained DEA model with random in-
puts and outputs for evaluating the efficiency of the DMUs in a stochas-
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tic environment. In addition, a super efficiency approach is developed
in which the constraints are treated as random events. A determinis-
tic equivalent model is formulated, which is non-linear. We convert the
non-linear model into a model with quadratic constraints to solve the
nonlinear deterministic model. We use a real example to show the effi-
cacy of the new model proposed in this study.

The remainder of the paper is organized as follows. In the next section,
Input-oriented models in classic DEA are introduced. In Section 3, the
input-oriented models are developed in stochastic data envelopment anal-
ysis, and its deterministic equivalent is also obtained. Furthermore, it is
shown that the deterministic equivalent of the stochastic model can be
converted to a quadratic program. In Section 4, we evaluated mainte-
nance groups of IRALCO With the use of stochastic models. Section 5
concludes the paper.

2 Preliminaries

We assume there are n homogeneous DMUs such that all the DMUs use
m inputs xij (i = 1, . . . ,m) to produce soutputs yrj (r = 1, . . . , s). We
also assume that these cases are non-negative deterministic elements [32].
One of the early models used to evaluate DMUs efficiency is the input-
oriented CCR model introduced by Charnes, Cooper, and Rhodes [10].
This model which evaluates DMUo is as follows:

min θ

s.t.
n∑

j=1

λjxij ≤ θxio, i = 1, . . . ,m,

n∑
j=1

λjyrj ≥ yro, r = 1, . . . , s,

λj ≥ 0, j = 1, . . . , n.

(2.1)

we have the following definition:

Definition 2.1 (Efficiency)DMUo is efficient when in optimal solution(s):
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1. θ∗o = 1
2. All slack variables are zero in alternative optimal solution .

Excluding the column vector correspond to DMUo from the LP coeffi-
cients matrix of model (2.1), input-oriented super-efficiency model intro-
duced by Andersen and Petersen [?] is defined as follows:

θAP
o = min θ

s.t.
n∑

j=1,j 6=o

λjxij ≤ θxio, i = 1, . . . ,m,

n∑
j=1,j 6=o

λjyrj ≥ yro, r = 1, . . . , s,

λj ≥ 0, j = 1, . . . , n, j 6= o.

(2.2)

Efficient DMUs have super-efficiency score greater than or equal to 1,
while inefficient DMUs have super-efficiency score less than 1.

Note that following cases maybe occur in the calculation of CCR and AP
models:

• θCCR = θAP < 1: This occurs when the unit under assessment is inef-
ficient.
• θCCR = θAP = 1: This occurs when the unit under assessment is non-

apical efficient.
• θCCR =1, θAP > 1: This occurs when the unit under assessment is

vertex efficient.
• θCCR =1, Model AP is infeasible : This occurs when AP model is

Impossible.

we can solve the super-efficiency model for ranking efficient units with-
out solving the CCR model. The super-efficiency scores of the DMUs
obtained by the model (2.2) can then be ranked in a descending order.
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Table 1
The random inputs with normally distributed.

DMU maintenance groups Input1 Input2 Input3 Input4

1 General Electric N(10.58 , 7.90) N(15.75 , 19.48) N(11.25 , 9.84) N(12.83 , 0.70)

2 Power anode production N(16.5 , 13) N(24.83 , 28.88) N(13.75 , 8.93) N(18.83 , 0.15)

3 instrumentation N(2.33 , 042) N(26.92 , 59.54) N(29.5 , 71.18) N(7.83 , 0.15)

4 Old Mechanical resuscitation N(46.33 , 117.70) N(14 , 10.55) N(32.42 , 55.90) N(39.33 , 5.33)

5 New Mechanical resuscitation N(13.42 , 15.17) N(2.58 , 0.45) N(8.75 , 5.48) N(41 , 0.36)

6 Mechanical morphology N(54.67 , 108.42) N(14.5 , 7.91) N(6.92 , 1.90) N(26.17 , 0.70)

7 Mechanical anode production N(13.25 , 11.11) N(17.75 , 18.39) N(13.25 , 11.11) N(20.58 , 0.27)

8 Mechanical anode baking N(22.25 , 22.02) N(20.92 , 20.08) N(18.67 , 15.88) N(23.25 , 0.57)

9 Turning N(30.67 , 97.88) N(21.08 , 45.36) N(12.08 , 15.54) N(11.67 , 0.24)

10 Welding N(20.67 , 24.24) N(14.67 , 12.79) N(19.17 , 20.33) N(15.67 , 0.24)

11 Auto shop N(13.08 , 15.36) N(10.75 , 11.11) N(5.83 , 4.15) N(14.58 , 0.27)

12 General Mechanic N(35.17 , 23.61) N(26.33 , 13.15) N(26.33 , 13.15) N(18.5 , 0.27)

13 Public services N(24.92 , 50.08) N(20 , 31.09) N(9.17 , 7.06) N(14.83 , 5.79)

14 Fire poured N(1.58 , 0.45) N(5.25 , 5.11) N(0.83 , 0.15) N(8.5 , 0.27)

15 Cooking Fire N(9.17 , 31.61) N(8.83 , 3.06) N(1 , 0) N(19.67 , 0.24)

16 Repair of buildings N(18 , 15.27) N(13.33 , 8.42) N(7.75 , 2.75) N(17.83 , 4.70)

17 Pipe installations N(7.58 , 6.99) N(19.92 , 44.27) N(10.25 , 10.93) N(10 , 1.82)

18 Compressor N(6.08 , 2.63) N(4.5 , 1.55) N(6.08 , 2.63) N(11.33 , 2.06)

19 Gas Facility N(0.83 , 0.33) N(3.33 , 4.24) N(0.83 , 0.33) N(7.67 , 0.24)

20 Old Power resuscitation N(3.25 , 0.39) N(3.58 , 0.81) N(56.33 , 179.88) N(17.33 , 0.24)

21 New Power resuscitation N(2.25 , 0.20) N(3.25 , 0.20) N(15.67 , 8.97) N(15.5 , 0.27)

22 Repair of boilers N(9.83 , 7.97) N(1.25 , 0.75) N(2.08 , 1.36) N(5.67 , 0.42)

23 Repairs supers N(4.08 , 2.08) N(1.5 , 0.27) N(1.5 , 0.27) N(8.92 , 0.45)

24 Power shed N(5.5 , 2.64) N(7.33 , 5.15) N(23.75 , 54.02) N(14.5 , 0.45)

25 Windings N(12.67, 7.15) N(37.92 , 66.08) N(12.67 , 7.15) N(12.83 , 0.88)

26 Mechanical nailing N(4.33 , 2.24) N(4.33 , 2.24) N(10.75 , 17.48) N(12.42 , 0.27)

27 Power nailing N(5.67 , 10.97) N(3.33 , 3.52) N(4.83 , 7.79) N(9.92 , 0.08)

28 Installations line 6 N(3.08 , 4.81) N(3.08 , 4.81) N(4.08 , 7.90) N(3.83 , 0.15)
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Table 2
The random outputs with normally distributed.

Row DMU Output1 Output2 Output3 Output4

1 General Electric N(14.25 , 19.84) N(26.25 , 69.30) N(16.58 , 26.27) N(1.52 , 0.11)

2 Power anode production N(18.83 , 26.52) N(25.08 , 46.45) N(18.83 , 26.52) N(1.14 , 0.03)

3 instrumentation N(3.92 , 0.99) N(31.5 , 56.82) N(30.33 , 52.61) N(1.15 , 0.02)

4 Old Mechanical resuscitation N(55.83 , 203.42) N(16.67 , 18.24) N(39 , 100.18) N(1.22 , 0.05)

5 New Mechanical resuscitation N(14.92 , 10.08) N(2.67 , 0.42) N(9.42 , 3.90) N(1.14 , 0.05)

6 Mechanical morphology N(73.58 , 363.17) N(17.33 , 20.79) N(11.25 , 9.30) N(1.33 , 0.04)

7 Mechanical anode production N(17.08 , 14.45) N(19.58 , 19.72) N(12.33 , 7.88) N(1.1 , 0.01)

8 Mechanical anode baking N(31.08 , 69.90) N(33 , 78.73) N(33 , 78.73) N(1.57 , 0.09)

9 Turning N(44.92 , 222.27) N(31.75 , 113.84) N(16.92 , 30.63) N(1.52 , 0.23)

10 Welding N(26.92 , 20.99) N(17.83 , 9.06) N(26 , 20.91) N(1.34 , 0.07)

11 Auto shop N(12.92 , 14.81) N(10.5 , 10.09) N(6.58 , 3.90) N(1.05 , 0.10)

12 General Mechanic N(45.25 , 24.75) N(34 , 14.55) N(34 , 14.55) N(1.29 , 0.03)

13 Public services N(24.58 , 72.99) N(20.08 , 49.17) N(11.33 , 15.70) N(1.08 , 0.15)

14 Fire poured N(1.58 , 0.27) N(5.42 , 2.81) N(0.83 , 0.15) N(1.23 , 0.57)

15 Cooking Fire N(9.75 , 2.02) N(9.17 , 1.61) N(1 , 0) N(1.08 , 0.09)

16 Repair of buildings N(20.42 , 56.81) N(15.75 , 34.20) N(9 , 10.91) N(1.16 , 0.13)

17 Pipe installations N(7.75 , 5.84) N(22.58 , 49.72) N(10.17 , 10.33) N(1.09 , 0.03)

18 Compressor N(9.92 , 13.54) N(7.08 , 6.63) N(10.33 , 15.88) N(1.65 , 0.41)

19 Gas Facility N(0.67 , 0.42) N(3.08 , 4.81) N(0.67 , 0.42) N(1.31 , 2.25)

20 Old Power resuscitation N(3.08 , 0.45) N(5.17 , 1.42) N(64.92 , 186.99) N(1.17 , 0.03)

21 New Power resuscitation N(3.33 , 0.79) N(2.42 , 0.27) N(17.08 , 15.17) N(1.11 , 0.06)

22 Repair of boilers N(10.5 , 7.55) N(1.33 , 0.79) N(3.33 , 4.79) N(1.90 , 1.78)

23 Repairs supers N(4.58 , 16.99) N(1.67 , 2.61) N(1.33 , 1.52) N(1.13 , 1.25)

24 Power shed N(7.42 , 6.27) N(7.42 , 6.27) N(33.5 , 129.18) N(1.32 , 0.09)

25 Windings N(16.33 , 15.70) N(47.17 , 131.61) N(22.33 , 28.61) N(1.37 , 0.07)

26 Mechanical nailing N(4.33 , 3.70) N(4.33 , 3.70) N(12.08 , 28.45) N(1.08 , 0.03)

27 Power nailing N(6.25 , 7.11) N(3.83 , 3.24) N(5.17 , 5.24) N(1.17 , 0.06)

28 Installations line 6 N(3.67 , 1.33) N(3 , 0.73) N(5.42 , 2.45) N(2.31 , 11.78)
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3 Stochastic models

3.0.1 Deterministic equivalent

Now in this part we show how to obtain the θ∗o from deterministic equiva-
lent of the stochastic model (??). From the first constraint in model (??)
we have :

P (
n∑

j=1

λjx̃ij ≤ θox̃io) ≥ 1− α,

i = 1, . . . ,m,

(3.1)

then:

P (−
n∑

j=1

λjx̃ij + θox̃io ≤ 0) ≤ α,

i = 1, . . . ,m,

(3.2)

above equation is equivalent:

P (

(−
n∑

j=1

λjx̃ij + θox̃io + (
n∑

j=1

λjxij − θoxio))

ωi
≤

n∑
j=1

λjxij − θoxio
ωi

) ≤ α

i = 1, . . . ,m,

(3.3)
where

(ωi)
2 =

∑
j 6=o

∑
k 6=o

λjλkcov(x̃ij, x̃ik)

+2(λo − θo)
∑
j 6=o

λjcov(x̃ij, x̃io)

+(λo − θo)2var(x̃io),

i = 1, . . . ,m,

(3.4)

to obtain the deterministic equivalent of (3.3)and(3.4) we write :

Zi =

−
n∑

j=1

λjx̃ij + θox̃io + (
n∑

j=1

λjxij − θoxio)

ωi

, i = 1, . . . ,m,

(3.5)

If we assume the input and output to be normally distributed ,then Zi

is also normally distributed,with mean zero and unit variance,since Zi is
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normally distributed. The deterministic equivalent of (3.3) is as:

n∑
j=1

λjxij − θoxio
ωi

≤ Φ−1(α) , i = 1, . . . ,m,
(3.6)

Where(3.6), represents the normal cumulative distribution function and
Φ−1 is its inverse. since, by the similar manner like (3.6) we can obtain
the deterministic equivalent for other constraint of model (3.4).
Hence,by using the aforesaid relations, the deterministic equivalent of
(3.4) can be represented as:

min θo

s.t.
n∑

j=1

λjxij − Φ−1(α)ωi + s−i = θoxio , i = 1, . . . ,m,

−
n∑

j=1

λjyrj + yro − Φ−1(α)ωr + s+r = 0 , r = 1, . . . , s,

s−i , s
+
r , λj ≥ 0

(3.7)

where

(ωi)
2 =

∑
j 6=o

∑
k 6=o

λjλkcov(x̃ij, x̃ik)

+2(λ0 − θ0)
∑
j 6=o

λjcov(x̃ij, x̃io) + (λ0 − θ0)2var(x̃io)

(ωr)
2 =

∑
j 6=o

∑
k 6=o

λjλkcov(ỹrj, ỹrk)

+2(λo − 1)
∑
j 6=o

λjcov(ỹrj, ỹro) + (λo − 1)2var(ỹro)

(3.8)
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3.1 Stochastic super-efficiency model

By using model(3.3), the proposed stochastic super-efficiency model can
be obtained as:

min θo

s.t.

P (
n∑

j=1,j 6=o

λjx̃ij ≤ θox̃io) ≥ 1− α, i = 1, . . . ,m,

P (
n∑

j=1,j 6=o

λj ỹrj ≥ ỹro) ≥ 1− α, r = 1, . . . , s,

λ ≥ 0

(3.9)

where α is a predetermined number between 0 and 1 which specifies the
significance level and P means ”probability”, DMUo is stochastic super-
efficiency at significance level α if the optimal value of the objective
function is greater than 1.

3.1.1 Deterministic equivalent

By the similar manner we can obtain the deterministic equivalent of
stochastic super-efficiency as follows:

min θo

s.t.
n∑

j=1,j 6=o

λjxij − Φ−1(α)ωi + s−i = θoxio, i = 1, . . . ,m,

−
n∑

j=1,j 6=o

λjyrj + yro − Φ−1(α)ωr + s+r = 0, r = 1, . . . , s,

s−i , s
+
r , λj ≥ 0

(3.10)
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where

(ωi)
2 =

∑
j 6=O

∑
k 6=O

λjλkcov(x̃ij, x̃ik)

−2θ0
∑
j 6=O

λjcov(x̃ij, x̃io) + θ20var(x̃io)

(ωr)
2 =

∑
j 6=O

∑
k 6=O

λjλkcov(ỹrj, ỹrk)

−2
∑
j 6=O

λjcov(ỹrj, ỹro) + var(ỹro)

(3.11)

4 Application

As an empirical research, use some actual data of Iranian Aluminium
Company (IRALCO) maintenance groups in the year 2015. The first
Producer of Aluminium in Iran that established in 1972, is Located at 5th

km of Arak – Tehran Rd. The area of the plant is 232 hectares and annual
production capacity is 120000 TPY consisting of different pure ingots in
the shapes of T-bar, 1000Lb, Casting alloys, Billets with different size,
Slab and E.C ingots.

The company products in various lines of production is done 24 hours a
day, so if a simple failure occur in machines imposed huge losses to the
company. So, maintenance groups of IRALCO play an important role
[28,27]. The IRALCO have 30 maintenance groups. But, we only exam-
ine groups that are active and work According to plan. Thus reducing the
number of maintenance groups to 28. The groups are divided into two
categories: general and workshops. According to Survey, the most fre-
quently used inputs are operating costs, number of employees, kinds of
orders. The most widely useful outputs are also proportion of completion
and kind of finished order. The cost data usually is not available. In this
study, we select eight variables: four inputs and four outputs. The first
input is order type 1 (Time required to perform is more than 50 hours).
The second input is order type 2 (Time required to do is 20 to 50 hours),
the third is order type 3 (Time required to perform is less than 20 hours)
and the last input is number of employees. The outputs include: finished
order type 1, finished order type 2, finished order type 3 and proportion
of completion (the finished orders to the requested orders).
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Table 3
The stochastic efficiency and super-efficiency scores for different α values.

DMU α=0.5 α=0.6 α=0.7

SES SSES R SES SSES R SES SSES R

1 1 1.199 11 1 1.034 11 0.88 0.88 9

2 0.796 0.796 23 0.704 0.704 21 0.618 0.618 20

3 1 3.828 2 1 3.36 2 1 2.922 2

4 0.921 0.921 19 0.818 0.818 18 0.719 0.719 17

5 0.739 0.739 26 0.651 0.651 24 0.57 0.57 23

6 1 2.647 5 1 2.356 4 1 2.074 4

7 0.836 0.836 21 0.744 0.744 19 0.657 0.657 18

8 1 1.122 12 0.999 0.999 12 0.88 0.88 9

9 1 1.614 9 1 1.456 8 1 1.291 7

10 0.942 0.942 18 0.86 0.86 17 0.781 0.781 16

11 0.718 0.718 28 0.612 0.612 27 0.515 0.515 26

12 0.956 0.956 16 0.908 0.908 16 0.859 0.859 11

13 0.761 0.761 25 0.648 0.648 25 0.543 0.543 24

14 1 1.512 10 1 1.249 9 1 1.023 8

15 1 1.845 7 1 1.779 6 1 1.709 5

16 0.802 0.802 22 0.689 0.689 22 0.581 0.581 22

17 0.858 0.858 20 0.734 0.734 20 0.62 0.62 19

18 1 1.122 12 0.952 0.952 13 0.793 0.793 14

19 1 2.027 6 1 1.225 10 0.594 0.594 21

20 1 3.426 3 1 3.087 3 1 2.758 3

21 1 1.058 15 0.942 0.942 15 0.83 0.83 12

22 1 13.251 1 1 6.581 1 1 3.328 1

23 0.949 0.949 17 0.658 0.658 23 0.395 0.395 28

24 1 1.122 12 0.952 0.952 13 0.795 0.795 13

25 1 1.63 8 1 1.465 7 1 1.313 6

26 0.786 0.786 24 0.644 0.644 26 0.517 0.517 25

27 0.725 0.725 27 0.588 0.588 28 0.47 0.47 27

28 1 3.332 4 1 2.039 5 0.783 0.783 15
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We evaluate the 28 DMUs with random inputs and random outputs that
are normally distributed as shown in Table 1 and Table 2, respectively.
We use the average and variance of observed data in Table 1, 2 during
2015. The means and variances of all random input and output data
are known. For instance, the first input for DMU3 has a normal distri-
bution, its mean and variance is equal to 2.33, 0.42, respectively. Note
that the outputs and inputs of different DMUs are independent. This
independence assumption implies that all covariances become zero.

The stochastic efficiency and super-efficiency scores are obtained from the
implementation of Models (??) and (3.4) for various amounts of α (i.e.
α=0.5, α=0.6, α=0.7). The computational results which are obtained by
GAMS software are presented in Table 3. Columns 1, 4, 7, Columns 2, 5,
8 and 3, 6, 9 of Table 3 present the stochastic efficiency scores, the super
efficiency scores and the ranking of the 28 DMUs, respectively. Obviously,
the stochastic efficiency scores in Model 3.4 are greater than 0 and less
than or equal to 1. A super-efficiency score greater than 1 implies that
the DMU is super-efficient, scores equal to 1 imply they are just efficient;
scores less than 1 which are equal to their correspond efficiency scores
imply that they are inefficient.

For example, as shown in Table 3, when α=0.5, number of efficient DMUs
equal to 15, that some of them include: General Electric unit, Lathe, In-
stallation, repair of pots and etc. The stochastic super-efficiency scores
of these efficient DMUs are 1.199, 1.614, 1.122 and 13.251, respectively.
Auto shop, DMU11, has score 0.718 which means the unit is inefficient,
while repair of pots has super-efficiency score 13.251 which ranks it as
the number one unit in terms of super-efficiency. The worst DMUs are
Autoshop, DMU11, and power nailing, D27, with scores of 0.718 and
0.725, respectively when α=0.6, number of efficient DMUs equal to 11
and for α=0.7, number of efficient DMUs equal to 8, so, when α value in-
crease, number of efficient units decrease and super-efficiency score don’t
increase.

It is mentioned, for different α level, the repair of pots unit is number
one. This example provides the different ranking for the 28 DMUs for
the α values reported in the columns of Table 3. In addition, as shown in
Table 3, the stochastic efficiency scores and the stochastic super-efficiency
scores are identical when the efficiency scores are less than 1. In Table
3, SES, SSES and R are stand for Stochastic efficiency score, Stochastic
super-efficiency score and rank.
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5 Conclusions and future research directions

In this study, we used the input-oriented efficiency and super – efficiency
measures in stochastic data envelopment analysis. For the convenience
of calculations, this paper calculated the deterministic equivalent for the
stochastic version. This deterministic equivalent can be converted to a
quadratic problem. We evaluated maintenance groups of IRALCO effi-
ciency in the year 2015, by using these models.

Application of different α levels leads to various results. From the re-
sults it is clear that, when α value increase, the number of efficient units
decreases and super-efficiency score don’t increase. In this evaluation, re-
pair of pots maintenance group was the best unit in different α level. This
group compared to other units has the lowest manpower. In addition to,
number of finished order type 1 is ok. Therefore, other units can choose
the group as a template.

IRALCO planning unit can use these models to assess the maintenance
groups, too. For further research, we plan to extend the proposed ap-
proach to other types of DEA models. Researchers can use this method
to evaluate the performance of other factories maintenance groups. We
suggest using data envelopment analysis with interval data to evaluate
the performance of group maintenance or other decision-making units,
too. Finally, developing the proposed super-efficiency measure in fuzzy
DEA can be suggested for further research.

References

[1] Adler N., Friedman L., Sinuany-Stern Z., Review of ranking methods in
the data envelopment analysis context, European Journal of Operational
Research, 2002, 140(2), P.249–265.

[2] Andersen P., Petersen N.C., A procedure for ranking efficient units in data
envelopment analysis, Management Science, 1993, 39(10), P.1261–1294.

[3] Azadi M., Farzipoor Saen R., A new chance-constrained data envelopment
analysis for selecting third party reverse logistics providers in the existence
of dual-role factors, Expert Systems with Applications, 2011, 38(10),
P.12231–12236.

24



[4] Aliakbarpoor Z., Izadikhah M., Evaluation and ranking DMUs in the
presence of both undesirable and ordinal factors in data envelopment
analysis. International Journal of Automation and Computing, 2012, 9(6),
P. 609–615.

[5] Izadikhah M., Farzipoor Saen R., A new data envelopment analysis
method for ranking decision making units: an application in industrial
parks. Expert Systems, 2015, 32(5),P. 598–608.

[6] Izadikhah M., Farzipoor Saen R., Evaluating sustainability of supply
chains by two-stage range directional measure in the presence of negative
data. Transportation Research Part D: Transport and Environment, 2016,
49, P.110–126.

[7] Banker R.D., Maximum likelihood, consistency and data envelopment
analysis: A statistical foundation, Management Science, 1993, 39(10), P.
1265–1273.

[8] Banker R.D., Hypothesis tests using data envelopment analysis, Journal
of Productivity Analysis,, 1996, 7(2), P.139–159.

[9] Banker R.D., Charnes A., Cooper W.W., Some method for estimating
technical and scale inefficiencies in data envelopment analysis,
Management Science, 1984, 30(9), P.1078–1092.

[10] Charnes A., Cooper W.W., Rhodes E., Measuring the efficiency of decision
making units, European Journal of Operational Research, 1978, 2(6),
P.429–444.

[11] Cooper W.W., Deng H., Huang Z., Li Susan X., Chance constrained
programming approaches to technical efficiencies and inefficiencies in
stochastic data envelopment analysis, Journal of the Operational Research
Society, 2002, 53(12), P.1347–1356.

[12] Cooper W.W., Deng H., Huang Z.M., Li S.X., Chance constrained
programming approaches to congestion in stochastic data envelopment
analysis, European Journal of Operational Research, 2004, 155(2), P.487–
501.

[13] Dibachi, H., Behzadi, M. H., Izadikhah, M., Stochastic multiplicative
DEA model for measuring the efficiency and ranking of DMUs under
VRS technology, Indian Journal of Science and Technology, 2014, 7(11),
P.1765–1773.

[14] Dibachi, H., Behzadi, M. H., Izadikhah, M., Stochastic Modified MAJ
Model for Measuring the Efficiency and Ranking of DMUs. Indian Journal
of Science and Technology, 2015, 8(8), P.549-555.

25



[15] Izadikhah M., Farzipoor Saen R., A new preference voting method for
sustainable location planning using geographic information system and
data envelopment analysis. Journal of Cleaner Production, 2016 137,
P.1347–1367. (Doi:http://dx.doi.org/10.1016/j.jclepro.2016.08.021)

[16] Izadikhah M., Farzipoor Saen R., Assessing sustainability of supply
chains by chance-constrained two-stage DEA model in the presence
of undesirable factors. Computers and Operations Research, 2017(Doi:
https://doi.org/10.1016/j.cor.2017.10.002)

[17] Khodabakhshi M., An output oriented super-efficiency measure in
stochastic data envelopment analysis: Considering Iranian electricity
distribution companies, Computers and Industrial Engineering, 2010,
58(4), P.663–671.

[18] Khodabakhshi M., Asgharian M., Gregoriou G.N., An inputoriented
super-efficiency measure in stochastic data envelopment analysis:
Evaluating chief executive officers of US public banks and thrifts, Expert
Systems with Applications, 2010, 37(3), P.2092–2097.

[19] Li S., Jahanshahloo G.R., Khodabakhshi M., A super-efficiency model for
ranking efficient units in data envelopment analysis, Applied Mathematics
and Computation, 2007, 184, (2), 638–648.

[20] Morita H., Seiford L.M., Characteristics on stochastic DEA efficiency
Reliability and probability being efficient, Journal of Operational Research
Society of Japan, 1999, 42(4), P.389–404.

[21] Izadikhah M., Farzipoor Saen R., Ahmadi, K., How to Assess
Sustainability of Suppliers in the Presence of Dual-Role Factor and Volume
Discounts? A Data Envelopment Analysis Approach. Asia-Pacific Journal
of Operational Research, 2005, 34(3), P.1–25.

[22] Izadikhah M., Farzipoor Saen R., Ahmadi, K., How to assess sustainability
of suppliers in volume discount context? A new data envelopment analysis
approach. Transportation Research Part D: Transport and Environment,
2017, 51, P.102-121.

[23] Tavana M., Khanjani Shiraz R., Hatami A., A new chance constrained
DEA model with birandom input and output data, Operational Research
Society, 2014, 12, P.1824-1839.

[24] Mehrabian S., Alirezaee A., Jahanshahloo G.R., A complete efficiency
ranking of decision making units in DEA, Computational Optimization
and Applications (COAP), 1999, 14, P.261–266.

26



[25] Tone K., A slakes-based measure of super-efficiency in data envelopment
analysis, European Journal of Operational Research, 2002, 143(1), P.32–
41.

[26] Hosseinzadeh Lotfi F., Nematollahi, N., Behzadi, M.H., Mirbolouki, M.,
Moghaddas, Z., Centralized resource allocation with stochastic data,
Computational and Applied Mathematics, 2012, 24, P.1783-1788.

[27] Izadikhah M., Saeidifar A., Roostaee R., Extending TOPSIS in fuzzy
environment by using the nearest weighted interval approximation of fuzzy
numbers. Journal of Intelligent and Fuzzy Systems, 2014, 27, P.2725–2736.

[28] Zare R., Izadikhah M., Multi-Criteria Decision Making Methods for
Comparing three Models of Aluminum Ingot Production through Life
Cycle Assessment. Applied Ecology and Environmet Research, 2017, 15(3),
P.1697–1715.

[29] Khodabakhshi, M., A super-efficiency model based on improved outputs in
data envelopment analysis, Applied Mathematics and Computation, 2007,
184(2), P.695–703.

[30] Land K.C., Lovell C.A.K., Thore S., Chance constrained data envelopment
analysis, Managerial and Decission Economics, 1988, 14, P.541–554.

[31] Olesen O.B., Petersen N.C., Chance constrained efficiency evaluation,
Manaegement Science, 1995, 41, P.442–457.

[32] Izadikhah M., Khoshroo A., Energy management in crop production using
a novel Fuzzy Data Envelopment Analysis model, RAIRO - Operations
Research, In Press, 2017.

[33] Izadikhah M., Tavana M., Di Caprio D., Javier Santos Arteaga F., A Novel
Two-Stage DEA Production Model with Freely Distributed Initial Inputs
and Shared Intermediate Outputs, Expert Systems with Applications, In
Press, 2017.

[34] Khodabakhshi M., Asgharian M., An input relaxation measure of
efficiency in stochastic data envelopment analysis, Applied Mathematical
Modelling, 2009, 33, P.2010–2023.

[35] Khodabakhshi M., Estimating most productive scale size in stochastic
data envelopment analysis, Economic Modelling, 2009, 26, 968–973.

[36] Jahanshahloo, G. R., Khodabakhshi, M., Suitable combination of inputs
for improving outputs in DEA with determining input congestion, Applied
Mathematics and Computation, 2004, 151(1), P.263–273.

27


