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Abstract

This paper gives an efficient numerical method for solving the nonlinear system
of Volterra-Fredholm integral equations. A Legendre-spectral method based on
the Legendre integration Gauss points and Lagrange interpolation is proposed
to convert the nonlinear integral equations to a nonlinear system of equations
where the solution leads to the values of unknown functions at collocation
points.
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1 Introduction

A nonlinear Volterra-Fredholm integral equation can be considered as
the following:

u(x, t) = g(x, t) +
∫ t

0

∫
Ω
f(x, t, ξ, τ, u(ξ, τ)) dξdτ, (x, t) ∈ [0, T ]× Ω,

(1.1)
where u(x, t) is unknown function and g(x, t) and f(x, t, ξ, τ, u(ξ, τ))
are analytical functions on D = [0, T ] × Ω and S × Rn where S =
{(x, t, ξ, τ) : 0 ≤ τ ≤ t ≤ T ; (ξ, τ) ∈ Ω × Ω}, respectively, Ω is a
close subset of Rn, with convenient ‖.‖, and are such that (1.1) possesses
a unique solution u(x, t) ∈ C(D). Existence and results for (1.1) maybe
found in [1,2,3,4].
Equations of this type arise in the theory of parabolic boundary value
problems, the mathematical modelling of the spatio-temporal develop-
ment of an epidemic and various physical and biological problems. De-
tailed descriptions and analysis of these models may be found in [5,6]
and the references therein.
Some numerical methods for (1.1) are known. For the linear case, some
projection methods for numerical treatment of (1.1) are given in [3,4,7].
The results of [4] have been extended to nonlinear Volterra-Fredholm
integral equations by Brunner [8]. The trapezoidal Nyström method con-
sidered in [9]. The authors of [10] introduced the Adomian decomposition
method for this equation. In [11] the numerical approximation of (1.1)
studied by discrete time collocation method.
A nonlinear system of Volterra-Fredholm integral equations can be writ-
ten as the following [12]:

U(x, t) = G(x, t) +
∫ t

0

∫
Ω
F (x, t, ξ, τ, U(ξ, τ)) dξdτ, (x, t) ∈ [0, T ]×Ω,

(1.2)
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such that

U(x, t) = [u1(x, t), u2(x, t), . . . , un(x, t)],

G(x, t) = [g1(x, t), g2(x, t), . . . , gn(x, t)],

F (x, t, ξ, τ, U(ξ, τ)) = [f1(x, t, ξ, τ, U(ξ, τ)), f2(x, t, ξ, τ, U(ξ, τ)),

. . . , fn(x, t, ξ, τ, U(ξ, τ))].

In [12] a decomposition method was applied to solve this system.

Due to the high accuracy and efficiency, spectral methods have been used
for some classes of integral equations in recent years. For example you
can see [13,14,15,16] and the references therein. There are also many
papers concerning the numerical solutions of the other types of integral
equations via different schemes [17,18,19,20].

But recently Tang et. al [21] and Chen and Tang [22] presented a promis-
ing Legendre-spectral method for solving Volterra integral equations.
Their methods based on the Legendre (or Jacobi) Gauss collocation
points and Lagrange interpolation method. They proved that the nu-
merical errors in the infinity norm will decay exponentially. In this paper
we present this approach to solve the nonlinear system (1.2).

The remainder of the paper is organized as follows: In Section 2, the
Legendre-spectral method is presented to nonlinear system (1.2). In Sec-
tion 3, numerical results for some problems, are investigated and the
corresponding tables and figures are presented. Finally in Section 4 the
report ends with a brief conclusion.

2 Legendre-spectral method

Without loss of generality, suppose that (x, t) ∈ [−1, 1] × [−1, 1] for
employing the coefficients and weights of Legendre-Gauss integration.
Set the collocation points as the set of N Legendre-Gauss points {xi}Ni=1
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and {tj}Nj=1. Assume that Eq. (1.2) holds at xi and tj on [−1, 1]:

U(xi, tj) = G(xi, tj) +
∫ tj

−1

∫ 1

−1
F (xi, tj, ξ, τ, U(ξ, τ)) dξdτ, (2.1)

where 1 ≤ i ≤ N and 1 ≤ j ≤ N . The main difficulty to obtaining high
rate of accuracy is to compute the first integral in (2.1). In fact for small
values of tj, there is a little information available for U [21]. To overcome
this difficulty the integral interval [−1, tj] is transferred to a fix interval
[−1, 1]. We first make the following simple linear transformations:

s(t, θ) =
t+ 1

2
θ +

t− 1

2
. (2.2)

Then (2.1) takes the form:

U(xi, tj) = G(xi, tj)

+ tj+1

2

∫ 1
−1

∫ 1
−1 F (xi, tj, ξ, s(tj, θ), U(ξ, s(tj, θ))) dξdθ,

1 ≤ i ≤ N, 1 ≤ j ≤ N.

Using a N -point Gauss quadrature rule {θj} related to the Legendre
weights {wj} in [−1, 1] gives:

U(xi, tj) = G(xi, tj)

+ tj+1

2

∑N
p=1

∑N
q=1 F (xi, tj, θq, s(tj, θp), U(θq, s(tj, θp))) wqwp

1 ≤ i ≤ N, 1 ≤ j ≤ N.

where the set {θj}Nj=1 coincide with the collocation points {tj}Nj=1 and
{xj}Nj=1. We now need to represent U(θq, s(tj, θp)) in term of Ui,j for i, j =
1, 2, ..., N . To this end, we expand it using two dimensional Lagrange
interpolation polynomials, i.e.

U(σ, ρ) ≈
N∑
k=1

N∑
l=1

Uk,l `k(σ)`l(ρ), (2.3)
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where `k is the k-th Lagrange basis function. Combining Eq. (2) and (2.3)
yields:

Ui,j = G(xi, tj)

+
tj + 1

2

N∑
p=1

N∑
q=1

F

(
xi, tj, θq, s(tj, θp),

N∑
k=1

N∑
l=1

Uk,l `k(θq)`l(s(tj, θp))

)
wqwp,

(2.4)

where 1 ≤ i ≤ N and 1 ≤ j ≤ N . Eq. (2.4) can then be solved by some
methods suitable for solving the non-linear systems. When the values
of Ui,j for i, j = 1, 2 . . . N are resulted the numerical solution for x, t ∈
[−1, 1] can be obtained by Lagrange interpolation as

U(x, t) ≈
N∑
i=1

N∑
j=1

Ui,j `i(x)`j(t), (x, t) ∈ [−1, 1]. (2.5)

3 Numerical results

In this section, the method is applied to some numerical examples. All
computations are performed by the Matlab R2008a software package.
The numerical scheme (2.4) leads to a non-linear system for {Ui,j}Ni,j=1,
and a proper solver for the non-linear system should be used. To solve it,
we use the robust routine fsolve from the optimization toolbox of Matlab.
fsolve should be provided with an initial guess as a starting matrix. For
different starting matrix we observed same convergence point with more
or less iterations. In all examples the initial guess are chosen as following
N by N constant matrix,

u0 =



2 2 . . . 2

2 2 . . . 2
...

...
...

2 2 . . . 2


N×N

.
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3.1 Example 1

Consider the following nonlinear Volterra-Fredholm integral equation
which is given in [8,10,11]

u1(x, t) = g1(x, t) +
∫ t

0

∫ 1

0
f1(x, t, ξ, τ)(1− exp (−u1(ξ, τ))) dξ dτ, (3.1)

where (x, t) ∈ [0, 1]× [0, 1] and

f1(x, t, ξ, τ) =
x(1− ξ2)

(1 + t)(1 + τ 2)
,

g1(x, t) = − log
(

1 +
xt

1 + t2

)
+

xt2

8(1 + t)(1 + t2)
.

The exact solution is

u1(x, t) = − log
(

1 +
xt

1 + t2

)
.

Computations are performed for different numbers of collocation points
(N). Here we select N from 1 up to 9 and ‖e1‖∞ are presented in Table
?? and graphed in Figure 1. Infinity norm of error has the following
meaning:

‖e‖∞ = max
1≤i≤N

max
1≤j≤N

∣∣∣ui,j − uNi,j∣∣∣ ,
where uNi,j are the approximate solutions of ui,j using proposed method.

Comparison with those given in [8,10,11], shows the high accuracy of
proposed scheme. The method of [11], using 32 collocation points leads
to maximum error 9.29e−7, however by this method, more accurate result
obtained using 6 collocation points.

6



N ‖e1‖∞

1 1.77× 10−2

2 1.85× 10−3

3 1.25× 10−4

4 3.96× 10−5

5 8.56× 10−6

6 4.53× 10−7

7 2.25× 10−7

8 4.55× 10−8

9 2.12× 10−9

Table 1
Maximum absolute errors for Example 3.1.

1 2 3 4 5 6 7 8 9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

1≤ N ≤ 9

||e
|| ∞

 

 

||u
1
−u

1
N||∞

Fig. 1. Maximum errors at different N , Example 3.1.
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3.2 Example 2

Consider the following system of nonlinear Volterra-Fredholm integral
equations [12]:


u1(x, t) = g1(x, t) +

∫ t
0

∫ 1
0 f1(x, t, ξ, τ, u1(ξ, τ), u2(ξ, τ)) dξ dτ,

u2(x, t) = g2(x, t) +
∫ t

0

∫ 1
0 f2(x, t, ξ, τ, u1(ξ, τ), u2(ξ, τ)) dξ dτ,

(3.2)

where

g1(x, t) = −2x exp(t)− 1

4
x2t2 − t4

8
(2 log(cos 1) + 2 tan 1− 1) ,

g2(x, t) =
2

3
(x− t)(exp(t)− 1) + t tanx,

and

f1(x, t, ξ, τ, u1, u2) = ξτ(x2 + u2
2),

f2(x, t, ξ, τ, u1, u2) = ξ(x− t)u1.

The exact solutions are

 u1(x, t) = −2x exp(t),

u2(x, t) = t tanx.

As before, numerical results are performed for different N and presented
in Table 2 and Figure 2. Figure 2 depicts, numerical errors in the in
infinity norm decay very fast as N increases. Comparison with those
given in [12], the method of this paper is more accurate.
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N ‖e1‖∞ ‖e2‖∞

2 3.39× 10−3 6.07× 10−3

3 5.17× 10−4 4.40× 10−4

4 5.37× 10−5 6.07× 10−5

5 4.58× 10−6 6.07× 10−6

6 3.58× 10−7 6.07× 10−8

7 2.66× 10−8 6.07× 10−9

8 1.91× 10−9 6.07× 10−10

Table 2
Maximum absolute errors for Example 3.2.

2 3 4 5 6 7 8

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

2≤ N ≤ 8

||e
|| ∞

 

 

||u
1
−u

1
N||∞

||u
2
−u

2
N||∞

Fig. 2. Maximum errors at different N , Example 3.2.
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3.3 Example 3

In this example, consider a 3× 3 nonlinear system of equations as:

u1(x, t) = g1(x, t) +
∫ t

0

∫ 1
0 u2(ξ, τ)u3(ξ, τ) dξ dτ,

u2(x, t) = g2(x, t) +
∫ t

0

∫ 1
0 u1(ξ, τ)u3(ξ, τ) dξ dτ,

u3(x, t) = g3(x, t) +
∫ t

0

∫ 1
0 u1(ξ, τ)u2(ξ, τ) dξ dτ,

(3.3)

where

g1(x, t) =
1

t
(− exp(t)− t exp(t) + t2 + 2t+ 1) + exp(−xt),

g2(x, t) =
1

t
(exp(−t) + t exp(−t) + t2 − 1) + exp(xt),

g3(x, t) = x,

and the exact solutions are:
u1(x, t) = exp(−xt),

u2(x, t) = exp(xt),

u3(x, t) = x+ t.

As before, Numerical results are performed using different number of
integration points, N , and depicted in Table 3 and Figure 3 in terms of
maximum norm of errors.

4 Conclusion

An efficient and accurate numerical scheme based on the Legendre-spectral
method proposed for solving the nonlinear system of Volterra-Fredholm
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N ‖e1‖∞ ‖e2‖∞ ‖e3‖∞

1 3.22× 10−2 2.99× 10−2 8.54× 10−2

2 5.41× 10−3 4.22× 10−3 7.66× 10−3

3 3.28× 10−4 1.30× 10−4 7.80× 10−5

4 1.05× 10−5 4.75× 10−6 1.09× 10−5

5 4.13× 10−7 1.83× 10−7 1.26× 10−7

6 1.17× 10−8 4.77× 10−9 1.10× 10−8

7 4.80× 10−10 8.82× 10−10 8.45× 10−10

Table 3
Maximum absolute errors for Example 3.3.

1 2 3 4 5 6 7

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

1≤ N ≤ 7

||e
|| ∞

 

 

||u
1
−u

1
N||∞

||u
2
−u

2
N||∞

||u
3
−u

3
N||∞

Fig. 3. Maximum errors at different N , Example 3.3.

integral equations. The Gaussian integration method with the Lagrange
interpolation were employed to reduce the problem to the solution of
nonlinear algebraic equations. Illustrative examples were given and com-
pared with other references to demonstrate the validity and applicability
of the method. As can be seen from the results reported in Section 3,
by selecting few numbers of collocation points, excellent accurate results
were produced.
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