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ABSTRACT

In this paper, we distinguish symmetric Hadamard spaces by introducing the midpoint prop-

erties in these spaces. We prove that any symmetric Hadamard spaces are flat. As an appli-

cation of the new midpoint property, we characterize the affine mapping in these spaces.

1 Introduction
Let (X, d) be a metric space. A geodesic from x to y is a map γ from the closed interval [0, d(x, y)] ⊂ R to X such
that γ(0) = x, γ(d(x, y)) = y and d(γ(t), γ(t′)) = |t − t′| for all t, t′ ∈ [0, d(x, y)]. The space (X, d) is said to be a
geodesic space if every two points of X are joined by a geodesic. The metric segment [x, y] contains the images of
all geodesics, which connect x to y. X is called unique geodesic iff [x, y] contains only one geodesic.
Let X be a unique geodesic metric space. For each x, y ∈ X and for each t ∈ [0, 1], there exists a unique point
z ∈ [x, y] such that d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y). We will use the notation (1 − t)x ⊕ ty for the
unique point z satisfying in the above statement.

In a unique geodesic metric space X, a set A ⊂ X is called convex iff for each x, y ∈ A, [x, y] ⊂ A. A unique
geodesic spaceX is called CAT(0) space if for all x, y, z ∈ X and for each t ∈ [0, 1], we have the following inequality

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y).

A complete CAT(0) space is called a Hadamard space.
Berg andNikolaev in [8,9] have introduced the concept of quasi-linearization along these lines. Let us formally

denote a pair (a, b) ∈ X × X by
→
ab and call it a vector. Then quasi-linearization is defined as a map ⟨·, ·⟩ : (X ×

X)× (X ×X) → R defined by

⟨
→
ab,

→
cd⟩ = 1

2

(
d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)

)
(a, b, c, d ∈ X).

It is easily seen that
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⟨
→
ab,

→
ab⟩ = d2(a, b), ⟨

→
ab,

→
cd⟩ = ⟨

→
cd,

→
ab⟩, ⟨

→
ab,

→
cd⟩ = −⟨

→
ba,

→
cd⟩ and ⟨→ax,

→
cd⟩+⟨

→
xb,

→
cd⟩ = ⟨

→
ab,

→
cd⟩ for all a, b, c, d, x ∈ X.

We say that X satisfies the Cauchy-Schwartz inequality if ⟨
→
ab,

→
cd⟩ ≤ d(a, b)d(c, d) for all a, b, c, d ∈ X. It is known

(Corollary 3 of [9]) that a geodesically connected metric space is a CAT(0) space if and only if it satisfies the
Cauchy-Schwartz inequality.

2 Main Result
Let (X, d) be a semi metric space. Define the relation ∼ onX ×X as follows:

−→xy ∼ −→
zt ⇔ ⟨

−→
ab,−→xy⟩ = ⟨

−→
ab,

−→
zt⟩ (∀a, b ∈ X). (2.1)

The equivalent class of −→xy will be denoted by [−→xy]. If [−→xy] = [
−→
zt], then

d2(x, y) = ⟨−→xy,−→xy⟩ = ⟨−→xy,−→zt⟩ = ⟨−→zt,−→xy⟩ = ⟨−→zt,−→zt⟩ = d2(z, t). (2.2)

Definition 2.1. We say that the semi metric space (X, d) satisfies the (S) property if for any (x, y) ∈ X × X

there exist yx ∈ X such that [−→xy] = [−→yxx] (cf. [1, Definition 2.7]); or equivalently if for any (x, y) ∈ X ×X there
exist xy ∈ X such that [−→xy] = [−→yxy].

Any Hadamard space with property S is called symmetric Hadamard space. It is obvious that, any Hilbert
space enjoys the S and property (let yx := 2x − y, then [−→xy] = [−→yxx] = [y − x] and also xy := 2y − x and then
[−→xy] = [−→yxy] = [y − x]).

Remark 2.1. In the above definition, yx and xy are unique. Note that if [−→xy] = [−→yxx] = [−→ux], then

d2(yx, u) = ⟨−→yxu,−→yxu⟩ = ⟨−→yxx,−→yxu⟩+ ⟨−→xu,−→yxu⟩
= ⟨−→xy,−→yxu⟩ − ⟨−→xy,−→yxu⟩ = 0.

The uniqueness of xy is similar.

Lemma 2.1. Let X be a uniquely geodesic metric space satisfying (S) property, and x, y, z ∈ X. Then [−→xy] =
[−→zx], if and only if, x is the midpoint of the geodesic [z, y].

Proof. Let [−→xy] = [−→zx]. Using (2.2) we have d(x, y) = d(z, x). Moreover,

d2(z, y) = ⟨−→zy,−→zy⟩ = ⟨−→zx,−→zy⟩+ ⟨−→xy,−→zy⟩
= ⟨−→xy,−→zy⟩+ ⟨−→xy,−→zy⟩ = 2⟨−→xy,−→zy⟩
= 2(⟨−→xy,−→zx⟩+ ⟨−→xy,−→xy⟩)
= 2(⟨−→xy,−→xy⟩+ ⟨−→xy,−→xy⟩)
= 4⟨−→xy,−→xy⟩ = 4d2(x, y).

It means that d(x, y) = d(x, z) = 1/2d(z, y) and so x is the midpoint of [z, y].
Conversely, let m be the midpoint of [x, y]. Then we have d(x,m) = d(m, y) = 1/2d(x, y). By (S) there exists
xm ∈ X such that [−→xm] = [−−−→mxm]. It follows from (2.1) and (2.2) that

⟨−→ym,−→xm⟩ = ⟨−→ym,−−−→mxm⟩
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and d(m,xm) = d(m,x). It means that

d2(y,m) + d2(x,m)− d2(x, y) = d2(y, xm)− d2(y,m)− d2(m,xm).

Since d(m,xm) = d(m,x) = d(m, y) = 1/2d(x, y), we have d2(y, xm) = 0. It means that xm = y and thus
[−→xm] = [−−−→mxm] = [−→my].

Lemma2.2. LetC be a nonempty convex subset in the symmetric Hadamard spaceX, x ∈ X and u ∈ C. Then,
u = PC(x) if and only if

⟨−→xu,−→yu⟩ = 0,

for all y ∈ C

Proof. By [36, Theorem 2.2] we have u = PC(x) if and only if

⟨−→xu,−→yu⟩ ≤ 0,

for all y ∈ C. Also, there exists yu ∈ C such that [−→uy] = [−−→yuu]. Thus we have

⟨−→xu,−→yu⟩ = −⟨−→xu,−→uy⟩ = −⟨−→xu,−−→yuu⟩ ≥ 0

It means that ⟨−→xu,−→yu⟩ = 0.

Theorem 2.1. LetX be a symmetric Hadamard space and p, q, r,m ∈ X. Thenm is the midpoint of [q, r] if and
only if the following equality holds

2d2(p,m) +
1

2
d2(q, r) = d2(p, r) + d2(p, q).

Proof. (⇒) Letm be the midpoint of [q, r]. Then [−→qm] = [−→mr]. Thus,

⟨
−→
ab,−→qm⟩ = ⟨

−→
ab,−→mr⟩ ∀ a, b ∈ X.

Now let a = p and b = m we have
⟨−→pm,−→qm⟩ = ⟨−→pm,−→mr⟩.

Therefore,
d2(p,m) + d2(q,m)− d2(p, q) = d2(p, r)− d2(p,m)− d2(m, r).

It means that
2d2(p,m) +

1

4
d2(q, r) = d2(p, q) + d2(p, r)− 1

4
d2(q, r).

Hence,

2d2(p,m) +
1

2
d2(q, r) = d2(p, q) + d2(p, r)

and the proof is completed.
(⇐) Suppose that p, q, r ∈ X andm ∈ [q, r] and

2d2(p,m) +
1

2
d2(q, r) = d2(p, r) + d2(p, q). (2.3)
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Sincem ∈ [q, r], we have
d(m, q) = td(q, r) and d(m, r) = (1− t)d(q, r). (2.4)

If we take p = m in (2.3), we obtain
1

2
d2(q, r) = d2(p, q) + d2(p, r). (2.5)

Combining (2.4) and (2.5), one can conclude that

1

2
d2(q, r) = (1− t)2d2(q, r) + t2d2(q, r)

and so t2 + (1− t)2 = 1
2 and this holds if and only if t =

1
2 . It means that

d(m, q) = d(m, r) =
1

2
d(q, r).

Hence,m is the midpoint of [q, r].

Definition 2.2. Let X be an Hardamard space (with or without (S) property). We say that X is flat if for
p, q, r,m ∈ X in whichm is the midpoint of [q, r] then the following equality holds

d2(p,m) =
d2(p, r) + d2(p, q)

2
− 1

4
d2(q, r).

Corollary 2.1. LetX be an Hardamard space. Then, ifX be symmetric Hadamard space then it is flat.

Proof. BasedonTheorem2.1 since theCN inequality of Bruhat andTits turns into equality in symmetricHadamard
space, therefore, it is flat.

3 Some Applications of Midpoint Characterization
In the current section, as an application of themidpoint property in symmetric Hadamard spaces, we characterize
the affine mapping in such spaces.

Theorem 3.1. Suppose thatX is a symmetric Hadamard space. Then

(a1) for each a, b, c ∈ X the function f : X → R defined by f(x) = ⟨
−→
ab,−→cx⟩ + f(b) is affine and for each

x0 ∈ dom(f), [
−→
ab] ∈ ∂f(x0), i.e., dom(∂f) = int(dom(f)).

(a2) for each affine mapping f : X → R and for every b ∈ cl(dom(f)) and t ∈ R with t < f(b), there exists a
point a ∈ X, such that

f(x) =
1

f(b)− t
⟨
−→
ab,−→ax⟩+ f(b)

for each x ∈ X. Moreover, d(a, b) ≤ 1
2(f(b)− t).

Proof. (a1) : Define g(x) = d2(x, a)− d2(x, b), for each x ∈ X. Letm = 1
2x⊕ 1

2y. Sincem is the midpoint of [x, y]
by Theorem we have [−→xm] = [−→my]. It means that,

⟨−→xm,
−→
ab⟩ = ⟨−→my,

−→
ab⟩.

2022, Volume 16, No.1 36 Theory of Approximation and Applications



Midpoint Characterization of Symmetric Hadamard Spaces and its Applications F. Khojasteh

we have
d2(x, b) + d2(m, a)− d2(x, a)− d2(m, b) = d2(m, b) + d2(y, a)− d2(m, a)− d2(y, b).

It means that,

d2(
1

2
x⊕ 1

2
y, a)− d2(

1

2
x⊕ 1

2
y, a) =

1

2
(d2(x, a)− d2(x, b)) +

1

2
(d2(y, a)− d2(y, b)).

Thus,

g(
1

2
x⊕ 1

2
y) =

1

2
g(x) +

1

2
g(y).

Since f is continuous so for each λ ∈ [0, 1], we have

g(λx⊕ (1− λ)y) = λg(x) + (1− λ)g(y).

Since
⟨
−→
ab,−→cx⟩ = 1

2
(d2(a, x) + d2(b, x)− d2(a, c)− d2(b, c))

It shows that f is affine and the proof is completed.
Also, suppose that a, b, c ∈ X. We have

f(x)− f(x0) = ⟨
−→
ab,−→cx⟩ − ⟨

−→
ab,−→cx0⟩

= 1
2 [d

2(a, x) + d2(b, c)− d2(a, c)− d2(b, x)

−d2(a, x0) + d2(b, c)− d2(a, c)− d2(b, x0)]

= 1
2 [d

2(a, x)− d2(b, x)− d2(a, x0) + d2(b, x0)]

= ⟨
−→
ab,−−→x0x⟩

If we take x∗ = [
−→
ab], we have x∗ ∈ ∂f(x0).

(a2) : Note that f is affine, thus the set epi(f) = {(x, t) : t ≥ f(x)} is nonempty, closed and affine set.
Applying the same argument in [37, Lemma 3.2] and the fact thatX is symmetric Hadamard space, taking (a, s) =
Pepi(f)(b, t), one can apply Lemma 2.2 and conclude that

⟨(−→ax, f(x)− s), (
−→
ab, t− s)⟩ = 0.

for each x ∈ dom(f). It means that
⟨−→ax,

−→
ab⟩+ (f(x)− s)(t− s) = 0. (3.1)

Considering x = b, we have
d2(a, b) + (f(b)− s)(t− s) = 0. (3.2)

It means that, s = f(b) and from (3.1) we have

f(x) =
1

f(b)− t
⟨
−→
ab,−→ax⟩+ f(b).

Moreover, (3.2) yields that
d2(a, b) + (f(x)− t)(t− s) + (t− s)2 = 0.
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Taking A = t− s, we have A2 +A(f(x)− t) + d2(a, b) = 0. It means that∆ = (f(x)− t)2 − 4d2(a, b) ≥ 0. Thus,

|f(x)− t| ≥ 2d(a, b).

and so d(a, b) ≤ 1
2 |f(x)− t|.

Remark 3.1. In [1, Definition 2.7], the author introduced (S) property and said that : ”it is not hard to check
that any symmetric Hadamard manifold satisfies the (S) property”. Based on this sentence and Corollary ??,
any symmetric Hadamard spaces is flat! But anyone ia able to exemplify many Hadamard manifolds (see [1]
for more details) which are not flat and so the sentence is not true as the author in [1] pointed out.
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