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ABSTRACT

In recent years, sequential optimality conditions are frequently used for convergence of itera-

tive methods to solve nonlinear constrained optimization problems. The sequential optimal-

ity conditions do not require any of the constraint qualifications. In this paper,We present the

necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition

for a point to be a solution of a nonlinear optimization problem. The nonlinear optimiza-

tion problem is associated with the variational inequality problem. We also extend the com-

plementary approximate Karush Kuhn Tucker condition from scalar optimization problem

to multiobjective optimization problem and associated with the vector variational inequality

problem. Further, we prove that with some extra conditions of convexity and affinity, com-

plementary approximate Karush Kuhn Tucker conditions are sufficient for the variational in-

equality problem and vector variational inequality problem. Finally, we verify our results via

illustrative examples. An example shows that a point which is a solution of variational in-

equality problem is also a CAKKT point.

1 Introduction
Karush Kuhn Tucker conditions [6] play a vital role to solve nonlinear optimization problems, both for scalar opti-
mization and for multiobjective optimization problems. Practically, optimality conditions based on the sequence
of iterands, which is known as sequential optimality conditions, do not require any constraint qualification [8].

The sequential optimality conditions, for example, approximate Karush Kuhn Tucker condition [11] needs the
existence of a sequence {xk}, which is converging to some x∗ with the condition that xk is a Karush Kuhn Tucker
point for every natural number k, also there should be an appropriate sequence of Lagrange multipliers with the
property that gradient of the Lagrangian function at xk converges to zero. Another type of sequential optimality
conditions, that do not require any of the constraint qualifications, are called complementary approximate Karush
Kuhn Tucker condition (CAKKT) [10]. In CAKKT test we need some extra condition to the usual AKKT test, that
the product of eachmultiplier with the corresponding constraint value should be small [11]. Some other sequential
optimality conditions are discussed in [8, 12]. The concept of variational inequality problem is introduced by Lions
and Stampacchia [7]. Further, Giannessi [1] introduced the concept of vector variational inequalities. Variational
inequalities and vector variational inequalities play an important role in deriving necessary and sufficient opti-
mality conditions for scalar and vector optimization problems. Recently, Laha and Mishra [13] established some
results in vector optimization problems and vector variational inequalities involving locally Lipschitz functions.
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Motivated by the work of Andreani et al. [10], Haeser and Schuverdt [4], Mastroeni [5] and Giorgi et al.
[3], we discuss the sufficiency of CAKKT conditions in the nonlinear programming problems and generalize its
definition to the structure of variational inequality problems and vector variational inequality problems. This
paper is organized as follows. In Section 2, we collected some basic definitions and results. In Section 3, we
develop sequential optimality conditions as CAKKT conditions for variational inequality and proved sufficiency
with convex and affine conditions. In Section 4, we define CAKKT conditions for vector variational inequality and
also proved sufficiency with convex and affine conditions.

2 Preliminaries
We recall some basic and essential definitions. The open (closed) ball centered at y∗ ∈ Rn with radius δ >

0 is denoted by B(y∗, δ) ( B̄(y∗, δ)). We denote Rn
+ as the nonnegative orthant of Rn. We also denote c+ =

max{0, c}, c2+ = (c+)
2, where c ∈ R. The notation ‖·‖ is the Euclidean norm of Rn except otherwise specified.

For y, z ∈ Rn, y ≤ z iff yi ≤ zi, for i = 1, ..., n; y < z, yi < zi, for i = 1, ..., n.

LetX be real Banach Space with a norm ‖.‖ andX∗ be its dual space with a norm ‖ · ‖∗. LetK be a non-empty
open convex subset of X, F : X → 2X

∗ be a set-valued mapping from real Banach space to the family of non-
empty subsets ofX∗. The following definitions and results are extracted from [2] to resolve difficulties during the
derivation of upcoming results.

Definition 2.1. (Generalized directional derivative) Let f be locally Lipschitz at a given point x ∈ X and v be
any other vector in X. The generalized directional derivative of f at x in the direction of v, denoted by f0(x; v),

is defined by

f0(x; v) = lim sup
y→x, t↓0

f(y + tv)− f(y)

t
.

Definition 2.2. (Clarke subdifferential) Let f be locally Lipschitz at a given point x ∈ X and v be any other
vector in X. The Clarke subdifferential of f at x, denoted by ∂cf(x), is defined by

∂cf(x) = {ξ ∈ X∗ : f0(x; v) ≥ 〈ξ, v〉, ∀v ∈ X}.

Next, we gather some properties related to Clarke’s generalized subdifferential which can be found in [2].

Proposition 2.1. Let f : Rn → R be locally Lipschitz at xwith constantK. Then

1. ∂cf(x) is a nonempty, convex, compact set such that ∂cf(x) ⊂ B(0;K),

2. f0(x, v) = max{〈v, ξ〉|ξ ∈ ∂cf(x)} ∀v ∈ Rn,

3. the map ∂cf(·) : Rn → P(Rn) is upper semicontinuous, where P(Rn) denotes the power set of Rn,

4. if f is differentiable at x, then∇f(x) ∈ ∂cf(x),

5. if f attains its extremum at x, then 0 ∈ ∂cf(x).

Proposition 2.2. Let the functions fi : Rn → R be locally Lipschitz at x for i = 1, 2, ..., k, then for λi ∈ R

∂c
( k∑

i=1

λifi

)
(x) ⊂

k∑
i=1

λi∂
cfi(x).

2020, Volume 14, No.1 76 Theory of Approximation and Applications



Sequential Optimality Conditions and Variational Inequalities Sanjeev Kumar Singh et al.

Proposition 2.3. If f1 and f2 are locally Lipschitz at x ∈ Rn, then the function f1f2 is locally Lipschitz at x and

∂c(f1f2)(x) ⊂ ∂cf1(x)f2(x) + f1(x)∂
cf2(x).

Approximate Karush Kuhn Tucker conditions (AKKT) [11]
We consider the nonlinear constrained optimization problems (OP).

(OP) Minimize f(x) s.t. x ∈ Ω = {x ∈ Rn : g(x) ≤ 0, h(x) = 0}, (1)

where f : Rn → R, g : Rn → Rm, h : Rn → Rr are smooth functions. We say a feasible point x∗ satisfies (AKKT)
conditions, if there exists a sequences (µk, τk) ⊂ Rm

+ ×Rr, {xk} ⊂ Rn converging to x∗ and satisfies the following:

lim
k→∞

‖∇f(xk) +

m∑
j=1

µk
j∇gj(x

k) +

r∑
l=1

τkl ∇hl(x
k)‖ = 0,

gj(x
∗) < 0 =⇒ µk

j = 0 for sufficiently large k, j = 1, ...,m. (2)

ComplementaryApproximateKarushKuhnTucker conditions for constrainedoptimizationprob-
lems (CAKKT-OP)

Definition 2.3. (CAKKT-OP conditions)[10]We say that a feasible point x∗ satisfies (CAKKT-OP) if there exists
sequences (xk) ⊂ Rn and (µk, τk) ⊂ Rm

+ × Rr such that

(C1) xk → x∗,

(C2) ∇f(xk) +
m∑
j=1

µk
j∇gj(x

k) +
r∑

i=1
τ ri ∇hi(x

k) → 0,

(C3) lim
k→∞

µk
j gj(x

k) = 0, lim
k→∞

τki hi(x
k) = 0, j = 1, ...,m, i = 1, ..., r.

Remark 2.1. It is the direct implication from CAKKT and AKKT conditions that every CAKKT point is also an
AKKT point, but the converse need not be true in general (see, for instance [10]).

Now, we generalize the concept of CAKKT-OP conditions for multiobjective optimization problems (MOP)
motivated by the work of [3], say CAKKT-MOP. Consider the problem

(MOP) Minimize (f1(x), ..., fp(x)),

subject to x ∈ Ω = {x ∈ Rn : g(x) ≤ 0, h(x) = 0},

where fi : Rn 7→ R, i = 1, ..., p. and g, h are defined earlier.

Definition 2.4. (CAKKT-MOP conditions) We say that a feasible point x∗ satisfies CAKKT-MOP conditions for
multiobjective optimization problems if there exists sequences (xk) ⊂ Rn and (λk, µk, τk) ⊂ Rp

+ × Rm
+ × Rr such

that

(C1) xk → x∗,
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(C2)
p∑

s=1
λk
s∇fs(x

k) +
m∑
j=1

µk
j∇gj(x

k) +
r∑

l=1

τ rl=1∇hl(x
k) → 0,

p∑
s=1

λk
s = 1,

(C3) lim
k→∞

µk
j gj(x

k) = 0, lim
k→∞

τkl hl(x
k) = 0, j = 1, ...,m, l = 1, ..., r.

3 Necessary and sufficient optimality conditions
Let Ω be non-empty, convex subset of Rn and F : Rn → Rn be a continuous map, then variational inequality (VI)
problem [7] is stated as follows:

V I(F,Ω) find y∗ ∈ Ω, such that 〈F (y∗), y − y∗〉 ≥ 0, ∀y ∈ Ω.

Consider the following constrained optimization variational inequality (OP-VI) problem

(OP-VI) Minimize〈F (y∗), y〉, such thaty ∈ Ω,

Ω = {y ∈ Rn : g(x) ≤ 0, h(x) = 0}.

We define the following definition of CAKKT-VI points motivated by [10].

Definition 3.1. (CAKKT-VI conditions)We say that a feasible point x∗ satisfies CAKKT-VI conditions for OP-VI
problems if there exists sequences (xk) ⊂ Rn and (µk, τk) ⊂ Rm

+ × Rr, such that

(C1) xk → x∗,

(C2) F (xk) +
m∑
j=1

µk
j∇gj(x

k) +
r∑

l=1

τ rl=1∇hl(x
k) → 0,

(C3) lim
k→∞

m∑
j=1

µk
j gj(x

k) = 0, lim
k→∞

r∑
l=1

τkl hl(x
k) = 0,

j = 1, ...,m, l = 1, ..., r.

We present a result which states how the solutions of the VI problem are related to the CAKKT-VI conditions.

Theorem 3.1. If y∗ is a solution to V I(F,Ω), then y∗ satisfies the CAKKT − V I conditions.

Proof Consider the following problem

Min 〈F (y∗), y〉, subject to y ∈ Ω = {y ∈ Rn : g(x) ≤ 0, h(x) = 0}. (3)

Let δ > 0 be such that 〈F (y∗), y∗〉 ≤ 〈F (y∗), y〉 for every y ∈ Ω and ‖y − y∗‖ ≤ δ. Then, y∗ is the unique global
minimizer of the problem

Minimize
[
〈F (y∗), y〉+ 1

2
‖y − y∗‖2

]
, subject to

h(y) = 0, g(y) ≤ 0, ‖y − y∗‖ ≤ δ. (4)
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For every k ∈ N, let yk be a global minimizer of

Minimize Φk(y), subject to y ∈ Ω ∩ B̄(y∗, δ),

where Φk(y) = 〈F (y∗), y〉+ 1

2
‖y − y∗‖2 + 1

2

[ m∑
j=1

kgj(y)
2
+ +

r∑
l=1

khl(y)
2
]
, (5)

{yk} is well defined since the objective function is continuous. Since y∗ is feasible to problem (5), we have from
convergence of external penalty methods [9].

Φk(y
k) = 〈F (y∗), yk〉 +

1

2
‖yk − y∗‖2 +

1

2

[ m∑
j=1

kgj(y
k)2+ +

r∑
l=1

khl(y
k)2

]
≤ 〈F (y∗), y∗〉. (6)

As lim
k→∞

yk = y∗. Then,

lim
k→∞

1

2
‖yk − y∗‖2 + 1

2

[ m∑
j=1

kgj(y
k)2+ +

r∑
l=1

khl(y
k)2

]
= 0.

Therefore,
m∑
j=1

kgj(y
k)2+ +

r∑
l=1

khl(y
k)2 → 0 as k → ∞.

Let us define λk = khl(y
k), µk = kgj(y

k)+. Then,

lim
k→∞

[ m∑
j=1

|µkgj(y
k)+|+

r∑
l=1

|λkhl(y
k)|

]
= 0.

That is,

lim
k→∞

r∑
l=1

λkhl(y
k) = 0, lim

k→∞

m∑
j=1

µkgj(y
k) = lim

k→∞

m∑
j=1

µkgj(y
k)+ = 0. (7)

as yk → y∗, the conditions (C3) of CAKKT-VI are satisfied. In (6), we observe that yk exists because Φk(y
k) is

continuous and B̄(y∗, δ) is compact. Let z be a limit point of yk.We can assume that yk → z. From the problem
(5), we have

〈F (y∗), yk〉 ≤ Φk(y
k),

because of

Φk(y
k)− 〈F (y∗), yk〉 = 1

2
‖yk − y∗‖2 + k

2

{ m∑
j=1

[max(0, gj(yk))]2 +
r∑

l=1

[hl(y
k)]2

}
≥ 0.

Since y∗ is a feasible solution of the problem (4) and yk is the solution of problem (5), we have

〈F (y∗), yk〉 ≤ Φk(y
k) ≤ Φk(y

∗) = 〈F (y∗), y∗〉. (8)

We claim that z is a feasible solution of the problem (5). Since ‖yk − y∗‖ ≤ δ, therefore ‖z − y∗‖ ≤ δ, suppose if
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possible
m∑
j=1

(gj(z)+)
2 +

r∑
l=1

h2l (z) > 0,

for sufficiently large k, then there exists c > 0, such that

m∑
j=1

(gj(y
k)+)

2 +

r∑
l=1

h2l (y
k) > c.

Therefore,
m∑
j=1

[max(0, gj(yk))]2 +
r∑

l=1

[hl(y
k)]2 > c,

for all k large enough. From continuity of 〈F (y∗), y〉 and yk → z,we have

Φk(y
k) = 〈F (y∗), yk〉+ 1

2
‖y − y∗‖2 + ρk

2

{ m∑
j=1

[max(0, gj(yk))]2
}
+

r∑
l=1

[hl(y
k)]2}

> 〈F (y∗), y∗〉+ ρkc

2
.

Taking the limit, we obtain Φk(y
k) −→ +∞, which contradicts (6). Consequently,

m∑
j=1

(gj(z)+)
2 +

r∑
l=1

h2l (z) = 0,

that is, z ∈ Ω ∩ B̄(x∗, δ), therefore from (6), we obtain

Φk(y
k) = 〈F (y∗), yk〉+ 1

2
‖yk − y∗‖2 + k

2

{ m∑
j=1

[max(0, gj(yk))]2 +
r∑

l=1

[hl(y
k)]2

}
≤ 0, (9)

as k −→ +∞.

Since k
2{

∑m
j=1[max(0, gj(y))]2+

∑r
l=1[hl(y)]

2} ≥ 0, therefore from (4) and (9), we have 〈F (y∗), yk〉+ 1
2‖y

k−y∗‖2 ≤
0. As y∗ is a unique solution of the problem (4), we conclude that z = y∗. Therefore, yk → y∗ and ‖yk − y∗‖ < δ

for all k sufficiently large. As yk is a solution of the smooth problem (5) and it is an interior point of the feasible
set, for sufficiently large k, therefore from Proposition 2.1, it follows that∇Φk(y

k) = 0, then we have

T (y∗) + (yk − y∗) +
m∑
j=1

kgj(y
k)+∇gj(y

k) +
r∑

l=1

khl(y
k)∇hl(y

k) = 0. (10)

As kgj(yk)+ = µk
j , τ

k
l = khl(y

k), then from (10), we get

F (yk) +
m∑
j=1

µk
j∇gj(y

k) +
r∑

l=1

τkl ∇hl(y
k) = y∗ − yk → 0,

as yk → y∗ and F (yk) → F (y∗). Thus CAKKT-VI conditions are satisfied.

Remark 3.1. In particular, if F is replaced by∇f, CAKKT-VI conditions converges on CAKKT-OP conditions.

Remark 3.2. We are describing an example in the support of Theorem 3.1.
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Example 3.1. Let F : R2 → R2 be defined by

F (y1
k, y2

k) = (2(y1
k − 2), y2

k) subject to

g(y1, y2) = y1 + y2 ≤ 0 and

h(y1, y2) = y1y2 = 0.

Here yk = (2 + 1
k ,

1
k ) → (2, 0).

Consider the (OP-VI) problem,

(OP-VI) Minimize〈F (y∗), y〉, such that y ∈ Ω,

Ω = {y ∈ R2 : g(x) ≤ 0, h(x) = 0}.

Clearly, yk = (2 + 1
k ,

1
k ) → y∗ = (2, 0) is the solution of (OP-VI) problem. Now, we can easily check that yk → y∗

satisfies all the CAKKT-VI conditions. Take λ = 1
k and µ = − 1

k

F (y1, y2) + λ∇h(y1, y2) + µ∇g(y1, y2) → 0,

and

λh(yk) =
1

k
(2× 1

k
) → 0,

µg(yk) = −1

k
× (2 +

1

k
+

1

k
) → 0.

Therefore, y∗ = (2, 0) is a CAKKT point.

Theorem 3.2. Let 〈F (y∗), y〉 and g be convex and h be affine. If y∗ ∈ Ω satisfies CAKKT-VI, then y∗ is solution
to V I(F,Ω).

Proof Let y ∈ Ω be an arbitrary feasible point. From the convexity assumptions,

〈F (y∗), y〉 ≥ 〈F (y∗), yk〉+ 〈F (y∗), y − yk〉,

gj(y) ≥ gj(y
k) + 〈∇gj(y

k), y − yk〉, j = 1, ...,m,

hl(y) = hl(y
k) + 〈∇hl(y

k), y − yk〉, l = 1, ..., r.
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Multiplying appropriately by µk
j , τ

k
l and adding, as hl(y) = 0 and gj(y) ≤ 0,we have

〈F (y∗), y〉 ≥ 〈F (y∗), y〉+
m∑
j=1

µk
j gj(y) +

r∑
l=1

τkl hl(y)

≥ 〈F (y∗), yk〉+
m∑
j=1

µk
j gj(y

k) +

r∑
l=1

τkl hl(y
k)

+
⟨
F (yk) +

m∑
j=1

µk
j∇gj(y

k) +

r∑
l=1

τkl ∇hl(y
k), y − yk

⟩
= 〈F (y∗), y∗〉, as yk → y∗.

Thus, y∗ is the solution to V I(F,Ω).

4 Complementary Approximate KKT Conditions and Vector Variational
inequalities

Consider the following vector optimization problems (VVI) problem

(VVI-MOP) Minimize F (x),

where F (x) = (〈F1(x
∗), x〉, ..., 〈Fp(x

∗), x〉), subject to x ∈ Ω,

A point x∗ ∈ Ω is an efficient solution of V V I −MOP iff there exists no x ∈ Ω such that F (x) ≤ F (x∗), F (x) 6=
F (x∗). The set of all efficient solution of V V I −MOP is denoted by Min(F,Ω)

We establish the complementary approximate Karush Kuhn Tucker necessary and sufficient optimality con-
ditions for vector variational inequality problems, which is natural extension of the results on scalar optimiza-
tion problems given by Andreani et al. [10].

Definition4.1. (CAKKT-VVIConditions)We say that complementaryapproximateKarush-Kuhn-Tucker (CAKKT-
VVI) conditions are satisfied at a feasible point x∗ ∈ Ω iff there exists sequences (xk) ⊂ Rn and (λk, µk, τk) ⊂
Rp
+ × Rm

+ × Rr, such that

(C1) xk → x∗,

(C2)
p∑

i=1
λk
i Fi(x

k) +
m∑
j=1

µk
j∇gj(x

k) +
r∑

l=1

τkl ∇hl(x
k) → 0,

p∑
i=1

λk
i = 1,

(C3) lim
k→∞

µk
j gj(x

k) = 0, ∀ j = 1, . . . ,m, lim
k→∞

τkl hl(x
k) = 0, ∀ l = 1, . . . , r,

Points satisfying the CAKKT-VVI conditions are called CAKKT-VVI points. Note that the sequence xk is not
necessarily in feasible set. In order to establish necessary optimality conditions for the problem VVI-MOP, we
need to scalarize through the following nonsmooth function:

F : Rp → R, defined by F(y) = max{yi},

clearly F(y) ≤ 0 ⇔ y ≤ 0 and F(y) < 0 ⇔ y < 0. Moreover, for the sake of reader’s convenience we recall the
following well known result from Giorgi et al. [3]:
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Lemma 4.1. [3] If x∗ is solution of V V I(F,Ω), then x∗ is solution of Min(F(F (.)− F (x∗)),Ω).

The following necessary optimality conditions for multiobjective optimization problem for local efficient so-
lution of (MOP) to be a complementary approximate Karush Kuhn Tucker point will be helpful to develop the
proof in section 4.

Theorem 4.1. If x∗ ∈ Ω is solution of V V I(F,Ω), then x∗ satisfies the CAKKT-VVI conditions.

Proof Since x∗ is local solution of V V I(F,Ω), so by Lemma 4.1 there exists δ > 0, such that x∗ ∈ Min
{F(F (·)− F (x∗)), Ω ∩ B̄(x∗, δ)},

Min F(F (x)− F (x∗)) +
1

2
‖x− x∗‖2, subject to x ∈ Ω ∩ B̄(x∗, δ). (11)

Therefore, we may suppose that x∗ is the unique solution of the problem (11). We define the following function:

φρk(x) = F(F (x)− F (x∗)) +
1

2
‖x− x∗‖2 + ρk

2
{

m∑
j=1

[max(0, gj(x))]2}

+

r∑
l=1

[hl(x)]
2}, for all ρk > 0, and ρk → ∞.

(12)

Let xk be a solution of the problem

Min φρk(x), subject to ‖x− x∗‖ ≤ δ. (13)

By the convergence property of penalty methods [9], we have

F(F (xk)− F (x∗)) +
1

2
‖xk − x∗‖2 + ρk

2

{ m∑
j=1

[max(0, gj(xk))]2 +
r∑

l=1

[hl(x
k)]2

}
≤ F(f(x∗)− f(x∗))

that is,

F(F (xk)− F (x∗)) +
1

2
‖xk − x∗‖2 + ρk

2

{ m∑
j=1

[max(0, gj(xk))]2 +
r∑

l=1

[hl(x
k)]2

}
≤ 0.

Suppose that µk
j = (ρkgj(x

k))+ ≥ 0 and τkl = ρkhl(x
k), then we have

F(F (xk)− F (x∗)) +
1

2
‖xk − x∗‖2 + 1

2
{

m∑
j=1

|µk
j gj(x

k)+|+
r∑

l=1

|τkl hl(xk)|} ≤ 0. (14)

By the convergence property of exact penalty methods [9], taking the limk→∞ xk = x∗, ρk → ∞ and by the
continuity of F,we have

lim
xk→x∗

1

2
‖xk − x∗‖2 + 1

2

{ m∑
j=1

|µk
j gj(x

k)+|
r∑

l=1

|τkl hl(xk)|
}
= 0.
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Therefore, we have
lim
k→∞

µk
j gj(x

k) = lim
k→∞

µk
j gj(x

k)+ = 0 and lim
k→∞

τkl hl(x
k) = 0.

as xk → x∗, hence the conditions (C4).
In (13)we observe that xk exists because φρk(x) is continuous and B̄(x∗, δ) is compact. Let z be a limit point

of xk.We can assume that xk → z. From the problem (12), we have

F(F (xk)− F (x∗)) ≤ φρk(x
k),

because of

φρk(x
k)−F(F (xk)− F (x∗)) =

1

2
‖xk − x∗‖2

+
ρk
2

{ m∑
j=1

[max(0, gj(xk))]2 +
r∑

l=1

[hl(x
k)]2

}
≥ 0.

Since x∗ is a feasible solution of the problem (11) and xk is the solution of problem (13), we have

φρk(x
k) ≤ φρk(x

∗) = 0. (15)

We claim that z is a feasible solution of the Problem (11). Since ‖xk − x∗‖ ≤ δ, therefore ‖z − x∗‖ < δ, suppose if
possible

m∑
j=1

(gj(z)+)
2 +

r∑
l=1

h2l (z) > 0,

for sufficiently large k, then there exists c > 0, such that

m∑
j=1

(gj(x
k)+)

2 +
r∑

l=1

h2l (x
k) > c.

Therefore,
m∑
j=1

[max(0, gj(xk))]2 +
r∑

l=1

[hl(x
k)]2 > c,

for all k large enough. From continuity of F and xk → z,we have

φρk(x) = F(F (x)− F (x∗)) +
1

2
‖x− x∗‖2 + ρk

2

{ m∑
j=1

[max(0, gj(x))]2
}

+
r∑

l=1

[hl(x)]
2} > F (f(x)− f(x∗)) +

ρkc

2
.

Taking the limit k → ∞, we obtain φρk(x
k) −→ +∞, which contradicts (15). Consequently,

m∑
j=1

(gj(z)+)
2 +
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r∑
l=1

h2l (z) = 0, that is, z ∈ Ω ∩ B̄(x∗, δ), therefore from (14), we obtain

φρk(x
k) = F(F (xk)− F (x∗)) +

1

2
‖xk − x∗‖2

+
ρk
2

{ m∑
j=1

[max(0, gj(xk))]2 +
r∑

l=1

[hl(x
k)]2

}
≤ 0, as k −→ +∞.

(16)

Since ρk
2 {

∑m
j=1[max(0, gj(x))]2+

∑r
l=1[hl(x)]

2} ≥ 0, therefore from (16), we haveF(F (xk)−F (x∗))+ 1
2‖x

k−x∗‖2 ≤
0. As x∗ is a unique solution of the problem (11), we conclude that z = x∗. Therefore, xk −→ x∗ and ‖xk −x∗‖ < δ

for all k sufficiently large. As xk is a solution of the nonsmooth problem (13) and it is an interior point of the
feasible set, for sufficiently large k, from Proposition 2.1, it follows that 0 ∈ ∂cφρk(x

k). Then, we have

0 ∈ conv(

p∪
i=1

{Fi(x
∗)}) + (xk − x∗) +

m∑
j=1

ρkgj(x
k)+∇gj(x

k) +

r∑
l=1

ρkhl(x
k)∇hl(x

k). (17)

Hence, there exists λk
i ≥ 0, i = 1, 2, ..., p, such that

p∑
i=1

λk
i = 1 and as ρkgj(xk)+ = µk

j , ρkhl(x
k) = τkl , then from

(17), we get
p∑

i=1

λk
i Fi(x

k) +

m∑
j=1

µk
j∇gj(x

k) +

r∑
l=1

τkl ∇hl(x
k) = x∗ − xk → 0,

as xk −→ x∗ and Fi(x
k) → Fi(x

∗).

Remark 4.1. If we redefineFi = ∇fi, i = 1, ..., p. Then, CAKKT-VVI coincide on CAKKT-MOP conditionswhich
is good approach to access the optimality conditions of multiobjective optimization problems.

Example 4.1. Consider the multiobjective optimization problem:

Min f(x1, x2) = (f1(x1, x2), f2(x1, x2))

subject to h(x1, x2) = x2 − x1 = 0,

and g(x1, x2) = x21 − x2 ≤ 0,

where f1(x1, x2) = x1 − x22 and f2(x1, x2) = x1 − x2.

The point x0 = (1, 1) is a weak efficient solution of the above problem. In order to find sequences satisfying the
conditions (C1), (C2), (C3) and (C4), we solve the equation

λ1∇f1(x1, x2) + λ2∇f2(x1, x2) + µ1∇h(x1, x2) + µ2∇g(x1, x2) = (0, 0).

Consider the sequence xk = (1 + 1
k , 1 +

1
k ), k ∈ N, then

λk
i = {1

2 + 1
k}, i = 1, 2; µk

1 = {2 + 1
k}, µ

k
2 = {1

2 + 1
k}.

Then we get

lim
k→∞

λk
1∇f1(x

k
1, x

k
2) + λk

2∇f2(x
k
1, x

k
2) + µk

1∇h(xk1, x
k
2) + µk

2∇g(xk1, x
k
2) = (0, 0),
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p∑
i=1

λk
i = 1,

µk
1h(x

k) = (2 +
1

k
)× (1 +

1

k
− 1− 1

k
) → 0,

µk
2g(x

k) = (
1

2
+

1

k
)× ((1 +

1

k
)2 − 1− 1

k
) → 0.

Hence, CAKKT-MOP conditions are satisfied at x0 = (1, 1).

The following result is sufficient optimality conditions for the VVI-MOP problem

Theorem 4.2. Assume that 〈Fi(x
∗), x〉; i = 1, ..., p, gj ; j = 1, ...,m are convex and hl; l = 1, ..., r are affine. If

x∗ ∈ S satisfies the CAKKT-VVI conditions, then x∗ is a global weak efficient solution of (VVI-MOP).

Proof Suppose that x∗ is not a weakly efficient solution then, there exists x̄ ∈ S such that

〈Fi(x
∗), x̄〉 < 〈Fi(x

∗), x∗〉, i = 1, 2, ..., p. (18)

Let (xk) and (λk, µk) be the sequences that satisfies the CAKKT-VVI at x∗. Therefore, without loss of generality

we may assume that λk → λ∗ with λ∗ ≥ 0 and
p∑

i=1
λ∗
i = 1. As fi, gj are convex and hl are affine, for all k we get

〈Fi(x
∗), x̄〉 ≥ 〈Fi(x

∗), xk〉+ 〈Fi(x
k), x̄− xk〉, ∀ i = 1, ..., p, (19)

gj(x̄) ≥ gj(x
k) + 〈∇gj(x

k), x̄− xk〉, ∀ j = 1, ...,m, (20)

hl(x̄) = hl(x
k) + 〈∇hl(x

k), x̄− xk〉, ∀ l = 1, ...,m. (21)

Since x̄ is feasible point, therefore we can write

p∑
i=1

λk
i 〈Fi(x

∗), x̄〉 ≥
p∑

i=1

λk
i 〈Fi(x

∗), x̄〉+
m∑
j=1

µk
j gj(x̄) +

r∑
l=1

τkl hl(x̄) (22)

From (19), (20), (21) and (22), we get

p∑
i=1

λk
i 〈Fi(x

∗), x̄〉 ≥
p∑

i=1

λk
i 〈Fi(x

∗), xk〉+
m∑
j=1

µk
j gj(x

k) +
r∑

l=1

τkl hl(x
k)

+

⟨
p∑

i=1

λk
i Fi(x

∗) +
m∑
j=1

µk
j∇gj(x

k) +
r∑

l=1

τkl ∇hl(x
k), x̄− xk

⟩
.

(23)

Making use of (C1)− (C3) in above inequality, we get

p∑
i=1

λk
i 〈Fi(x

∗), x̄〉 ≥
p∑

i=1

λk
i 〈Fi(x

∗), x∗〉, since Fi(x
k) → Fi(x

∗)
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as xk → x∗,which contradicts (18).

5 Conclusions
In this paper, we use variational inequality and vector variational inequality problems as a tool to deduce neces-
sary and sufficient optimality conditions without using any of the constraint qualifications. We proposed new
sequential optimality conditions with variational and vector variational inequalities inspired by the work of
Andreani et al. [10]. We use practical consequences of variational inequality problems as we can see, the min-
imization problem can be change into variational inequality problem when we use gradient of the function in
place of the function. We utilize this concept to find Complementary Approximate Karush Kuhn Tucker (CAKKT)
conditions in the form of our objective function. In general, not all the cases are smooth so the non-smooth anal-
ysis of this work is possible in future.
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