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ABSTRACT

In this manuscript, we consider the interpolative contractions mappings via simulation func-

tions in the setting of complete metric space. We also express an illustrative example to show

the validity of our presented results.

1 Introduction and Preliminaries
In this section, we will sum up some basic notations, concepts and definitions, which we will use later on.

Definition 1.1. [15] A mapping ζ : [0,∞)× [0,∞) → R satisfying the following conditions:

((ζ1)) ζ(0, 0) = 0;

(ζ2) ζ(u, v) < v − u for all u, v > 0;

(ζ3) if {un}, {vn} are sequences in (0,∞) such that lim
n→∞

un = lim
n→∞

vn > 0, then

lim sup
n→∞

ζ(un, vn) < 0. (1.1)

is called simulation function.

We denote by Z the family of all simulation functions ζ : [0,∞)× [0,∞) → R. In [7], observing that in fact in
the proof of themain result in [15] the presumption (ζ1)was not used they proposed a slightlymodified simulation
function definition by removing the condition (ζ1). So the following notion can be used:

Definition 1.2. [7] A simulation function is a mapping ζ : [0,∞) × [0,∞) → R satisfying the conditions (ζ2)
and (ζ3).

Certainly, the class of simulation functions in the sense of Definition 1.2 is wider than the class of simulation
functions in the original sense. To illustrate this Argoubi et all gave the following example.
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Example 1.1. [7] Let k ∈ (0, 1) and ζk : [0,∞)× [0,∞) → R be the function defined by

ζk(u, v) =

{
1 if (u, v) = (0, 0)

k v − u, otherwise .

Then ζk satisfies , (ζ2) and (ζ3), but ζk(0, 0) = 1 > 0.

Later, the family of all simulation functions was again enlarged. In [21], the authors have observed that the
third condition is symmetric in both arguments of ζ which is not necessary in proofs. So, they proposed a refine-
ment of this notion.

Definition 1.3. [21] A mapping ζ : [0,∞)× [0,∞) → R satisfying the following conditions:

((ζ1)) ζ(0, 0) = 0;

(ζ2) ζ(u, v) < v − u for all u, v > 0;

(ζ3) if {un}, {vn} are sequences in (0,∞) such that lim
n→∞

un = lim
n→∞

vn > 0, and un < vn for all n ∈ N, then
lim supn→∞ ζ(un, vn) < 0.

is called simulation function.

In order to illustrate that every simulation function in the original Khojasteh et al.’s sense (Definition 1.1) is a
simulation function in sense of (Definition 1.4), but the converse is not true, they proposed the following example.

Example 1.2. [21] The function ζk : [0,∞)× [0,∞) → R defined by

ζk(u, v) =

{
2(v − u) if v < u

k v − u, otherwise

where k ∈ (0, 1), verifies (ζ1) and (ζ2). Plus, if {un}, {vn} are sequences in (0,∞) such that

lim
n→∞

un = lim
n→∞

vn = L > 0 and un < vn for all n ∈ N,

then
lim sup
n→∞

ζ(un, vn) = lim sup
n→∞

(kvn − un) = (k − 1)L < 0.

On the other hand, considering un = 2 and vn = 2− 1
n , we have for n ≥ 1:

ζk(un, vn) = ζk

(
2, 2− 1

n

)
= 2

(
2− 1

n
− 2

)
=

−2

n
.

Since lim sup
n→∞

ζk(un, vn) = 0, we can conclude that ζ does not verify axiom (ζ3) in Definition 1.1.

For some examples of simulation functions, see e.g.([15, 21, 4]).
Concluding, we will use in our later considerations the simulation function in the sense of the following defi-

nition:
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Definition 1.4. [20] A mapping ζ : [0,∞)× [0,∞) → R satisfying the following conditions:

(ζ1) ζ(u, v) < v − u for all u, v > 0;

(ζ2) if {un}, {vn} are sequences in (0,∞) such that lim
n→∞

un = lim
n→∞

vn > 0, and un < vn for all n ∈ N, then

lim sup
n→∞

ζ(un, vn) < 0. (1.2)

is called simulation function.

Definition 1.5. [17] Let T : X → X be a mapping and α : X × X → [0,∞) be a function. We say that T is
α-orbital admissible if

α(ν, Tν) ≥ 1 ⇒ α(Tν, T 2ν) ≥ 1.

If the additional condition
α(ν, ω) ≥ 1 and α(ω, Tω) ≥ 1 ⇒ α(ν, Tω) ≥ 1

is fulfilled, then the α-admissible mapping T is called triangular α-orbital admissible.

Remark 1.1. The concept of α-orbital admissible was suggested by Popescu [17] and is a refinement of the
alpha-admissible notion, defined in [22, 14].

We can notice that eachα-admissiblemapping isα-orbital admissible. Formore details and counter examples,
see e.g. [1, 2, 3, 5, 6, 9, 17].

Definition 1.6. A set X is regular with respect to mapping α : X × X → [0,∞) if {νn} is a sequence in X such
that α(νn, νn+1) ≥ 1, for all n and νn → ν ∈ X as n→ ∞, then α(νn, ν) ≥ 1 for all n.

The notion of α-admissibleZ-contraction with respect to a given simulation function was introduced by Kara-
pinar in [12]. Using this new type of contractive mapping he investigated the existence and uniqueness of a fixed
point in standard metric space.

Definition 1.7. [12] Let T be a self-mapping defined on a metric space (X , d). If there exist a function ζ ∈ Z
and α : X × X → [0,∞) such that

ζ (α(ν, ω)d(Tν, Tω), d(ν, ω)) ≥ 0 for all ν, ω ∈ X , (1.3)

then we say that T is an α-admissible Z-contraction with respect to ζ.

Theorem 1.1. [12] Let (X , d) be a complete metric space and let T : X → X be an α-admissible Z-contraction
with respect to ζ. Suppose that:

(i) T is triangular α-orbital admissible;

(ii) there exists ν0 ∈ X such that α(ν0, T ν0) ≥ 1;

(iii) T is continuous.
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Then there exists ν∗ ∈ X such that Tν∗ = ν∗.

Remark 1.2. The continuity condition from Theorem 1.1 can be replaced by the ”regularity”�condition which
is considered in Definition 1.6.

Definition 1.8. (see [11]) Let (X , d) be a metric space and T : X → X be a mapping.

(i) T is orbitally continuous if
lim
i→∞

Tniν = ν (1.4)

implies
lim
i→∞

TTniν = Tν (1.5)

for each ν ∈ X .

(ii) (X , d) is orbitally complete if every Cauchy sequence of type {Tniν}i∈N converges.

Lastly, we recall the following lemma which is a standard argument to prove that a given sequence is Cauchy.

Lemma 1.1. (See e.g. [20]) Let {νn} be a sequence in a metric space (X , d) such that limn→∞ d(νn−1, νn) = 0. If
{νn} is not a Cauchy sequence, then there exist an ε > 0 and the sequences {ni} and {mi}, with ni > mi > i of
positive integers such that the following sequences tend to εwhen i→ ∞:

d(νni , νmi), d(νni+1, νmi+1), d(νni−1, νmi), d(νni , νmi−1), d(νni−1, νmi−1)

In [13] Karapinar introduced the notion of the interpolative Hardy-Rogers type Z-contraction as follows:

Definition 1.9. [13] Let T be a self-mapping defined on a metric space (X , d). If there exist λ1, λ2, λ3 ∈ (0, 1)

with λ1 + λ2 + λ3 < 1, and ζ ∈ Z such that

ζ(d(Tν, Tω), C(ν, ω)) ≥ 0 for all ν, ω ∈ X , (1.6)

where
C(ν, ω) := [d (ν, ω)]λ2 · [d (ν, Tν)]λ1 · [d (ω, Tω)]λ3 ·

·
[
1
2(d (ν, Tω) + d (ω, Tν))

]1−λ1−λ2−λ3

then we say that T is an interpolative Hardy-Rogers type Z-contractionwith respect to ζ.

Theorem 1.2. [13] Let (X , d) be a complete metric metric space and T be an interpolative Hardy-Rogers type
Z-contractionwith respect to ζ. Then there exists ν ∈ X such that Tν∗ = ν∗.

In [16], a generalization of the Reich-type theorem in b-metric spaces is given and in addition, the existence
of non unique fixed points is ensured.

Definition 1.10. [16] Let (X , d, s), be a b-metric space. A mapping T : X → X is called an (r, a)-weight type
contraction, if there exists λ ∈ [0, 1) such that

d(Tx, Ty) ≤ λMp(T, ν, ω, a), (1.7)
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where p ≥ 0 and a = (a1, a2, a3), ai ≥ 0, i = 1, 2, 3 such that a1 + a2 + a3 = 1 and

Mp(T, ν, ω, a) =

{
[a1(d(x, y))

p + a2(d(x, Tx))
p + a3(d(y, Ty))

p]1/p , if p > 0

d(x, y))a1(d(x, Tx))a2(d(y, Ty))a3 , if p = 0

for all ν, ω ∈ X \ Fix(T ).

Theorem 1.3. [16] Let (X , d, s) be a complete b-metric space and T : X → X be a (r, a)-weight type contraction
mapping. Then T has a fixed point ν∗ ∈ X and for any ν0 ∈ X the sequence {Tnν0} converges to ν∗ if one of the
following conditions holds:

(i) T is continuous at such point ν∗;

(ii) bpa2 < 1;

(iii) bpa3 < 1.

2 Main results
Definition 2.1. Let (X , d) be a metric space. A mapping T : X → X is called an α-admissible Z-p-contraction
with respect to ζ of typeK if there is a function ζ ∈ Z and α : X ×X → [0,∞) such that for λi > 0, i ∈ {1, 2, 3, 4}
such that λ1 + λ2 + λ3 + λ4 = 1 and for all ν, ω ∈ X

ζ(α(ν, ω)d(Tν, Tω),Kp(ν, ω)) ≥ 0, (2.1)

where
Kp(ν, ω) = [λ1d

p(ν, ω) + λ2d
p(ν, Tν) + λ3d

p(ω, Tω)+

+λ4

(
d(ν,Tω)+d(ω,Tν)

2

)p] 1
p
,

(2.2)

for p > 0.

Theorem 2.1. Let (X , d) be a complete metric space and let T : X → X be a continuous α-admissible Z-p-
contraction with respect to ζ of typeK. Suppose also that:

(i) T is triangular α−orbital admissible;

(ii) there exists ν0 ∈ X such that α(ν0, T ν0) ≥ 1;

Then, T has a fixed point.

Proof. Let ν0 ∈ X . Starting from this initial point, we can define a sequence {νn} ⊂ X by νn+1 = Tνn = Tnν0 for
all n ∈ N. If for some n0 ∈ N we have νn0 = νn0+1 then Tνn0 = νn0 , that is, νn0 is a fixed point of T,. Therefore, we
will assume from now on that νn+1 ̸= νn for all n ∈ N, which means that

d (νn, νn+1) > 0.

On the other hand, due to (ii), α(ν0, T ν0) ≥ 1 and since T is α−orbital admissible,

α(ν0, T ν0) ≥ 1 ⇒ α(ν1, ν2) = α(Tν0, T
2ν0) ≥ 1
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and recursively we get that:
α(νn, νn+1) ≥ 1, (2.3)

for all n ∈ N0. Further, since T is triangular α−orbital admissible, from (2.3), it is easy to conclude that

α(νn, νn+k) ≥ 1, (2.4)

n, k ∈ N.
From (2.1), by replacing ν = νn−1 and ω = νn and taking into account (ζ1) we get

0 ≤ ζ(α(νn−1, νn)d(Tνn−1, T νn),Kp(νn−1, νn))

< Kp(νn−1, νn))− α(νn−1, νn)d(Tνn−1, T νn), for any n ≥ 1.
(2.5)

Combining with (2.3), we have

d(νn, νn+1) ≤ α(νn−1, νn)d(νn, νn+1) < Kp(νn−1, νn)

= [λ1d
p(νn−1, νn) + λ2d

p(νn−1, νn) + λ3d
p(νn, νn+1)+

+λ4

(
d(νn−1,νn+1)+d(νn,νn)

2

)p] 1
p

≤ [λ1d
p(νn−1, νn) + λ2d

p(νn−1, νn) + λ3d
p(νn, νn+1)+

+λ4

(
d(νn−1,νn)+d(νn,νn+1)

2

)p] 1
p

(2.6)

or,
dp(νn, νn+1) < λ1d

p(νn−1, νn) + λ2d
p(νn−1, νn) + λ3d

p(νn, νn+1)+

+λ4

(
dp(νn−1,νn)+dp(νn,νn+1)

2

)
,

(2.7)

(we used here:
(
a+b
2

)p ≤ ap+bp

2 ). Since λ1 + λ2 + λ3 + λ4 = 1 we have

dp(νn, νn+1) <
2λ1 + 2λ2 + λ4
2− 2λ3 − λ4

dp(νn−1, νn) = dp(νn−1, νn), (2.8)

which shows that the sequence of non-negative real numbers {d(νn−1, νn)} is decreasing and so, there exists δ ≥ 0

such that lim
n→∞

d(νn−1, νn) = δ. Furthermore,

lim
n→∞

Kp(νn−1, νn) = [(λ1 + λ2 + λ3 + λ4) · δp]1/p = δ.

Now, taking into account (2.3),

d(νn, νn+1) ≤ α(νn−1, νn)d(Tνn−1, T νn) < Kp(νn−1, νn) (2.9)

and when n→ ∞ in (2.9) we get
δ ≤ lim

n→∞
α(νn−1, νn)d(Tνn−1, T νn)

< lim
n→∞

Kp(νn−1, νn) = δ.

Thus, lim
n→∞

α(νn−1, νn)d(Tνn−1, T νn) = δ. If we suppose that δ > 0 and taking un = α(νn−1, νn)d(Tνn−1, T νn)
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respectively vn = Kp(νn−1, νn), from (ζ3) we get

0 ≤ lim sup
n→∞

ζ(un, vn) < 0. (2.10)

This is a contradiction. Hence,
lim
n→∞

d(νn−1, νn) = 0. (2.11)

In the following, we shall prove that the sequence {d(νn−1, νn)} is Cauchy. Assuming the contrary, from Lemma
(1.1), we can find ε > 0 and two sequences {ni},{mi} of positive integers, with ni > mi > i such that

limi→∞ d(νni , νmi) = limi→∞ d(νni−1, νmi−1) = limi→∞ d(νni−1, νmi)

= limi→∞ d(νni , νmi−1) = ε.
(2.12)

On the other hand, by (2.11) and (2.12)

lim
i→∞

Kp(νni−1, νmi−1) = lim
i→∞

[λ1d
p(νni−1, νmi−1) + λ2d

p(νni−1, νni)+

+λ3d
p(νmi−1, νmi) + λ4

(
d(νni−1,νmi )+d(νmi−1,νni )

2

)p] 1
p

= (λ1 + λ4)
1/pε.

Again, applying (2.1), we have

0 ≤ ζ(α(νni−1, νmi−1)d(Tνni−1, T νmi−1),Kp(νni−1, νmi−1))

< Kp(νni−1, νmi−1))− α(νni−1, νmi−1)d(Tνni−1, T νmi−1),

and together with (2.4)

d(νni , νmi) = d(Tνni−1, T νmi−1) ≤ α(νni−1, νmi−1)d(Tνni−1, T νmi−1)

< Kp(νni−1, νmi−1).

Furthermore, letting i→ ∞ in the previous inequality we get

ε < (λ1 + λ4)
1/pε ≤ ε (2.13)

This is a contradiction and for this reason we conclude that ε = 0 and the sequence {νn} is Cauchy. Since the
space (X , d) is complete, there is ν∗ ∈ X such that

lim
n→∞

νn = ν∗. (2.14)

The mapping T is supposed to be continuous. Hence T is continuous at a point ν∗, which means that

ν∗ = lim
n→∞

νn+1 = lim
n→∞

Tνn = T ( lim
n→∞

νn) = Tν∗

that is, ν∗ is a fixed point of T .
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Theorem 2.2. Let (X , d) be a complete metric space and let T : X → X be an α-admissible Z-p-contraction
with respect to ζ of typeK. Suppose also that:

(i) T is triangular α−orbital admissible;

(ii) there exists ν0 ∈ X such that α(ν0, T ν0) ≥ 1;

(iii) X is regular with respect to mapping α.

Then, T has a fixed point.

Proof. Following the same steps as in the demonstration of the Theorem 2.1, we know that for any p > 0, the
sequence {νn} is Cauchy, and due to the completeness of themetric space (X , d), there exists ν∗ such that lim

n→∞
νn =

ν∗. Supposing that Tν∗ ̸= ν∗, using the triangle inequality we get

0 < d(ν∗, T ν∗) ≤ d(ν∗, T νn−1) + d(Tνn−1, T ν∗). (2.15)

Replacing ν by νn−1 and ω by ν∗ in (2.1) and using (ζ1) we get

0 ≤ ζ (α(νn−1, ν∗)d(Tνn−1, T ν∗),Kp(νn−1, ν∗))

< Kp(νn−1, ν∗)− α(νn−1, ν∗)d(Tνn−1, T ν∗).

Since from the hypothesis (iii), the space (X ) is regular, so for n ∈ N we have α(νn−1, ν∗) ≥ 1 and

d(Tνn−1, T ν∗) ≤ α(νn−1, ν∗)d(Tνn−1, T ν∗) < Kp(νn−1, ν∗)

= [λ1d
p(νn−1, ν∗) + λ2d

p(νn−1, νn) + λ3d
p(ν∗, T ν∗)+

+λ4

(
d(νn−1,T ν∗)+d(ν∗,νn)

2

)p] 1
p

= [λ1d
p(νn−1, ν∗) + λ2d

p(νn−1, νn) + λ3d
p(ν∗, T ν∗)+

+λ4
dp(νn−1,T ν∗)+dp(ν∗,νn)

2

] 1
p

Hence, returning in (2.15) we have

0 < d(Tν∗, ν∗) < d(Tνn−1, ν∗) +Kp(νn−1, ν∗)

= d(Tνn−1, ν∗) + [λ1d
p(νn−1, ν∗) + λ2d

p(νn−1, νn) + λ3d
p(ν∗, T ν∗)+

+λ4
dp(νn−1,T ν∗)+dp(ν∗,νn)

2

] 1
p

(2.16)

Letting n→ ∞ in the inequality (2.16) we obtain

0 < dp(Tν∗, ν∗) <
(
λ3d

p(ν∗, T ν∗) + λ4
dp(ν∗,T ν∗)

2

)
= (λ3 +

λ4
2 )dp(Tν∗, ν∗) ≤ dp(Tν∗, ν∗)

which is a contradiction and shows that d(Tν∗, ν∗) = 0. Therefore, Tν∗ = ν∗.
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Adding an additional presumption ensures the uniqueness of the fixed point.

Theorem 2.3. If in Theorems 2.1 and 2.2, we assume additionally that

α(ν, ω) ≥ 1 for any ν, ω ∈ Fix(T ),

then the fixed point of T is unique.

Proof. Let ν∗ be a fixed point of T . If there exists another point, ω∗ different from ν∗ such that Tω∗ = ω∗, then

0 ≤ ζ(α(ν∗, ω∗)d(Tν∗, Tω∗),Kp(ν∗, ω∗)) < Kp(ν∗, ω∗)− α(ν∗, ω∗)d(Tν∗, Tω∗).

Hence,
0 < d(ν∗, ω∗) ≤ α(ν∗, ω∗)d(Tν∗, Tω∗) < Kp(ν∗, ω∗) = [λ1d

p(ν∗, ω∗) + λ4d
p(ν∗, ω∗)]

1
p .

This implies that
0 < dp(ν∗, ω∗) < (λ1 + λ4)d

p(ν∗, ω∗) ≤ dp(ν∗, ω∗)

which is a contradiction. Therefore dp(ν∗, ω∗) = 0 and hence, ν∗ = ω∗, that is the fixed point of T is unique.

A similar result can be easily obtained, following the proof from [13], if we take for the case p = 0 Kp(ν, ω) =

C(ν, ω).

Theorem 2.4. Let (X , d) be a complete metric space and let T be a self-mapping on X , such that there exist
ζ ∈ Z and α : X × X → [0,∞) such that for λi > 0, i ∈ {1, 2, 3, 4} with λ1 + λ2 + λ3 + λ4 = 1 and for all
ν, ω ∈ X \ Fix(T )

ζ(α(ν, ω)d(Tν, Tω), C(ν, ω)) ≥ 0, (2.17)

Suppose also that:

(i) T is triangular α−orbital admissible;

(ii) there exists ν0 ∈ X such that α(ν0, T ν0) ≥ 1;

(iii) either, T is continuous, or

(iv) (X , d) is regular.

Then, T has a fixed point.

Definition 2.2. Let (X , d) be a metric space. A mapping T : X → X is called an α-admissible Z-p-contraction
with respect to ζ of type J if there exist a function ζ ∈ Z and α : X × X → [0,∞) such that for λ1, λ2 > 0, with
λ1 + λ2 = 1

ζ(α(ν, ω)d(Tν, Tω), Jp(ν, ω)) ≥ 0, (2.18)

where

Jp(ν, ω) =


[
λ1d

p(ν, ω) + λ2

(
d(ω,Tω)(1+d(ν,Tν))

1+d(ν,ω)

)p] 1
p
, for p > 0

[d(ν, ω)]λ1 ·
[
d(ω,Tω)(1+d(ν,Tν))

1+d(ν,ω)

]λ2

, for p = 0
(2.19)

for all ν, ω ∈ X \ Fix(T ).
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Theorem 2.5. Let (X , d) be a complete metric space and let T be an α-admissibleZ-p-contraction with respect
to ζ of type J Suppose also that:

(i) T is triangular α−orbital admissible;

(ii) there exists ν0 ∈ X such that α(ν0, T ν0) ≥ 1;

(iii) either, T is continuous, or

(iv) (X , d) is regular.

Then, T has a fixed point.

Proof. Starting from an arbitrary point ν0 in X we build a sequence {νn}, as νn = Tnν0 for all n ∈ N. If there
exists some m ∈ N such that Tνm = νm+1 = νm, then νm is a fixed point of T and the proof is finished. For this
reason, we can assume from now on that νn ̸= νn−1 for any n ∈ N. Thus, we have

0 ≤ ζ(α(νn−1, νn)d(Tνn−1, T νn), Jp(νn−1, νn))

< Jp(νn−1, νn)− α(νn−1, νn)d(Tνn−1, T νn).
(2.20)

Since T is triangular α−orbital admissible, (2.3) holds and the above inequality becomes

d(νn, νn+1) ≤ α(νn−1, νn)d(Tνn−1, T νn) < Jp(νn−1, νn). (2.21)

(1.) For the case p > 0

Jp(νn−1, νn) =
[
λ1d

p(νn−1, νn) + λ2

(
d(νn,T νn)(1+d(νn−1,T νn−1))

1+d(νn−1,νn)

)p] 1
p

= [λ1d
p(νn−1, νn) + λ2d

p(νn, νn+1)]
1
p

and replacing in (2.21) we get

d(νn, νn+1) < [λ1d
p(νn−1, νn) + λ2d

p(νn, νn+1)]
1
p

which is equivalent with the following

dp(νn, νn+1) <
λ1

1− λ2
dp(νn−1, νn) = dp(νn−1, νn)

It follows then that {d(νn−1, νn)} is a non-increasing sequence of positive real numbers and consequently, there
is δ ≥ 0 such that lim

n→∞
d(νn−1, νn) = δ. Since it can be easily seen that lim

n→∞
Op(νn−1, νn) = δ, if we suppose that

δ > 0 then passing the limit when n→ ∞ in (2.20) we get

0 ≤ lim sup
n→∞

ζ(α(νn−1, νn)d(Tνn−1, T νn), Jp(νn−1, νn)) < 0

and hence δ = 0 which contradicts our assumption. Furthermore,

lim
n→∞

d(νn−1, νn) = 0. (2.22)
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We shall prove that {νn} is a Cauchy sequence. If we suppose, by contradiction, than {νn} is not a Cauchy
sequence then following the proof of Theorem 2.1, by Lemma 1.1 there exits ε > 0 such that

limi→∞ d(νni , νmi) = limi→∞ d(νni−1, νmi−1) = limi→∞ d(νni−1, νmi)

= limi→∞ d(νni , νmi−1) = ε.
(2.23)

Replacing in (2.18)
0 ≤ ζ(α(νni−1, νmi−1)d(Tνni−1, T νmi−1), Jp(νni−1, νmi−1))

< Jp(νni−1, νmi−1)− α(νni−1, νmi−1)d(Tνni−1, T νmi−1)

or, together with (2.4)

d(νni , νmi) ≤ α(νni−1, νmi−1)d(Tνni−1, T νmi−1) < Jp(νni−1, νmi−1)

=
[
λ1d

p(νni−1, νmi−1) + λ2

(
d(νmi−1,νmi )[1+d(νni−1,νni )]

1+d(νni−1,νmi−1)

)p] 1
p
.

Letting i→ ∞ in the above inequality we get that

0 < ε < λ
1/p
1 ε < ε,

which is a contradiction. Hence, we conclude that {νn} is a Cauchy sequence in a complete metric space (X , d)
and there exists ν∗ such that

νn → ν∗ as n→ ∞. (2.24)

If T is continuous
lim
n→∞

d(νn+1, T ν∗) = lim
n→∞

d(Tνn, T ν∗) = 0,

and combined with the uniqueness of the limit, we get that Tν∗ = ν∗, that is, ν∗ forms a fixed point of T .
In the case of the alternative hypothesis, we suppose that Tν∗ ̸= ν∗. From (2.18)

0 ≤ ζ
(
α
(
νn(k), ν∗

)
d(Tνn(k), T ν∗), Jp(νn(k), ν∗)

)
and since (X , d) is regular, there exists a subsequence

{
νn(k)

}
of {νn} such that α(νn(k), ν∗) ≤ 1 for any k ∈ N

d(νn(k)+1, T ν∗) ≤ α
(
νn(k), ν∗

)
d(Tνn(k), T ν∗) < Jp(νn(k), ν∗)

=
[
λ1d

p(νn(k), ν∗) + λ2

(
d(ν∗,T ν∗)(1+d(νn(k),νn(k)+1))

dp(νn(k),ν∗)

)p] 1
p

Letting n→ ∞ and keeping in mind (2.24) and (2.22), we have

0 < d(ν∗, T ν∗) < [λ1d
p(ν∗, T ν∗) + λ2d

p(ν∗, T ν∗)]
1
p

which is equivalent with
0 < dp(ν∗, T ν∗) < (λ1 + λ2) d

p(ν∗, T ν∗) = dp(ν∗, T ν∗).

This is a contradiction. Thus, dp(ν∗, T ν∗) = 0, that is, ν∗ is a fixed point of T .
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(2.) For the case p = 0 we have

Jp(νn−1, νn) = [d(νn−1, νn)]
λ1 ·

[
d(νn,T νn)(1+d(νn−1,T νn−1))

1+d(νn−1,νn)

]λ2

= [d(νn−1, νn)]
λ1 ·

[
d(νn,νn+1)(1+d(νn−1,νn))

1+d(νn−1,νn)

]1−λ1

= [d(νn−1, νn)]
λ1 · [d(νn, νn+1)]

1−λ1

and the inequality (2.21) implies that

[d(νn, νn+1)]
λ1 < [d(νn−1, νn)]

λ1 .

Consequently, we derive that the sequence of non-negative real numbers {d(νn−1, νn)} is decreasing. Then, there
exists δ ≥ 0 such that limn→∞ d(νn−1, νn) = δ. On the other hand, it is easy to see that

lim
n→∞

Jp(νn−1, νn) = δ.

Assuming that δ > 0, since T is an α-admissible Z-p-contraction with respect to ζ of type J , we obtain

0 ≤ lim sup ζ(α(νn−1, νn)d(νn−1, νn), Jp(νn−1, νn)) < 0

which is a contradiction. Therefore, δ = 0, which means

lim
n∞

d(νn−1, νn) = 0. (2.25)

By employing the same tools as in the case p = 1 and taking into account (2.25) we have

limn∞ Jp(νni−1, νmi−1) = limn→∞[d(νni−1, νmi−1)]
λ1 ·

[
d(νmi−1,νmi )(1+d(νni−1,νni ))

1+d(νni−1,νmi−1)

]1−λ1

= 0,

we shall easily obtain that {xn} forms a Cauchy sequence in a complete metric space. Thus, there is ν∗ such that
limn→∞ νn = ν∗. As a last step in our proof, we shall show that ν∗ is a fixed point of T .
Sure, under the presumption that T is continuous we have

lim
n→∞

d(νn+1, T ν∗) = lim
n→∞

d(Tνn, T ν∗) = 0,

and combined with the uniqueness of limit, Tν∗ = ν∗, that is, ν∗ forms a fixed point of T .
Under the alternative presumption, namely, the regularity of the space X , we have from (2.18)

0 ≤ ζ
(
α
(
νn(k), ν∗

)
d(Tνn(k), T ν∗), Jp(νn(k), ν∗)

)
or,

d(νn(k)+1, T ν∗) = d(Tνn(k), T ν∗) < Jp(νn(k), ν∗)

= [d(νn(k), ν∗)]
λ1 ·

[
d(ν∗,T ν∗)(1+d(νn(k),νn(k)+1))

1+d(νn(k),ν∗)

]1−λ1

.

Letting n→ ∞ in the above inequality we get d(ν∗, T ν∗) = 0, that is Tν∗ = ν∗.

2020, Volume 14, No.1 38 Theory of Approximation and Applications



Simulation Functions and Interpolative Contractions Andreea Fulga

Example 2.1. On set X , endowed with metric d(ν, ω) = |ν − ω| we consider the mapping O : X → X given as
follows:

O(1) = O(5) = O(7) = 7, O(2) = 5.

Let the function ζ ∈ Z , where for any ν, ω, ζ(u, v) = v(v+1)
v+2 − u and also, α : X × X → [0,∞) be defined by:

α(ν, ω) =


0, if (ν, ω) ∈ {(1, 2), (2, 5)}
1, if (ν, ω) ∈ {(2, 1), (5, 2)}
3, otherwise

By elementary calculations, we can reach thatO is triangular α−orbital admissible and the space X is regular.
The inequality (2.18)

ζ (α(ν, ω)d(Oν,Oω), Jp(ν, ω)) ≥ 0

becomes in this case, for any ν, ω ∈ X \ Fix(T )

Jp(ν, ω)(Jp(ν, ω) + 1)

Jp(ν, ω) + 2
≥ α(ν, ω)d(Oν,Oω), (2.26)

where for p = 0 and λ1 = λ2 = 1
2 we have Jp(ν, ω) =

√
d(ν,ω)d(ω,Oω)(1+d(ν,Oν))

1+d(ν,ω) . Since O1 = O5 = 7, we have
d(O1, O5) = d(7, 7) = 0 from (2.26) we have

Jp(ν, ω)(Jp(ν, ω) + 1)

Jp(ν, ω) + 2
≥ 0.

Also, due to the way the mapping αwas defined it is clear that the interesting cases are the following:
(a) ν = 2, ω = 1. In this case, (2.26) becomes

Jp(2, 1)(Jp(2, 1) + 1)

Jp(2, 1) + 2
≥ α(2, 1)d(O2, O1),

or, since Jp(2, 1) =
√

d(2,1)d(1,O1)(1+d(2,O2))
1+d(2,1) =

√
1·6·4
1+1 =

√
12,

12 +
√
12√

12 + 2
≥ 2 ⇔ 8 ≤

√
12.

(b) ν = 5, ω = 2. Similarly, we have Jp(5, 2) =
√

d(5,2)d(2,O2)(1+d(5,O5))
1+d(5,2) =

√
3·3·3
4 =

√
27
4 and then

27
4 +

√
27
4√

27
4 + 2

≥ 2 ⇔ 19

2
≤

√
27.

So, we checked that all the presumptions of Theorem 2.5 are fulfilled and therefore ν = 7 is a fixed point for O.
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Theorem 2.6. Let T be an orbitally continuous self-map on the T -orbitally complete metric space (X , d) and
a map α : X × X → [0,∞). Suppose that there exist ζ ∈ Z such that for each ν, ω ∈ X

ζ(α(ν, ω)d(ν, ω), Lp(ν, ω)) ≥ 0, (2.27)

where for λ1, λ2 > 0 such that λ1 + λ2 = 1,

Lp(ν, ω) =


[
λ1 [d(ν, ω)]

p + λ2

[
d(ν,T 2ν)

2

]p] 1
p
, for p > 0

[d(ν, ω)]λ1 ·
[
d(ν,T 2ν)

2

]λ2

, for p = 0

for all ν, ω ∈ X \ Fix(T ). Suppose also that:

(i) T is orbital α-admissible;

(ii) there exists ν0 ∈ X such that α(ν0, T ν0) ≥ 1;

Then T has a fixed point.

Proof. As in the corresponding lines in the proof of previous theorems, starting by ν0, we built-up a recursive
sequence {νn} as:

ν0 := ν and νn = Tνn−1 for all n ∈ N. (2.28)

Without loss of generality, we assume that

xn ̸= xn−1 for all n ∈ N. (2.29)

Indeed, if for somem ∈ N we have the equality νm = Tνm−1 = νm−1, then the proof is completed.
On the account of (ii), α(ν0, T ν0) ≥ 1. Due to α-admissibility of T , we derive that

α(νn, νn+1) ≥ 1 for all n ∈ N0. (2.30)

For ν = νn−1 and ω = νn in (2.27) and regarding the inequality (2.30), we derive that

0 ≤ ζ(α(νn−1, νn)d(νTn−1, T νn), Lp(νn−1, νn))

< Lp(νn−1, νn)− α(νn−1, νn)d(νn−1, νn)
(2.31)

which yields
d(νn, νn+1) = d(Tνn−1, T νn) ≤ α(νn−1, νn)d(νTn−1, T νn) < Lp(νn−1, νn). (2.32)

(1.) For the case p > 0, due to (2.28), the statement (2.32) turns into

dp(νn, νn+1) < λ1[d(νn−1, νn)]
p + λ2

[
d(νn−1,νn+1)

2

]p
. (2.33)

By using the triangle inequality, one can get

dp(νn, νn+1) < λ1d
p(νn−1, νn) + λ2

[
dp(νn−1,νn)+dp(νn,νn+1)

2

]
(2.34)
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which implies, since λ1 + λ2 = 1, that
d(νn, νn+1) < d(νn−1, νn) (2.35)

Thus, {d(νn, νn+1)} is a decreasing sequence of positive real numbers and there is δ ≥ 0 such that limn→∞ d(νn, νn+1) =

δ. Then, also
lim
n→∞

Lp(νn−1, νn) = δ.

We presume that δ > 0. Considering in (2.27 ) un = α(νn−1, νn)d(Tνn−1, T νn), vn = Lp(νn−1, νn) and keeping in
mind the presumption (ζ3) it follows that

0 ≤ lim sup
n→∞

ζ (α(νn−1, νn)d(Tνn−1, T νn), Lp(νn−1, νn)) < 0

But since this is a contradictionwehave limn→∞ d(νn, νn+1) = 0.Weshall prove that {νn}n∈N is a Cauchy sequence.
As in the proof of the previous theorem, assuming the opposite, that the sequence {νn} is not Cauchy, by Lemma
1.1 we can find ε > 0 and the sequences of positive integers {ni} , {mi} such that ni > mi > i and

lim
n→∞

d(νni−1, νmi−1) = lim
n→∞

d(νni , νmi) = ε. (2.36)

Replacing in (2.27) ν by νni−1 and ω by νmi−1 and taking into account (2.4) we get

d(νni , νmi) ≤ α(νni−1, νmi−1)d(Tνni−1, T νmi−1) < Lp(νni−1, νmi−1)

=
[
λ1[d(νni−1, νmi−1)]

p + λ2

[
d(νni−1,νni+1)

2

]p] 1
p

≤
[
λ1d

p(νni−1, νmi−1) + λ2
dp(νni−1,νni )+dp(νni ,νni+1)

2

] 1
p

(2.37)

Letting i→ ∞ in the previous inequality and accordance with (2.36) we obtain

ε < λ1 ε < ε.

This is a contradiction. Thus, ε = 0 and {νn} is a Cauchy sequence. Regarding the construction νn = Tnν0 and
using the fact that (X , d) is T -orbitally complete, there is ν∗ ∈ X such that νn → ν∗. Furthermore by the orbital
continuity of T, we obtain that νn → Tν∗. Hence ν∗ = Tν∗.

(2.) For the case p = 0, the statement (2.32) becomes

d(νn, νn+1) < [d(νn−1, νn)]
λ1 ·

[
d(νn−1,νn+1)

2

]1−λ1

≤ [d(νn−1, νn)]
λ1 ·

[
d(νn−1,νn)+d(νn,νn+1)

2

]1−λ1

.
(2.38)

If we presume that there exists some n0 ∈ N such that d(νn−1, νn) ≤ d(νn, νn+1) for any n ≤ n0, then (2.38)
turns into d(νn, νn+1) < d(νn, νn+1) which is a contradiction. Therefore, we have d(νn−1, νn) > d(νn, νn+1) for all
n ∈ N.We conclude that {d(νn−1, νn)} is a monotonically decreasing sequence of non-negative real numbers, so
that there is some δ ≥ 0 such that limn→∞ d(νn−1, νn) = δ. Since limn→∞ LP (νn−1, νn) = δ, following the proof for
the case p > 0 we get that δ = 0. Again, following the case p > 0 it follows that the sequence {νn} is convergent to
a point ν∗ ∈ X , being a Cauchy sequence in a complete metric space and the point ν∗ is a fixed point of T .
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Remark 2.1. Many consequences can be listed either by considering different functions or by taking different
values   for p ≥ 0.
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